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1. introduction

In [1], Dolfi, Jabara and Lucido determine the finite groups in which the centraliser of
every element of order 5 is a 5-group. However, the main result in [1] is flawed: when
looking at groups G with F ∗(G/F (G)) ∼= Alt(5) and F (G) of odd order the authors
of [1] erroneously prove that F (G) must be abelian. We believe that the error occurs
on page 1060 of their paper. Our main result is a corrected version of their theorem:

Theorem 1.1 (Dolfi, Jabara and Lucido). Suppose that G is a finite group in which
the centraliser of every element of order 5 is a 5-group. Then one of the following
holds:

(i) G is a 5-group or a 5′-group.
(ii) G is a soluble group and one of the following hold:

(a) G is a soluble Frobenius group such that either the Frobenius kernel or a
Frobenius complement is a 5-group;

(b) G is a 2-Frobenius group such that F (G) is a 5′-group and G/F (G) is a
Frobenius group, whose kernel is a cyclic 5-group and whose complement
is cyclic of order 2 or 4; or

(c) G is a 2-Frobenius group such that F (G) is a 5-group and G/F (G) is a
Frobenius group, whose kernel is a cyclic 5′-group and whose complement
is a cyclic 5-group.

(iii) G/F (G) ∼= Alt(5) or Sym(5) and F (G) = O2(G)O2′(G) where O2(G) is nilpo-
tent of class at most three and O2′(G) = O{2,5}′(G) is nilpotent of class at most
two.

(iv) G/F (G) ∼= Alt(6), Sym(6) or M(9) and F (G) = O2(G)O3(G) where O2(G)
and O3(G) are elementary abelian.

(v) G/F (G) ∼= Alt(7) and F (G) = O2(G) is elementary abelian.
(vi) G/F (G) ∼= 2B2(8) or

2B2(32) and F (G) = O2(G) is elementary abelian.
(vii) G/F (G) ∼= PSU4(2) or Aut(PSU4(2)) and F (G) = O2(G) is elementary abelian.
(viii) G/F (G) ∼= PSL2(49), PGL2(49) or M(49) and F (G) = O7(G) is elementary

abelian.
(ix) E(G) ∼= PSL2(5

e) with e ≥ 2 and either G ∼= PSL2(5
e) or G ∼= PGL2(5

e) or e
is even and G ∼= M(5e).

(x) E(G) ∼= PSL2(p) where p is a prime which can be written as p = 2 · 5e ± 1 for
some non-negative integer e.

(xi) G ∼= PSL2(11), PSL3(4), PSL3(4):2f , PSL3(4):2i, PSp4(7), PSU4(3), Mat(11)
or Mat(22).

We adopt notation from [1], so, for all odd primes p and all m ∈ N, we write M(p2m)
to denote the non-split extension of PSL2(p

2m) such that |M(p2m) : PSL2(p
2m)| = 2.
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In part (xi) of Theorem 1.1, we denote by 2f a field automorphism of order 2 and by 2i
the inverse transpose automorphism. Throughout the statement, elementary abelian
groups may be trivial. We finally point out that the G/F (G)-modules involved in F (G)
are explicitly known in all cases.
The paper is organised as follows. In Section 2, we construct examples of r-groups
of class two for all odd primes r, r ̸= 5, which admit an action of Alt(5) with an
element of order 5 acting without non-trivial fixed points. This demonstrates that the
statement in [1] is false. However, in Section 3, we show that there are no groups
G with O{2,5}′(G) nilpotent of class three with G/O{2,5}′(G) ∼= Alt(5) and with an
element of order 5 acting fixed point freely. This is the main contribution of this paper
and our proof of this fact is guided by some of the arguments in [2].
We further note that the authors of [1] use the fact that if Alt(5) acts on a 7-group,
then the 7-group is abelian to show that PSL2(49) cannot act on a non-abelian 7-group.
In Section 4, we provide an alternative proof for this fact and prove, in addition, that
such an abelian group must be elementary abelian. We also show that, in part (iv)
of Theorem 1.1, the subgroup O3(G) is elementary abelian. This sharpens the result
stated in [1].

