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Abstract

Motivated by a question on Riemann surfaces, we consider permutation
groups that act nonregularly, such that every nontrivial element has at most
two fixed points. We describe the permutation groups with these properties
and give a complete, detailed classification when the group is simple.
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1. Introduction

From its inception the theory of permutation groups has been concerned
with the question of how fixed point sets of elements influence the structure
of a permutation group. For example a celebrated result by Jordan is the
fact that a primitive permutation group which contains a transposition is
the full symmetric group. The special case where the permutation group has
degree 5 was used by Galois to prove the unsolvability of the general quintic.
Jordan’s result was strengthened and generalized in several ways. For ex-
ample the maximal subgroups of Sn which contain transpositions are either
intransitive of the form Sk×Sn−k or imprimitive of the form Sk oSn/k. Other
results concern primitive permutation groups in which some nonidentity ele-
ment fixes many points. For example in [16] one can find the explicit list of
exceptions to the statement that a primitive permutation group where some
nonidentity element fixes at least half the points of the permutation domain
contains the full alternating group.
We would like to determine the group theoretic structure of a transitive per-
mutation group where all nontrivial elements fix at most a bounded number
of, say k, points. Of course the case k = 0 is when the action of the group on
its permutation domain is regular. The case where k = 1 is the situation that
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Frobenius characterized; i.e. Frobenius groups. Motivated by an application
to the theory of compact Riemann surfaces, see Corollary 1.5, we investigate
the case k = 2. Although we do not impose any hypothesis on primitivity or
higher transitivity, we would like to mention the related work of Zassenhaus
and Suzuki, see for example [26], [25] and Theorem 2.9 in [22]. From this
point of view the series of groups that we encounter are no surprise. In fact
our results show that groups satisfying our more general hypotheses can have
arbitrarily large permutation rank. For details, see the remarks at the end
of this article.

From now on we operate under the following

Hypothesis 1.1. Suppose that G is a finite, transitive, nonregular permu-
tation group with permutation domain Ω. Suppose further that |Ω| ≥ 4 and
that every element g ∈ G# has at most two fixed points.

For simple groups we prove

Theorem 1.2. Suppose that (G,Ω) satisfies Hypothesis 1.1 and that G is
simple. Then either G is isomorphic to PSL3(4) or there exists a prime
power q such that G is isomorphic to PSL2(q) or to Sz(q).

We will show in the last section that there are no quasisimple, nonsimple
examples. For the almost simple groups we have

Theorem 1.3. Suppose that G is almost simple, but not simple. Let E :=
F ∗(G) and suppose that (G,Ω) satisfies Hypothesis 1.1. Then there exists a
prime power q such that E ∼=PSL2(q) and one of the following holds:

(a) G ∼= PGL2(q).

(b) q is a power of 2, moreover |G : E| is prime, and there exists an
element g ∈ G\E such that g induces a field automorphism on E and
CE(g) ∼= PSL2(2).

(c) q is odd, |G : E| = 2 and the elements of G \ E act as diagonal-field
automorphisms of order 2. This includes the case where E ∼=PSL2(9) ∼=
A6 and G ∼= M10.

Our most general result is

Theorem 1.4. Suppose that (G,Ω) satisfies Hypothesis 1.1. Then one of
the following holds:
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(1) G has a subgroup of index at most 2 that is a Frobenius group.

(2) |Z(G)| = 2 and G/Z(G) is a Frobenius group.

(3) The point stabilizers are metacyclic of odd order. If H is a nontrivial
two point stabilizer, then |NG(H) : H| = 2, G is solvable and H or
NG(H) has a normal complement K in G such that K is nilpotent and
(|K|, |H|) = 1.

(4) The point stabilizers are metacyclic of odd order. Moreover G has nor-
mal subgroups N,M such that N < M < G, N is nilpotent, M/N is
simple and isomorphic to PSL2(q), to Sz(q) or to PSL3(4), and G/M
is metacyclic of odd order.

(5) The point stabilizers have twice odd order and G has a subgroup M of
index 2 such that either (3) or (4) holds for M or M acts regularly on
Ω.

(6) The point stabilizers have even order and G has a normal subgroup N
of odd order such that O2′(G)/N is either a dihedral or semidihedral
2-group or there exists a prime power q such that it is isomorphic to
Sz(q) or to a subgroup of PΓL2(q) that contains PSL2(q).

In part our result was motivated by its application to the theory of Riemann
surfaces. A Weierstrass point of a compact Riemann surface X of genus
g > 1 is a point x ∈ X such that there exists a holomorphic function which
has a pole of order at most g at x and is holomorphic on X \ {x}. Apart
from their analytic significance Weierstrass points also influence the struc-
ture of the automorphism group. For example, by considering the action
on the Weierstrass points, Schwarz showed that the automorphism group of
a compact Riemann surface X of genus g > 1 is finite. (See for example
page 258 in [9].) Going in the opposite direction Schoeneberg showed that
if an automorphism of a compact Riemann surface of genus g ≥ 2 fixes at
least five points, then every one of its fixed points is a Weierstrass point
(page 264 in [9]). One can define the concept of a q- Weierstrass point (or
higher Weierstrass point) by relaxing the condition “holomorphic function”
to “holomorphic q-differential”, see for example page 87 in [9].

Now let X be a compact, connected Riemann surface of genus at least 2
with automorphism group G. If X 7→ X/G is a ramified covering, then some
g ∈ G# has fixed points on X. If x ∈ X is a fixed point of g ∈ G# and if
Ω = xG, then Ω is a transitive non-regular G-set. Suppose that some element
h ∈ G# has three or more fixed points on Ω. Then every fixed point of h

3



is a higher Weierstrass point of X, as can be seen for example on page 284
in [9]. Thus all the fixed points of hk for k ∈ G are also higher Weierstrass
points. Now the transitivity of G on Ω implies that all points of Ω are higher
Weierstrass points.
Therefore an application of our main theorem to the pair (G,Ω) proves the
following.

Corollary 1.5. Let X be a compact, connected Riemann surface of genus
at least 2 with automorphism group G. If G is not one of the groups in the
conclusion of Theorem 1.4 and if X 7→ X/G is ramified, then for all g ∈ G#

every fixed point of g on X is a higher Weierstrass point.

This means that, under fairly mild group theoretic hypotheses, we can show
that the fixed points of the automorphisms of a Riemann surface are ana-
lytically distinguished. We would like to point out however that there are
situations when not every fixed point of an automorphism is a Weierstrass
point, the Klein and the MacBeath curves being examples of this (see [21]).

This paper is organized as follows. In Section 2 we present some small ex-
amples of groups satisfying Hypothesis 1.1 and collect preliminary lemmas
before we start working towards our first structural result, Theorem 2.23. In
Section 3 we determine which alternating or Lie type groups allow for exam-
ples and in each case we describe the actions in detail. In Section 4 we show
that no sporadic simple group appears as an example. In Section 5 we prove
Theorems 1.2 and 1.3 and then collect a few more specialized results towards
the proof of Theorem 1.4. Finally we argue by looking at a minimal counter
example and then exploiting Theorem 2.23 from Section 2 and our results on
simple and almost simple groups. Finally we provide a more detailed version
of our main result with additional information.
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2. Preliminaries

In this paper, by “group” we always mean a finite group, and by “permutation
group” we always mean a group that acts faithfully.
In this chapter let Ω denote a finite set and let G be a permutation group on
Ω.

Notation

Let ω ∈ Ω and g ∈ G, and moreover let Λ ⊆ Ω and H ≤ G.
Then Hω := {h ∈ H | ωh = ω} denotes the stabilizer of ω in H,
fixΛ(H) := {ω ∈ Λ | ωh = ω for all h ∈ H} denotes the fixed point set of H
in Λ and we write fixΛ(g) instead of fixΛ(〈g〉).
We write ωH for the H-orbit in Ω that contains ω.
For all n ∈ N, we denote the cyclic group of order n by Zn.

2.1. A characterization of Frobenius groups

In this subsection we prove a little result that will strengthen some of our
statements based on Hypothesis 1.1. While the content of the following
lemma can be extracted from the proof of Proposition 16.17 in [14], we include
a proof so as to make our arguments more self contained.

Lemma 2.1. Suppose that G has a non-trivial proper subgroup H such that
the following holds: Whenever 1 6= X ≤ H, then NG(X) ≤ H.
Then G is a Frobenius group with Frobenius complement H.

Proof. Let p ∈ π(H). We begin by proving that H contains a Sylow p-
subgroup of G. For this let P ∈Sylp(H). Then P 6= 1 and therefore NG(P ) ≤
H, so in particular P ∈ Sylp(NG(P )). This forces P ∈ Sylp(G) and we keep
this notation.
Next we show that H is strongly p-embedded in G. Let g ∈ G and suppose
that x ∈ H ∩ Hg is a non-trivial p-element. Without loss x ∈ P . Then by
hypothesis it follows first that Z(P ) ≤ H∩Hg and then that P ≤ H∩Hg. In
particular P and P g−1

are Sylow p-subgroups of H. Let h ∈ H be such that
P h = P g−1

. Then P hg = P whence hg ∈ NG(P ) ≤ H by hypothesis. We
deduce that g ∈ H, so H = Hg. This means that H is strongly p-embedded
in G.
But now, for all g ∈ G\H, we see that H ∩Hg = 1. This means that G is a
Frobenius group with H as Frobenius complement.
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2.2. Examples

The smallest nontrivial examples for our situation are provided by S3 and A3

in their natural action on {1, 2, 3}. The natural action of A4 on {1, 2, 3, 4}
also gives an example. In these cases S3 and A4 act as Frobenius groups.

Lemma 2.2. The group G := S4 provides examples satisfying Hypothesis
1.1. The size of the set Ω that G is acting on is 4, 6, 8 or 12. In the action
on six points, the point stabilizers have structure Z2

2 or Z4, and in the other
cases the point stabilizers are S3, Z3 or Z2, respectively.

Proof. We use GAP [24] to extract the permutation characters from the table
of marks, which yields our list. The first example is the natural action of G
on {1, 2, 3, 4} where the point stabilizers are isomorphic to S3. The second
example is on the set of cosets of a non-normal fours subgroup or of a cyclic
group of order 4 and the point stabilizer of the last example is cyclic generated
by a transposition.

The natural action of S4 on {1, 2, 3, 4} generalizes to a series of examples
where the point stabilizers are Frobenius groups.

Lemma 2.3. Let r be a prime and let K be a finite field of order 2r. Let
A denote the additive group of K, let M denote the multiplicative group of
K and let H denote the Galois group of K over its prime field. Let F be
the semidirect product of M and H. Then the semidirect product G := A · F
acting on the set Ω := G/F of right cosets of F gives an example satisfying
Hypothesis 1.1.

Proof. Our choice of Ω implies that |Ω| ≥ 4 and that the subgroup A is a
regular normal subgroup. The point stabilizer of the zero element in K is
evidently F , showing that our G-action is not regular. Now let x ∈ F . Then
|fixΩ(x)| = |CA(x)|. If x ∈M , then |CA(x)| = 1 whereas, if x 6∈M , then x is
conjugate to a nontrivial element of H and hence CA(x) is a subfield of K.
The hypothesis that r is prime forces |CA(x)| = 2. Thus all elements in F#

have at most two fixed points.

Remark 2.4. The groups G in this series of examples are also known as
AΓ1(2r), that is the group of affine semilinear maps of a 1-dimensional vec-
tor space over the field of 2r elements.
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If |K| = 4 in the lemma above, then G = S4 and F = S3. If we drop the
hypothesis that r > 1 is prime and a is a proper divisor of r, then the Ga-
lois correspondence implies that H possesses an element which centralizes the
subfield of order 2a. As a ≥ 2, this violates our hypothesis about the number
of fixed points.

Also note that, if we drop the hypothesis that the characteristic p of K is
even, then we can still construct G and F . However |K| = pr now, with
p ≥ 3, and the possible fixed point sets of elements of G on the set of cosets
of F will now have sizes 0, 1 or p. Again this violates Hypothesis 1.1.

As an example motivating the next lemma, we look at
G := 〈(12)(45), (23)(56), (14)(25)(36)〉 ≤ S6, acting naturally on
Ω := {1, 2, 3, 4, 5, 6}. Then the pair (G,Ω) satisfies Hypothesis 1.1, and this
idea can be generalized:

Lemma 2.5. Suppose that F is a group that acts transitively on a set ∆ of
size at least two as a Frobenius group. Let ∆1 and ∆2 be disjoint sets such
that F acts on both of them exactly as it acts on ∆ and let t be an involution
that centralizes F and maps ∆1 to ∆2 bijectively. Let G := F × 〈t〉 and
Ω := ∆1 ∪∆2.
Then (G,Ω) satisfies Hypothesis 1.1 and the point stabilizers are the Frobe-
nius complements of F .

Proof. By hypothesis |Ω| ≥ 4. If ω ∈ Ω, then without loss ω ∈ ∆1 and hence
Fω 6= 1. This implies that Gω 6= 1 and hence G does not act regularly on Ω.
Moreover G is transitive on Ω because F is transitive on ∆1 and ∆2 and t
interchanges these two sets. Let ω ∈ Ω and g ∈ Gω. Without loss ω ∈ ∆1.
Then g stabilizes ∆1 and hence g ∈ F . It follows that ω is the unique fixed
point of g on ∆1 and that g also has at unique fixed point on ∆2. Hence all
nontrivial elements in G have either zero or two fixed points on Ω, and this
means that Hypothesis 1.1 is satisfied.

Lemma 2.6. Let p, r be primes and let K be a finite field of order p2r. Let
A denote the additive group of K, let M denote the multiplicative group of
K and let H denote a subgroup of order 2 of the Galois group of K over
its prime field. Let F be the semidirect product of M and H. Then the
semidirect product G := A · F acting on the set Ω := G/M of right cosets of
M gives an example satisfying Hypothesis 1.1.
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Proof. Our choice of Ω implies that G is transitive on Ω, and that |Ω| ≥ 4.
The subgroup A has exactly two orbits on Ω and both of these are regu-
lar. Our choice of M implies that M fixes one of the two A-orbits, hence
both. Moreover AM acts as a Frobenius group on each orbit, therefore every
nontrivial element of M fixes two points.

Lemma 2.7. Suppose that G has a subgroup M of index 2 and that t ∈ G\M
is an involution such that |CM(t)| = 2. Suppose further that N is a t-
invariant normal subgroup of M of even index and as large as possible subject
to these constraints.
Then t inverts N , and if |M : N | 6= 2, then N = Z(M) and M/N ∼= A4.
If |G| ≥ 8 and if we let Ω := G/Sα, then (G,Ω) with G acting by right
multiplication satisfies Hypothesis 1.1.

