Discrete approximation of stochastic differential equations

Abstract

It is shown how stochastic Itô-Taylor schemes for stochastic ordinary differential equations can be embedded into standard concepts of consistency, stability and convergence. An appropriate choice of function spaces and norms, in particular a stochastic generalization of Spijker’s norm (1968), leads to two-sided estimates for the strong error of convergence under the usual assumptions.

Publication
SeMA Journal, vol. 51, 83-90
Raphael Kruse
Raphael Kruse
Professor

Prof. Dr. Raphael Kruse is the head of the working group “Numerik stochastischer Differentialgleichungen” at Martin-Luther-University Halle-Wittenberg. His research interests include numerical methods and stochastic analysis for stochastic evolution equations and Monte Carlo methods.