Acknowledgement. The second author is grateful to the DFG for their support and
both the first and second author thank the mathematics department in Halle for their
hospitality.

2. Construction of a class two group admitting Alt(5) with an
element of order 5 acting fixed point freely

In this section we demonstrate that Theorem 1.1 (iii) cannot be strengthened to say
that O2′(G) is abelian by constructing examples with O2′(G) of class two.
Suppose that r is an odd prime with r ̸= 5 and thatW is a 5-dimensional vector space
over GF(r) with basis {a1, . . . , a5}. Let X := Sym(5) naturally permute this basis.
This permutation action gives rise to a faithful linear action of X on W which is in
fact a reduction modulo r of the corresponding integral representation of X. We let V
be the GF(r)X-submodule of W with basis V = {v1, . . . , v4} where, for all 1 ≤ i ≤ 4,
we set vi := a1−ai+1. It is easy to check that an element of order 5 inX acts fixed point
freely on V and that W = V ⊕⟨a1+a2+a3+a4+a5⟩. Finally we let Y := X ′ ∼= Alt(5)
and note that the restriction of V to Y is also an irreducible GF(r)Y -module. We also
denote this module by V .

Recall that V ∧ V is isomorphic to the submodule of V ⊗ V generated by the vectors
vi ⊗ vj − vj ⊗ vi for 1 ≤ i < j ≤ 4.

Lemma 2.1. The GF(r)Y -module V ∧V has no composition factor isomorphic to V .

Proof. Let U := V ∧ V . Calculating most easily with S = ⟨(2, 3)(4, 5), (2, 4)(3, 5)⟩, we
obtain that CU(S) = 0. Since CV (S) = ⟨v1 + v2 + v3 + v4⟩, the result follows. �
We need the following statement about self-extensions of V by V .

Lemma 2.2. Any GF(r)Y -module with all composition factors isomorphic to V is
completely reducible.
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Proof. We need to show that Ext1Y (V, V ) = 0. (For notation see for example [3].) If
r > 3, then, as r ̸= 5, the result follows from Maschke’s Theorem. So suppose that
r = 3. Let H denote a subgroup of Y which is isomorphic to Alt(4). We recall that V
is a direct summand of the natural permutation module W for Y . Hence if we let 1H
denote the trivial GF(3)H-module, then W is the induced module 1H ↑Y . It follows
that

Ext1Y (W,V ) = Ext1Y (1H ↑Y , V ) = Ext1H(1H , V ↓H),
where the second equality comes from Shapiro’s Lemma [3, Corollary 3.3.2]. Now V ↓H
is a direct sum of a faithful 3-dimensional module and a trivial module. As H contains
a Klein fours subgroup and as this subgroup acts coprimely on the 3-dimensional
module, this module only has trivial extensions with the trivial H-module.
Since dimExt1Y (1H , 1H) = 1 (see for example [3, Corollary 3.5.2]), we have that
dimExt1Y (1H , V ↓ H) = 1. On the other hand

Ext1Y (W,V ) = Ext1Y (1Y ⊕ V, V ) = Ext1Y (1Y , V )⊕ Ext1Y (V, V ).

Now let Y ≥ D ∼= Dih(10). Then 1D ↑Y is a uniserial module with socle and head
of dimension 1 and heart of dimension 4. Hence dimExt1Y (1Y , V ) ≥ 1. We infer that
Ext1Y (V, V ) = 0 as claimed. �
Constructions of r-groups admitting the action of a further group are intimately re-
lated to tensor products and homomorphisms between modules. We therefore study
Hom(V, V ) in the next lemma.
Let σ = v1 + v2 + v3 + v4 and define θ ∈ Hom(V, V ) as follows: for all 1 ≤ i ≤ 4,

vi 7→ viθ := σ − vi.

With respect to the basis V, we calculate that θ has matrix
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

Lemma 2.3. The GF(r)X-submodule of Hom(V, V ) generated by θ has dimension 4
and is isomorphic to V .

Proof. Let X1 = StabX(1) ∼= Sym(4). Then, for all 1 ≤ i ≤ 4 and for all π ∈ X1, we
have

viπ
−1θπ = (v(i+1)π−1−1)θπ = (σ − v((i+1)π−1−1)π) = σ − vi = viθ.

