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This paper is part of the revision of the classification of the finite simple
groups and part of the Gorenstein–Lyons–Solomon program. The aim is to
give a solution of the so called ”uniqueness case problem”. Originally this
problem was solved by M. Aschbacher [Asch2]. We do not follow his proof.
The proof given in this paper uses the amalgam method, which has been used
successfully in many places for dealing with weak closure. Also our theorem
looks different from the one in [Asch2] as definitions have changed over the
time. In fact our hypothesis is weaker as in [Asch2]. First of all we need
some precise definitions.

Let X be a finite group. We first define

e(X) = maximal p–rank, p odd, of a 2–local subgroup of X.

σ(X) = {p|p odd, mp(H) ≥ min{e(X), 4} for some 2-local H of X}

Furthermore let Q be a p-subgroup of X, k ≤ m(Q), let

ΓQ,k(X) = 〈NX(R) |R ≤ Q, m(R) ≥ k〉 .

In this paper we will consider groups G which satisfy the following conditions

(1) (i) e(G) ≥ 3

(ii) If H is a 2-local then F ∗(H) = O2(H)E(H), where E(H) = 1 or
components of E(H) are in C2.

(2) A group M is called a uniqueness group provided σ(M) 6= ∅, |G : M |
is odd and one of the following holds
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(α) M is a maximal 2-local of G with F ∗(M) = O2(M) .

(β) F ∗(M) = O2(M)K, where K is a quasisimple group of Lie type in
characteristic 2, not L2(q), U3(q), Sz(q), L3(q), Sp4(q) or 2F4(q),
Z(K) = O2(K), and for every p ∈ σ(M) we have mp(K) ≥ 2 and
mp(CM(K)) ≤ 1.

(3) Let M be a uniqueness subgroup of G and let p ∈ σ(M), and P ∈
Sylp(M) then one of the following holds

(i) If x ∈ P, o(x) = p,mp(CM(x)) ≥ 3, then NG(〈x〉) ≤ M .
(In particular for p = 3, and e(G) ≥ 4 we have NG(〈x〉) ≤ M for
any x ∈ M, o(x) = 3). Further for every subgroup Q of P of rank
at least two we have that NG(Q) ≤ M or p = 3, P ∼= Z3 o Z3 and
Q is elementary abelian of order 9.

(ii) F ∗(M) = O2(M). Set M/O2(M) = M̄ . Then there is Q̄ £ M̄
where Q̄ = Op(M̄) is elementary abelian of order pn. We have
CM̄(Q̄) = Q̄ × X̄. Further P̄ = (P̄ ∩ X̄) × Q̄ and mp(X̄) = 1.
M̄ induces on Q̄ a Borel subgroup of an automorphism group of
L2(p

n), containing the Borel subgroup of L2(p
n). Let Q be a

preimage of Q̄ in P . Then ΓQ,1(G) ≤ M . Further if ω ∈ P is a
nontrivial element with ω̄ ∈ X̄, then CO2(M)(ω) = 1.

We say G is in the uniqueness case if G is K-simple and satisfies (1)
and (3) and the following holds.

(4) (i) For every p ∈ σ(G) there is a uniqueness subgroup Mp with p ∈
σ(Mp).

(ii) Let M be a uniqueness subgroup of G with p ∈ σ(M). If H is
any 2-local subgroup of G such that H ∩ M ≥ E, E ∼= Ep 2 , p ∈
σ(M), ΓE,1(G) ≤ M , then H ≤ M .

If Mp is as in (3) (ii) we call Mp exceptional and p an exceptional prime.
Recall that even if Mp is exceptional it might be non exceptional for some
other prime. So to avoid duplicating arguments we will call a uniqueness
group M exceptional if there is some prime p such that M is exceptional
with respect to this prime.

Now we can state our theorem.

Theorem. Let G be in the uniqueness case. Let M be a uniqueness
subgroup. If S ∈ Syl2(M), then M contains every 2-local subgroup of G
containing S.

It remains to explain what K-simple means. A group is called K-simple if
it is a minimal counterexample to the classification theorem, i.e. all simple
nonabelian sections of all proper subgroups are in K. Here K is the set of
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the groups of Lie type, the alternating groups and the 26 sporadic groups.
Further the set C2 is descibed in [GoLyS1, 12.1]. It consists of the groups
of Lie type in characteristic two, A6, L2(p), p a Fermat or Mersenne prime,
L3(3), L4(3), U4(3), G2(3), M11, M12, M22, M23, M24, J2, J3, J4, HS, Suz,
Ru, Co1, Co2, M(22), M(23), M(24)′, F3, F2 and F1.

For the remainder of this paper we fix the following notation. Let X be
a group and p be an odd prime. Assume mp(X) ≥ 3. We call an elementary
abelian p–subgroup E good, if mp(CX(x)) ≥ 3 for all x ∈ E]. In that case
we also call x ∈ E good. Hence if M is a uniqueness subgroup which is not
exceptional with respect to p and E a good subgroup of M then M is the
unique maximal 2–local containing E.
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1 Some Simple Groups

In this chapter we collect some properties of quasisimple groups, mainly
groups of Lie type in characteristic two, which will become important in the
sequel of the proof of the main theorem.

Z3

Lemma 1.1 Let X be a quasisimple group with X/Z(X) ∈ K , Z(X) a
3-group, then one of the following holds

(i) m3(X) = 0 and X ∼= Sz(q) , q even.

(ii) m3(X) = 1 and X ∼= L2(q), L3(q), U3(q), J1.

(iii) m3(X) = 2 and X ∼= 3 · A6, 3 · A7, 3 · M22, SL3(q), SU3(q), A7,
A6, L3(3), U3(3), L3(q), U3(q), PSp4(q), G2(q),

3D4(q),
2F4(q), L4(q),

U4(q), L5(q), U5(q), M11, M12, M22, M23, M24, J2, HiS, He, Ru, J4.

(iv) m3(X) = 3 and X ∼= 3 · O′N , A9, A10, A11, L2(27), PSp4(3), Sp6(q),
Ω−

8 (q), L4(q), U4(q), L6(q), U6(q), L7(q), U7(q), J3.

Proof: Just inspection of the groups in K. [] 2

parsim

Lemma 1.2 Let K be a finite simple group in the list K,mp(K) ≤ 3 for any
odd prime p. Then K is one of the following:

(i) L2(q), Sz(q), L3(q), U3(q), PSp4(q), q some prime power

(ii) G2(2
n), 2F4(2

n)′, 3D4(2
n), L4(2

n), L5(2), L6(2), L7(2), U4(2
n),

Sp6(2
n), Ω−

8 (2n)

(iii) An, 6 ≤ n ≤ 11

(iv) Ji, 1 ≤ i ≤ 4,Mn, n ∈ {11, 12, 22, 23, 24}, HiS, Ru, He.

