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In this note we prove that all finite simple 3′-groups are cyclic of prime
order or Suzuki groups. This is well known in the sense that it is mentioned
frequently in the literature, often referring to unpublished work of Thompson.
Recently an explicit proof was given by Aschbacher ([3]), as a corollary of
the classification of S3-free fusion systems. We argue differently, following
Glauberman’s comment in the preface to the second printing of his booklet
[8]. We use a result by Stellmacher [12] and instead of quoting Goldschmidt’s
result in its full strength, we give explicit arguments along his ideas in [10]
for our special case of 3′-groups.

1. Preliminaries

In this paper, by “group” we always mean a finite group, and we use stan-
dard notation as in [11]. We also quote some background results from this
monograph and we use without further reference that groups of odd order
are soluble (see [5]).

Definition 1.1. Let p be a prime. We say that a p-subgroup A of G is strongly
closed in G if, whenever A ≤ S ∈ Sylp(G) and g ∈ G, then Ag ∩ S ≤ A.

In this note we only consider strongly closed 2-groups, and we begin by
collecting and proving a number of well known facts.

Lemma 1.2. Suppose that A is a strongly closed 2-subgroup of G.
(1) If A ≤ H ≤ G, then A is strongly closed in H.
(2) If A ≤ T ≤ S ∈ Syl2(G), then NG(T ) ≤ NG(A).
(3) If N EG, then A ∩N is strongly closed in G.

(4) Let N EG and G := G/N . Then A is strongly closed in G.
(5) NG(A) controls fusion of its 2-elements in G.
(6) G = NG(A) · ⟨AG⟩.

Proof. (1) is clear from the definition. For the remainder of the proof let
A ≤ S ∈Syl2(G). In (2) let A ≤ T ≤ S and x ∈ NG(T ). Then Ax =
(A ∩ T )x = Ax ∩ T ≤ Ax ∩ S ≤ A because A is strongly closed. Thus
Ax = A. For (3) we let x ∈ G. Set A0 := A ∩ N and T := S ∩ N . Then
A0 ≤ T ∈Syl2(N) and Ax

0 ∩T ≤ Ax ∩T ≤ Ax ∩S ≤ A because A is strongly
closed in G. Hence Ax

0 ≤ A ∩ N = A0. Now we turn to (4). Let a ∈ A and
g ∈ G be such that ag ∈ S. Then ag ∈ S whence ag ∈ S · N . By Sylow’s
Theorem we may suppose that ag ∈ S, so ag ∈ Ag ∩ S ≤ A because A is
strongly closed in G. In particular ag ∈ A and hence A is strongly closed in
G. For (5) let x, y ∈ NG(A) be 2-elements and let g ∈ G be such that xg = y.
Then S ≤ NG(A) by (2) and hence S ∈Syl2(NG(A)), so we may suppose
that x, y ∈ S. By Theorem 6.1 in [7] there exist elements g1 ∈ CG(x) and
g2 ∈ NG(A) such that g = g1g2, so y = xg = xg2 . In (6) we let N := ⟨AG⟩
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and T := S ∩ N . Then A ≤ T and a Frattini argument together with (2)
yields that G = N ·NG(T ) = N ·NG(A). �

Lemma 1.3. Suppose that p is prime and that P is a p-subgroup of G.

(1) If X is a p′-subgroup of G and P normalises X, and if moreover P is an
elementary abelian, non-cyclic p-group, then X = ⟨CX(a) | a ∈ P#⟩.
(2) If N is a normal p′-subgroup of G, then CG(P )N/N = CG/N (PN/N).

Proof. These are Proposition 11.13 and Lemma 4.2 (i) in [11]. �

Theorem 1.4. Suppose that, for all sections H∗ of G and all S∗ ∈ Syl2(H
∗),

there is defined a characteristic subgroup W (S∗) of S∗ such that, if S∗ ̸= 1,
then W (S∗) ̸= 1. Suppose further that, whenever H∗ is a section of G and
F ∗(H∗) = O2(H

∗), then W (S∗)EH∗. Then for all T ∈ Syl2(G), the subgroup
NG(W (T )) controls G-fusion in T .

Proof. We define a map W that assigns, for all sections H∗ of G∗, to each
S∗ ∈Syl2(H

∗) the subgroup W (S∗) that exists by hypothesis. This is a sec-
tion conjugacy functor in the sense of [6] (page 15), so the additional hy-
potheses and Theorem 6.6 and Lemma 5.7 in [6] yield the result. �

Lemma 1.5. Suppose that f ∈ N and that G ≃Sz(2f ) is simple. Let S ∈ Syl2(G).
Then A := Ω1(S) = Z(S) has order 2f ≥ 8 with f odd and:

(1) The only strongly closed abelian 2-subgroups of G are A and its G-
conjugates.