Since v1(1, 2)θ(1, 2) ̸= v1θ, the orbit of X containing θ has exactly 5 elements. There-
fore the subspace U of Hom(V, V ) spanned by θ has dimension 4 or 5. If dimU = 5,
then the sum τ of the translates of θ under X is centralised by X and is non-trivial. By
Schur’s Lemma we then have that τ is a scalar matrix. Since r is odd, if τ is non-zero,
it has non-zero trace. However, θ and its translates have trace 0 and therefore τ must
also have trace 0. Thus τ = 0 and dimU = 4. �
Theorem 2.4. For all odd primes r, r ̸= 5, there are r-groups of class two which
admit Sym(5) with an element of order 5 acting without fixed points.
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Proof. Let U be an 8-dimensional vector space over GF(r). We define a subgroup J of
GL8(r) by

J = ⟨
(
I4 0
θ I4

)
,

(
xπ 0
0 xπ

)
| π ∈ X⟩

where xπ is the matrix corresponding to the action of π ∈ X on V with respect to the
basis V and I4 is the 4 × 4 identity matrix. Then J ∼= r4:Sym(5) by Lemma 2.3. Set
K = U o J . Then Or(K) has order r12 and class two. Furthermore, the elements of
order 5 in K are self-centralising. �
Table 1 describes an element γ ∈ Hom(V ⊗ V, V ) by defining the images of the basic
tensors.

⊗ v1 v2 v3 v4
v1 −5v1 + 2σ σ σ σ
v2 σ −5v2 + 2σ σ σ
v3 σ σ −5v3 + 2σ σ
v4 σ σ σ −5v4 + 2σ

.

Table 1. The module homomorphism γ

The next lemma will be used in Section 3.

Lemma 2.5. Up to scalar multiplication γ is the unique element of HomY (V ⊗V, V ) =
HomX(V ⊗ V, V ).

Proof. We note that X = ⟨(1, 2), (2, 3, 4, 5)⟩ and that the second generator permutes
{v1, v2, v3, v4} as a 4-cycle. In particular, γ commutes with this element. Hence we
only need to verify that γ commutes with the transposition. As an illustration we
show that (v1 ⊗ v2)γ(1, 2) = (v1 ⊗ v2)(1, 2)γ. The left hand side is seen to be σ(1, 2) =
−5v1 + σ, while the right hand side equals −(v1 ⊗ v2)γ + (v1 ⊗ v1)γ = σ − 5v1. Thus
γ ∈ HomX(V ⊗ V, V ).
Assume that µ ∈ HomY (V ⊗V, V ) is not a scalar multiple of γ. We consider (v1⊗v1)µ =∑5

i=1 λiai where λi ∈ GF(r) and
∑5

i=1 λi = 0. Using the fact that µ commutes with
elements from Y , we see, by applying (3, 4, 5), that λ3 = λ4 = λ5 which we define to
be λ. Next, applying (1, 2)(3, 4), we deduce that λ1 = λ2. So

(v1 ⊗ v1)µ = λ1(a1 + a2) + λ(a3 + a4 + a5)

and, therefore, 2λ1+3λ = 0. Since µ is not the zero map, after adjusting µ by a scalar,
we may suppose that

(v1 ⊗ v1)µ = −5v1 + 2σ = (v1 ⊗ v1)γ.

Replacing µ with µ − γ, we only need to consider the case where µ maps v1 ⊗ v1 to
zero. The action of Y now gives (vj ⊗ vj)µ = 0 for all 1 ≤ j ≤ 4. Let (1, j, k) be a
3-cycle in Y . Since (vj ⊗ vj)µ = 0, we have that

0 = (vj ⊗ vj)(1, j, k)µ = ((vk − vj)⊗ (vk − vj))µ = −(vk ⊗ vj)µ− (vj ⊗ vk)µ.