If K ∈ K, U/Z(U) ∼= K, U ′ = U, 1 6= |Z(U) | odd and mp(U) ≤ 3 for every
odd prime p. Then U is isomorphic to 3 ·A6, 3 ·A7, 3 ·M22, SL3(q), SU3(q), q
a prime power, or 3 ·O′N .

Proof: This is easily established by going over the list in 1.1. 2

Cartan

Lemma 1.3 Let X ∼= G(q) be a Lie group over a field of characteristic two,
q > 2. Let C be the Cartan subgroup and mp(C) ≤ 3 for any prime p. Then
X is one of the following: Ln(q), n ≤ 4, Sp4(q), Sp6(q), Un(q), n ≤ 7, Ω−

8 (q),
2F4(q),

3D4(q), G2(q), or Sz(q).
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Proof: Let first X be untwisted of Lie rank r. Then

|C | = 1

d
(q − 1)r

Let r ≥ 4. Then as mp(C) ≤ 3, we have q − 1 = p = d. Furthermore r = 4.
But checking the possible values for d gives a contradiction. So we have r ≤ 3
and then X ∼= L2(q), L3(q), L4(q), Sp4(q), Sp6(q) or G2(q).

Assume now that X is twisted. Let X ∼= 2E6(q). Then

|C | = 1

d
(q − 1)2(q 2 − 1) 2 , d = gcd(3, q + 1) .

Let p
∣∣∣ q − 1. Then C contains an elementary abelian subgroup of order p 4,

a contradiction.

Let X ∼= Un(q). If n is even then

|C | = 1

d
(q − 1)(q 2 − 1)

n
2
−1.

Thus n ≤ 6.

Let n be odd. Then

|C | = 1

d
(q 2 − 1)

n−1
2 .

This implies n ≤ 7.

Finally assume that X ∼= Ω−
2n(q). Then

|C | = (q 2 − 1)(q − 1)n−2.

Hence n− 2 ≤ 2. We get n = 4, as Ω−
6 (q) ∼= U4(q). 2

O2Chev

Lemma 1.4 Let G = G(q) be a group of Lie type over GF (q), q = 2n,
G 6∼= L2(q), L3(q), U3(q), Sz(q), G2(q) or 2F4(q). Let R be a long root group,
Q = O2(NG(R)/R) and L be a Levi complement in NG(R). Then Q has the
following L–module structure

(i) G ∼= Ln(q), O2′(L) ∼= SLn−2(q), Q = V1 ⊕ V2, V1 is the natural L–
module and V2 its dual.

(ii) G ∼= Sp2n(q), O2′(L) ∼= Sp2n−4(q) × L2(q) = L1 × L2, Q = V1 ⊕ V2,

[V2, L1] = 1, V1 is the natural L2–module, V1 = V
(1)
1 ⊕ V

(2)
1 , V

(i)
1 ,

i = 1, 2, are natural L1–modules and [L2, V1] = V1.

(iii) G ∼= Ω±
2n(q), O2′(L) ∼= Ω±

2n−4(q) × L2(q) = L1 × L2, Q = V1 ⊕ V2, Vi,
i = 1, 2, are natural L1–modules and [Q,L2] = Q.
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(iv) G ∼= Un(q), O2′(L) ∼= SUn−2(q), Q is the natural module.

(v) G ∼= E6(q), O2′(L) ∼= L6(q), Q ∼= V (λ3).

(vi) G ∼= 2E6(q), O2′(L) ∼= U6(q), Q ∼= V (λ3).

(vii) G ∼= E7(q), O2′(L) ∼= Ω+
12(q), Q ∼= V (λ6).

(viii) G ∼= E8(q), O2′(L) ∼= E7(q), Q ∼= V (λ1).

(ix) G ∼= F4(q), O2′(L) ∼= Sp6(q), Q is an extension of the natural module by
a spin module, where the natural module is contained in Z(O2(NG(R))).

(x) G ∼= 3D4(q), O2′(L) ∼= L2(q
3), Q is the 8–dimensional GF (q)–module

for L.

Proof: This can easily be checked using the Chevalley commutator
formula (see also [AschSe]). 2

2rang

Lemma 1.5 Let X ∼=3 D4(r),
2F4(r), G2(r) ,or Ω−(8, r), r even, then a

maximal elementary abelian 2-subgroup A of X has order r5, r5, r3, r6,
respectively.

Proof: This is [GoLyS3, (3.3.3)] 2
FO2

Lemma 1.6 Let G = G(q) 6∼= 2F4(q), q = 2m, be a group of Lie type and R
be a long root group. Set Q = O2(CG(R)). Let A ≤ Q be elementary abelian
with [A,Q] 6= 1. Then there is U ≤ Q, |U | = q, with |A : CA(U)| ≤ q and
CA(U) = CA(u) for all u ∈ U ].

Proof: We have R = Q′ is of order q. Hence |[A,Q]| ≤ q. Furthermore
Q is generated by subgroups Ri, |Ri| = q, Ri ∩ Q′ = 1 and Ri is a TI–set
in Q. Let x ∈ A with [x, r] = 1 for some r ∈ Ri, r 6= 1. Then Rx

i = Ri.
As [Ri, x] ≤ Q′ and Q′ ∩ Ri = 1, we get [Ri, x] = 1. This now implies that
R1 ∩ C(A) = 1 for some R1. Further CA(R1) = CA(r) for all r ∈ R]

1 and so
|A : CA(R1)| = |A : CA(r)| ≤ q. 2

FO2F4

Lemma 1.7 Let G = F4(q), q = 2m, R be a root group, A be an elementary
abelian subgroup of NG(R). Let Z = Z(O2(NG(R))) and S ∈ Syl2(NG(R)).
If A 6≤ O2(NG(R)) but A ≤ O2(CNG(R)(Z(S))), then |Z : CZ(A)| ≥ |A :
A ∩O2(NG(R))|.

Proof: We have that Z/R is the natural Sp6(q)–module by 1.4(ix).
Furthermore by assumption about A we have that AO2(NG(R))/O2(NG(R))
is contained in the greatest normal 2-subgroup of the point stabilizer of Sp6(q)
in the natural representation. This gives that there is a subgroup Z1 of Z,
|Z : Z1| = q, with Z1 ≥ [Z, A], CZ(A) ≤ Z1 and [Z1, A] ≤ Z(S). Now
obviously |Z1 : CZ1(A)| ≥ |A : A ∩O2(NG(R))|. 2
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Liesmall

Lemma 1.8 Let G be a group of Lie type over GF (r), r = 2n, G 6∼= 2F4(r),
L2(r), L3(r), Sp(4, r), U3(r) or Sz(r). Let R be a long root group, Q =
O2(NG(R)/R). If there is an involution t in C(R)\O2(NG(R)), with t central
in a Sylow 2–subgroup of C(R)/O2(C(R)), such that |[Q, t]| ≤ r2, then G ∼=
Ln(r), Un(r), or Sp(2n, r) and |[Q, t]| = r2, or G ∼= G2(r).