(2) NG(S) is a Frobenius group with cyclic Frobenius complement of order
q−1 that acts regularly on A#. Moreover CG(a) = CG(A) = S for all a ∈ A#.

(3) If E is a quasi-simple group such that E/Z(E) ≃ G, then E is simple or
2f = 8 and Z(E) is elementary abelian of order 2 or 4.

(4) The group of outer automorphisms of G is of odd order.

Proof. For (3) see the main results of [1]. The other statements can be found
in [13], see § 4 and Theorems 9 and 11. �

Lemma 1.6. Suppose that a, b ∈ G are commuting involutions and that the
only non-abelian composition factors of CG(b) are Suzuki groups.

Then O(CG(a)) ∩ CG(b) ≤ O(CG(b)).

Proof. Let D := O(CG(a)) ∩ CG(b) and assume that D � O(CG(b)). Let

H := CG(b) and let H := H/O(H). Then 1 ̸= D ≤ O(CH(a)) and hence

we may apply (2.6) of [9] to H and a. Let E ≤ H be such that E is a
component of H that is normalised, but not centralised by D and by a. By
hypothesis and Lemma 1.5 (2),(4) we deduce first that a induces an inner
automorphism of order 2 on E and then that CE(a) is a 2-group. It follows

that [CE(a), D] ≤ CE(a) ∩ O(CH(a)) = 1. This is impossible because D

induces field automorphisms or inner automorphisms of odd order on E. �
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2. Strongly closed abelian subgroups in 3′-groups

Definition 2.1. We say that a quasi-simple group E is of Suzuki type if and
only if E/Z(E) is isomorphic to a Suzuki group. Moreover, we say that the
pair (G,A) has property (sc) if and only if there exists S0 ∈ Syl2(⟨AG⟩) such
that the following conditions hold:

(1) A is an abelian subgroup of S0 and A is strongly closed in G.
(2) ⟨AG⟩/O(⟨AG⟩) is a central product of an abelian 2-group and quasi-

simple subgroups of Suzuki type.

(3) If ⟨AG⟩ := ⟨AG⟩/O(⟨AG⟩), then A = O2(⟨AG⟩) · Ω1(S0).

Theorem 2.2. Suppose that G is a 3′-group, that every proper non-abelian
simple section of G is isomorphic to a Suzuki group and that A is a strongly
closed abelian 2-subgroup of G. Then (G,A) has property (sc).

For the remainder of this section, we assume that Theorem 2.2 is false and we
work towards a contradiction. We assume thatG and A satisfy the hypothesis,
but that (G,A) does not have property (sc) and we choose first G and then
A of minimal order subject to these constraints. Let A ≤ S ∈Syl2(⟨AG⟩).
Throughout, we follow Goldschmidt’s arguments in [10], mainly Sections 4
and 7, and often with simplifications.

Lemma 2.3. O(G) = 1, G = ⟨AG⟩ and Z(G) = 1. In particular S ∈ Syl2(G).

Proof. Assume that O(G) ̸= 1 and let G := G/O(G). Then A is strongly
closed in G by Lemma 1.2 (4) and hence the minimal choice of G forces

(G,A) to satisfy property (sc). But O(⟨AG⟩) ≤ O(G) = 1, so (G,A) also has
property (sc) contrary to our choice of G. Thus O(G) = 1.
Next let G0 := ⟨AG⟩ and assume that G0 ̸= G. Then A ≤ G0 and G =
G0 ·NG(A) by Lemma 1.2 (6). Thus G0 = ⟨AG0⟩. The minimal choice of G
yields that (G0, A) satisfies property (sc) and then (G,A) does too. This is
impossible.

Finally we assume that Z(G) ̸= 1. Set G̃ := G/Z(G). We note that Z(G)
is a 2-group because O(G) = 1. Let U E G be such that Z(G) ≤ U and

Ũ = O(G̃). Then U has a central Sylow 2-subgroup and therefore U has a
normal 2-complement (e.g. Proposition 16.5 in [11]). But O(U) ≤ O(G) =

1 and therefore U = Z(G). This means that O(G̃) = 1 and in particular

O(⟨ÃG̃⟩) = 1. Now Ã is strongly closed in G̃ by Lemma 1.2 (4) and hence,

by minimality of G, we see that (G̃, Ã) has property (sc). Then (G,A) has
property (sc) as well, which is a contradiction. �

Lemma 2.4. E(G) ̸= 1.

