In this paper the numerical solution of nonautonomous semilinear stochastic evolution equations driven by an additive Wiener noise is investigated. We introduce a novel fully discrete numerical approximation that combines a standard Galerkin finite element method with a randomized Runge-Kutta scheme. Convergence of the method to the mild solution is proven with respect to the $L^p(\Omega)$-norm, $p \in [2,\infty)$. We obtain the same temporal order of convergence as for Milstein-Galerkin finite element methods but without imposing any differentiability condition on the nonlinearity. The results are extended to also incorporate a spectral approximation of the driving Wiener process. An application to a stochastic partial differential equation is discussed and illustrated through a numerical experiment.