It follows that µ is alternating and hence that V ∧ V has a quotient isomorphic to V .
But then Lemma 2.1 implies that µ is the zero map and this is our contradiction. The
lemma is now proved. �
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3. A non-existence Theorem about class three groups admitting Alt(5)

We have seen in the previous section that Alt(5) can act on a class two group with an
element of order 5 acting fixed point freely. Our objective in this section is to show
that if E(G/F (G)) ∼= Alt(5), then Theorem 1.1 (iii) holds. In particular, we show that
Alt(5) cannot act on a class three group of odd order with an element of order 5 acting
fixed point freely. Hence suppose that G is a finite group such that the centraliser
of every element of order 5 is a 5-group and E(G/F (G)) ∼= Alt(5). Assume that
O5(G) ̸= 1. Then, as F (G) is nilpotent, the fact that elements of order 5 are 5-groups
implies that F (G) = O5(G). Let B be a Sylow 2-subgroup of G. Then B is elementary
abelian of order 4. By coprime action we have that O5(G) = ⟨CO5(G)(b) | b ∈ B#⟩.
So, as the elements of order 5 in G do not commute with involutions, we have a
contradiction. Thus O5(G) = 1. Therefore we only have to restrict the structure of
Or(G) for all primes r ̸= 5 dividing |F (G)|. If r = 2, then [4, Lemma 4.1] implies that
G contains a subgroup isomorphic to Alt(5) and so we have that O2(G) admits Alt(5)
with an element of order 5 acting fixed point freely. In this case [2, Theorem 2] yields
that O2(G) has class at most three. So we may assume that r is odd with r ̸= 5. Our
aim will be achieved once we prove the following theorem:

Theorem 3.1. Suppose that r is an odd prime with r ̸= 5 and that G is a group with
R := F (G) = Or(G) an r-group and F ∗(G/R) ∼= Alt(5). If an element of order 5 in
G acts fixed point freely on R, then R has class at most two.

The remainder of this section is devoted to proving Theorem 3.1, and it suffices to
consider the case where G/Or(G) ∼= Alt(5) and Or(G) has class three.
The most direct approach to the proof of Theorem 3.1 would choose G of minimal
order with R := Or(G) of class three and then derive a contradiction. This approach
works very smoothly when r ̸= 3 because in these cases G splits over R. However,
when r = 3 it is possible that G does not split over R (as there exist groups X with
X/O3(X) ∼= Alt(5) and O3(X) isomorphic to V as an X/O3(X)-module which do not
contain subgroups isomorphic to Alt(5)). Thus in the straightforward approach to the
proof of Theorem 3.1, when we choose a normal subgroup U of G such that U is proper
in R, there may not exist a group G∗ with O3(G

∗) = U . Consequently our inductive
hypothesis is not strong enough to assert that U has class at most two.
Instead, we assume that Theorem 3.1 is false and we choose a counter-example G
of minimal order such that R := Or(G) has class three. Then we choose a normal
subgroup Q of G that is contained in R and that is minimal with respect to having
class three. We set G := G/R and fix all this notation.

Lemma 3.2. The following hold:

(i) Q′ is abelian.
(ii) Every normal subgroup of G that is properly contained in Q has class at most

two.
(iii) Γ2(Q) is elementary abelian of order r4 and is isomorphic to V (as defined

before Lemma 2.5) as a GF(r)G-module.
(iv) Q′/(Q′ ∩ Z(Q)) is a GF(r)G-module.
(v) Φ(Q) ≤ Z2(Q) ≤ CQ(Q

′) < Q. In particular, Q/Z2(Q) is elementary abelian.
5



(vi) Every G-composition factor of Q is isomorphic as a GF(r)G-module to V .
Every elementary abelian G-invariant section of Q which is centralised by R is
a direct sum of modules isomorphic to V .

Proof. We have Q′ ≤ Z2(Q) and [Q′, Z2(Q)] = 1 follows from the three subgroup
lemma. Thus Q′ ≤ Z2(Q) ≤ CQ(Q

′) < Q and, especially, (i) and some of the inclusions
in (v) hold.
For part (ii) let Q0 be a normal subgroup of G that is properly contained in Q. Then
the minimal choice of Q immediately gives that Q0 has class at most two.
Γ2(Q) lies in Z(Q) because Q has class three, so it is abelian. Let P := Φ(Γ2(Q)).