Proof. Assume that E(G) = 1. Then F ∗(G) = O2(G) by Lemma 2.3 and in
particular Z(S) ≤ CG(O2(G)) ≤ O2(G). Now A E S by Lemma 1.2 (2), so
1 ̸= A ∩ Z(S) ≤ A ∩ O2(G) =: N . Let g ∈ G. Then Ng = (A ∩ O2(G))g =
Ag ∩O2(G) ≤ Ag ∩ S ≤ A because A is strongly closed, hence Ng = N and
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thus N E G. But N ≤ A and A is abelian, so N ≤ CG(A). Therefore, by
Lemma 2.3, also N ≤ CG(⟨AG⟩) = Z(G) = 1. This is a contradiction. �
Lemma 2.5. All components of G are normal in G and simple.

Proof. Let A0 := A ∩ E(G) and let L := ⟨AE(G)
0 ⟩. Then LE E(G)and hence

L ≤ Z(E(G)) or L is a (non-empty) product of components of G. In the first
case L contains no component of G. In the second case L is a non-empty
product of components (in particular A0 � Z(L)) and we let E ≤ L be
a component of G. Then E E L and therefore A0 normalises E. Moreover
A0 is strongly closed in E(G) and hence in L by Lemma 1.2 (3) and (1).
By hypothesis E is of Suzuki type, so A0 induces inner automorphisms on
E and centralises a Sylow 2-subgroup of E, by Lemma 1.5. It follows that
A0 lies in the centre of a Sylow 2-subgroup of L and hence A normalises
every component of G contained in L. Next let X denote the product of
all components of G that are not contained in L. As L is A-invariant, it
also follows that X is A-invariant. Moreover [L,X] = 1. Let T denote an
A-invariant Sylow 2-subgroup of X and let AT ≤ S ∈ Syl2(E(G)). As AE S
by Lemma 1.2(2), we see that [A, T ] ≤ A∩ T ≤ A0 ∩X ≤ L∩X ≤ Z(E(G))
and in particular every component of G that is contained in X is A-invariant.
Consequently A normalises every component of G.
As G = ⟨AG⟩ by Lemma 2.3, all components of G are normal in G and, by
hypothesis, of Suzuki type. The possible (non-trivial) Schur multipliers have
order 2 or 4 (Lemma 1.5), and we also know that Z(G) = 1, so Z(E(G))
contains no involution that is central in G. Together with the fact that G is
a 3′-group, this implies that all components are simple. �
Lemma 2.6. G is simple.

Proof. Assume otherwise and, with Lemma 2.4, let E be a component of
G = ⟨AG⟩ such that A ̸= CA(E). Then E is simple and normal in G by
Lemma 2.5.
Since E is normal in G the Sylow 2-subgoup S induces inner automorphisms
on E by Lemma 1.5 (4). Hence A ≤ S = CS(E) ·(E∩S) ≤ CG(E) ·EEG and
thus G = ⟨AG⟩ = CG(E)·E. Let T := E∩S and a ∈ A#. Then a ∈ CS(E)·T ,
so there are c ∈ CS(E) and b ∈ T# such that a = c · b. By Lemma 1.5 (2)
there exists e ∈ NE(T ) \ CE(b). Since A is strongly closed in G, we see that
ae = cebe = cbe ∈ S ∩Ae ≤ A and 1 ̸= beb−1 = becc−1b−1 = aea−1 ∈ A ∩ E.
Let B := A ∩ E. Then ⟨BE⟩ = E because ⟨BE⟩ E E. We recall that G =
CG(E) · E and hence AE = E · CAE(E) = E · O2(AE). Then T · O2(AE)
is a Sylow 2-subgroup of AE containing A. Again using Lemma 1.5 we let
X denote a Frobenius complement in NE(T ). As A is strongly closed in
T ·O2(AE) by Lemma 1.2 (1), it isX-invariant and hence [X,A] ≤ E∩A = B.
This implies that A = B · CA(X). But CA(X) induces inner automorphisms
on E and centralises Ω1(T )X by Lemma 1.5 (2) and (4), so it acts trivially
on E. We conclude that A = B · CA(E).
Now we let H := CG(E) and CA(E) ≤ P ∈Syl2(H). Then CA(E) is strongly
closed inH by Lemma 1.2 (3) and the minimality of G yields that (H,CA(E))
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has property (sc). But G = E ·H and so it follows that G is not a counter-
example. Thus G = E and G is simple. �

Lemma 2.7. NG(A) is 2-perfect and acts irreducibly on A. Moreover A is
elementary abelian of order at least 8.