Proof. The first statements are proved in Satz 4.8 in [5], where Bender at-
tributes them to Zassenhaus. The hypotheses yield that |Ω| ≥ 4 and that
every element of G has zero or two fixed points in the action on Ω, hence
Hypothesis 1.1 is satisfied.

2.3. Properties of groups satisfying Hypothesis 1.1

Throughout, we suppose that Hypothesis 1.1 holds.

Lemma 2.8. Let α ∈ Ω and let 1 6= X ≤ Gα. Then Gα contains a subgroup
of NG(X) of index at most 2.
If α is the unique fixed point of x ∈ G on Ω, then CG(x) ≤ Gα.

Proof. As NG(X) acts on the set of fixed points of X on Ω, it is contained in
Gα or it induces the symmetric group on two points on the two fixed points
of X. Therefore NGα(X) has index at most 2 in NG(X).
The second statement is immediate.

Corollary 2.9. If G has odd order, then G is a Frobenius group.

Proof. This follows from Lemmas 2.8 and 2.1.

Lemma 2.10. |Z(G)| ≤ 2.

Proof. Let x ∈ Z(G)# and assume that x has a fixed point ω ∈ Ω. Then
x ∈ Gω and the transitivity of G forces x to fix every point in Ω. This is a
contradiction because |Ω| ≥ 4. Therefore x has no fixed points on Ω.
Let α ∈ Ω and 1 6= x ∈ Gα. Then Z(G) ≤ CG(x), but Z(G)∩Gα = 1 by the
previous paragraph. Therefore |Z(G)| = |Z(G) : Z(G) ∩Gα| ≤ 2 by Lemma
2.8.
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Lemma 2.11. Let ω ∈ Ω.

(a) If p is odd and p ∈ π(Gω), then Gω contains a Sylow p-subgroup of G.

(b) Suppose that S ∈ Syl2(G) is such that Sω 6= 1. Then S is dihedral or
semidihedral and |Sω| = 2 or Gω contains a subgroup of index at most
2 of S. In the second case, if S � Gω, then there exists δ ∈ Ω such that
ω 6= δ, Sω = Sδ and some element in S interchanges ω and δ.

Proof. For (a) suppose that p is odd and let P ∈Sylp(G) be such that Pω 6= 1.
Then Z(P ) ≤ Gω by Lemma 2.8 and, with the same lemma, also P ≤
NG(Z(P )) ≤ Gω.
We turn to (b). Let ∆ := ωS and let n,m ∈ N0 be such that |Sω| = 2n and
|S : Sω| = 2m. First suppose that m ≥ 2. Let d denote the number of fixed
points of Sω on ∆. Note that d is even, but d 6= 0, and thus Hypothesis 1.1
implies that Sω acts semiregularly on ∆ \ fixΩ(Sω). So now choose a ∈ N0

such that |∆| = d + a · 2n. As n ≥ 1 and |∆| = 2m ≥ 4, we see that
d = 2 and hence 2m = 2 · (1 + a · 2n−1). This implies that a · 2n−1 is odd, in
particular n = 1. Therefore Lemma 2.8 forces CS(Sω) to be of order at most
4, and it follows that S has maximal class. Then 11.9 in [17] yields that S
is quaternion, dihedral or semidihedral. But now we recall that |Sω| = 2,
so in the quaternion case it contains the central involution of S and this
contradicts the fact that |CS(Sω)| ≤ 4.
Next suppose that m ≤ 1. If S � Gω, then |Ω| is even and hence Sω must fix
a second point δ on Ω. As S does not fix ω, but normalises Sω, there must
be an element in S that interchanges ω and δ.

Lemma 2.12. Let S ∈ Syl2(G) and α ∈ Ω. Then one of the following holds:

(1) Gα has odd order.

(2) S is dihedral or semidihedral and |Sα| = 2.

(3) |S| ≥ 4, there is a unique S-orbit on Ω of length 2, and all other S-
orbits have length |S|. In this case G has a normal subgroup of index
2 that is a Frobenius group.

(4) |Ω| is odd.

Proof. Suppose that neither (1) nor (4) holds. Then with Sylow’s Theorem
we may suppose that Sα 6= 1, but S � Gα.
Lemma 2.11 (b) implies that (2) holds or that there exists β ∈ Ω such that
α 6= β, Sα = Sβ has index 2 in S and some element in S interchanges α and
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β. (In fact all elements in S\Sα interchange α and β.) As Sα already has two
fixed points, this subgroup must have regular orbits on the remaining points
of Ω. It follows that {α, β} is the unique S-orbit of length 2 and all other
orbits have length |S|. In particular |S| ≥ 4 and together with Hypothesis
1.1 this implies that |Ω| ≥ 6.
For the last assertion in (3) let x ∈ S\Sα. If we view x as an element of the
symmetric group on Ω, then there are two possibilities:
Either x induces a single cycle on Ω\{α, β} or an even number of cycles of 2-
power length. In the first case x has order |S| and therefore S is cyclic. Then
Burnside’s p-Complement Theorem yields that G has a normal 2-complement
and in particular G has a subgroup N of index 2. In the second case it
follows that, viewed as a permutation on Ω \ {α, β}, the element x is an
even permutation. But x interchanges α and β and therefore x is an odd
permutation in its action on Ω. It follows that G is not contained in the
alternating group on Ω, so again G has a normal subgroup N of index 2.
We note that G = N · 〈x〉 whence Gα ≤ N . In particular N does not act
regularly and it has two orbits of equal size on Ω that are interchanged by
x. We denote the N -orbit that contains α by Γ and the orbit containing β
by Λ.
Suppose now that y ∈ Gα is such that |fixΓ(y)| = 2. Then Hypothesis 1.1
implies that |fixΛ(y)| = 0. Let a, b ∈ N0 be such that

|Γ| = |fixΓ(y)|+ a · o(y) = 2 + a · o(y)

and
|Γ| = |Λ| = b · o(y).

Then we deduce that 0 ≡ |Γ| ≡ 2 modulo o(y) and consequently o(y) = 2.
So without loss y ∈ T , but then α and β are the unique fixed points of y.
This is impossible.
We conclude that nontrivial elements of N fix at most one point of Γ and
thus N is a Frobenius group as claimed.

Lemma 2.13. Suppose that N EG. Let Ω denote the set of N-orbits on Ω
and let G := G/N . Then for all ω ∈ Ω we have that Gω = Gω.

Proof. Let g ∈ Gω. As NEG, we see that g stabilizes ω and hence Gω ≤ Gω.
Conversely let N ≤ H ≤ G be such that H = Gω. Then Gω ≤ H and hence
NGω ≤ H. Moreover H acts transitively on ω and therefore |ω| = |H : Gω|.
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We also know that |ω| = |N : N ∩ Gω| and this yields that |N | · |Gω| =
|H| · |N ∩Gω|.
It follows that |H| = |N |·|Gω |

|N∩Gω | = |GωN | and therefore H = Gω.

Lemma 2.14. Suppose that |Ω| ≥ 5 and that |Z(G)| = 2. Let Ω denote
the set of Z(G)-orbits on Ω and let G := G/Z(G). Then (G,Ω) satisfies
Hypothesis 1.1.
If the point stabilizers in G have odd order, then G is a Frobenius group.

Proof. Let z ∈ Z#. Then z interchanges the points in every Z(G)-orbit, so
by Hypothesis 1.1 it is the only element in G that acts this way. Now |Ω| is
even, by hypothesis it has at least six elements now and Z(G) is the kernel
of the action of G on Ω. In particular G acts faithfully on Ω. By Lemma
2.13 this action is not regular.
Let α ∈ Ω and H := Gα. Then H fixes αZ(G) element-wise and hence it
is a two point stabilizer. If H has odd order, then no element of H \ Z(G)
interchanges two points of Ω and hence H fixes no other element of Ω. In

particular every element of G
#

has at most one fixed point on Ω in this case,
so G is a Frobenius group.
In the general case we suppose that x ∈ G is such that x 6= 1 and that x has
two fixed points α and β on Ω. By Lemma 2.13 we may choose x ∈ Gα and
we have seen that this means that x fixes the two points in α. Now x must
interchange the two points in β. This shows that x does not have a third
fixed point on Ω, for otherwise it interchanges the two points in this third
Z(G)-orbit and then xz has four fixed points (contrary to Hypothesis 1.1).
This shows that (G,Ω) satisfies Hypothesis 1.1.

We remark that the dihedral group D := D24 provides an example with point
stabilizers of order 2 and center of order 2 where the factor group D/Z(D)
is not a Frobenius group.

Lemma 2.15. Let α, β ∈ Ω. If Gα∩Gβ is nontrivial and properly contained
in Gα, then Gα is a Frobenius group with complement Gα∩Gβ. In particular,
all Sylow subgroups of Gα ∩Gβ are cyclic or quaternion.

Proof. Let H := Gα and H0 := H ∩ Gβ. Now we look at the orbit ∆ :=
βH . Then H acts transitively on ∆ and nonregularly, because H0 6= 1 by
hypothesis. Every h ∈ H# has at most one fixed point in ∆ because all
these elements already fix α. Thus H is a Frobenius group with Frobenius
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complement H0 and it follows, for example from [17, Hauptsatz 8.7], that
the Sylow subgroups of H0 for odd primes are cyclic and that the Sylow
2-subgroups of H0 are cyclic or quaternion.

Lemma 2.16. Let α ∈ Ω. Suppose that p ∈ π(G) is such that Op(G) 6= 1
and that |Gα| is odd. Then Gα is a Frobenius complement (hence metacyclic)
or p = 2, Op(G) = Z(G) and G/Z(G) is a Frobenius group.

Proof. First we observe that Op(G)Gα acts transitively and nonregularly on
αOp(G). If |αOp(G)| ≤ 2, then p = 2 and O2(G) = Z(G). Then Lemma 2.14
implies that G/Z(G) is a Frobenius group. Hence we may now suppose that
(Op(G)Gα, α

Op(G)) satisfies Hypothesis 1.1.
If p is odd, then Lemma 2.11 (a) yields that p does not divide |Gα|. Thus
COp(G)(Gα) = 1 by Lemma 2.8, which means that Op(G)Gα is a Frobenius
group with Frobenius complement Gα. Hence suppose that p = 2. If Z :=
Z(O2(G)Gα) 6= 1, then O2(G)Gα/Z is a Frobenius group with complement
Gα by Lemma 2.14. If Z = 1, then Gα acts fixed point freely on O2(G) and
thus O2(G)Gα is a Frobenius group with complement Gα. In both cases [17,
Satz 8.18] yields that Gα is metacyclic.

Lemma 2.17. Let α ∈ Ω, and suppose that |Ω| is odd and that |Gα| is even.
Suppose further that G has cyclic or quaternion Sylow 2-subgroups. Then G
is a Frobenius group with Frobenius complement Gα.

Proof. By hypothesis G has even order and Gα contains a full Sylow 2-
subgroup S of G. As |Ω| is odd, Hypothesis 1.1 yields that S fixes exactly
one point in Ω, hence only α. Let s ∈ S denote the unique involution. Then
α is the only fixed point of s and hence CG(s) ≤ Gα by Lemma 2.8. Now
the theorems of Burnside (see 7.2.1 in [19]) and of Brauer and Suzuki ([6])
give that G = Gα · O(G). Let 1 6= X ∈ Gα and assume that X has a
second fixed point β ∈ Ω. In particular 1 6= Gα ∩Gβ 6= Gα and Lemma 2.15
implies that Gα is a Frobenius group with complement Gα ∩ Gβ. As S has
the unique fixed point α, it lies in the Frobenius kernel of this group. Now
without loss X normalizes S (by coprime action) and hence centralizes s,
which is impossible. Then Lemma 2.1 forces G to be a Frobenius group with
Frobenius complement Gα.

Lemma 2.18. Suppose that |Ω| is odd. Then G is a Frobenius group or G
has normal subgroups M and N such that N ≤M , that N and G/M have odd
order and that there exists a power q ≥ 4 of 2 with M/N ∼= PSL2(q), Sz(q)
or PSU3(q).

12



Proof. Let ω ∈ Ω. Then the transitivity of G on Ω yields that |Ω| = |ωG| =
|G : Gω| and hence |G| = |Ω| · |Gω|.
Suppose that Gω has odd order. Then G has odd order and it is a Frobenius
group by Corollary 2.9. This is the first possibility.
Next suppose that Gω has even order and let t ∈ Gω be an involution. Then
the orbits of t on Ω have length 1 or 2 and therefore, as |Ω| is odd, t must
have an odd number of fixed points. Hypothesis 1.1 forces |fixΩ(t)| = 1. Let
α ∈ Ω denote the unique fixed point of t and let H := Gα. Then H contains
t and hence it has even order. Let g ∈ G\H and suppose that x ∈ H ∩Hg

is a 2-element. Then x has at least two fixed points on Ω, namely α and
αg. But |Ω| is odd and the orbit lengths of x on Ω are 1 or even, therefore
x must have at least one more fixed point on Ω. This forces x = 1 by our
hypothesis. It follows that H ∩Hg has odd order and hence H is a strongly
2-embedded subgroup of G. If the second statement in the lemma does not
hold, then the main result in [4] yields that G has cyclic or quaternion Sylow
2-subgroups. Then Lemma 2.17 applies and the proof is finished.

Next we consider components of groups satisfying Hypothesis 1.1.

Lemma 2.19. Let ω ∈ Ω and suppose that E(G) 6= 1. Then E(G)∩Gω 6= 1.

Proof. Assume that E(G) ∩ Gω = 1 and let x ∈ Gω be an element of prime
order p. Let E be a component of G. We recall that, by Lemma 2.8, the
subgroup CGω(x) has index at most 2 in CG(x). In particular we have for all
y ∈ CG(x) that y2 ∈ Gω.
If x does not normalize E, then let E := E1, E2,...,Ep be components of G
that are moved transitively by x. As different components commute, we have
for all e ∈ E that y := eex · · · exp−1

is an element of E(G) that is centralized
by x. Therefore y2 ∈ Gω ∩ E(G) = 1. It follows that e is a 2-element and
hence E is a 2-group. But this is impossible.
If x normalizes E, then we recall that, for all y ∈ CE(x), we have that
y2 ∈ E ∩ Gω = 1. Hence all elements in CE(x) have order at most 2, so it
follows that CE(x) is an elementary abelian 2-group. Then the main theorem
in [11] forces E to be solvable, which is again a contradiction.