Then R centralises P and hence, if P ̸= 1, then Ĝ := G/P is a counter-example of

smaller order because Q̂ is still of class three. This contradiction shows that P = 1
and so Γ2(Q) is elementary abelian and it follows similarly that Γ2(Q) is irreducible
as a GF(r)G-module. This proves (iii).
Let a ∈ Q′ and q ∈ Q. Then [ar, q] = [a, q]r. But [a, q] ∈ Γ2(Q) which is elementary
abelian by (iii). So [ar, q] = 1. Hence ar ∈ Z(Q) and therefore Q′/Q′ ∩ Z(Q) is
elementary abelian. For this factor group to be a GF(r)G-module it remains to show
that [Q′, R] ≤ Q′ ∩ Z(Q).
Of course [Q′, R] ≤ Q′, and also [Q,Q′, R] ≤ [Γ2(Q), R] < Γ2(Q). Therefore [Q,Q

′, R] =
1 by (iii). As R has class three, we know that [R,R′] ≤ Z(R) and hence [Q,R] ≤ R′ ≤
Z2(R). Therefore [R,Q,Q′] = 1 and hence the three subgroup lemma implies that
[Q′, R,Q] = 1. We deduce that [Q′, R] ≤ Z(Q) whence [Q′, R] ≤ Q′ ∩ Z(Q).
For the last statement of (v) suppose that a, q1, q2 ∈ Q. Then [ar, q1, q2] = [a, q1, q2]

r =
1 which means that ar ∈ Z2(Q). Hence Q/Z2(Q) is elementary abelian. As stated in
[1], V is the unique GF(r)G-module which admits an element of order 5 from G acting
fixed point freely. Thus Lemma 2.2 gives (vi). �
Lemma 3.3. Suppose that M1, M2 and M3 are subgroups of Q that are maximal
subject to being normal in G and contained in Q. Set D =M1 ∩M2 ∩M3 and suppose
that |Q : D| = r12. Then D ≤ Z2(Q) and in particular Q/Z2(Q) is a direct product of
at most three minimal normal subgroups of G/Z2(Q) each of order r4.

Proof. By Lemma 3.2 (ii), the subgroupsM1,M2 andM3 have class at most two. Thus
for 1 ≤ i < j ≤ 3, we have that [Mi ∩Mj,Mj] ≤ M ′

j ≤ Z(Mj). As Q = MiMj, we
obtain that

[Mi ∩Mj, Q] ≤ [Mi ∩Mj,Mi][Mi ∩Mj,Mj] ≤ Z(Mi)Z(Mj).

In particular,

[D,Q] ≤ Z(M1)Z(M2) ∩ Z(M2)Z(M3) ∩ Z(M1)Z(M3).

Since |Q : D| = r12, we have M1 ∩M2 ̸≤M3. Therefore Q = (M1 ∩M2)M3 and

M1 =M1 ∩ (M1 ∩M2)M3 = (M1 ∩M2)(M1 ∩M3).

Similarly, M2 = (M1 ∩M2)(M2 ∩M3) and so

Q =M1M2 = (M1 ∩M2)(M2 ∩M3)(M1 ∩M3).

Hence it follows that [D,Q,Q] is contained in

[Z(M1)Z(M2) ∩ Z(M2)Z(M3) ∩ Z(M1)Z(M3), (M1 ∩M2)(M2 ∩M3)(M1 ∩M3)] = 1
6



and consequently D ≤ Z2(Q).
We know from Lemma 3.2 (v) that Q/Z2(Q) is elementary abelian. As R has class
three and Q E G, we see that [Q,R] ≤ R′ ∩ Q ≤ Z2(R) ∩ Q ≤ Z2(Q), so Q/Z2(Q) is
centralised by R and hence Lemma 3.2 (vi) implies that Q/Z2(Q) is a direct product
of minimal normal subgroups of G/Z2(Q). If there are at least three minimal normal
subgroups of G/Z2(G) involved in this product, then there are exactly three by the
first part of the lemma. This completes the proof. �
The remainder of the proof is organised as a series of claims.

(3.3.1) Suppose that M is a normal subgroup of Q such that M/Z2(Q) is a minimal
normal subgroup of G/Z2(Q). Then M

′ ≤ Z(Q). In particular |Q/Z2(Q)| > r4.