Proof. We know that NG(A) controls fusion of its 2-elements by Lemma
1.2 (5). As G is simple by Lemma 2.6, Lemma 15.10 (ii) in [11] implies
that NG(A) is 2-perfect. Assume that NG(A) does not act irreducibly on A
and let B be a proper non-trivial NG(A)-invariant subgroup of A. Then the
control of fusion of NG(A) yields that B is strongly closed in G. Now if we
let H := ⟨BG⟩, then the minimal choice of A forces (H,B) to have property
(sc). As A normalises H, it follows from Lemma 1.5 first that A induces
inner automorphisms on every component and then that A = B. This is a
contradiction. The irreducible action of NG(A) on A yields that A = Ω1(A)
whence A is elementary abelian. Finally assume that |A| ≤ 4. If |A| = 2 and
a ∈ A#, then a is an isolated involution in G. Together with Glauberman’s
Z*-Theorem (e.g. Theorem 15.3 in [11]) this contradicts the fact that G is
simple (Lemma 2.6). If |A| = 4, then the irreducible action of NG(A) on A
yields that 3 divides |NG(A)|, contrary to our hypothesis. �

Lemma 2.8. G = ⟨CG(a) | a ∈ A#⟩.

Proof. Let D := {ag | a ∈ A#, g ∈ G}. By Lemmas 1.2 (5) and 2.6, Theorem
1 of [2] is applicable and yields that G has a strongly embedded subgroup.
Then Bender’s main theorem in [4] gives that G is a Suzuki group, which is
a contradiction. �

Lemma 2.9. For all a ∈ A# the group E := ⟨ACG(a)⟩/O(⟨ACG(a)⟩) is not
quasi-simple.

Proof. Assume otherwise. Then a ∈ Z(E) and E/Z(E) ≃Sz(8) by Lemma
1.5 (3). In particular 8 · 7 divides |NG(A)/CG(A)|. Bearing in mind that
NG(A) acts irreducibly on A, the lists of maximal subgroups of GL4(2) and
GL5(2) (the possible automorphism groups of A) tell us that |A| = 16 and
that NG(A)/CG(A) is isomorphic to a subgroup of A7. This is impossible. �

Lemma 2.10. Let X := ⟨O(CG(a)) | a ∈ A#⟩. Then X is an NG(A)-invariant
2′-subgroup of G. If B ≤ S is elementary abelian of order at least 4, then
NG(B) ≤ NG(X).

Proof. For all a ∈ A# we let θ(a) := O(CG(a)). Then Lemma 1.6 yields that
θ defines a soluble A-signalizer functor. This functor is complete by Lemma
2.7 and the Soluble Signalizer Functor Theorem (e.g. Theorem 21.3 in [11]),
and its completion is the subgroup X. For the next assertion let B ≤ S
is non-cyclic elementary abelian. Then Lemmas 1.3 (1) and 1.6 yield that
X = ⟨CX(b) | b ∈ B#⟩ ≤ ⟨O(CG(b)) | b ∈ B#⟩ ≤ X.
Hence X = ⟨O(CG(b)) | b ∈ B#⟩ and we see that NG(B) normalises X. �
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Lemma 2.11. Let X := ⟨O(CG(a)) | a ∈ A#⟩ and suppose that a ∈ A# is
such that CG(a) � NG(X). Then ⟨ACG(a)⟩/O(⟨ACG(a)⟩) is a central product
of a cyclic 2-group and a simple Suzuki group.

Proof. Let H := CG(a), let H0 := ⟨AH⟩ and H0 := H0/O(H0). As A ≤
H, Lemma 1.2 (6) yields that H = NH(A)H0 and Lemma 2.10 gives that
NH(A) ≤ NG(X). By definition of X, also O(H0) ≤ O(H) ≤ X ≤ NG(X).
The minimality of G implies that (H,A) has property (sc), so O2(H0) ≤ A.
Thus, if O2′,E(H0) ≤ NG(X), then it follows that H0 ≤ NG(X) and hence
H ≤ NG(X), contrary to our choice of a. Hence let E ≤ H0 be such that
E � NG(X) and that E is a component of H0. Assume that O2(H0) is
not cyclic and let T ∈Syl2(O2′,2(H0)) be such that T ≤ A. Then Lemma