Corollary 2.20. Suppose that G is almost simple, but not simple. Let E :=
F ∗(G) and let α ∈ Ω. Then (E,αE) satisfies Hypothesis 1.1.

Proof. Lemma 2.19 yields that E ∩Gα 6= 1, so the action on αE is transitive
and not regular. Then Hypothesis 1.1 is satisfied.
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Lemma 2.21. Let ω ∈ Ω. Then Gω does not contain a component of G.

Proof. Assume otherwise and let E be a component of G that is contained in
H := Gω. Then E(G) 6= E because otherwise E fixes every point in Ω, which
is impossible. Hence let K be another component of G. Let x ∈ E#. Then
Lemma 2.8 yields that H ∩K has index at most 2 in K because K ≤ CG(x).
As K is quasi-simple, it follows that K ≤ H. This argument shows that all
components of G are contained in H and therefore E(G) ≤ H, which is a
contradiction.

Lemma 2.22. If E(G) 6= 1, then E(G) is a single component.

Proof. Suppose that E(G) 6= 1 and let ω ∈ Ω. Then E(G) ∩ Gω 6= 1
by Lemma 2.19. Let E denote a component of G and suppose first that
E ∩ Gω 6= 1. Then let x ∈ E ∩ Gω be such that x 6= 1. Assume that there
exists another component K of G. Then K ≤ CG(x) and K has no subgroup
of index 2, hence Lemma 2.8 implies that K ≤ Gω. This contradicts Lemma
2.21, so this case is finished.
Now we suppose that E∩Gω = 1. Let L ≤ E(G) be a product of components
such that E(G) = E · L and let y ∈ E(G) ∩ Gω be such that y 6= 1. Let
y1 ∈ E and a ∈ L be such that y = y1a. Then CE(y) has a subgroup of index
at most 2 that lies in Gω, but E ∩ Gω = 1 in the current case. Therefore
CE(y) has order at most 2 and in particular y has order 2. If y1 6= 1, then
y1 is an involution and CE(y) = CE(y1) has order at least 4, which is a
contradiction. Hence y1 = 1 and y = a ∈ L. But then E ≤ CE(y), which is
again impossible.

We collect the information that we have so far in a single result:

Theorem 2.23. Let α ∈ Ω. Then one of the following holds:

(1) G has a normal subgroup of index at most 2 that is a Frobenius group.

(2) |Z(G)| = 2 and G/Z(G) is a Frobenius group.

(3) Gα is metacyclic of odd order.

(4) G has dihedral or semidihedral Sylow 2-subgroups and the point stabi-
lizers have twice odd order.

(5) G has normal subgroups M and N such that N ≤ M , that N and
G/M have odd order and that there exists a power q ≥ 4 of 2 with
M/N ∼= PSL2(q), Sz(q) or PSU3(q).
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(6) F ∗(G) is simple.

Moreover, if G is simple, then Gα is metacyclic of odd order or G is isomor-
phic to one of the following groups:
PSL2(q), Sz(q), PSL3(q) or PSU3(q) with a suitable prime power q, A7 or
M11.

Proof. We go through the cases in Lemma 2.12, starting at (1). Then Lemma
2.16 is applicable. If F (G) 6= 1, then this leads to (2) or (3), and otherwise
E(G) 6= 1 and Lemma 2.22 gives the statement in (6).
Lemma 2.12 (2) immediately gives Case (4) and Lemma 2.12 (3) leads to
Case (1). So it is left to look at Lemma 2.12 (4). Then Lemma 2.18 is
applicable and yields (1) or (5).
The last statement is a combination of the possibilities from Lemma 2.12,
Lemma 2.18 and the Theorems of Gorenstein-Walter ([13]) and Alperin-
Brauer-Gorenstein ([1]).

For future reference, we record an additional detail in one of the cases from
the last statement in Theorem 2.23.

Remark 2.24. Let q be a prime power such that G ∼=PSL3(q) and let α ∈
Ω. If Gα has even order, then the Sylow 2-subgroups of G are dihedral or
semidihedral.

In our analysis of simple groups of Lie type we also need some more infor-
mation about centralizers of involutions.

Lemma 2.25. Let α, β ∈ Ω be distinct and such that U := Gα ∩ Gβ 6= 1.
Suppose that |Gα| is odd and that |Ω| is even. Suppose further that G has no
subgroup of index at most 2 that is a Frobenius group. Then there exists an
involution x ∈ NG(U) \ U that interchanges α and β and such that one of
the following is true:

(1) U is abelian. Moreover if G is simple, then all involutions in G are
conjugate.

(2) Z(CG(x)) = 〈x〉 and CG(x)/〈x〉 is a Frobenius group.

Proof. Our hypothesis that Gα is of odd order together with Lemma 2.11
implies that (|Gα|, |Ω|) = 1. Lemma 2.8 and our hypothesis that G does not
contain a Frobenius group of index at most 2 yields that |NG(U) : U | = 2.
Thus there exists an involution x ∈ NG(U) \ U .
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If CU(x) = 1, then U is abelian (see for example 8.1.10 in [19]). Thus (1)
holds in this case and in particular CG(u) ≤ U for all u ∈ U#. If G is simple,
then 2.6 of [7] implies that all involutions in G are conjugate.
If CU(x) 6= 1, then we define C := CG(x) and we consider the action of C on
αC .
If |αC | ≤ 2, then C = 〈x〉 × U and thus the Sylow 2-subgroups of G are
cyclic. Then G has a normal 2-complement G1. But now G1 has odd order
and (G1, α

G1) satisfies Hypothesis 1.1 which implies that G1 is a Frobenius
group; contradicting our hypothesis.
Thus we see that |αC | ≥ 3 and that C is not regular on αC . Therefore (C, αC)
satisfies Hypothesis 1.1. Applying Lemma 2.10 together with the fact that
x ∈ Z(C) yields that 〈x〉 = Z(C). Thus Lemma 2.14 implies that C/Z(C)
is a Frobenius group as stated in (2).

In the next two sections we describe all pairs (G,Ω) satisfying Hypothesis
1.1 where G is simple, using the Classification of Finite Simple Groups. As
some of the arguments based on Lemmas 2.8 and 2.11 become repetitive,
we decided to adapt Aschbacher’s notation from Section 9 of [2] at least for
some connections between prime divisors of |G|. This notation will be used
throughout Sections 3 and 4.

Definition 2.26. Suppose that p, q ∈ π(G) are prime numbers and let H ≤ G
be a point stabilizer in G.

• We write p ` q if and only if one of the following holds:

– q is odd and there exists a nontrivial p-subgroup X ≤ G such that
q ∈ π(NG(X)).

– q = 2 and and there exists a nontrivial p-subgroup X ≤ G such that
4 divides |NG(X)|.

• We write → for the transitive extension of `.

• We write 2 B p if and only if p divides the order of every involution
centralizer in G.

• Suppose that π ⊆ π(G) is a set of primes. Then we say that π is
connected if and only if the following hold:

– If p, q ∈ π and p is odd, then p→ q.
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– If 2 ∈ π and π 6= {2}, then there exists some odd r ∈ π such that
2 B r.

Lemma 2.27. Suppose that Hypothesis 1.1 holds and that H ≤ G is a point
stabilizer. Suppose further that q ∈ π(G) and p ∈ π(H).

(1) If p is odd and p ` q, then q ∈ π(H).

(2) If p = 2 and 2 B q, then q ∈ π(H).

(3) If π ⊆ π(G) is connected and p ∈ π, then π ⊆ π(H).

Proof. In (1) Lemma 2.11 (a) gives that H contains a Sylow p-subgroup of
G. Then by Sylow’s Theorem there exists a nontrivial p-subgroup X of H
such that q divides |NG(X)| and therefore Lemma 2.8 yields that q ∈ π(H).
For (2) we just apply Lemma 2.8 to the centralizer of an involution from H.
In (3) let q ∈ π be arbitrary. If p is odd, then p→ q because π is connected,
and hence (1) yields that q ∈ π(H).
Next suppose that p = 2. If π = {2}, then we are done. Otherwise, by
connectedness, let r ∈ π be odd and such that 2 B r. Then r ∈ π(H) by (2)
and hence the first part of the proof yields that all odd primes in π are also
contained in π(H).

3. Alternating Groups and Lie type groups

3.1. Alternating Groups

Lemma 3.1. The group G :=PSL2(5) provides examples satisfying Hypoth-
esis 1.1. The size of the set Ω that G is acting on is 5, 6, 10, 12, 20 or
30 and there is an example for all these numbers. The point stabilizers have
structure A4, D10, D6, Z5, Z3 or Z2, respectively.

Proof. As G ' A5, we see that the natural action of G on five points pro-
vides an example. In order to obtain an example for six points, we let
Ω := {1, 2, 3, 4, 5, 6} and we keep viewing G as an alternating group with the
corresponding notation.
The double transpositions of G as well as the 5-cycles have one or two fixed
points in their natural action. Now we define an action of the 3-cycles: Let
g ∈ G be a 3-cycle and let a, b, c ∈ {1, 2, 3, 4, 5} be such that g = (a, b, c).
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Let x, y be the remaining two points in Ω and choose notation such that
x < y. Then the action of g on Ω is defined to be the action of the element
(a, b, c)(x, y, 6) ∈ S6. In particular all 3-cycles of G act fixed point freely on
G and therefore (G,Ω) satisfies Hypothesis 1.1.
Next we consider the action of G on the set of cosets of a subgroup U of
order 6, for example U := 〈(123), (12)(45)〉. This is an action on a set with
10 points where every 5-cycle of G is fixed point free and every 3-cycle of G
has exactly one fixed point. The involution (12)(45) has two fixed points in
this action, namely U itself and the coset U(14)(25). As all involutions in
G are conjugate, they all have exactly two fixed points. Hence G (with this
action) satisfies Hypothesis 1.1.
For the next example we let G act on the set of cosets of H := 〈(12345)〉 in
G. This is an action on a set with 12 elements where every 5-cycle has two
fixed points and all 3-cycles are fixed point free. In this case every involution
is also fixed point free.
The natural action of G on the set of cosets of a subgroup of order 2 or 3
leads to the last two examples, respectively.

Now let the set Ω be such that (G,Ω) satisfies Hypothesis 1.1. Let n := |Ω|.
As G is transitive, but not regular, and since G does not have subgroups of
index 2 or 3, we have that n divides 60 and n ≥ 4. MoreoverG does not have a
subgroup of order 15, so this leads to the possibilities n ∈ {5, 6, 10, 12, 20, 30}.
This gives exactly the numbers listed. We showed in the previous paragraph
that all numbers lead to examples and thus the proof is finished.

Lemma 3.2. (S5,Ω) satisfies Hypothesis 1.1 if and only if |Ω| ∈ {6, 10, 20, 30}.
The point stabilizers are isomorphic to 5 : 4, D12, Z6 or Z4, respectively.

Proof. Let n := |Ω| and let ω ∈ Ω. We first observe that n 6= 5 because
2-cycles have three fixed points in their natural action. If 2 is a divisor of
|Gω|, then Lemma 2.8 implies that 4 or 6 is a divisor of |Gω|. If 6 is a divisor
of |Gω|, but 4 is not, then Gω is cyclic of order 6 which yields an example for
n = 20.
If 8 divides |Gω|, then Gω contains a Klein fours group whose normalizer is
S4, which implies that Gω = S4 and n = 5. But this is impossible. Thus the
Sylow 2-subgroup of Gω is either cyclic of order 4 or elementary abelian of
order 4. First suppose that Gω is cyclic of order 4. As the proper overgroups
of a 4-cycle are 5 : 4 and S4, this allows for the possibility that Gω is cyclic of
order 4 which implies that n = 30 or that Gω is a Frobenius group of order
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20 and n = 6. Next suppose that Gω is elementary abelian of order 4. Then
one involution is a transposition, which in turn implies by Lemma 2.8 that 3
is a divisor of |Gω|. This forces Gω

∼= D12 or S4. The first possibility yields
an example, but the second possibility does not because otherwise n = 5.
Next note that 3 ` 2. Now if 5 is a divisor of |Gω|, then Gω

∼= D10 or 5 : 4.
The former case is ruled out by Lemma 2.8 whereas the second case leads to
an example.

Lemma 3.3. If (A6,Ω) satisfies Hypothesis 1.1, then |Ω| ∈ {10, 72, 90}.

Proof. If 3 is a divisor of |Gω|, then Gω contains a Sylow 3-subgroup of G by
Lemma 2.11 (a). As 3 ` 2, it follows that Gω contains an involution, which
in turn implies that 36 divides |Gω|. Inspection of the maximal subgroups of
G shows that 36 = |Gω|, which leads to the example |Ω| = 10.
If Gω has even order, then it contains an involution. Since all involutions in
G are conjugate, Lemma 2.8 implies that 4 divides |Gω|. Inspection of the
maximal subgroups of G shows that the only subgroups of G whose order is
not divisible by 3 but which contain a subgroup of order 4 are the Klein fours
subgroups, the cyclic groups of order 4 and the dihedral subgroups of order
8. Lemma 2.8, applied to a Klein fours subgroup, only leaves the case of a
cyclic subgroup of order 4. In fact this leads to an example where |Ω| = 90.
The last possibility is that 5 = |Gω|. This is another example because the
normalizer of a subgroup of order 5 in G is D10.

Lemma 3.4. Suppose that G is almost simple, that G 6= F ∗(G) = A6 and
that (G,Ω) satisfies Hypothesis 1.1. Then one of the following is true:

1. |Ω| = 10 and G is either PGL2(9) 6∼= S6 or G is M10, the one point
stabilizer of M11 in its action on 11 points.

2. |Ω| = 72 and G =PGL2(9).

3. |Ω| = 90 and G is either PGL2(9) or M10.