Proof: We have that Q is a GF (r)–module (see 1.4) and so |[Q, t]| = r
or r2. If G ∼= Ln(r), then we have two modules in Q and so we have the
assertion. If K ∼= Un(r), then Q is defined over r2, again the assertion. Let
K ∼= Sp(2n, r). As O2(NG(R))/Z(O2(NG(R)), is a direct sum of two mod-
ules, we also get the assertion in that case.

Let G ∼= Ω±
2n(r), then by 1.4 Q is a sum of two modules. On neither of

them t can induce a transvection, so t has to move them. In particular, we
get |Q| = r4 and then we have Ω±(6, r), which is the case L4(r) or U4(r)
above.

If G ∼= F4(r), then again by 1.4 there are two modules in Q. So t has
to induce a transvection on the natural module, but then |[V, t]| = r4 for the
spin module V , a contradiction.

If G ∼= E6(r), E7(r), E8(r), or 2E6(r), then by 1.4 we get L6(r) on the exterior
cube, Ω+(12, r) on the spin module, E7(r) on the 56–dimentional module, or
U6(r) on V (λ3). Now t is in some root group of NG(R)/O2(NG(R)) Hence
CNG(R)/O2(NG(R))(t) involves L4(r), Ω+(8, r), E6(r), U4(r), respectively, which
acts nontrivially on [Q, t]. Hence we see that |[Q, t]| ≥ r6, r8, r27 or r6, re-
spectively.

So we are left with G ∼= 3D4(r). But in this case Q is a tensor product of
three algebraically conjugate natural modules and so |[Q, t]| ≥ r4. 2

3cent

Lemma 1.9 Let G = G(2) be a group of Lie type over GF (2). Assume
m3(G) ≥ 4. Let x be a long root element, t ∈ O2(CG(x)) be an involution,

S ∈ Syl2(CG(x)) and [t, S] ≤ 〈x〉. Then 3
∣∣∣|CG(t)|.

Proof: Set H = CG(x). If G 6∼= Ln(2), then O2(H)/Z(O2(H)) is an
irreducible module for H/O2(H) and so tZ(O2(H)) is centralized by some

parabolic P in H/O2(H) by 1.4. Hence 3
∣∣∣|P | or H/O2(H) is solvable. The

latter just occurs for G ∼= Ω+
8 (2). But in this group any involution is central-

ized by a 3–element.

Assume now G ∼= Ln(2). Then by 1.4 O2(H)/Z(O2(H)) = H1 ⊕ H2, where
H1 is the natural Ln−2(2)–module and H2 its dual. So tZ(O2(H)) is central-
ized by a 3–element as n ≥ 8, recall that m3(G) ≥ 4 and so n− 2 ≥ 6, which
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gives that Z2(S) is centralized by some L4(2).

Hence we may assume that tZ(O2(H)) is centralized by a 3–element in H.
If 〈x〉 = Z(O2(H)) the same applies to t. So assume 〈x〉 < Z(O2(H)). This
means G ∼= Sp2n(2) or F4(2).

Let G ∼= Sp2n(2) and set H̃ = CH(Z(O2(H))). Then O2(H)/Z(O2(H)) ∼=
H1 ⊕H2, where Hi, i = 1, 2, are natural modules for H̃/O2(H) ∼= Sp2n−4(2)
by 1.4. Now as 2n − 4 ≥ 4, we have that CO2(H)/Z(O2(H))(S) is centralized

by Sp2(2) ∼= Σ3. So tZ(O2(H)) is centralized by a 3–element in H̃ and then
also t is centralized by a 3–element.

So we are left with G ∼= F4(2). Let t 6∈ Z(O2(H)). By 1.4 O2(H)/Z(O2(H))
is the spin module for H/O2(H) and so tZ(O2(H)) is centralized by a sub-
group U ∼= 26L3(2) in H/O2(H). We have that U acts on Z(O2(H))〈t〉. As
[t, S] ≤ 〈x〉, we get that [O2(U), t] ≤ 〈x〉. As Z(O2(H))/〈x〉 is the natural
module for Sp6(2), we get CZ(O2(H))/〈x〉(O2(U)) is the natural U–module. So
Z(O2(H))〈t〉 ∩ C(O2(U)) is an extension of the natural module by a trivial
module. This shows |tU〈x〉| = 1 or 7. In both cases t is centralized by a
3–element.

So let t ∈ Z(O2(H)). Then t is centralized by Sp4(q) and we are done
again. 2

borel1

Lemma 1.10 Let X = G(q) be a Lie group, q even, q > 2. Let r = 2n and
x be a primitive prime divisor of r − 1, or x = 9 in case of r = 64. Suppose
r > q. Let ω ∈ Aut(X), o(ω) = x, ω normalizes a Borel subgroup B of X.
Then one of the following holds

(i) r = q 2 and X ∼= Un(q), Ω−
2n(q) or 2E6(q).

(ii) r = q 3 or r2 = q 3 and X ∼= 3D4(q).

(iii) x = 3 or 9 and X ∼= 3D4(q), q ≤ 32, or D4(q) and q ≤ 16.

Proof: Suppose first that ω induces a graph automorphism on G(q).
Then X ∼= 3D4(q) or D4(q) and x = 3 or 9. If x = 3, we get r = 4 and so
by assumption q = 2, a contradiction. Let x = 9, then r = 64. So q ≤ 32.
If q = 32 and X ∼= D4(q), then ω3 induces an inner automorphism, which
normalizes a Borel subgroup. But the odd part of the normalizer of a Borel
subgroup in X is 314, a contradiction. Hence (iii) holds.

So assume now that ω induces a field automorphism. Then q = tx or x = 9
and q = t3. Suppose the former. As x

∣∣∣ tx−1 − 1 < q − 1, we see that r ≤ q,
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which contradicts the choice of x. So we have q = t3 and x = 9. Hence
r = 64 and so q = 8. This shows r = q 2. Now ω 3 induces an inner ×
diagonal automorphism. As 3 6

∣∣∣ q−1, we see that X is a 2-fold twisted group

and so we have (i).

So assume finally that ω induces an inner × diagonal automorphism. Let
x = p, prime. Then x 6

∣∣∣ q − 1. This now shows x
∣∣∣ q 2 − 1 or X ∼= 3D4(q) and

x
∣∣∣ q 3 − 1.

In the former by the choice of x we have r = q 2 and this is (i). In the
latter we get r = q 3 or r2 = q 3 and so we have (ii).