We know that |M/Z2(Q)| = r4 by hypothesis. Since Z2(Q)
′ ≤ Q′∩Z(Q) andQ′/(Z(Q)∩

Q′) is elementary abelian by Lemma 3.2 (iv), the commutator map defines a GF(r)G-
module homomorphism from M/Z2(Q) ⊗M/Z2(Q) to Q

′/(Q′ ∩ Z(Q)) which is well-
defined as [Q,Z2(Q)] ≤ Q′ ∩ Z(Q). Since [a, b] = [b, a]−1 for all a, b ∈ Q, this map
factors through (M/Z2(Q)) ∧ (M/Z2(Q)). But (M/Z2(Q)) ∧ (M/Z2(Q)) has no 4-
dimensional quotients by Lemma 2.1 and so the commutator map is trivial. Therefore,
M ′ ≤ Z(Q)∩Q′ as claimed. If |Q/Z2(Q)| = r4, then we may takeM = Q and conclude
that Q has class two which is absurd. �

We now simultaneously define bases for all the G-composition factors of Q as follows.
Let U be such a composition factor. Then there is an isomorphism ψU from U to V .
For 1 ≤ i ≤ 4, we let ui = (vi)ψ

−1
U . We call this a standard basis of U . Given a standard

basis u1, . . . , u4, we define σu = u1u2u3u4. Recall the homomorphism γ from Table 1.
Suppose that R, S and T are G-composition factors with standard bases r1, . . . , r4 and
s1, . . . , s4. Then define a map from R⊗ S to T by setting, for all i, j ∈ {1, . . . 4}:

ri ⊗ sj 7→ (riψR ⊗ sjψS)γψ
−1
T .

Now we can determine the image of ri ⊗ sj in T represented in the standard basis
for T directly from the table describing γ. Thus, for example, r1 ⊗ s2 maps to σt and
r1 ⊗ s1 maps to σ2

t t
−5
1 . Replacing γ by a scalar multiple mγ we get that r1 ⊗ s1 maps

to (σ2
t t

−5
1 )m.

We are now going to exploit the Hall-Witt identity [5, Lemma 5.6.1 (iv)] which in a
class three group such as Q takes the form

[x, y, z][y, z, x][z, x, y] = 1

for all x, y, z ∈ Q.

(3.3.2) |Q/Z2(Q)| = r12.

As |Q/Z2(Q)| > r4 by ((3.3.1)), it is sufficient to exclude the case where |Q/Z2(Q)| =
r8. Hence assume that |Q/Z2(Q)| = r8. We let M1 and M2 be normal subgroups of
G such that Q = M1M2 and such that C := M1/Z2(Q) and D := M2/Z2(Q) have
order r4. We choose standard bases c1, . . . , c4 for C and d1, . . . , d4 for D. Then, as in
(3.3.1), the commutator map defines an GF(r)G-module homomorphism from C ⊗D
to Q′/(Q′ ∩ Z(Q)). If this map is trivial, then [M1,M2] ≤ Q′ ∩ Z(Q) and (3.3.1)
implies that Q′ ≤ Z(Q) which is not the case. By Lemmas 2.5 and 3.2(vi), the image
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of this commutator map is 4-dimensional and isomorphic to V . We let the image
be E and take a standard basis e1, . . . , e4 such that the commutator map is defined
by γ. Finally we may assume that Γ2(Q) = [M1,M2,M2] and take a standard basis
f1, . . . , f4, again chosen so that γ represents the commutator map from E ⊗ D to
Γ2(Q). We consider the Hall-Witt identity with the elements c1, d1 and d2 (and here
it is critical to note that the identity is independent of the representatives for c1, d1
and d2 that we choose). We have [d1, d2] ∈ Z(Q) from (3.3.1) and so [d1, d2, c1] = 1.
Calculating further commutators, using the map γ from Table 1, we get

[c1, d1, d2] = [(c1ψC ⊗ d1ψD)γψ
−1
E , d2] = [σ2

ee
−5
1 , d2] = (σ2

ee
−5
1 ψE ⊗ d2ψD)γψ

−1
F = σ5

ff
−10
2

and, similarly,

[d2, c1, d1] = [σe, d1] = σ5
ff

−5
1

which is a contradiction as their product is not the identity.
Thus |Q/Z2(Q)| = r12. �

From (3.3.2) we have that |Q/Z2(Q)| = r12. Let M1, M2 and M3 be normal subgroups
of G such that Q = M1M2M3 and such that C := M1/Z2(Q), D := M2/Z2(Q)
and E := M3/Z2(Q) have order r4. We take standard bases c1, . . . , c4, d1, . . . , d4 and
e1, . . . , e4 for C, D and E as described. Since M ′

i ≤ Z(Q) by (3.3.1), we may assume
that F := [M1,M2](Q

′ ∩ Z(Q))/(Q′ ∩ Z(Q)) is non-trivial. We set

H := [M1,M3](Q
′ ∩ Z(Q))/(Q′ ∩ Z(Q))

and

J := [M2,M3](Q
′ ∩ Z(Q))/(Q′ ∩ Z(Q)).

These may be trivial groups. We let f1, . . . , f4 be a standard basis for F , and when
H or J is non-trivial, we take standard bases h1, . . . , h4 and j1, . . . , j4 for H and J
respectively, where all the bases are chosen so that the commutator map is represented
by γ. Let k1, . . . , k4 be a standard basis for Γ2(Q). Notice that the basis k1, . . . , k4
cannot necessarily be chosen so that all the possible commutator maps are represented
by γ itself. However, they are represented by scalar multiples of γ and the powers
appearing in the images below do not affect the failure of the Hall-Witt identity which
we now proceed to check for the elements c1, d1 and e2. Taking all commutator maps
to be γ, we calculate

[c1, d1, e2] = [σ2
ff

−5
1 , e2] = σ5

kk
−10
2 ,

[d1, e2, c1] =

{
1 J = 1

[σj, c1] = σ5
kk

−5
1 otherwise

and

[e2, c1, d1] =

{
1 H = 1

[σh, c1] = σ5
kk

−5
1 otherwise

and, in full generality, the images lie in the cyclic groups generated by the elements
presented above. Thus it follows that the Hall-Witt identity does not hold in the
putative group Q. This concludes the proof of the theorem.
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4. Final remarks

In this section we prove that if E(G/F (G)) ∼= PSL2(49), then F (G) is an elementary
abelian 7-group. We also take the opportunity to add more detail to the statement of
Theorem 1.1 by showing that the abelian 3-group in Theorem 1.1 (iv) is elementary
abelian.

Lemma 4.1. The group PSL2(49) is not isomorphic to a subgroup of GL4(Z/49Z).

Proof. We calculate using Magma [6]. Let J ∼= PSL2(49) and suppose that J is a
subgroup of K = GL4(Z/49Z). Then, as J contains a subgroup isomorphic to Alt(5),
we can again take the integral version A of Alt(5) from Section 2 and suppose that it is
a subgroup of J . Now we take a Sylow 5-subgroup S of A and determine CK(S) using
Magma. It has order 25 · 3 · 52 · 74 and is 5-closed. We let T ∈Syl5(CK(S)). Then T
is the unique subgroup of order 25 in K containing S. It follows that J = ⟨A, T ⟩ and
a calculation shows that J has order 24 · 3 · 52 · 78. But this is a contradiction because
78 does not divide the order of J ∼= PSL2(49). Hence PSL2(49) is not isomorphic to a
subgroup of K.

�
Lemma 4.2. Suppose that k is an algebraically closed field of characteristic 7 and that
V is an irreducible kPSL2(49)-module which admits an element of order 5 without non-
zero fixed points. Then V is isomorphic to N ⊗Nσ where N is the natural kSL2(49)-
module and σ is the automorphism of k obtained by raising every element to its seventh
power. Furthermore, V is not a composition factor of V ⊗ V .