Proof. As in Lemma 3.3 we conclude that, if 3 divides |Gω|, then 36 divides
|Gω|. Lemma 2.8, applied to an involution of Gω, implies that in fact 72
divides |Gω| if |G : F ∗(G)| = 2, and 144 divides |Gω| if |G : F ∗(G)| = 4.
Thus |Ω| = 10. In the action on 10 points, the involutions in S6 \ A6 have 4
fixed points, which implies that |G : F ∗(G)| = 2. Inspection shows that the
two possibilities listed in our conclusion do indeed occur.
Thus we now consider the case whereGω is a 3′-group. We note that 5 ` 2 and
that only the 2-central involution, which is contained in A6, or the involution
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in PGL2(9) have centralizer order coprime to 3. Thus applying Lemma 2.8
to an involution in Gω implies that either 20 · |G : F ∗(G)| is a divisor of
|Gω|, or that Gω is cyclic of order 10 and G =PGL2(9). The latter case is an
example for n = 72, whereas the former case does not occur because G does
not possess proper subgroups of order divisible by 20 · |G : F ∗(G)|.
To conclude we consider the case that Gω is a 2-group, which by Lemma
2.8 implies that the normalizer of every subgroup of Gω is a 2-group. Thus
only involutions from A6 can be elements of Gω. Also Gω cannot contain
a Klein fours group all of whose involutions are from A6, because otherwise
Lemma 2.8 forces an element of order 3 into Gω. The upshot of this is that
Gω must be cyclic or quaternion. Lemma 2.8 implies that the quaternion
case is also impossible (the normalizer contains an element of order 3). Thus
Gω is cyclic of order 8. (Note that order 4 is impossible by Lemma 2.8).
This rules out the possibility that G = S6. Also Lemma 2.8 rules out the
possibility that G =Aut(A6). This shows that |Ω| = 90, which leads to the
listed examples.

Lemma 3.5. There is no set Ω such that (A7,Ω) satisfies Hypothesis 1.1.

Proof. Assume otherwise. Let G := A7 and let Ω be a finite set such that
(G,Ω) satisfies Hypothesis 1.1. In particular G acts transitively and nonreg-
ularly on Ω. Let α ∈ Ω. Then H := Gα 6= 1.
We begin by showing that H is a {2, 3}-group. Throughout, we use facts
about the subgroup structure of A7 that can, for example, be found in the
ATLAS.
Assume that H is not a {2, 3}-group and first suppose that X ≤ H is a
subgroup of order 7. As 7→ 2, Lemma 2.8 yields that H contains a subgroup
isomorphic to A4. However, G does not have a proper subgroup that contains
a 7-cycle and a subgroup isomorphic to A4.
Next suppose that Q ≤ H is a subgroup of order 5. We know that 5 ` 3 and
3 ` 2, so H contains a subgroup isomorphic to A4× 3 by Lemma 2.8. Hence
a similar argument as before applies: G does not have a proper subgroup
containing a 5-cycle as well as a subgroup isomorphic to A4 × 3.
Now we know that H is a {2, 3}-group. Lemmas 2.8 and 2.11 (a) force 2 ` 3
and 3 ` 2, so both primes occur in |H| and it follows that H contains a direct
product of A4 with a subgroup of order 3. In particular H is not a Frobenius
group. Lemma 2.15 then gives that there exists β ∈ Ω such that β 6= α and
H = Gβ.
There are two cases remaining:
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If |H| = 36, then Ω has 70 points and thus every element of order 3 has one
fixed point whereas every involution has two fixed points. This is impossible.
If |H| = 72, then Ω has 35 points and every element of order 3 has two fixed
points whereas every involution has exactly one fixed point. Again this is
impossible.

Now we consider Hypothesis 1.1 in the situation where G ∼= An or Sn with
n ≥ 8.

Lemma 3.6. Suppose that n ≥ 8, that G ∼= Sn or An and that Ω is a set
such that (G,Ω) satisfies Hypothesis 1.1.
Then the order of a point stabilizer in G is not divisible by 3.

Proof. Assume otherwise and let ω ∈ Ω and x ∈ Gω be such that o(x) = 3.
Then Lemma 2.11 (a) implies that Gω contains a full Sylow 3-subgroup P
of G. In particular, we find a pair x1 and x2 of commuting 3-cycles in Gω.
Without loss, as G contains a subgroup isomorphic to A8 and is hence sixfold
transitive, we may suppose that x1 = (1, 2, 3) and that x2 = (4, 5, 6). Lemma
2.8 implies that Gω contains 〈CG(x1)∞, CG(x2)∞〉, where the superscript ∞
denotes the last term of the derived series. Note that CG(x1)∞ ∼= An−3,
which is a perfect group, as n ≥ 8. Also CG(x2)∞ ∼= An−3 and thus Gω ≥
〈CG(x1)∞, CG(x2)∞〉 ∼= An. This contradicts the fact that G acts faithfully
on Ω.

Lemma 3.7. If n ∈ {8, 9} and G ∼= An or Sn, then there is no set Ω such
that (G,Ω) satisfies Hypothesis 1.1.

Proof. Assume otherwise and let Ω be such a set. Let ω ∈ Ω. By Lemma
3.6 there is no element of order 3 in Gω.
As 5 ` 3 and 2 ` 3, we see that |Gω| is coprime to 30 which implies that Gω

is generated by a 7-cycle. But also 7 ` 3, which is a contradiction.

Theorem 3.8. Suppose that n ≥ 10 and that G ∼= An or Sn. Then there is
no set Ω such that (G,Ω) satisfies Hypothesis 1.1.

Proof. Assume otherwise, let Ω denote such a set and let ω ∈ Ω. Let g ∈ Gω

be a p-element. Then g is a product of k cycles each of length p and g has
exactly n−k ·p fixed points. The centralizer CG(g) contains Zk

p : Sk×An−pk
if p 6= 2 and (Zk

2 : Sk×Sn−2k)∩An otherwise. So if n−p ·k ≥ 3, then Lemma
2.8 implies that CG(g)∩Gω contains a 3-cycle. This contradicts Lemma 3.6.
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Therefore n − p · k ≤ 2. Assume that p = 2. Then k > 2 and hence every
index two subgroup of (Zk

2 : Sk ∩ An) ≤ (CG(g) ∩ An) contains some double
2-cycle. Thus Lemma 2.8 implies that Gω contains some double 2-cycle d. As
n ≥ 10, we see that CG(d) contains a subgroup isomorphic to An−4, which is
a perfect group of order divisible by 3. This implies that |Gω| is divisible by
3, contradicting Lemma 3.6. Thus we see that 2 is also not a divisor of |Gω|.
Hence p > 3 (using Lemma 3.6). Now Lemma 2.11 (a) implies that Gω ∩An
contains a full Sylow p-subgroup P of G. Thus Gω ∩ An contains a p-cycle,
say h. If n − p > 2, then 3 divides |CG(h)| which, by Lemma 2.8, implies
that |Gω| is divisible by 3; again a contradiction.
Therefore n− p ≤ 2. This property holds for all prime divisors p of |Gω|.
As n ≥ 10 and p is prime, this forces p ≥ 11. In particular |NG(〈g〉) : 〈g〉| ≥
p−1

2
≥ 5 and it follows that |Gω ∩NG(〈g〉)| is divisible by a prime r such that

2r ≤ p− 1 ≤ n. This implies r ≤ n− r. We know that r 6= 2 and r 6= 3, so
5 ≤ r ≤ n− r. But the previous paragraph shows that r satisfies n− r ≤ 2.
This is impossible.

Corollary 3.9. Suppose that n ∈ N is such that n ≥ 5 and that Ω is a set
such that (An,Ω) satisfies Hypothesis 1.1. Then n ∈ {5, 6} and the action is
as described in Lemmas 3.1 and 3.11.

Proof. It follows from Theorems 3.7 and 3.8 that n ∈ {5, 6}. AsA5
∼=PSL2(5)

and A6
∼=PSL2(9), the only possible actions are explained in Lemmas 3.1 and

3.11.

Lemma 3.10. Suppose that n ∈ N is such that n ≥ 5. Then there is no set
Ω such that (2An,Ω) satisfies Hypothesis 1.1.

Proof. Assume otherwise, let ω ∈ Ω and let G := 2An.
Moreover we let G := G/Z(G) and we let Ω denote the set of Z(G)-orbits
on Ω. Then (G,Ω) satisfies Hypothesis 1.1 by Lemma 2.14 and so we only
need to consider the cases n = 5 and n = 6, by Corollary 3.9. This means
that G ∼=SL2(5) or 2A6.
Let S ∈Syl2(G). Then S is a quaternion group and S � Gω because Z(G) �
Gω. Moreover Lemma 2.14 forces Gω, and hence Gω, to have even order, and
Case (3) of Lemma 2.12 does not hold. This contradicts Lemma 2.12.

3.2. Lie Type Groups
Lemma 3.11. Suppose that r is prime and that m ∈ N. Let q := rm ≥ 7.
If Ω is a set such that (PSL2(q),Ω) satisfies Hypothesis 1.1, then one of the
following holds:
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(a) |Ω| = q + 1 and G acts on Ω as on the set of cosets of the normalizer
of a Sylow r-subgroup of G.

(b) |Ω| = q(q − 1) and G acts on Ω as on the set of cosets of a cyclic
subgroup of order q+1

2
(if r is odd) or q + 1 (if r = 2).

(c) |Ω| = q(q + 1) and G acts on Ω as on the set of cosets of a cyclic
subgroup of order q−1

2
(if r is odd) or q − 1 (if r = 2).

(d) q = r = 7 and the point stabilizers are isomorphic to A4.

Proof. Let G :=PSL2(q) and suppose that Ω is a set such that (G,Ω) satisfies
Hypothesis 1.1. For the subgroup structure of G we refer to Theorem 6.5.1
in [15]. Let α ∈ Ω. As G acts transitively and nonregularly on Ω, we have
that H := Gα 6= 1.

Case 1: q ≡ 1 modulo 4.
If q = 9, then Lemma 3.3 yields our conclusion. So we may assume that
q ≥ 13.
Let p ∈ π(H).
If p = r, then Lemma 2.11 (a) yields that H contains a Sylow r-subgroup of
G and hence a subgroup of index at most two of its normalizer (by Lemma
2.8). This means that H contains a subgroup of order q−1

4
. As q ≥ 7 and as

q−1 is divisible by 4, we know that q−1 ≥ 8. Hence Lemma 2.8 implies that
H contains a subgroup of order q−1

2
of G. Now the subgroup structure of G

gives that H is the normalizer of a Sylow r-subgroup of G whence |Ω| = q+1.
Conversely, if we let Ω denote the set of cosets of the normalizer of a Sylow
r-subgroup in G, then Ω has q + 1 elements and (G,Ω) satisfies Hypothesis
1.1 with the natural action of G on Ω by right multiplication. This yields
(a).
Next suppose that p divides q − 1. Then it follows with Lemma 2.8 that H
contains a subgroup of order q−1

2
of G. If the previous case does not occur,

then the subgroup structure of G yields that |H| has order q−1
2

or q − 1. In
the first case G acts on q(q + 1) points. This is an example with the natural
action of G on the set of cosets of a cyclic subgroup of G of order q−1

2
in G

as described in (b). In the second case H contains a Klein fours group A
because q− 1 is divisible by 4. As NG(A) contains a subgroup isomorphic to
A4, Lemma 2.8 implies that this subgroup lies in H. But it does not.
If p divides q+ 1, then we only consider the case where H has odd order and
in particular p is odd (otherwise the previous paragraph applies). Then H
contains a subgroup of G of order q+1

2
by Lemma 2.8. Now |H| = q+1

2
and G
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acts on q(q − 1) points. As an example for this, we see the natural action of
G on the set of cosets of a cyclic group of order q+1

2
in G. This yields (c).

Case 2: q ≡ 3 modulo 4.
Let p ∈ π(H). We argue as in the first case, with minimal differences.
If p = r, then H contains a Sylow r-subgroup of G and hence a subgroup
of index at most two of its normalizer (by Lemma 2.8). As q−1

2
is odd in

this case, it follows that H is the normalizer of a Sylow r-subgroup of G and
that (a) holds. If p divides q − 1, then H contains a subgroup of order q−1

2

of G. If the previous case does not occur, then the subgroup structure of G
yields that |H| has order q−1

2
or q − 1, or q = 7 or 11 and |H| could also be

12 or 60. In the first case G acts on q(q + 1) points and (b) holds. In the
second case H contains an involution and therefore an index two subgroup
of an involution centralizer, i.e. a subgroup of order q+1

2
. This is impossible

if q > 11. If q = 11, then H ' A5 is possible, but then an involution fixes
three points in the action of G on the cosets of H, ruling out this case. If
q = 7 and H ' A4, then the action of G on the cosets of H gives an example.
If p divides q + 1, then H contains a subgroup of G of order q+1

2
and hence

an involution, because this time q + 1 is divisible by 4. Then it follows that
|H| = q+1

2
and that G acts on q(q − 1) points as in (c).

Case 3: r = 2.
If H has even order, then H contains an involution and hence a subgroup of
a Sylow 2-subgroup of G of index at most two, by Lemma 2.8. As q ≥ 7, this
implies that H contains a Klein fours group. Moreover, in the centralizer of
an involution, we see an element of order dividing q− 1, hence an element of
odd order (by Lemma 2.8). Then Lemma 2.8 and the fact that q − 1 is odd
imply that H contains a subgroup of order q−1 and then a Sylow 2-subgroup
of G. This means that |H| = q(q − 1) and that Ω = q + 1 as stated in (a).
If H has odd order, then it contains a subgroup of order q + 1 or q − 1 and
hence coincides with it. This leads to the cases (b) and (c).
This last case concludes the proof.

Lemma 3.12. Suppose that m ∈ N is odd and let q := 2m ≥ 8. If Ω is a set
such that (Sz(q),Ω) satisfies Hypothesis 1.1, then one of the following holds:

(a) |Ω| = q2 + 1 and G acts 2-transitively in its natural action.

(b) |Ω| = q2(q2 + 1) and G acts on Ω as on the set of cosets of a subgroup
of order q − 1.
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Proof. Let G :=Sz(q) and suppose that Ω is a set such that (G,Ω) satisfies
Hypothesis 1.1. For the subgroup structure of G we refer to Theorem 6.5.4
in [15]. Let α ∈ Ω. As G acts transitively and nonregularly on Ω, we have
that H := Gα 6= 1.
If 2 divides |Gω|, then Lemma 2.8 implies that an index 2 subgroup of some
Sylow 2-subgroup S of G is contained in Gω. As every index 2-subgroup of S
contains Z(S) we see that Z(S) ≤ Gω. Thus we see that an index 2 subgroup
of NG(Z(S)) = S : (q− 1) is contained in Gω. As NG(Z(S)) is maximal in G
we may assume that Gω = NG(Z(S)). Indeed G in its action on the cosets
of Gω is an example of a Zassenhaus group and this is (a).
Thus we may now assume that H has odd order. Hence for all prime divisors
p of |H|, Lemma 2.11 (a) yields that H contains a Sylow p-subgroup. Let
p ∈ π(H). If p divides q− 1, then the subgroup structure of G yields that H
is cyclic of order q − 1. Then |Ω| = q2(q2 + 1) and G acts on Ω as on the set

of cosets of a subgroup of order q− 1. This is (b). If p divides q+ 2
a+1
2 + 1 or

q−2
a+1
2 +1, then H contains a subgroup of order q+2

a+1
2 +1 or q−2

a+1
2 +1,

respectively, and hence it has even order. But this is impossible.
Therefore the proof is complete.