So we are left with x = 9, r = 64, q ≤ 32. As the torus of B is an abelian
group, we see that 9

∣∣∣ q− 1, 9
∣∣∣ q 2− 1 or 9

∣∣∣ q 3− 1. This gives q = 8, q = 4 and

X ∼= 3D4(q), or q = 16 and X ∼= 3D4(q). Hence we have (i) or (ii). 2

3syl

Lemma 1.11 Let X ∼= An. Suppose P ≤ X,P contains a Sylow 2–subgroup
of X and P is a {2, p}-group. Then p = 3.

Proof: This can be found in [Asch1, (6.1)]. 2

normal3

Lemma 1.12 Let G be alternating of degree at least 5 or sporadic, S a Sylow
2–subgroup of G and ω some element of order p, p odd, in G which normalizes
S. If [Ω1(Z(S)), ω] 6= 1, then G ∼= A5 or J1.

Proof: We have that Z(S) is not cyclic. Inspection of the sporadic
groups in [CCNPW] shows that the only sporadic group will be J1. So assume
now that G ∼= An. If n is a 2-power then Z(S) is cyclic besides n = 4. The
same applies for n = 2m+1, if m > 2, as A2m and A2m+1, so we would get A5.
Let now n > 5 and m1 +m2 + · · ·+mr be the 2-adic decomposition of n then
S〈ω〉 ≤ U , where U is a subgroup of index two of Σm1 × Σm2 × · · · × Σmr ,
which induces the full symmetric group on each Ami

. This is as ω has to
respect the different orbit lengths of S on {1, · · · , n}. But each mi is a power
of two and so we get that some mi equals 4 and S∩Ami

≤ Z(S). But on Ami

we have that S induces Σmi
and so acts nontrivially on a Sylow 2–subgroup

of Ami
. 2

field

Lemma 1.13 Let K be a Lie group in odd characteristic, K 6∼= 2G2(3
n). Let

ω ∈ Aut(K), o(ω) = p > 3, p prime, S a Sylow 2–subgroup of K, [ω, S] ≤
S. Then either ω induces a field automorphism on K or ω is a diagonal
automorphism with [S, ω] = 1.

Proof: This is [Asch, (6.3)] . 2
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L2q1

Lemma 1.14 Let X ∼= L2(q) or Sz(q) , q ≥ 4, q even.

(i) Let t ∈ Ω1(S), S ∈ Syl2(X). Then there are conjugates a, b of t such
that X = 〈a, b, t〉.

(ii) Let A ≤ Ω1(S) , |A| ≥ 4. Then there is some g ∈ X with X = 〈A,Ag〉.

Proof: Let 〈t, a〉 ≤ A ≤ Ω1(S) , |A| ≥ 4. Let K ≤ NX(S) , |K| =
q − 1, and a, b ∈ NX(K g), with NX(K g) = 〈a, b〉 , g ∈ X. Then we get
〈a, b, t〉 ≥ 〈Ω1(S), Ω1(S) b〉. Thus to prove (i) and (ii) it is enough to show
〈Ω1(S) , Ω1(S)b〉 = X.

We have that Y = 〈Ω1(S), Ω1(S) g〉 contains at least q + 1 conjugates
of Ω1(S). Thus we are done if X ∼= L2(q), as 〈Ω1(S), Ω1(S) b〉 contains all
conjugates.

So let X ∼= Sz(q). The number of conjugates of Ω1(S) in Y is nq + 1.

But then nq + 1
∣∣∣ q(q2 + 1). Which gives n = q and so Ω1(S)X ≤ Y , hence

X = Y . 2
Sp2nout

Lemma 1.15 Let p be a Zsygmondi prime dividing q − 1, q = 2m, or p =
7 for q = 64. Let K ∼= Sp(2n, r), U4(r), U3(r), F4(r), G2(r), Sz(r) or
Ω±(2n, r), r = q or q2. Let ω be an automorphism of K of order p. Then ω
is inner or p = 3 and K ∼= Ω+(8, r).

Proof: Suppose that ω induces an outer automorphism. Then we have
K ∼= Ω+(8, r) and p = 3. Suppose that there are diagonal automorphisms of
order p. Then K ∼= U3(r) and p = 3. Hence q = 4. But neither q + 1 nor
q2 + 1 is divisible by 3, a contradiction. So we have that ω induces a field
automorphism. In particular r = 2t with t = pu. But we have always that p
divides 2p−1 − 1, which now gives that m ≤ p− 1 if p is a Zsigmondy prime.
Now pu = t ≤ 2(p − 1), so u = 1 and m = p − 1, a contradiction again. So
we are left with p = 7. Now t = 7u and m = 6. But then we cannot have
r = q or r = q2. 2

schur

Lemma 1.16 Let N/Z(N) ∼= L2(q), L3(q), U3(q), Sz(q), q = 2n or L2(p),
pprime. Assume further m3(N) ≤ 1. Let N ′ = N . If Z(N) is a nontrivial
2–group then Z(S) = Z(N), for S a Sylow 2–subgroup of N .

Proof: We have that Z(N) is in the Schur multiplier of N . Hence
with [GoLy, 6.1] we have that N/Z(N) ∼= L2(p) or Sz(8). In case of L2(p)
we have that S is a quaternion group and so Z(S) = Z(N).

So we treat N/Z(N) ∼= Sz(8). Assume that Z(N) is the Schur multiplier,
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i.e. Z(N) is elementary abelian of order 4. We have |S/Ω1(S)| = 8. Further
there is ν ∈ NN(S) with o(ν) = 7 and ν acts transitively on the nontriv-
ial elements of S/Ω1(S). Suppose that Z(S) > Z(N), then Z(S) = Ω1(S).
Hence there are exactly 7 elements in Ω1(S), which are squares. Let V be
the permutation module for ν. Then V is a direct sum of two 3–dimensional
modules by a 1-dimensional one. Hence we have that the subgroup U of
Ω1(S) generated by the squares is not equal to Ω1(S), as ν centralizes a
group of order 4 in Ω1(S). Hence |Φ(S)| ≤ 16, contradicting Z(N) ≤ Φ(S)
and Φ(S) covers Ω1(S/Z(N)). So we have shown Z(S) = Z(N). 2

O(6, 2)

Lemma 1.17 (i) Let K ∼= Ω−(6, q), Sp(6, q) or Ω−(8, q), q even, and p be a
prime which divides q + 1 in the first case and q2 − 1 in the other two cases.
Then any p–element in K is centralized by an elementary abelian group of
order p3.

(ii) Let K ∼= A9, L6(2) or L4(4). Then any 3–element in K is centralized by
an elementary abelian group of order 27.

Proof: (i) If p 6= 3, then Sylow p–subgroups of K are abelian and
of rank at least three. So we just have to deal with p = 3. Now any ele-
ment of order three is conjugate into the corresponding group over GF (2).
As Ω−(6, 2) ≤ Sp(6, 2) ≤ Ω−(8, 2) and they all have a common Sylow 3–
subgroup, we just have to prove the assertion for Ω−(6, 2). But by Witt any
element of order three is conjugate in Ω−(2, 2) × Ω−(2, 2) × Ω−(2, 2), which
is elementary of order 27.