2.10 yields that NG(T ) ≤ NG(X) and, since E and T commute, this forces
E ≤ NG(X) contrary to our choice of E.
Next let P ≤ H0 be a 2-group such that P ≤ S and P ∈Syl2(E). As E is
of Suzuki type, Ω1(P ) ≤ A is not cyclic and so Lemma 2.10 implies that
NG(P ) ≤ NG(Ω1(P )) ≤ NG(X). If H0 has a component distinct from E,
then it centralises P and hence a pre-image of this component is contained
in NG(X). Then, by arguing with a Sylow 2-subgroup of this component
instead of P , we obtain that E ≤ NG(X), which is a contradiction again.
Hence E = E(H0) and it is simple by Lemma 2.9. �
Lemma 2.12. O(CG(a)) = 1 for all a ∈ A#.

Proof. Assume otherwise. Then X := ⟨O(CG(a)) | a ∈ A#⟩ ̸= 1 and hence
NG(X) < G by Lemma 2.6. We choose a maximal subgroup M of G that
contains NG(X). Applying Lemma 2.8, we choose a ∈ A# such that CG(a) �
NG(X). Let C := CG(a) and C0 := ⟨AH⟩. Then Lemma 2.11 yields that
C0/O(C0) is a central product of a cyclic 2-group and a simple Suzuki group.
Let E ≤ C0 be such that E/O(C0) = E(C0/O(C0)). Then EO(C0) is char-
acteristic in C0 and hence normal in C, so it follows that NC(A) normalises
EO(C0). In particular NC(A) normalises B := A∩EO(C0) and centralises a.
Since NE(A) acts transitively on B# by Lemma 1.5 (2), the orbits on A# of
NC(A) are {a}, B# and Ba\{a}. We let H := NG(A) and H̄ := H/CG(A).

(1) NG(A) acts transitively on A#. In particular CG(b) � NG(X) for all

b ∈ A# and NCG(b)(A) has three orbits on A#, any two of which generate A.

Proof. The irreducible action of NG(A) on A (see Lemma 2.7) yields that
NG(A) fuses the orbits {a} and B#. As NG(A) ≤ NG(X) ≤ H by Lemma
2.10, this forces for all b ∈ B# that CG(b) � C. Let C1 := CG(b). Then
Lemma 2.11 and the previous arguments, applied to A and C1, give a sub-
group B1 of the full pre-image of the unique component of ⟨AC1⟩/O(⟨AC1)⟩
in ⟨AC1⟩ such that all involutions in B#

1 are NG(A)-conjugate to b.
Assume that NG(A) does not act transitively on A# and let ∆ ( A# be
a NG(A)-orbit that contains {a} and B#. Then it does not contain any
element from Ba\{a} and hence ∆ = {a} ∪ B#. With the same argument,

∆ = {b} ∪ B#
1 . In particular a ∈ B1. Let c ∈ B#

1 be such that c ̸= a. As
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a, c ∈ B1 ≤ A, we know that c · a ∈ B1. Moreover c · a is distinct from 1,
a and c. Hence it is contained in ∆\{a, c} and then in B#. We also know
that c ∈ ∆\{a} and therefore c ∈ B. This forces c · a ∈ Ba ∩ B#, which is
impossible. �

(2) H̄ has odd order.

Proof. Let t ∈ H be a 2-element such that t2 ∈ CG(A). Let b ∈ CA(t)
#

and C1 := CG(b). Then t normalises ⟨AC1⟩/O(⟨AC1⟩). By (1) and Lemma
2.11 the group ⟨AC1⟩/O(⟨AC1⟩) is a central product of a cyclic 2-group and
a simple Suzuki group, so it follows with Lemma 1.5 that t induces an inner
automorphism. As t centralises b, it centralises A ·O(⟨AC1)⟩/O(⟨AC1⟩). Then
Lemma 1.3 (2) yields that t ∈ CG(A), so t̄ = 1. �

Let N ≤ H be such that N̄ is a minimal normal subgroup of H̄.

(3) Every element x̄ ∈ N̄# acts fixed point freely on A.