Lemma 3.13. Let G :=PSL3(4) and let H be a subgroup of G of order 5.
Let Ω := G/H. Then (G,Ω) satisfies Hypothesis 1.1 with the natural action
of G on Ω, and this is the only example for G satisfying this hypothesis.

Proof. Let ∆ be a finite set such that (G,∆) satisfies Hypothesis 1.1 and let
δ ∈ ∆ and H := Gδ. All information about the subgroup structure of G that
we use comes from the ATLAS.
The Sylow 2-subgroups of G are not dihedral or semi-dihedral and thus Re-
mark 2.24 implies that H is a 2′-group. As 3 ` 2, we deduce that H is a
3′-group. Moreover 7 ` 3 whence 7 /∈ π(H), and we are left with the case
that |H| = 5. Then |∆| = 26 · 32 · 7 = |Ω| and G acts on ∆ in the same way
that it acts on Ω by right multiplication.

Lemma 3.14. Suppose that q ≥ 27 is a prime power and that G =2 G2(q).
Then there is no set Ω such that (G,Ω) satisfies Hypothesis 1.1.

Proof. Let ω ∈ Ω. Firstly we assert that 3 does not divide |Gω|. Assume
otherwise. Then Lemma 2.11 (a) implies that a full Sylow 3-subgroup P of
G lies in Gω. Applying Lemma 2.8 to P shows that Gω contains an element
t of order (q − 1)/2. Now note that |NG(〈t〉)| = 2(q − 1), which by Lemma
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2.8 implies that Gω contains an involution s. But this is false by Theorem
2.23.
If x ∈ Gω is of odd order coprime to 3, then CG(x) is a torus, see Theorem
B in [18]. If |CG(x)| = (q − 1), then the argument from the first paragraph
of this proof implies that Gω contains an involution, which is impossible. If
|CG(x)| = (q±

√
3q+ 1), then |NG(CG(x)) : CG(x)| = 6 and thus Lemma 2.8

implies that 3 is a divisor of |Gω|. This is again a contradiction.

Lemma 3.15. If G =PSU3(q), with pa = q 6= 2, then there is no set Ω such
that (G,Ω) satisfies Hypothesis 1.1.

Proof. Let ω ∈ Ω, let x ∈ G#
ω and assume that q ≥ 7. Firstly we assert that

the order of x is not a divisor of q + 1. To see this we assume otherwise and
we work in the group SU3(q) and observe that the action of any element y,
that projects naturally onto x, is diagonalizable with orthonormal eigenbasis
{e1, e2, e3}. Hence CG(x) contains a torus of order (q + 1)2/(3, q + 1). This,
together with Lemma 2.8, implies that Gω contains elements x1 and x2 whose
lifts y1, y2 ∈SU3(q) are such that CSU3(q)(yi)

′ =SU(〈ei, ei+1〉). Evidently
SU3(q) = 〈CSU3(q)(yi)

′, CSU3(q)(yi)
′〉 and thus G = 〈CG(x1)′, CG(x2)′〉 ≤ Gω.

This is a contradiction.
Next if o(x) is a divisor of q − 1, then (q2 − 1)/2 divides |CG(x)|, and hence
Lemma 2.8 implies that q + 1/2 is a divisor of Gω. We excluded this case in
the previous paragraph.
If o(x) is a divisor of q2 − q + 1 and is coprime to q ± 1, then |CG(x)| =
(q2−q+1)/(3, q+1) is odd, and hence Lemma 2.8 implies that CG(x) ≤ Gω.
As |NG(CG(x)) : CG(x)| = 3, Lemma 2.8 implies that NG(CG(x)) ≤ Gω.
Now 3 either divides (q2 − 1) or p = 3. The former case implies Gω = G
by the above, whereas the latter case implies the Gω contains a Sylow 3-
subgroup of P of G, by Lemma 2.11 (a). As |NG(P ) : P | = q2− 1/(3, q+ 1),
Lemma 2.8 then yields that Gω contains elements of order dividing q2 − 1.
But we excluded this case.

Let G =PSU3(5) and let ω ∈ Ω. Using the list of maximal subgroups in [8] we
observe that no proper subgroup of G contains both a Sylow 3 and a Sylow
5-subgroup of G. We show first that Gω is a 3′-group. Suppose otherwise,
then let x ∈ Gω be an element of order 3. From the ATLAS we infer that
|CG(x)| = 36 which, by Lemma 2.8, implies that Gω contains an involution
t. But GU2(5) ≤ CG(t) which by Lemma 2.8 implies that Gω contain both a
Sylow 3 and a Sylow 5-subgroup of G; a contradiction.
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As 5 ` 2 and 7 ` 3, there are no more possible prime divisors left for |Gω|.

Let G =PSU3(4) and let ω ∈ Ω. If Gω contains an element of order 5, then
by Lemma 2.11 (a) it contains a Sylow 5-subgroup of G. Thus by Lemma
2.8 it contains a subgroup A := Z5×A5. Now pick an involution s ∈ A5 and
observe that its centralizer also lies in Gω. But now G = Gω = 〈A,CG(s)〉,
which is impossible.
So Gω must be a {2, 5}′-group, which implies that Gω is cyclic of order 3 or
13. Both cases are impossible by Lemma 2.8.

Let G =PSU3(3) and let ω ∈ Ω. Lemma 2.8 implies that if (|Gω|, 6) 6= 1,
then 6 divides |Gω|. So Lemma 2.8 implies that 24 × 33 divides |Gω|. But
G does not contain subgroups of index less than 14 which rules out that
(|Gω|, 6) 6= 1
The the only remaining possibility is that Gω is cyclic of order 7. But 7 ` 3,
so this is impossible, and the proof is complete.

Lemma 3.16. Let G =PSL3(q) with q = rm odd. If G acts transitively on
Ω and |Gω| is even, then (G,Ω) does not satisfy Hypothesis 1.1.

Proof. G contains a unique class of involutions whose centralizer is GL2(q).
So if |Gω| is even, then Lemma 2.8 implies that SL2(q) ≤ Gω and in particular
Gω contains r-central elements. Applying Lemma 2.8 to an r-element of
SL2(q) shows that Gα contains a full Sylow r-subgroup of G as well as an
opposite. Thus G = GΩ and our claim is established.

Note that the simple groups occurring at the end of Theorem 2.23 are of Lie
rank 1 or PSL3(q). The Sylow 2-subgroups of PSL3(2n) are special of order
2n+2n. They are of dihedral or semidihedral if and only if n = 1. But if
n = 1, then PSL3(2) ∼=PSL2(7). Thus at this point we have considered all
the simple groups occurring at the end of Theorem 2.23 and all the groups
of Lie rank 1. Thus we may now work under the following hypothesis:

Hypothesis 3.17. G is simple of Lie type and of Lie rank at least 2 defined
over a finite field GFq of characteristic p such that the following hold:

1. Ω is a set such that (G,Ω) satisfies Hypothesis 1.1 and

2. |Gα| is of odd order.
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We note that Hypothesis 3.17 implies that |Ω| is even because G has even
order. Moreover the conclusion of Lemma 2.25 holds, that is there exist
α, β ∈ Ω such that α 6= β and 1 6= U := Gα ∩Gβ and there is an involution
x ∈ NG(U) such that

• either x inverts every nontrivial element of U and all involutions in G
are conjugate, or

• CG(x)/〈x〉 is a Frobenius group.

Lemma 3.18. If (G,Ω) satisfies Hypothesis 3.17 and q is even, then
G 'PSL3(q) with q ≤ 4.

Before starting the proof of Lemma 3.18 we recall that in a group of Lie type
an element is semisimple if its order is coprime to q and that a semisimple
element is regular if the order of its centralizer is coprime to q.

Proof. Since q is even, all elements in Gα are semisimple. If an element g ∈ G
is semisimple but not regular, then CG(g) contains a subgroup K isomorphic
to PSL2(q). If q 6= 2, then |K|2 > 2 and so Lemma 2.8 implies that all
nontrivial elements of Gα are regular semisimple. If q = 2, then |K| = 6
which implies that if Gα contains a nonregular semisimple element, then 3
divides |Gα|. In turn this implies that Gα contains a Sylow 3-subgroup of G.
If G 6'PSL3(2), then Gα contains an elementary abelian subgroup of order 9
whose normalizer order is divisible by 4 and so Lemma 2.8 forces an involution
into Gα, contrary to Hypothesis 3.17. Thus we have established that all
nontrivial elements of Gα are regular semisimple. So for every subgroup U
of Gα it is true that CG(U) is of odd order. Thus if U is as in Hypothesis
3.17, then U is abelian and all involutions in G are conjugate. As G is of Lie
type in characteristic 2, it follows from [3] that G 'PSL3(q).
The regular semisimple elements in PSL3(q) are of order q2 + q+ 1/(q− 1, 3)
and of order q2 − 1/(q − 1, 3). If Gα contains an element of order q2 −
1/(q− 1, 3), then Gα contains a nontrivial element of order (q− 1)/(q− 1, 3)
if q > 4. But then Lemma 2.8 implies that Gα contains a split torus of
G (a subgroup of order (q − 1)2/(q − 1, 3)) and thus elements which are
not regular and semisimple, a contradiction. If Gα contains an element of
order (q2 + q+ 1)/(q− 1, 3), then again Lemma 2.8 implies that Gα contains
an element of order 3 whose centralizer is of order (q2 − 1)/(q − 1, 3) or
(q − 1)2/(q − 1, 3), contrary to our previous observation. Thus our claim
follows.
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Lemma 3.19. There do not exist pairs (G,Ω) which satisfy Hypothesis 3.17
with q odd.

Proof. If p divides |Gα|, then Lemma 2.11 implies that Gα contains a Sylow
p-subgroup of G because p is odd. Thus Gα contains a p-element whose
centralizer contains a subgroup isomorphic to SL2(q) which by Lemma 2.8
implies that Gα contains an involution; contradicting Hypothesis 3.17.
Thus we may assume that every nonidentity element of Gα is semisimple.
Moreover, arguing as in Lemma 3.18 we see that every nontrivial element in
Gα is regular and semisimple.
As noted right after Hypothesis 3.17 either all involutions in G are conjugate
or some involution centralizer is a Frobenius group modulo its center.
Table 4.5.1 in [15] shows that the groups satisfying Hypothesis 3.17 all of
whose involutions are conjugate are PSL3(q), G2(q) and 3D4(q). Those that
might have an involution centralizer which modulo its center is a Frobenius
group are PSL3(3), PSL4(3), PSU4(3), PSp4(3), G2(3), Ω7(3) and Ω±8 (3).
The potential centralizers are normalizers of central products C of subgroups
isomorphic to SL2(3). The number of “SL2(3)-factors” in C is at least two,
except in case G 'PSL3(3), which implies that C possesses 3-elements which
do not act fixed point freely on O2(C)/Z(C). This leaves PSL3(3).
If G '3 D4(q), or G2(q) and q > 3, then we see in Table 5.2 in [20] that
the normalisers of the maximal tori have orders divisible by 6 or 4 which
implies by Lemma 2.8 that 2 or 3 divides |Gα|. Hypothesis 3.17 rules out the
former. The second possibility forces a Sylow 3-subgroup into Gα and hence,
as in the first paragraph of this proof, an involution into Gα which again is
contrary to Hypothesis 3.17. For G2(3) we see that 13 ` 3 and 7 ` 3 which
forces a Sylow 3-subgroup into Gα, contradicting the fact that Gα does not
contain unipotent elements.
Finally we consider the groups PSL3(q). As in Lemma 3.18 we note that
the regular semisimple elements lie in tori of orders q2 − 1/(q − 1, 3) and
q2 + q + 1/(q − 1, 3). Now Lemma 2.8 and the fact that q is odd imply that
3 divides |Gα| which in turn forces an involution into Gα, a contradiction.

Theorem 3.20. Let G be a finite simple group of Lie type and let Ω be a set
such that (G,Ω) satisfies Hypothesis 1.1. Then one of the following is true:

(1) G =PSL2(q) where q = rm ≥ 7 and one of the following holds:
(a) |Ω| = q+1 and G acts on Ω as on the set of cosets of the normalizer

of a Sylow r-subgroup of G.

29



(b) |Ω| = q(q − 1) and G acts on Ω as on the set of cosets of a cyclic
subgroup of order q+1

2
(if r is odd) or q + 1 (if r = 2).

(c) |Ω| = q(q + 1) and G acts on Ω as on the set of cosets of a cyclic
subgroup of order q−1

2
(if r is odd) or q − 1 (if r = 2).

(d) |Ω| = 14 and G =PSL2(7) acts on Ω as on the set of cosets of A4.

(2) G =PSL2(4) ∼=PSL2(5) ∼= A5, the size of the set Ω that G is acting on
is 5, 6, 10, 12, 20 or 30 and there is an example for all these numbers:

(a) |Ω| = 5 = 4 + 1 and G acts on Ω as on the set of cosets of the
normalizer of a Sylow 2-subgroup of G.

(b) |Ω| = 6 = 5 + 1 and G acts on Ω as on the set of cosets of the
normalizer of a Sylow 5-subgroup of G.

(c) |Ω| = 10 and Gω is the normalizer of a Sylow 3-subgroup of G.
(d) |Ω| = 12 = 4× 3 and Gω is cyclic of order 5.
(e) |Ω| = 20 = 4× 5 = 5× 4 and Gω is cyclic of order 3.
(f) |Ω| = 30 = 5× 6 and Gω is cyclic of order 2.

(3) G = Sz(q) and one of the following holds:

(a) |Ω| = q2 + 1 and G acts 2-transitively in its natural action.
(b) |Ω| = q2(q2 + 1) and G acts on Ω as on the set of cosets of a

subgroup of order q − 1.

(4) G =PSL3(4) and Gω is cyclic of order 5.