(ii) For A9 this is just inspection. As Ω−(6, 2) ≤ L6(2) nad both have a
common Sylow 3–subgroup, the assertion follows with (i). So let K ∼= L4(4).
Now Ω−(6, 2) ∼= U4(2) ≤ L4(4) and they have common Sylow 3–subgroup,
again (ii) follows from (i). 2

10



2 Small Groups
dihed

Lemma 2.1 Let R be a p–group , p odd, and E be an elementary abelian
2-group, acting faithfully on R. Then there is a subgroup U in RE, such
that U is a direct product of dihedral groups of order 2p and E is a Sylow
2-subgroup of U .

Proof: [GoLyS2, (24.1)] 2

cl2p

Lemma 2.2 Let X be a p-group, p odd, X ′ ≤ Z(X), X = Ω1(X) and
mp(X) ≤ 3. Then X is elementary abelian, extraspecial of width 1, a direct
product of a cyclic group of order p with an extraspecial group of width 1, or
an extraspecial group of width 2.

Proof: We may assume X ′ 6= 1. We have X = {x
∣∣∣xp = 1}. Let

|Z(X)| = p. Then we have that X ′ = Z(X) = Φ(X) and so X is extraspe-
cial. As mp(X) ≤ 3, we see that |X| ≤ p5.

So assume |Z(X)| = p 2. Then mp(X) = 3. Choose ω ∈ X \ Z(X). Then
|X : CX(ω)| ≤ p 2 and as CX(ω) = 〈ω, Z(X)〉, we get |X| ≤ p 5.

Let |X| = p 4. Then |X : Z(X)| = p2 and so |X ′| = p. Thus X is a
direct product of a cyclic group of order p with an extraspecial group of
width 1.

Let |X| = p 5. Choose CX(ω) ≤ Y < X, |Y | = p 4. Then as just seen Y is a
direct product of a cyclic group of order p by an extraspecial group of width 1.
Now choose ϕ ∈ X \Y . Then [ω, ϕ] = t 6∈ Y ′. Let ν ∈ Y, 1 6= [ω, ν] = s ∈ Y ′.
We have

[ϕ, ν] = si tj , for some 0 ≤ i, j ≤ p− 1 .

But then
[ϕ, νω j] = s i

and so we may assume
[ϕ, ν] = s i .

Hence [X, ν] ≤ 〈s〉 and then |X : CX(ν)| ≤ p, a contradiction. 2

3gr

Lemma 2.3 a) Let R be a 3–group of rank at most three. Then Sylow p–
subgroups for p > 3 of Aut(R) are cyclic.

b) If R is a 5–group of rank at most 2, then Sylow p–subgroups of Aut(R) for
odd p 6= 5 are cyclic. If the rank is three the same applies for p > 5, while
for p = 3 Sylow 3–subgroups have rank at most two.

11



Proof: a) Let C be a critical subgroup of R and D = Ω1(C). Then
we have that either D is elementary abelian or extraspecial. Let P be a
Sylow p–subgroup of Aut(R). Then P acts faithfully on D and so P is either
isomorphic to a subgroup of GL(3, 3) or of Sp(4, 3). Hence in both cases P
is cyclic.

b) Let C and D be as before. If the rank of R is at most two, then P
is a subgroup of GL(2, 5) and the assertion follows. Let now D be elemen-
tary abelian of order 53 or extraspecial of order 55. Then P is a subgroup
of GL(3, 5) or Sp(4, 5). As 3 is the only odd prime dividing 52 − 1, we see
that Sylow p subgroups for p odd, p > 5, are cyclic, while for p = 3 they are
cyclic in the first case and of rank two in the second. 2

3notsolv

Lemma 2.4 Let P be a 3–group, m3(P ) ≤ 3 with nonsolvable automorphism
group. Then m3(P ) = 3 and there is a characteristic subgroup C in P which
is either elementary abelian of order 27 or extraspecial of exponent 3 and
order 35.

Proof: Let C be a critical subgroup of P , then also C has a nonsolvable
automorphismgroup. We may even assume that C = Ω1(C). As SL(2, 3) is
solvable we get that C is of order 27 if C is abelian. So we may assume that
C is not abelian. Then 2.2 applies. In particular Z(C) is centralized by any
simple factor in the automorphism group. Now we get that |C/Z(C)| > 9
and so with 2.2 the assertion follows. 2

goodE

Lemma 2.5 Let P be a p–group, p odd. Let N be a cyclic normal subgroup
and P = NQ. Suppose that mp(P ) = 3. Then there is some elementary
abelian subgroup U of order p2 with U ≤ Q and mp(CP (U)) = 3.

Proof: Let Q0 = CQ(N). Then we have that P/NQ0 is cyclic as p is
odd. So we may assume that |P/NQ0| = p. If mp(NQ0) = 3, we are done.
So we may assume that mp(NQ0) = 2. Let V be an elementary abelian
subgroup of order p2 in NQ0, which is normal in P . Set P0 = CP (V ). Then
P0 = N(P0 ∩Q). As mp(P ) = 3, we get that also mp(P0) = 3. In particular
there is some U ≤ P0 ∩Q with mp(CP0(U)) = 3. 2

par

Lemma 2.6 Let X be some group with O2(X) = 1 and mp(X) ≤ 3 for every
odd prime p. Suppose furthermore that for S ∈ Syl2(X) there is exactly one
maximal subgroup Y of X containing S. Then either X is solvable or E(X)
is one of the following:

(i) Sz(q), L2(q), (S)L3(q), (S)U3(q), Sp4(q), L2(q)×L2(q), Sz(q)×Sz(q),
q even
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(ii) L2(p), L2(p
2), L2(p

3), L3(p), U3(p), PSp4(p), L2(p) × L2(p), p > 3
some odd prime, or L2(27) or L3(3)

(iii) A6, A9, 3 · A6, 3 · A6 ∗ 3 · A6, SL3(4) ∗ SL3(4), SU3(8) ∗ SU3(8).

or F (X) is a p-group with Ω1(F (X)) is elementary abelian of order p 3 and
E(X/F (X)) ∼= L2(p) acts irreducibly on Ω1(F (X)).

If E(X) ∼= (S)L3(q), Sp4(q), q even, 3 ·A6, 3 ·A6 ∗ 3 ·A6, or SL3(4) ∗SL3(4),
there is some x ∈ X acting nontrivially on the corresponding Dynkin dia-
gram.

Proof: We may assume that X is nonsolvable. Assume first E(X) = 1.

Set F = F (X). Let p
∣∣∣ |F (X)| and P ∈ Sylp(F (X)). We may choose P

such that X/CX(P ) is nonsolvable. Let C be a critical subgroup of P and
U = Ω1(C). Set X1 = CX(U).