Proof. Assume otherwise. Then by (1) every element from A# is fixed by
some x̄ ∈ N̄#. In particular CN̄ (a) is a non-trivial (elementary abelian)
normal subgroup of CH̄(a). We note that CN̄ (a) ̸= N̄ by (1) because N ̸= 1.
Now CN̄ (a) = CN̄ (ak) for all k ∈ N because N̄ is abelian. Hence CN (a) has
another fixed point on A#.
We recall thatNE(A) acts transitively on B# and we let Y ≤ NE(A) denote a
Singer cycle. Then [Y,CN (a)] � CN (A) because CH(Y ) ≤ Y ·CG(A). There-
fore [Y,CN (a)] ≤ NE(A)∩CN (a) ≤ O(⟨AC⟩) and CN (a)∩O(⟨AC⟩)ECH(a).
Since CN (a) has another fixed point on A#, the intersection CN (a)∩O(⟨AC⟩)
centralises at least two orbits of NC(A) on A#. Together with (1) this implies
that [Y,CN (a)] ≤ CN (a) ∩O(⟨AC⟩) ≤ CN (A). This is a contradiction. �

Lemma 1.3 (1) and (3) imply that N̄ is a cyclic group of prime order, say
p. Let n ∈ N be such that |A| = 2n. By Lemmas 1.5 and 2.11 the number
n is even and E possesses a subgroup Y of order 2n−1 − 1 acting regularly
on B. In particular, for any g ∈ Y #, the only involution of A centralised
by g is a, and |Y | = |Ȳ |. Now let h̄ ∈ N̄#. Then a ̸= ah̄ by (3). Hence

CȲ (N̄) = (CȲ (N̄))h̄ = CȲ h̄(N̄) centralises a and ah̄. Therefore Ȳ acts faith-
fully on N̄ , i.e. |Ȳ | = |Y | = 2n−1 − 1 divides |Aut(N̄)| = p − 1. Since

N̄ ≤ L̄ ≤Aut(A) ∼=GL2n(2), we see that p divides
∏n−1

i=0 (2
n− 2i). Thus there

exists an i ∈ {0, .., n−1} such that p divides 2n−2i = 2i(2n−i−1). Moreover
2n−1 − 1 divides p − 1, so 2n−1 ≤ p ≤ 2n−i − 1. Therefore i = 0. As n is
even, we also see that p divides 2n−i− 1 = 2n− 1 = (2n/2+1)(2n/2− 1). But
now 2n−1 ≤ p ≤ 2n/2 + 1 whence it follows that n ≤ 3, contrary to Lemma
2.7. �

Lemma 2.13. Suppose that a ∈ A# and CG(a) ≤ H ≤ G. Then O(H) = 1.

Proof. We know that O(H) ∩ CG(a) ≤ O(CG(a)) = 1 by Lemma 2.12. In
particular a acts without fixed points on O(H) and hence a inverts it. Let
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b ∈ A#. Then O(H) ∩ CG(b) = [O(H) ∩ CG(b), a] ≤ ⟨ACO(H)(b)⟩ ∩ O(H) ≤
AE(⟨ACG(b)⟩) ∩O(H) = 1, so Lemma 1.3 (1) yields that
O(H) = ⟨O(H) ∩ CH(b) | b ∈ A#⟩ = 1. �

In the remaining steps let a ∈ A# and let H be a maximal subgroup of G
containing CG(a). Moreover let K denote a component of ⟨AH⟩.

Step 1 E(H) = E(KCG(K)).

Proof. It is clear that E(H) ≤ KCG(K). As (A⟨KH⟩, A) has property (sc),
we also see that A ≤ KCG(K). Moreover K is a component of ⟨AH⟩, so it
follows from property (sc) (3) that A ∩ K ̸= 1. Now we fix b ∈ A ∩ K#.
Then CG(K) ⊆ CG(b) ⊆ NG(A) ·E(⟨ACG(b)⟩) by Lemma 1.2 (6). Let L be a
component of H distinct from K, in particular L centralises K and hence b.
Now let E be a component of CG(b).
Claim: L = E or [L,E] = 1.
If E ≤ H, then E and L are components of CH(b), so they coincide or they
commute. Suppose that E � H, so in particular [E,A] ̸= 1. This implies that

A ∩ E � Z(E). The pair (A⟨ECG(K)⟩, A) has property (sc) and therefore
A induces inner automorphisms on E by Lemma 1.5. Suppose further that
[A∩E,L] = 1. Then L normalises E because A∩E � Z(E), hence CL(E)EL
whence CL(E) ≤ Z(L). But L induces inner automorphisms on E, so L ≤
ECL(E) ≤ EZ(L) which forces L = Z(L)(L∩E). So L = E. In the following
we suppose that [A∩E,L] ̸= 1 and we begin with the case where L ≤ ⟨AH⟩.
Then L is a component of ⟨AH⟩ and the pair (⟨AH⟩, A) has property (sc), so
1 ̸= A∩L centralises b and we obtain that A∩L ≤ AE(CG(b))ECG(b). Now
[A,L] ̸= 1 and therefore A ∩ L � Z(L). This forces (A ∩ L)L = L and, since
L ≤ CG(b), we deduce that L ≤ E(CG(b)). Then L normalises E, so as above
L = E. It is left to consider the case where L � ⟨AH⟩. Then L ̸= (A ∩ L)L