Proof. The simple groups of Lie rank 1 are PSL2(q), PSU3(q), 2G2(q) and
Sz(q). Lemmas 3.15 and 3.14 eliminate the families PSU3(q) and 2G2(q),
whereas PSL2(q) and Sz(q) lead to examples. These are described in Lemma
3.11 and Lemma 3.12.
For the groups PSL3(q) with q-odd we showed in Lemma 3.16 that |Gω| is
odd and thus we may work under Hypothesis 3.17.
If q is even, then the conclusion of Lemma 3.18 is that G 'PSL3(2) 'PSL2(7)
or G 'PSL3(4). The first case was considered in Lemma 3.11 and gives rise to
the examples in (1) of our conclusion whereas the second case was considered
in Lemma 3.13 and gives rise to the example in (4).
If q is odd, then Lemma 3.19 shows that there are no examples.

Lemma 3.21. Suppose that G is quasisimple of Lie Type. Then there is no
set Ω such that (G,Ω) satisfies Hypothesis 1.1.
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Proof. Assume otherwise and let G := G/Z(G). Note that |Z(G)| = 2 by
Lemma 2.10 and let Ω denote the set of Z(G)-orbits on Ω. Then (G,Ω)
satisfies Hypothesis 1.1 by Lemma 2.14 and hence we only need to consider
the cases from Theorem 3.20. By the same lemma we only need to look at
cases where point stabilizers in G have even order. Together with Lemma
2.12 we conclude that G has dihedral or semidihedral Sylow 2-subgroups.
We go through the cases from Theorem 3.20. If there is a prime power q
such that G ∼=PSL2(q), then G 'SL2(q) has quaternion Sylow 2-subgroups,
which is impossible.
The case where G ' A5 has already been treated in Lemma 3.10. If G is
a Suzuki group, then again G does not have dihedral or semidihedral Sylow
2-subgroups. Finally G is not PSL3(4) because, in the only possible action
there, the point stabilizers have order 5.

We close this section with two results on almost simple groups that will be
used in the proof of Theorem 1.3. In the first lemma we look at the groups
PGL2(q), and in the second lemma we only consider odd prime powers q and
consider groups that Gorenstein (in [12]) denotes by PGL∗2(q). By this we
mean the extension of PSL2(q) by a diagonal-field automorphism. This is a
nonsimple, almost simple group with a single component of index 2.

Lemma 3.22. Suppose that q ≥ 7 is a prime power such that G 'PGL2(q).
Then E := E(G) acts transitively on Ω with point stabilizers as described
in Lemma 3.11. Moreover all point stabilizers in E have index two in the
corresponding point stabilizer in G.

Proof. Let α ∈ Ω and ∆ := αE. We only need to show that ∆ = Ω. Let
g ∈ G\E be such that g induces a diagonal automorphism on E(G) and
assume that ∆g 6= ∆. If x ∈ CE(g)# fixes α, then x = xg fixes αg and hence
x has two fixed points. This implies that x has a unique fixed point on ∆
and hence that NE(〈x〉) ≤ Gα. However, with Lemma 2.8 and the subgroup
structure of PSL2(q) this forces Eα := E∩Gα to contain a dihedral subgroup
of E. This contradicts Lemma 3.11. Therefore CE(g) acts fixed point freely
on ∆ and Case (b) from Lemma 3.11 must hold. Now Eα is cyclic and is
inverted by an involution t in E, and if we set β := αg, then Eα = Eβ. Hence
Eα has two fixed points on ∆ and therefore no fixed point on ∆g, because of
Hypothesis 1.1. This is impossible.
Hence G normalizes ∆ and ∆ = Ω.
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Lemma 3.23. Let q be a power of an odd prime r, let G = PGL∗2(q) and
let S ∈ Syl2(G). Then S is semidihedral and we denote by C, D and Q the
maximal subgroups of S that are cyclic, dihedral and quaternion, respectively.
Moreover let Ω be a set such that (G,Ω) satisfies Hypothesis 1.1 and let
α ∈ Ω. Then one of the following is true:

(1) Gα = NG(R) = RQ where R is a Sylow r-subgroup of G.

(2) Gα = TC where T is a torus of order (q − 1)/2.

(3) Gα = TQ where T is again a torus of order (q − 1)/2.

Proof. Lemma 2.4 in [12] says that G has semidihedral Sylow 2-subgroups,
so this is the first statement. Moreover q ≡ 1 modulo 8, and by Lemma 3.4
we may suppose that q ≥ 25 because q is a square. This implies that q − 1
as well as q + 1 is divisible by an odd prime. Let E := F ∗(G) =PSL2(q).
We begin by showing that E acts transitively on Ω. Let ∆ := αE. Then
Lemma 2.20 gives that (E,∆) satisfies Hypothesis 1.1. In particular we
know the possible structure of Eα by Lemma 3.11. Keeping in mind that
|Eα| is divisible by some odd prime p, we take a Sylow p-subgroup P of Eα.
Then P ∈Sylp(E) and by Frattini G = E · NG(P ). Moreover we note that
|NE(P ) : P | is even and hence Lemma 2.8 forces |Gα : Eα| = 2. This means
that ∆ = Ω.

After this preparation we look at Gα and we use the fact that Eα is as in
Lemma 3.11 (a)-(c). Here we note that Case (d) does not occur because 7 is
a prime.
We begin with Lemma 3.11 (a), which in our notation means that Eα =
NE(R). Then, since |Gα : Eα| = 2, we have that Gα = NG(R) = RQ. This
is Case (a) in our lemma.
Next we look at Lemma 3.11 (b). Here Eα is a cyclic subgroup of E of order
(q+ 1)/2, and NG(Eα)/Eα is cyclic of order 4. Thus Lemma 2.8 implies that
Gα contains an involution. Its centralizer contains a subgroup of index 2 of
some conjugate of NG(Eα), which together with Eα generates all of E. Hence
Lemma 2.8 forces E ≤ Gα in this situation, which is impossible.
Finally suppose that Lemma 3.11 (c) holds, hence Eα is cyclic of order (q −
1)/2. Then NG(Eα) contains a Sylow 2-subgroup of G, so without loss S ≤
NG(Eα) and Lemma 2.8 forces a subgroup of index 2 of S to be contained in
Gα. It cannot be D, so the only possibilities are C or Q, and this leads to
the cases (2) and (3) in our lemma.
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Remark 3.24. All possibilities listed in Lemma 3.23 do indeed occur as
examples. For this we first suppose that x ∈ Q# and let R ∈ Sylr(G). Lemma
2.4 in [12] says that whenever a subgroup U of G is normalized by a fours
group in G, then it has order coprime to r. Therefore the maximal subgroups
of G containing Q are NG(T ) and NG(R) = RQ. As NG(R) is a Frobenius
group, we see that |CG(x)| is coprime to r, so CG(x) ≤ NG(T ). This holds
for all x ∈ Q# and hence even NG(〈x〉) ≤ NG(T ).
If x ∈ C#, then similarly NG(〈x〉) ≤ CG(x|C|/2) ≤ NG(T ).
Finally we observe that Gα\Eα consists entirely of elements of whose order is
divisible by 4 and divides (q−1). So if y ∈ Gα\Eα, then a suitable power y has
order 4 and thus NG(〈y〉) ≤ NG(T ) and hence |NG(〈y〉) : NG(〈y〉)∩Gα| ≤ 2.
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4. The sporadic simple groups

In this section we show that the sporadic simple groups do not appear as
examples for Hypothesis 1.1. We usually adapt the notation in the ATLAS
([8]) for the names of the sporadic groups and we remind the reader that we
use the notation introduced at the end of Section 2.

Lemma 4.1. Suppose that G ∼= M11. Then there is no set Ω such that (G,Ω)
satisfies Hypothesis 1.1.

Proof. Assume otherwise. Hence let Ω be a set such that (G,Ω) satisfies
Hypothesis 1.1. Let α ∈ Ω. As G acts transitively and non-regularly on Ω,
we have that H := Gα 6= 1. For maximal subgroups of G and information
about local subgroups we refer to Table 5.3a in [15].
Looking at the subgroup structure of G, we notice that 11 ` 5 and 5 ` 2,
moreover 2 B 3 and 3 ` 2. Thus, starting with an arbitrary prime divisor of
|H|, Lemma 2.27 tells us that 2, 3 ∈ π(H). It follows with Lemma 2.11 (a)
that H contains a Sylow 3-subgroup of G and Lemma 2.8 implies that H
contains a subgroup of index at most 2 of an involution centralizer, hence
a subgroup isomorphic to SL2(3). But then G does not have any maximal
subgroup that could contain H.

Now that we have excluded M11, a key observation is the following:

Lemma 4.2. Suppose that G is a sporadic simple group and that Ω is such
that (G,Ω) satisfies Hypothesis 1.1. Then the point stabilizers have odd order.
In particular, if H is a point stabilizer and p ∈ π(H), then p 6` 2.

Proof. As G is simple, this follows immediately from Lemma 4.1, the last
statement in Theorem 2.23 and Lemma 2.27.

Now we start to look at the remaining sporadic groups. In the first few
lemmas we will give all the details, so that it becomes clear how the subgroup
structure, the relations between prime divisors (Lemma 2.27) and Lemma 4.2
work together. But then the arguments become repetitive and for the larger
sporadic groups it is very easy to extract the crucial information from the
corresponding tables in [15]. Therefore we stop giving all the little arguments
after the Conway groups and we only refer the reader to the tables where the
necessary information can be found.
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Lemma 4.3. Suppose that G is a Mathieu Group. Then there is no set Ω
such that (G,Ω) satisfies Hypothesis 1.1.

Proof. Assume otherwise. Hence let Ω be a set such that (G,Ω) satisfies
Hypothesis 1.1. Let α ∈ Ω and H := Gα 6= 1. By Lemma 4.1 it suffices
to treat the groups M12,M22,M23 and M24. For information about local
subgroups we refer to Tables 5.3b-e in [15].
First we note that 5 ` 2 and therefore 5 /∈ π(H). As 11 ` 5, Lemma 2.27 (1)
yields that H also has no subgroup of order 11. If 23 ∈ π(H), then the fact
that 23 ` 11 gives a contradiction. If 7 ∈ π(H), then we note that 7 ` 3 and
3 ` 2, so again we have a contradiction.
But now, when looking at the group orders, there is no prime left that could
divide |H|.

Lemma 4.4. Suppose that G is a Janko Group. Then there is no set Ω such
that (G,Ω) satisfies Hypothesis 1.1.

Proof. Assume that Ω is such a set and let α ∈ Ω. Then H := Gα 6= 1
by Hypothesis 1.1. For information about local subgroups of G we refer to
Tables 5.3f-i in [15].
We show that 2 ∈ π(H), which contradicts Lemma 4.2.
Lemma 2.8 yields that {2, 3, 5} is connected. (For J2 this uses that, if 5 ∈
π(H), then H contains a Sylow 5-subgroup by Lemma 2.11 (a) and hence
5-elements from both conjugacy classes). Therefore, by Lemma 2.27 (3), it
is even sufficient that 3 or 5 is in π(H). To see this, we note:
37 ` 3, 31 ` 5, 43→ 3, 29→ 3, 23→ 5, 19 ` 3 and 17 ` 2.
Hence all possible prime divisors of |H| eventually lead to 2, and this is our
contradiction.

Lemma 4.5. Suppose that G is a Conway Group. Then there is no set Ω
such that (G,Ω) satisfies Hypothesis 1.1.

Proof. Assume otherwise, let Ω denote such a set and let α ∈ Ω. Then
H := Gα 6= 1 by Hypothesis 1.1. For information about local subgroups of
G we refer to Tables 5.3j-l in [15].
Again we begin by noticing that {2, 3, 5} is connected. We claim that |H| is
divisible by 2, contrary to Lemma 4.2. As in the previous lemma we show
that all possible prime divisors of |H| eventually lead to one of the numbers
2, 3, 5. So we note: 23→ 5, 7 ` 3 and 13 ` 3.
This proves our claim.
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Lemma 4.6. Suppose that G is one of the groups HS, McL, Suz, He, Ly,
Ru, O′N , a Fischer sporadic simple group, HN , Th, BM or the Monster
group.
Then there is no set Ω such that (G,Ω) satisfies Hypothesis 1.1.

Proof. As in the previous results the only information needed is that, for all
prime divisors p of |G|, we have that p → 2. Then it follows that the point
stabilizers have even order, contrary to Lemma 4.2.
This can be observed in the corresponding tables in [15], namely tables 5.3m
up to 5.3z.

The conclusion of this chapter is:

Theorem 4.7. Suppose that Hypothesis 1.1 holds. Then G is not a sporadic
simple group.

Corollary 4.8. Suppose that G is quasisimple with G/Z(G) isomorphic to
a sporadic simple group. Then there is no set Ω such that (G,Ω) satisfies
Hypothesis 1.1.

Proof. This follows from Lemma 2.14 and Theorem 4.7.

5. Proofs of the main results

For our theorem on simple groups, the work has been done in the previous
two sections. Then our statements about quasisimple and almost simple
groups follow without too much effort. However, some more preparation is
required for Theorem 1.4, building on the general results in Section 2.

Proof of Theorem 1.2.
Suppose that (G,Ω) satisfies Hypothesis 1.1 and that G is simple. It follows
from the Classification of Finite Simple Groups that G is an alternating group
of rank at least 5, that G is of Lie Type or that G is a sporadic group. (See for
example the Appendix of [19] for a statement of the classification theorem.)
Now Corollary 3.9, Theorem 3.20 and Theorem 4.7 give the result.

We also obtain
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Theorem 5.1. Suppose that G is quasisimple, but not simple. Then there is
no set Ω such that Hypothesis 1.1 holds.

Proof. This follows immediately from the Classification of Finite Simple
Groups and the corresponding results in Sections 3 and 4, namely Lemmas
3.10, 3.21 and 4.8.

Proof of Theorem 1.3.
Let α ∈ Ω and let ∆ := αE. We know by Lemma 2.20 that (E,∆) satisfies
Hypothesis 1.1 and hence we only need to consider the cases from Theorem
1.2. Throughout, let q denote a prime power.
First assume that E 'Sz(q). Then the elements of G\E induce field auto-
morphisms of odd order on E and hence we let g ∈ G be such that g induces
a nontrivial field automorphism of odd order on E. We begin by noticing
that g is contained in a point stabilizer because g fixes at least five cosets of
Eα in E (recall the possible orders of Eα from Lemma 3.12).
Now we look at C := CE(g). This is a subfield subgroup of E, i.e. there
exists a prime power q0 such that C 'Sz(q0). In particular C has order
divisible by 5 and hence so does Eα, using Lemma 2.8. But we know from
Lemma 3.12 that Eα has order q2(q− 1) or q− 1, which is not divisible by 5
(recall that q is a power of 2 with odd exponent). This is a contradiction.