Suppose S∩X1 6= 1. By the Frattini argument we have X = X1NX(S∩X1).
As O2(X) = 1 we get NX(S ∩X1) 6= X. But then X1S and NX(S ∩X1) are
contained in different maximal subgroups containing S, a contradiction.

So we have S ∩ X1 = 1. Let Q be a Sylow q–subgroup of X1, including
the case of q = p. Then X = X1NX(Q). We may assume S ≤ NX(Q)
and as X1S is a proper subgroup of X, we get that X = NX(Q). Hence
X1 = F . Assume that there is some t ∈ Z(S)] such that CX(t) covers
(X/X1) /Op(X/X1). As O2(X) = 1, we have CX(t) 6= X. Let Y be the
preimage of Op(X/X1). Then Y S 6= X and so CX(t) and Y S are contained
in different maximal subgroups, a contradiction.

By 2.2 we know the structure of U . Suppose that U is not elementary abelian.
If U is not extraspecial of width two, then a nonsolvable subgroup of SL2(p)
is induced. But then we get an involution in Z((X/F )/Op(X/F )), a con-
tradiction. So we have that U is extraspecial of width two. As the 2-rank
of of Sp4(p) is two and Sp4(p) has a 2-central involution, we see that again
Z(/X/F )/Op(X/F )) contains some involution, a contradiction. This shows
that U has to be elementary abelian of order p 3 and X/X1 is a subgroup
of SL3(p). Now S X1/X1 is contained in exactly one maximal subgroup of
X/X1 Suppose that |Y1| , Y1 = E(X/F )|, is not divisible by p. Let Y be a
preimage of Y1. Then Y S = PK, with K ∩ P = 1 and S ≤ K. But now
X = Y NX(S ∩ Y ). As S ∩ Y is not normal in X, we get that X = Y S.
But neither PS nor K is equal to X, a contradiction. So we have that |Y1|
is divisble by p. With [Mi1] we get that E(X/X1) ∼= L2(p). Hence X acts
irreducibly on U . In particular as U ∩ Z(P ) 6= 1, we have U ≤ Z(P ) and so
U = Ω1(P ).
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Suppose F 6= P . Then choose Q ∈ Sylq(F ), q 6= p. Then we have that
QCX(Q)/F ≥ E(X/F ). Hence Let Y be a preimage of E(X/F ). Set
K = Y (∞). Then [Q,K] = 1. Hence we have that Y = Op′(F )PK. Now we
have KPS and Op′(F )S, which cannot be both proper subgroups of X. This
shows X = KPS and so P = F .

Suppose now E(X) 6= 1. We have X = E(X)S, otherwise NX(S ∩ E(X))
and E(X)S are contained in different maximal subgroups. Also S has to act
transitively on the components of E(X). As mp(X) ≤ 3 we get that E(X)
contains at most two components.

Let first E(X) be quasisimple. Then E(X) is described in 1.2. If
E(X)/Z(E(X)) is a Lie group over GF (q), q = 2n, then S ∩ E(X) ≤
P, P a minimal parabolic. Hence either E(X) is of rank 1 or E(X) is
of rank 2 and S induces a diagram automorphism. This is (i). Sup-
pose next that E(X)/Z(E(X)) is alternating. If n = 11, then S ∩
E(X) ≤ AΩ, Ω = {1, . . . , 10} and S ∩ E(X) ≤ AΩ1〈x〉, Ω1 = {1, . . . , 9},
x = (1, 2)(10, 11). But both groups generate E(X). If n = 10, then
S ∩ E(X) is in AΩ〈x〉, Ω = {1, . . . , 8}, x = (1, 2)(9, 10) and also in

NE(X)

(
〈(1, 2)(3, 4), (1, 2)(5, 6), (1, 2)(7, 8), (1, 2)(9, 10)〉

)
. If n = 8, then

E(X) ∼= L4(2), a case just done. If n = 7, then S ∩ E(X) is in AΩ,
Ω = {1, 2, . . . , 6} and AΩ1〈x〉, Ω1 = {1, . . . , 5}, x = (1, 2)(6, 7). This fin-
ishes the case of an alternating group, as A9, A6 and 3 · A6 are in (iii).

Let now K/Z(K) be sporadic. Application of [RoStr] shows that K is gen-
erated by minimal parabolics up to K ∼= J1 or M11. But the latter contains
M10 and GL2(3). The group J1 contains Z2 × A5 and the normalizer of a
Sylow 2-subgroup. Hence in any such group there are at least two maximal
subgroups containing S ∩ E(X).

We are left with K/Z(K) ∼= G(r), r odd, r = p f . As mp(K) ≤ 3, we get from
1.2 K/Z(K) ∼= L2(p), L2(p

2), L2(p
3), L3(p), U3(p), PSp4(p). This is (ii), as

for p = 3 we have L2(9) ∼= A6, U3(3) ∼= G2(2)′ and PSp4(3) ∼= U4(2).

Let now E(X) = X1X2. Then mp(X1) = 1 for any prime p which does
not divide |Z(E(X))| and mp(X1) = 2 for p which divides |Z(E(X))|. Ap-
plication of 1.1 and 1.2 show that X1

∼= Sz(q), L2(q), (S)U3(q), (S)L3(q), J1,
3 · A6, 3 · A7 or 3 ·M22.

Let X1
∼= (S)U3(q) or (S)L3(q). If p

∣∣∣ q + 1 or p
∣∣∣ q − 1, p 6= 3, then X1

contains an elementary abelian group of order p 2 intersecting the center tri-
vially. So we have that either q + 1 or q − 1 has to be a 3–power. Then we
get X1

∼= SL3(4), L3(2) or SU3(8).
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Let X1
∼= J1, 3 · A7, 3 ·M22, 3 · A6, SL3(4), L3(2). Then there are subgroups

A,B of X1 such that 〈A,B〉 = X1, S ∩X1 ≤ A ∩ B. Let A,B be normal in
NS(X1). Choose g ∈ S with X g

1 = X2. Then 〈A,Ag, S〉 and 〈B, B g, S〉 are
both different from X, but 〈X1, S〉 = X. This shows X1

∼= 3 · A6, SL3(4) or
L3(2) and there is some x ∈ X acting nontrivally on the Dynkin diagram,
i.e. Ax = B. 2
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3 Some Small Modules
amal

Definition 3.1 Let G be a group and A,B be subgroups of G. We call
(A,B) an amalgam if there is no nontrivial subgroup K in A ∩ B such that
K is normal in 〈A,B〉.

If (A,B) is an amalgam, we can attach a graph Γ = Γ(A,B) to this amalgam,
whose vertices are the right cosets of A or B in H = 〈A,B〉 and edges are
the right cosets of A ∩ B. The incidence relation is by inclusion. Obviously
H acts on Γ by right multiplication. Hence we see that the stabilizer Hx of
a vertex x ∈ Γ in H is a conjugate of A or B. Further Γ is connected.