because L ≤ H, and consequently A ∩ L ≤ Z(L). Then L ≤ CG(A) and in
particular L centralises A∩E. But we already treated this case. This proves
the claim.
Now L ≤ E(CG(b)) · CG(E(CG(b))) and therefore L ≤ E(CG(K)). Hence
E(H) is a product of components of KCG(K) and so it is normalised by
KE(CG(K)). Since E(H) is normal in the maximal subgroup H of G, we
have that H = NG(E(H)) ≥ KE(CG(K)). So E(CG(K)) ≤ E(CH(K)).
Since E(H) ⊆ KCH(K) E EH it follows that E(H) = E(KCH(K)) =
KE(CH(K)) ≥ KE(CG(K)) ≥ E(H). This concludes the proof. �

Step 2 For all b ∈ CA(K)# the unique maximal subgroup of G containing
CG(b) is H.

Proof. Let b ∈ CA(K)# and let M be a maximal subgroup of G containing
CG(b). ThenK = ⟨(A∩K)K⟩ ≤ ⟨AM ⟩. Therefore Lemma 2.13 yields thatK is
a component of ⟨AM ⟩ and (using Step 1) that E(M) = E(KCG(K)) = E(H)
is normalised by M and by H. As G is simple (Lemma 2.6), it follows that
M = H. �
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Now we choose a, H and K such that |K| is maximal.
Step 3 NG(A) � H.

Proof. Assume otherwise. We know from Lemma 2.7 that O2(NG(A)) =
NG(A) and that NG(A) acts irreducibly on A. As 1 ̸= A∩K ̸= A, this implies
that NG(A) does not normalise K. Together with the fact that NG(A) is not
a 2-group and has order coprime to 3, it follows that ⟨AH⟩ has at least five
distinct components that are isomorphic to K. Let b ∈ A#.
First suppose that E(⟨ACG(b)⟩) = 1. Then CG(b) ≤ NG(A) ≤ H by Lemma
2.12 and by our assumption.
Next suppose that M is a maximal subgroup of G containing CG(b) and let
E be a component of ⟨AM ⟩. From the choice of K it follows that |E| ≤ |K|,
so |A ∩ E| ≤ |A ∩K|. As (K ∩ A)CA(K) = A and as there are at least five

conjugates of K, we obtain that |CA(E)| ≥ |CA(K)| ≥ |K ∩A|4 ≥
√
|A| and

so CA(K) ∩ CA(E) ̸= 1. Let c ∈ CA(K) ∩ CA(E)#. Then E ≤ CG(c) ≤ H
by Step 2, so we conclude that E(⟨AM ⟩) ≤ H. Moreover O(M) = 1 by
Lemma 2.13 and then the fact that (M,A) has property (sc) implies that
CG(b) ≤ M = NM (A) · E(⟨AM ⟩) ≤ H, contradicting Lemma 2.8. �

Step 4 CA(K) ∩ CA(K)g = 1 for all g ∈ NG(A)\NH(K).

Proof. Let g ∈ NG(A) be such that CA(K) ∩ CA(K)g ̸= 1 and let b ∈
CA(K)# ∩ CA(K)g. Since bg

−1

, b ∈ CA(K), Step (2) yields that H is the

unique maximal subgroup ofG containing CG(b) and CG(b)
g−1

. HenceHg−1

=
H and so g ∈ H. Applying Step 3 we choose h ∈ NG(A)\H, so that
CA(K) ∩ CA(K)h = 1. This forces (|CA(K)|)2 = |CK(A)| · |CK(A)h| ≤ |A|.
This proves also |K ∩ A| ≥

√
|A|. Now suppose that g /∈ NH(K). Then

[K,Kg] = 1 and
√
|A| ≤ |K ∩ A| ≤ |CA(K

g)| = |CA(K)g| ≤
√

|A|. This
forces K ∩ A = CA(K

g) and K ∩ A ∩ Kg = (K ∩ A) ∩ CA(K) ̸= 1. From
all this we deduce |K ∩ A|2 = |CA(K)|2 = |A| = |CA(K

g)(A ∩ Kg)| =

|(A ∩K)(A ∩K)g| = |A∩K|·|A∩Kg|
|A∩K∩Kg| . This contradicts A ∩K ∩Kg ̸= 1. �

Let X := NG(A)/CG(A), let Y0 be a complement of the Sylow 2-subgroup of
NK(A) (a Frobenius group) and Y = Y0CG(A)/CG(A).