Next assume that E 'PSL3(4). Then Lemma 3.13 yields that |Eα| = 5, in
particular Eα ∈Syl5(E) and therefore G = ENG(Eα) by a Frattini argument.
We choose x ∈ NG(Eα)\E and note that x2 ∈ Gα by Lemma 2.8. Looking at
the ATLAS ([8]) we see that the outer automorphism group of E is isomorphic
to 2× S3. If x induces an automorphism of order 3 on E, then x ∈ Gα and
therefore CE(x) contains a subgroup isomorphic to PSL3(2), hence PSL2(7).
This is false because |Eα| = 5. Thus x induces an automorphism of order
2 on E and normalizes Eα. Let t ∈ E denote an involution inverting Eα.
Then Lemma 2.8 yields that x or xt is contained in Gα and the information
about maximal subgroups of the automorphism group of PSL3(4) from the
ATLAS, together with Lemma 2.8 implies that Eα contains an involution.
This is false.

We are left with the case where E ∼=PSL2(q). Then Lemma 3.11 yields the
possible orders for Eα, and Lemma 3.22 yields that Case (a) in Theorem 1.3
does in fact occur.
Next we suppose that g ∈ G is such that g induces a nontrivial field automor-
phism on E. Again let C := CE(g). Then C is a subfield subgroup. Assume
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that C is almost simple. Then we may choose α such that Eα∩C 6= 1. Again
we deduce that α, αg and αg

2
are not pairwise distinct, which means that

g ∈ Gα or β := αg 6= α and g interchanges α and β. In any event g2 ∈ Gα. If
g2 6= 1, then Lemma 2.8 implies that a subgroup of index at most 2 of C is
contained in Eα, which is impossible. Hence g2 = 1 and in particular G in-
duces a group of automorphisms on E that is an elementary abelian 2-group.
This argument also shows that g /∈ Gα, in fact g is not contained in any point
stabilizer. As C is not a Frobenius group, there exists an element x ∈ C that
fixes α and β. As g centralizes C, it centralizes Eα ∩C and Eβ ∩C, but also
interchanges Eα and Eβ. This implies that Eα ∩ C = Eβ ∩ C.
First suppose that Eα has even order. As Gα does not contain g, Lemma 2.8
implies that q is even and that Eα is the normalizer of a Sylow 2-subgroup
of E. In particular |Ω| is odd and hence every involution in C fixes exactly
one point. This point is then fixed by g, but we argued above that g is not
contained in any point stabilizer.
Hence Eα is cyclic of odd order, in particular C ∩ Eα is. Let t ∈ C be
an involution such that t inverts C ∩ Eα. Then t acts fixed point freely on
Ω because the point stabilizers have odd order, and hence t interchanges
α and β. This implies that the involution gt centralizes α and β. But gt
also centralizes a Sylow 2-subgroup of C and hence a subgroup of order at
least 4. This implies (with Lemma 2.8) that Eα has even order, which is a
contradiction.
We conclude that C is not almost simple, so it is isomorphic to PSL2(2),
PSL2(3) or PGL2(3). In particular q is a power of 2 or 3 and g induces a
field automorphism on E of prime order. We keep the above notation and
prove that q is even.
Assume that q is odd. Let r ∈ π(Eα) be odd and let R ∈Sylr(Eα). Then
R ∈Sylr(E) and hence G = NG(E)H by a Frattini argument. Lemma 2.8
implies that a subgroup of index at most 2 of NG(R) lies in Hα, but we
also know that NE(R) � Eα (because R has two fixed points that are inter-
changed by an involution in NE(R)). Hence Hα contains an element from
G\H and this means that |Gα : Eα| = |G : E|. In particular g lies in a
point stabilizer. Now Lemma 2.8 implies that this point stabilizer contains
a subgroup isomorphic to A4, and this is impossible by Lemma 3.11.
Hence this situation leads to Case (b) in the theorem.
We finally consider the case where some g ∈ G \ E induces a diagonal-field
automorphism on E of order 2. We note that q is odd in this case and we
let r denote the characteristic of the field. This is exactly the situation of
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Lemma 3.23, which shows that Case (c) of the theorem does also occur.
There are no more cases to consider.

We will prove Theorem 1.4 by looking at a minimal counter example, and
there it plays a role how Hypothesis 1.1 behaves with respect to factor groups.
We have already seen an example of this in Lemma 2.14.

Lemma 5.2. Suppose that N is a proper normal 2′-subgroup of G, and that
α ∈ Ω. Suppose that p ∈ π(N) is such that P := Op(N) 6= 1. Then every
x ∈ G#

α acts fixed point freely on P . If we let Ω denote the set of P -orbits
on Ω and G := G/P , then one of the following is true:

(1) |Ω| = 1 and G = PGα is a Frobenius group.

(2) |Ω| = 2 and Gα is a Frobenius group of index 2 in G.

(3) (G,Ω) satisfies Hypothesis 1.1.

Proof. If p divides |Gα|, then Lemma 2.11 (a) yields that P ≤ Gα and hence
P fixes every point in Ω, because P EG. This is impossible and therefore p
does not divide |Gα|. It follows that P has only regular orbits on Ω.
As p is odd and Gα is a p′-group now, it follows from Lemma 2.8 that Gα acts
fixed point freely on P . Now we consider the action of G on Ω. If |Ω| = 1,
then Ω = αP and G = PGα. As Gα acts fixed point freely on P , it follows
that G is a Frobenius group with complement Gα, proving (1).
If |Ω| = 2, then Gα is of index 2 in G, hence normal in G. The action of Gα

on αP is as above and thus Gα is a Frobenius group, and (2) follows.
So we may now assume that |Ω| > 2. Let ω1, ω2 ∈ Ω with representatives
ω1, ω2 ∈ Ω. Then there exists g ∈ G such that ωg1 = ω2, and ω1

g = ω2. As
Gα 6= 1, we may take x ∈ G#

α and we see that x fixes α, so G does not act
regularly on Ω.

Let g ∈ G#
and suppose that ω is a fixed point of g in Ω. By Lemma 2.13

we may suppose that g ∈ Gω. As P acts regularly on every element of Ω,
it follows that g acts on ω in the same way as on P , hence with a unique
fixed point. This means that g has a fixed point in every P -orbit that it
stabilizes. Our hypothesis yields that g stabilizes at most two P -orbits and
hence g fixes at most two elements of Ω. Thus (G,Ω) satisfies Hypothesis
1.1, so (3) follows.

We remark here that the examples in Lemmas 2.5 and 2.6 show that case (2)
in the conclusion of Lemma 5.2 really occurs.
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Lemma 5.3. Suppose that N is a normal 2′-subgroup of G. Let Ω denote
the set of N-orbits of Ω and set G := G/N .
Then (G,Ω) satisfies Hypothesis 1.1 or there exists a subgroup of G of index
at most 2 that is a Frobenius group.

Proof. As N is solvable by [10], we choose an odd prime p such that Op(N) 6=
1. Let G̃ := G/Op(N) and let Ω̃ denote the set of Op(N)-orbits of Ω. If one of

the possibilities (1) and (2) in Lemma 5.2 holds for G̃, then we use Lemma 2.8
to see that the point stabilizers act fixed point freely on Op(N) and therefore

G itself also satisfies (1) or (2) from Lemma 5.2. Otherwise (G̃, Ω̃) satisfies
Hypothesis 1.1 and we continue with this argument. If Op(N) 6= N , then

we consider the normal 2′-subgroup Ñ of G̃ and again this leads to the same
possibilities. Once no more repetition is possible, we have reached one of the
conclusions that are stated.

Lemma 5.4. Suppose that Hypothesis 1.1 holds and that N is a normal 2′-
subgroup of G such that O2′(G)/N is simple. Then O2′(G)/N is isomorphic
to one of the groups from Theorem 1.2.

Proof. Let M := O2′(G) and G := G/N . Let Ω denote the set of N -orbits
of Ω. Then the pair (G,Ω) satisfies Hypothesis 1.1 by Lemma 5.3. By
hypothesis on M/N and by Lemma 2.19 the action of M on Ω is not regular,
and moreover M is not a Frobenius group. Therefore (M,Ω) also satisfies
Hypothesis 1.1 and we may apply Theorem 1.2.

Theorem 2.23 from Section 2 already played a role when we looked at which
simple groups occur as examples. It will also play a role in the proof of
Theorem 1.4, and there we need to know more details if the point stabilizers
have odd order.
We recall that a proper, nontrivial subgroup H of G is called a t.i. subgroup
if and only if, for all g ∈ G, either H = Hg or H ∩Hg = 1.

Lemma 5.5. Suppose that G is not a Frobenius group. Let α, β ∈ Ω be
distinct and such that H := Gα ∩ Gβ 6= 1. If |H| is odd, then H is a
t.i. subgroup of G and |NG(H) : H| = 2. In particular, in its action on
Λ := G/H, every element of G has either zero or two fixed points.

Proof. Set ∆ := {α, β} and note that |Ω| 6= 4, because H has odd order and
acts semiregularly on Ω \∆. In particular, for all 1 6= X ≤ H, we know that
∆ = fixΩ(X) and hence NG(X) stabilizes the set ∆. Conversely, if y ∈ G
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stabilizes ∆, then it is contained in H or it interchanges α and β and still
normalizes H.
Let g ∈ G \ NG(H). Then H 6= Hg and, as we just argued, also ∆ 6= ∆g.
Thus if x ∈ H ∩ Hg, then x fixes ∆ ∪ ∆g point-wise and hence |fixΩ(x)| ≥
|∆ ∪∆g| ≥ 3. This forces x = 1.
We know that NG(H) 6= H by Lemma 2.1, applied to the subgroup NG(H),
and our hypothesis that G is not a Frobenius group. But we have seen that
NG(H) is the stabilizer of ∆, so the assertion follows because |∆| = 2.
For the last statement, we see that |Ω| > 4 because H has odd order and by
Hypothesis 1.1. Then the statement is just Remark 1.1 in [22].

Theorem 5.6. Suppose that G is not a Frobenius group. Let α, β ∈ Ω be
distinct and such that H := Gα ∩ Gβ 6= 1. If |H| is odd, then one of the
following holds:

(1) H or NG(H) has a normal complement in G or
(2) G has two normal subgroups N and M such that N < M < G and

G/M ∼= H/(H∩M). Moreover N ∩NG(H) = 1 and N is nilpotent, the
group M := M/N is simple and (M,M/H ∩M) satisfies Hypothesis
1.1.

Proof. Lemma 5.5 yields that H is a T -subgroup in the sense of [23]. So The-
orem 5 in this paper is applicable and it leads to the following possibilities:
– H or NG(H) have a normal complement in G or
– G has two normal subgroups N and M such that N < M < G and
G/M ∼= H/(H ∩M), moreover N ∩NG(H) = 1, and M/N is a simple group
that has exactly one class of involutions.
In the second case (H ∩M)N/N is a t.i. subgroup of M/N that has index
2 in its normalizer. In particular, in the factor group M := M/N , the pair
(M,M/H ∩M) with M acting by right multiplication satisfies Hypothesis
1.1. Finally, the subgroup N is nilpotent by Lemma 2 (a) of [23]. So we
arrive at exactly the two cases listed.

Proof of Theorem 1.4.
Suppose that Hypothesis 1.1 holds, but that the pair (G,Ω) is such that
Theorem 1.4 does not hold and that |G|+ |Ω| is minimal with this property.
Let α ∈ Ω.

Step 1: Suppose that Gα is metacyclic of odd order and let β ∈ Ω be such
that H := Gα ∩Gβ 6= 1. Then H does not have a normal complement in G.
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Proof. Assume otherwise and let K denote such a normal complement. In
particular K ∩ H = 1. Let p ∈ π(K) and assume that p ∈ π(H). Then
p is odd and Lemma 2.11 (a) forces a Sylow p-subgroup of G into Gα and
Gβ, hence into H. This is a contradiction and hence H and K have coprime
orders. Let x ∈ H be such that x has prime order r. Then a subgroup
of index 2 of CK(x) is contained in Gα, by Lemma 2.8. But Gα has odd
order, so CK(x) ≤ Gα and similarly CK(x) ≤ Gβ. This means that CK(x) ≤
K ∩ H = 1 and hence that K is nilpotent. In particular G is solvable and
this is Case (3) in our theorem. Hence we have a contradiction.

Step 2: Suppose that Gα is metacyclic of odd order and let β ∈ Ω be such
that H := Gα ∩ Gβ 6= 1. Then NG(H) does not have a normal complement
in G.

Proof. First we apply Lemma 5.6 to see that |NG(H) : H| = 2. Assume that
K is a normal complement for NG(H) in G. In particular K ∩ NG(H) = 1
and therefore K ∩ H = 1. Thus we argue as for Step 1 to see that H and
K have coprime orders and that K is nilpotent. Since NG(H) has twice odd
order, it is solvable and therefore G is solvable. This is Case (3) of Theorem
1.4 and hence we have a contradiction.

Step 3: Gα is not metacyclic of odd order.

Proof. Assume otherwise and let β ∈ Ω be such that H := Gα ∩ Gβ 6= 1.
Steps 1 and 2 yield that Theorem 5.6 (2) holds, so we use all the notation
from there. In particular we know that (M,M/H ∩M) satisfies Hypothesis
1.1 and that M is simple. Hence Theorem 1.2 leads to the possibilities listed
in Case (4) of Theorem 1.4, which is a contradiction.

Step 4: F ∗(G) is simple.