Important for the amalgam method is a good knowledge of so called small
modules. In this section we will establish the necessary results. First the
definitions of the important types of modules

mod

Definition 3.2 Let G be a group and V be a nontrivial module for G over
GF (2). Further let A be an elementary abelian 2–subgroup of G with A 6≤
CG(V ).

(1) We say that A acts quadratically on V if [V, A,A] = 1.

(2) We say that A acts cubic on V if [V, A,A, A] = 1.

(3) We call V an F–module with offender A if |V : CV (A)| ≤ |A/CA(V )|.
(4) We call V a 2F–module with offender A if |V : CV (A)| ≤ |A/CV (A)|2.
(5) We call an F–module V with offender A strong if CV (a) = CV (A) for

all a ∈ A \ CV (A).

(6) We call V a dual F–module with offender A if [V, A,A] = 1 and
|[V,A]| ≤ |A/CA(V )|.

(7) We call a dual F–module V with offender A strong if [v,A] = [V,A] for
all v ∈ V \ CV (A).

The connection with amalgams and representation theory comes via so called
2–reduced normal subgroups which we will define now and prove then some
elementary properties
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pred

Definition 3.3 Let X be a 2-local subgroup of G. Then a 2–reduced normal
subgroup of X is an elementary abelian normal 2–subgroup Y of X such that
O2(X/CX(Y )) = 1.

CL

Lemma 3.4 (i) Let X be a 2-local subgroup of G then there exists a unique
maximal 2–reduced normal subgroup YX of X
(ii) Let S ≤ L ≤ X, S a Sylow 2-subgroup of X, X a 2-local and R a 2–
reduced normal subgroup of L, then 〈RX〉 is a 2–reduced normal subgroup of
X.
(iii) Let X,L be as in (ii), then YL ≤ YX .
(iv) Let X be a 2-local with Sylow 2-subgroup S. Set CX = CX(YX) and
X0 = NX(S ∩ CX). Then X = X0CX and YX = YX0.
(v) Let X0 be as in (iv). Then S ∩ CX = O2(X0) and YX = Ω1(Z(S ∩ CX)).

Proof: (i) Let YX be the subgroup generated by all 2–reduced normal
subgroups. If O2(X/CX(YX)) is nontrivial, this also holds for all the gener-
ators of YX , a contradiction.

(ii) Let Y = 〈RX〉 and D = CX(Y ). Set N/D = O2(X/D). Then
N = (N∩S)D = (N∩L)D. As R is 2–reduced for L, we have [R, N∩L] = 1.
Further [D, R] = 1, so [N,R] = 1. As N is normal in X, we have [N, Y ] = 1,
hence Y is 2–reduced.

(iii) Follows from (ii) with R = YL.

(iv) The first assertion is just the Frattini argument. Hence now YX ≤ YX0 .
By (iii) we have YX0 ≤ YX .

(iv) As O2(X/CX) = 1, we have O2(X0) ≤ CX . So we get O2(X0) ≤ CX ∩ S
and so O2(X0) = CX ∩ S. Set R = Ω1(Z(S ∩ CX)). Then YX ≤ R. Set
Y = 〈RX〉 = 〈RCX 〉 as X = X0CX by (iv). Now R is 2–reduced for S and
so by (ii) Y is 2–reduced for CXS. Set D = CX(Y ) and N/D = O2(X/D).
Since YX ≤ R ≤ Y and YX is 2–reduced for X, we get N ≤ CX . As Y is
2–reduced for CXS, we get [N, Y ] = 1. Hence Y is 2–reduced for X and so
Y ≤ YX ≤ R. This shows R = YX , the assertion. 2

critical

Definition 3.5 Let (A,B) be an amalgam, H = 〈A,B〉 and assume further
that both A and B are of characteristic 2–type. For x ∈ Γ define bx as
the shortest distance of some y ∈ Γ such that YHx ≤ Hy but there is some
neighbor z of y such that YHx 6≤ Hz. Further define b = bΓ as the minimum
over all bx with x ∈ Γ. A critical pair (x, y), where x, y are vertices of Γ, is
a pair of distance bΓ such that there is some neighbor z of y with YHx 6≤ Hz.
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The following lemma plays an important role in the amalgam method

Fmodule

Lemma 3.6 Let (A,B) be an amalgam, H = 〈A,B〉 and A and B both of
characteristic p–type. Let (x, y) be a critical pair. If [YHx , YHy ] 6= 1, then one
of both is an F–module for the corresponding stabilizer.

Proof: By definition 3.5 we have that [YHx , YHy ] ≤ YHx ∩ YHy . So by
symmetry we may assume that |YHx : CYHx

(YHy)| ≤ |YHy : CYHy
(YHx)|. Then

YHx is an F–module with offender YHyCHx(YHx)/CHx(YHx).

Next we will show that under some conditions amalgams with b odd also
provide us with very special F–modules.

minpar

Lemma 3.7 Let H be a finite group, S ∈ Syl2(H) and S be contained in a
unique maximal subgroup M of H. Let P ≤ S with P 6≤ O2(H). Then there
are L ≤ H and h ∈ H such that

a) P ≤ L, P 6≤ O2(L)

b) O2(L)P ≤ Mh ∩ L, which is the unique maximal subgroup in L con-
taining P

c) P ≤ Sh ∩ L ∈ Syl2(L).

Moreover for any such L, we have L = 〈PL〉.

Proof: If M is the unique maximal subgroup containing P we may set
L = H. So assume there is a maximal subgroup K 6= M , P ≤ K. Among
all such K we choose K with |K ∩ S| maximal and then |K| minimal. Set
T = K ∩ S. By the minimal choice of K we know that M ∩K is the unique
maximal subgroup of K containing T . Set R = 〈P g | P g ≤ T, g ∈ H〉. As
K 6≤ M , we have T 6= S. So T < NS(T ) ≤ NH(R). By the choice of K we
now have NH(R) ≤ M and so NK(R) ≤ K ∩M . In particular T ∈ Syl2(K).
Now O2(K) ≤ T ≤ M . If R ≤ O2(K), then R £ K and so K ≤ M , a con-
tradiction. Hence there is P g ≤ T with P g 6≤ O2(K). Now we may replace
H by K, P by P g and M by M ∩ K. By induction we get L1 ≤ K with
P g ≤ L1, P g 6≤ O2(L1) and h1 ∈ K with P g ≤ (M ∩K)h1 ∩ L1 and this is
the unique maximal subgroup of L1 containing P g. Further P g ≤ T h1 ∩L1 ∈
Syl2(L1). Set h = h1g

−1 and L = Lg−1

1 . As P g ≤ L1, we have P ≤ L.
As P g 6≤ O2(L1), we have P 6≤ O2(L) and so (a) holds. For (b) we have
O2(L1)P

g ≤ (M ∩K)h1 ∩L1. So O2(L)P ≤ (M ∩K)h1g ∩L ≤ Mh∩L, which
is (b). As P g ≤ T h1 ∩ L1, we get that P ≤ T h ∩ L ≤ Sh ∩ L which is (c).