Proof. By [7, Section 30 (98)] we have V = U⊗W σ where U andW are basic kSL2(49)-
modules. The basic kSL2(49)-modules can be identified with the seven modules Uj,
0 ≤ j ≤ 6, obtained as degree j homogeneous polynomials in k[x, y]. Then dimUj =
j+1. Now let ϕ in SL2(49) ≤ GL2(k) be of order 5. Then ϕ diagonalises in GL2(k) and
so we may assume that ϕ acts as the diagonal matrix diag(λ, λ−1). It is straightforward
to check that, for j ≥ 3, ϕ has all possible non-trivial eigenvalues on Uj and so if Uj

or Uσ
j appears in the tensor product defining V , then as ϕ acts fixed point freely on

V , one of the tensor factors in V must be U0. But then dimUj must be even and we
see that V is a module for SL2(49), not for PSL2(49). Similarly, we now deduce the
only contenders for V are U1 ⊗ Uσ

1 , U2 ⊗ Uσ
1 and U1 ⊗ Uσ

2 . In the latter two cases we
again get a representation of SL2(49) rather than PSL2(49) and this shows that the
only possibility is that V = U1 ⊗ Uσ

1 and it is easy to check that this module has the
required properties.
Finally, we have

V ⊗ V = (U1 ⊗ Uσ
1 )⊗ (U1 ⊗ Uσ

1 ) = (U1 ⊗ U1)⊗ (Uσ
1 ⊗ Uσ

1 )

= (U0 ⊕ U2)⊗ (Uσ
0 ⊕ Uσ

2 ) = U0 ⊕ Uσ
2 ⊕ U2 ⊕ (U2 ⊗ Uσ

2 )

and none of these irreducible summands are isomorphic to V . �
Lemma 4.3. Any GF(7)PSL2(49)-module which has all composition factors isomor-
phic to the module described in Lemma 4.2 is completely reducible.

Proof. A Magma calculation has shown that Ext1X(V, V ) = H1(X,V ⊗ V ∗) = 0. This
proves the lemma. �
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Lemma 4.4. Suppose that r is a prime and that G is a group such that X :=
G/Or(G) ∼= PSL2(49) and G has an element of order 5 acting fixed point freely on
Or(G). Then r = 7 and O7(G) is elementary abelian and completely reducible as a
GF(7)X-module.

Proof. Let Q := Or(G). By [1] we may suppose that r = 7 and thus that Q is a
7-group.
Suppose first that Q is abelian, but not elementary abelian, and that G has minimal
order with these properties. EveryG-chief factor ofQ is isomorphic to the irreducible 4-
dimensional module V of X described in Lemma 4.2. Let N be a minimal G-invariant
subgroup of Q. Then N has order 74 and Q/N is elementary abelian. Since every
maximal G-invariant subgroup is also elementary abelian, we infer that Q has a unique
such subgroup. By Lemma 4.3, Q/N is completely reducible. Therefore Q/N has order
74 and soQ is homocyclic of order 494 and Lemma 4.1 provides the contradiction. Thus,
if Q is abelian, it is elementary abelian and completely reducible as a GF(7)X-module.
Suppose now, aiming for a contradiction, that G is chosen so that Q is a class
two group of minimal order. Thus Q′ is elementary abelian of order 74 and Q/Q′

is elementary abelian by the previous paragraph. In addition we may assume that
Q′ = Z(Q) as Z(Q) is completely reducible as a GF(7)X-module. Since the commu-
tator map from Q/Z(Q)×Q/Z(Q) determines an GF(r)X-module epimorphism from
Q/Z(Q) ⊗ Q/Z(Q) to Q′ = Z(Q), and V ⊗ V has no quotients isomorphic to V by
Lemma 4.2, we have a contradiction. This proves the lemma. �
Lemma 4.5. The group Alt(6) is not isomorphic to a subgroup of GL4(Z/9Z).

Proof. Take the integral copy of A ∼= Alt(5) from Section 2 and determine the nor-
maliser N of a Sylow 2-subgroup using Magma. This has order 7776. None of the
groups ⟨A, x⟩, x ∈ N , is isomorphic to Alt(6). This proves the claim. �
Because of Lemmas 2.2 and 4.5 we can now prove our version of Theorem 1.1 (iv)
using similar arguments to those used towards the end of the proof of Lemma 4.4.

Lemma 4.6. If Alt(6) acts on an abelian 3-group Q with an element of order 5
acting fixed point freely, then Q is elementary abelian and completely reducible as a
GF(3)Alt(6)-module. �
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