Proof. Assume otherwise. Then we refer to Theorem 2.23. Step 3 and the
fact that we are looking at a counter example to Theorem 1.4 only leaves
Cases (4) or (5) of Theorem 2.23.
We begin with Case (4). If G has dihedral Sylow 2-subgroups, then we apply
the Gorenstein-Walter Theorem ([13]). Since Theorem 1.4 (6) does not hold,
the only possibility is that G/O(G) ∼= A7. But then Lemmas 5.4 and 3.5
give a contradiction.
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Next assume that G has semidihedral Sylow 2-subgroups and that Gα has
twice odd order, and let S ∈ Syl2(G). Without loss |Sα| = 2, and then Sα
is generated by a noncentral involution t in S. We note that this implies
that Gα has a normal 2-complement Kα. Suppose that g ∈ G is such that
tg is the central involution in S. Then tg fixes αg and Lemma 2.8 forces
a subgroup of S of index at most two into Gαg , hence a 2-group of size at
least 8. This is impossible. It follows that t is not conjugate to the central
involution in S, in particular Thompson’s Transfer Lemma is applicable and
yields that t /∈ O2(G). Let M be a normal subgroup of G of index 2 that
does not contain t. Then Kα ≤ M , in fact Kα = Mα. We note that M
is not a Frobenius group because otherwise Theorem 1.4 (1) holds. Also,
since |Gα : Mα| = 2 = |G : M |, we see that M acts transitively on Ω. If M
acts regularly, then Case (5) of Theorem 1.4 holds, which is a contradiction.
It follows that (M,Ω) satisfies Hypothesis 1.1, with point stabilizers of odd
order.
Since M is not a Frobenius group, we may choose β ∈ Ω to be distinct from
α and such that U := Mα ∩Mβ 6= 1. Then Theorem 5.6 gives us two possi-
bilities, and we begin with (1). So suppose that U or NM(U) has a normal
complement K in M . Then as in Steps 1 and 2 we see that U and K have
coprime orders, that K is nilpotent and that M is solvable. But this means
that G satisfies Case (5) in Theorem 1.4, which is a contradiction. Theorem
5.6 (2) also leads to Case (5) in Theorem 1.4, therefore it is impossible.
This last contradiction comes from the assumption that G has semidihedral
Sylow 2-subgroups, so we finished this case.

Now we assume that Theorem 2.23 (5) holds and we take the notation from
there. We know by Lemma 5.3 that M/N , together with a suitable set,
satisfies Hypothesis 1.1 and so the simplicity of M/N yields that Theorem
1.2 is applicable. Comparing the simple groups appearing there with thos
from Theorem 2.23 (5), we see that Case (6) of Theorem 1.4 holds, which is
a contradiction.

If F ∗(G) = G, then G is simple by Step 4 and hence Theorem 1.2 gives a
contradiction. Thus G is a nonsimple, almost simple group and we apply
Theorem 1.3. But the cases there are all contained in Theorem 1.4 (6), so
we have our final contradiction.

In light of future applications, we state a more detailed version of our main
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result.

Theorem 5.7. Suppose that (G,Ω) satisfies Hypothesis 1.1. Then one of
the following holds:

(1) G has a subgroup of index at most 2 that is a Frobenius group.

This includes the case where G ∼= S4 and the point stabilizer has order
2, 3, 4 or 6.

(2) |Z(G)| = 2 and G/Z(G) is a Frobenius group.

(3) G is solvable and there are a normal subgroup KEG, some h ∈ G and
1 6= x ∈ CK(h) such that either K/O2(K) is nilpotent or the following
are true:

(a) O2,2′(K) is nilpotent,

(b) [x,O(K)] 6= 1, and

(c) with the notation K := K/O2,2′(K), we either have that K = 〈x̄〉
or, if r = 2n + 1 is a Fermat prime, then Z(K) = 〈x̄〉 and K is
an extraspecial 2-group of minus type; i.e. a central product of Q8

and (n− 1) copies of D8.

(4) The point stabilizers are metacyclic of odd order and G has normal
subgroups N,M such that N < M < G, N is nilpotent, M/N is sim-
ple and isomorphic to PSL2(q), to Sz(q) or to PSL3(4), and G/M is
metacyclic of odd order. This includes the following two special cases:

(a) G ∼= PSL3(4) and G acts on Ω as on the set of cosets of a subgroup
of order 5.

(b) G is almost simple, there is a 2-power q ≥ 8 such that
F ∗(G) ∼=PSL2(q) and there exists an element g ∈ G\E such that
g induces a field automorphism on E of odd order and
CE(g) ∼=PSL2(2). Moreover, in the action of F ∗(G) on Ω, the
point stabilizers are normalizers of Sylow 2-subgroups of G or
cyclic of order q + 1. The point stabilizers in G grow by a factor
o(g) and in particular they are metacyclic of odd order, but not
cyclic.
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(5) The point stabilizers have twice odd order and G has a subgroup M of
index 2 such that either (3) or (4) holds for M or M acts regularly on
Ω. If G has semidihedral Sylow 2-subgroups and M is regular, then the
point stabilizers have order 2 and moreover O(G) ≤ M and O(G) is
abelian.

In this case either G has a subgroup of index 2 that is a Frobenius group
or M/O(G) ∼=SL2(3).

(6) G has a normal subgroup N of odd order and if G := G/N , then O2′(G)
is either a dihedral or semidihedral 2-group or there exists a prime
power q such that it is isomorphic to Sz(q) or to a subgroup of PΓL2(q)
that contains PSL2(q). This includes the following special cases:

(a) G is a dihedral or semidihedral 2-group with point stabilizers of
order 2.

(b) G ∼= A5 and the point stabilizer has order 2, 3, 5, 6, 10 or 12.

(c) G ∼= S5 and the point stabilizer has order 4, 6, 12 or 20.

(d) G ∼=PSL2(7) acting on Ω as on the set of cosets of a subgroup
isomorphic to A4.

(e) G ∼=PSL2(q) or PGL2(q). Let d be the greatest common divisor of
2 and q − 1 and let r denote the characteristic of the field. Then
the point stabilizer of the action of PSL2(q) is the normalizer of
a Sylow r-subgroup of G or it is cyclic of order q+1

d
or q−1

d
. The

point stabilizers in PGL2(q) grow by a factor 2 and in particular
they are not cyclic.

(f) G ∼=PGL∗2(q) (which is PSL2(q) extended by a diagonal-field auto-
morphism), where q is a power of an odd prime r. Let S ∈ Syl2(G)
and let C and Q denote the maximal subgroups of S that are cyclic
and quaternion, respectively. Moreover let T denote a torus of or-
der (q−1)/2. Then the point stabilizers are normalizers of a Sylow
r-subgroup in G or they are conjugate to TC or to TQ.

(g) G ∼=Sz(q) acting 2-transitively on Ω in its natural action or as on
the set of cosets of a subgroup of order q − 1.

(h) If N 6= 1 and O2′(G) ∼=PSL2(q), then the point stabilizers of the
action on Ω are cyclic of order q + 1.

Proof. We go through the cases in Theorem 1.4. We have seen that S4 pro-
vides examples and since S4 contains a subgroup of index 2 that is a Frobenius
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group, it is a special case of (1). The exact possibilities are given in Lemma
2.2.

In Case (3) we take the notation from there. We recall that this case arises
if a point stabilizer has odd order, using Theorem 5.6. Let K denote a nor-
mal complement to a nontrivial two point stabilizer H (or to NG(H)) in
G. Then the action of K on Λ := G/H is regular, and also (|K|, |H|) = 1
and 2 = |fixΛ(h)| = |CK(h)| for all h ∈ H. Moreover K is solvable, so we
may apply Theorem B of [7] to K. This result implies the statements (a)-(c).

For the details in (4) (a) we refer to Lemma 3.13. For (4) (b) we sup-
pose that G is almost simple and that there is a 2-power q ≥ 8 such that
F ∗(G) ∼=PSL2(q), with an element g ∈ G\E such that g induces a field au-
tomorphism of odd prime order on E. Then CE(g) ∼=PSL2(2) by Lemma
1.3, the point stabilizers in F ∗(G) are known by Lemma 3.11, and a Frattini
argument gives that the order of the point stabilizers in G grows by a factor
o(g).

In (5) we look at the special case described there. We let S ∈ Syl2(G),
α ∈ Ω and we suppose that S is semidihedral and that Gα = Sα has order 2,
moreover we recall that M acts regularly in this case. Let t ∈ S be such that
Sα = 〈t〉. Then |CM(t)| = 2 and hence Lemma 2.7 is applicable. Let N be
a normal subgroup as in the lemma. If N = 1, then the lemma tells us that
M/N ∼= A4 and in particular S has only order 8. But S is semidihedral and
hence has order at least 16. Thus N 6= 1. If |M : N | = 2, then the fact that t
inverts N , and hence a Sylow 2-subgroup of N , forces N ∩S to be cyclic. In
particular N has a normal 2-complement, and O(G) = O(N) ≤M , moreover
O(G) is abelian as stated. Here we see that N · CM(t) is a Frobenius group
that has index 2 in G.
In the last case we suppose that |M : N | 6= 2. Then Lemma 2.7 gives that
N = Z(M) and M/N ∼= A4. This is only possible if S ∩M ∼= Q8 and hence
|S| = 16, moreover O(G) = O(N) is abelian again and our statement follows.

In (6) we listed some special cases. The details for (b) and (c) are given
in Lemmas 3.1 and 3.2. The details for (d) are exactly as in Theorem
3.20 (1) (d). In Case (e) we refer to Theorem 3.20 again and Lemma 3.22.
Case (g) is described in Theorem 3.20 (3). In Case (h) we let α ∈ Ω and
p ∈ π(N). Now Op(N)Gα is a Frobenius group with Frobenius complement
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Gα, by Lemma 2.16, which excludes the normalizers of Sylow 2-subgroups
in Case (e) from consideration. As cyclic groups of order (q − 1) have fixed
points on every nontrivial G-module of odd characteristic, these possibilities
are also excluded from consideration. This gives the statement in (h).

Concluding remarks. The group S3 in its natural action is an example of
what can happen in Case 1 of Theorem 1.4, while Lemma 2.5 gives a series
of examples for Cases 1 and 2. We also note that Lemmas 2.6 and 2.3 give
rise to infinite series of examples for Cases 1 and 3, respectively.
Let q be a power of an odd prime and L :=PSL2(q), moreover let H ≤ L be
cyclic of order q+1

2
and let V be an irreducible L-module such that CV (H) =

0. For all n ∈ N, if we let G := V n n L with diagonal action of L and if we
consider the action of G on the set of cosets of H in G, then this gives rise
to an infinite series of examples for Cases (4) and (6) in Theorem 1.4.
We also see that in Case (4), the point stabilizers are cyclic or Frobenius
groups (as can be observed in the almost simple groups that appear).
Lemma 2.7 gives rise to examples for the special case of Theorem 1.4 (5) as
explained in Theorem 5.7 above. We would like to mention that the special
case of a regular normal subgroup of index 2 already appears in [22], as does
Case (1) of Theorem 1.4.

We note that the permutation rank of PSL2(q) acting on the cosets of a cyclic
subgroup of order (q+1) is q and acting on subgroups of order (q−1) is q+4.
The permutation rank of Sz(q) acting on the cosets of a cyclic subgroup of
order q − 1 is q3 + q2 + 2q + 4.
Perhaps it is this last example which suggests why it may be difficult to
analyze the simple groups satisfying our Hypothesis 1.1 without resorting to
the Classification of the Finite Simple Groups.
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einen Punkt festläßt, J. Algebra 17 (1971), 527–554.

[5] Bender, H.: Endliche Fastkörper und Zassenhausgruppen,Group the-
ory, algebra, and number theory, de Gruyter, Berlin (1996), 97–143.

[6] Brauer, R. and Suzuki, M.: On finite groups of even order whose
2-Sylow subgroup is a quaternion group, Proc. Nat. Acad. Sci. 45
(1959), 175–179.

[7] Collins, M. and Rickman, B.: Finite Groups Admitting an Auto-
morphism with Two Fixed Points, J. Algebra 49 (1977), 574–563.

[8] Conway, J., Curtis, R., Norton, S., Parker, R. and Wilson, R.: At-
las of Finite Groups, Oxford University Press, 2003.

[9] Farkas, H.M. and Kra, I.: Riemann Surfaces, Springer 1992, 2nd
Edition.

[10] Feit, W. and Thompson, J.G.: Solvability of groups of odd order,
Pacific J. Math. 13 (1963), 775–1029.

[11] Fukushima, H.: Finite groups admitting an automorphism of prime
order fixing an abelian 2-group. J. Algebra 89 (1984), no. 1, 1–23.

[12] Gorenstein, D.: Finite groups the centralizers of whose involutions
have normal 2-complements, Canad. J. Math. 21 (1969), 335–357.

[13] Gorenstein, D. and Walter, J.H.: The Characterization of Finite
Groups with Dihedral Sylow 2-Subgroups. J. Algebra 2 (1965), 85–
151.

[14] Gorenstein, D., Lyons, R. and Solomon, R.: The Classification of the
Finite Simple Groups, Number 2. Mathematical Surveys and Mono-
graphs 40.2 (American Mathematical Society, Providence, RI), 1996.

48



[15] Gorenstein, D., Lyons, R. and Solomon, R.: The Classification of the
Finite Simple Groups, Number 3. Mathematical Surveys and Mono-
graphs 40.3 (American Mathematical Society, Providence, RI), 1998.

[16] Guralnick, R. and Magaard, K.: On the minimal degree of a permu-
tation group, J. Algebra 207 (1998), No.1, 127-145.

[17] Huppert, B.: Endliche Gruppen I. Die Grundlehren der mathema-
tischen Wissenschaften in Einzeldarstellungen, Band 134. Springer,
1967.

[18] Kleidman, P.: The maximal subgroups of the Chevalley groups G2(q)
with q odd, the Ree groups 2G2(q), and their automorphism groups,
J. Algebra 117 (1988), no. 1, 30–71.

[19] Kurzweil, H. and Stellmacher B.: The Theory of Finite Groups.
Springer, 2004.

[20] Liebeck, M., Saxl, J. and Seitz, G.: Subgroups of maximal Rank in
finite Exceptional Groups of Lie Type, Proc. LMS (3) 65 (1992),
297–325.

[21] Magaard, K. and Völklein, H.: On Weierstrass points of Hurwitz
curves, J. Algebra 300 (2006), no. 2, 647–654.

[22] Pretzel, O. and Schleiermacher A.: On permutation groups in which
non-trivial elements have p fixed points or none. Proc. London Math.
Soc. (3) 30 (1975), no. 4, 471–495.

[23] Pretzel, O. and Schleiermacher A.: On Permutation Groups in
Which Nontrivial Elements Fix Two Points or None, J. Algebra 44
(1977), 283–289.

[24] Schönert, M. et.al. GAP – Groups, Algorithms, and Programming
– version 3, release 4, patchlevel 4. Lehrstuhl D für Mathematik,
RWTH Aachen, Germany, 1997.

[25] Suzuki, M.: On a class of doubly transitive groups, Ann. of Math.
(2) 75 (1962), 105–145.

49



[26] Zassenhaus, H.: Kennzeichnung endlicher linearer Gruppen als Per-
mutationsgruppen, Abh. Mat. Sem. Univ. Hamburg 11 (1935), no.
1, 17–40.

50