Step 5 X and Y satisfy Hypothesis (2.9) of [10] in their action on A, and
Z(K) ̸= 1.

Proof. NG(A) acts irreducibly on A and O2(NG(A)) = NG(A) by Lemma 2.7.
Hence X acts faithfully and irreducibly on A and O2(X) = X. By Lemma
1.5 (2) the group Y is cyclic of odd order acting transitively on A ∩ K# =
[A, Y ]#. By Step 4 the distinct elements of {CA(Y )x | x ∈ X} intersect
pair-wise trivially. Assume that Z(K) = 1. Let x ∈ NX(CA(K)) and let
g ∈ NG(A) be a pre-image of x. Then CA(K) ∩ CA(K)g ̸= 1, so Step 4
implies that g ∈ NH(K)∩NG(A). Hence g ∈ NH(Y )CG(A) and x ∈ NX(Y ).
Applying (2.11) of [10], we conclude that |A| = 8 and |CA(K)| = 2. This
contradicts Lemma 1.5 (2). �
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For a final contradiction, we want to apply (2.10) of [10] and force |CA(K)| =
2. Then CA(K) = Z(K) which contradicts Lemma 2.9.

Thus, it remains to show that Y acts semi-regularly on the set

{CA(Y )x | x ∈ X}\{CA(K)}.
Assume otherwise. Then there exist g ∈ NG(A)\CG(A) and y ∈ Y # such that
CA(K)g ̸= CA(K) and CA(K)g is fixed by Y . By Lemma 1.5 (2) and (3) Y
has order 7 and hence CA(K)g is Y0-invariant. Since CA(K)g∩CA(K) = 1 by
Step 4 and since Y0 acts transitively on [A, Y0]

#, we conclude that CA(K)g =
[A, Y0]. Now |CA(K)|2 = |CA(K)| · |[A, Y0]| = |A| and K is not simple by Step
5, soKEH and CA(K) = O2(⟨AH⟩)EH. SinceH is maximal in G Lemma 2.6
and the fact that H is a maximal subgroup of G yield that NG(CA(K)) = H
and that 1 ̸= CA(K) ∩ K is a proper H-invariant subgroup of CA(K). But

Y g−1

0 acts transitively on [A, Y0]
g−1

= CA(K).

This contradiction finishes the proof of Theorem 2.2.

3. Proof of the main theorem

Theorem 3.1. Suppose that G is a simple 3′-group. Then G is either cyclic
of prime order or G is isomorphic to a Suzuki group.

Proof. Assume that the theorem is false and let G be a minimal counter-
example. In particular all proper simple sections of G are cyclic of prime
order or isomorphic to a Suzuki group. For all 2-subgroups T of G, we denote
by W (T ) the characteristic subgroup of T introduced by Stellmacher in [12].

Now G is non-abelian simple and the fact that 3 does not divide |G| implies
that G does not involve S4. Let H∗ denote a non-abelian proper section of
G and suppose that O2(H

∗) = F ∗(H∗). Moreover let S∗ ∈Syl2(H
∗). All

simple non-abelian sections of H∗ are Suzuki groups by minimality of G, and
therefore the main theorem in [12] applies. It yields that S∗ has a non-trivial
characteristic subgroup W (S∗) such that Ω1(Z(S∗)) ≤ W (S∗) ≤ ZJ(S∗) and
that W (S∗)EH∗.

Let T ∈Syl2(G). Then Theorem 1.4 implies that NG(W (T )) controls G-
fusion in T . Now we set A := ⟨Ω1(Z(T ))NG(W (T ))⟩ and we show that A is
an abelian strongly closed 2-subgroup of G. We begin by noticing that A is
normalised by NG(W (T )).

Let g ∈ G. As NG(W (T )) controls G-fusion in T , we find h ∈ NG(W (T ))
such that Ag ∩ T = Ah ∩ T = A ∩ T ≤ A. Hence A is in fact strongly closed
in G. Moreover Ω1(Z(T )) ≤ W (T ) ≤ ZJ(T ) by definition of the subgroup
W (T ) and in particular W (T ) is abelian, so A is abelian.

Now G satisfies the hypothesis of Theorem 2.2 and it follows that G is a
Suzuki group, contrary to our assumption. �
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