Now let D = 〈PL〉 6= L. As P ≤ D we have D ≤ Mh ∩ L. The
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Frattini argument shows L = DNL(Sh ∩ D), so L = NL(Sh ∩ D), oth-
erwise by P ≤ NL(Sh ∩ D), we get NL(Sh ∩ D) ≤ Mh ∩ L and then
L = DNL(Sh ∩ D) ≤ Mh ∩ L, a contradiction. But now P ≤ O2(L), a
contradiction. 2

quadratic

Lemma 3.8 Let 〈b, c〉 be an elementary abelian group of order p2 acting
quadratically on a GF (p)–module V . Let 1 6= v ∈ V , then 〈vb〉 ≤ 〈v〉〈vbc〉〈vc〉

Proof: We have (vbv−1)c = vbv−1. So vbcv−c = vbv−1. Hence v =
v−bcvcvb, the assertion. 2

action

Lemma 3.9 Let H be a group and A be a 2–subgroup, A 6≤ O2(H) but
A contained in a unique maximal subgroup M of H. Let V be a faithful
GF (2)H–module with [V,A, A] = 1 such that for some Z ≤ V with [Z,A] =
1, we have V = 〈ZH〉. Then the following hold

a) O2(H) is a Sylow 2–subgroup of
⋂

g∈H M g.

b) CV (t) = CV (A) for all t ∈ A \O2(H).

c) |V : CV (A)| ≥ |A/A ∩ O2(H)|c, where c is the number of non trivial
chief factors in V .

d) [V, t] ∩ CV (H) = 1 and |[V, t]|2 = |V : CV (H)| for all t ∈ A \O2(H).

e) [V,H] ∩ CV (H) ≤ [V, A]

f) If [Z,O2(H)] ≤ Z, then A 6≤ O2(CH([V, A ∩ O2(H)]). Moreover if
H/O2(H) is not dihedral we even have [V, A ∩O2(H)] ≤ CV (H).

Proof: First notice that if V = 〈ZH〉 then also V = CV (A)[V, H].
Up to the proof of f) we just use this property, which is inductive. Set
N =

⋂
g∈H M g. By the Frattini argument we have O2(H) ∈ Syl2(N), which

is a).

Let t ∈ A \ O2(H). By a) t is not contained in N . Now choose h ∈ H
with t 6∈ Mh and set B = Ah. Then as Mh is the unique maximal subgroup
containing B, we see H = 〈t, B〉. This now shows

[V,H] = [V, t][V, B].

By quadratic action [V, t] ≤ CV (A), hence V = CV (A)[V,B] = CV (t)[V,B].
So

CV (B) = CV (H)[V, B].
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In the same way we see V = CV (B)[V, A]. Now

CV (t) = (CV (B) ∩ CV (t))[V, A] = CV (H)[V, A] = CV (A),

which is b).

Let W be an irreducible nontrivial chief factor. Then

W = [W,A]⊕ [W,B].

Hence we get [W,A] = CW (t). So let x ∈ [W,B]] then |[A, x]| ≥ |A/A ∩
O2(H)| and so ||W,A]| ≥ |A/A ∩O2(H)|, this is c).

Further let b ∈ B ∩ M \ O2(H). Then there is some k ∈ M such that
〈b, Ak〉 i a 2–group. Hence CW (b) ∩ CW (Ak) 6= 1. By b) CW (b) = CW (B)
and H = 〈B,Ak〉, so CW (H) 6= 1, a contradiction. So we have

(∗) M ∩B ≤ O2(H)

We have [V, A] = [V, t]([V, A]∩[V,B]). Set Y = [V, B]∩CV (t) ≥ [V, A]∩[V,B].
We have

|[V, t]| = |[V, B, t]| = |[V, B]/C[V,B](t)| = |[V, A]|/|Y |.

So we see |[V, t]||Y | = |[V,A]|. This shows that Y = [V, A] ∩ [V,B] and
so [V, A] = [V, t] ⊕ Y . So we see [V, t] ∩ CV (H) ≤ [V, t] ∩ Y = 1 and
then |[V,H]| = |[V, t]|2|Y |, so |[V, t]|2 = |V : CV (H)| , which is d) and
C[V,H](A) = [V, A]Y so C[V,H](H) = [V, A]Y ∩ [V, B]Y = Y , which is e).

To prove f) let h ∈ H \M . We have

[Zh, A ∩O2(H)] ≤ Zh ∩ C(A) ≤ C(〈A,Ah〉) ≤ CV (H).

Set Y = 〈Zh | h ∈ H \M〉. Then [Y, A ∩O2(H)] ≤ CV (H).

Assume now that |AO2(H)/O2(H)| ≥ 4. We then show that B normal-
izes Y . Then we have Y = 〈ZH〉 = V and so f) holds, as A 6≤ O2(H). To
prove this let h ∈ H \ M and b ∈ B. If hb 6∈ M , then Zhb ≤ Y . So let
hb ∈ M . As |BO2(H)/O2(H)| ≥ 4, there is some c ∈ B, c 6∈ O2(H) such
that c 6∈ O2(H)b. If also hc ∈ M , then c−1b ∈ M ∩ B ≤ O2(H) by (∗), a
contradiction. Hence we have hc 6∈ M . Similar hbc 6∈ M . But 〈b, c〉 acts
quadratically. So by 3.8 we have Zhb ≤ ZhZhbcZhc. Hence Y is B–invariant.

So assume now |A/O2(H)∩A| = 2. Then H/O2(H) is dihedral of order 2rk, r
an odd prime. If k = 1, then M = AO2(H) normalizes Z, as [O2(H), Z] ≤ Z,
and so V = ZY . Now [V, A ∩ O2(H)] = [Y, A ∩ O2(H)] ≤ CV (H) and then
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f) holds.

Let k > 1. Choose H∗ minimal with A ≤ H∗ and H∗O2(H) = M .
Set V ∗ = 〈ZH∗〉 = 〈ZM〉, as [Z,O2(H)] ≤ Z. Then V = V ∗Y . We
have that also H∗/O2(H

∗) is dihedral. Further as k > 1, we have that
O2(H

∗) ≤ O2(H). Now by induction we have A 6≤ O2(CH∗([V ∗, A ∩
O2(H

∗)])). As [V, A ∩ O2(H)] = [V ∗, A ∩ O2(H)][Y, A ∩ O2(H)] we get
[V, A ∩ O2(H), CH∗([V ∗, A ∩ O2(H

∗)])] = 1, recall [Y,A ∩ O2(H)] ≤ CV (H).
So CH∗([V ∗, A ∩O2(H

∗)]) ≤ CH([V,A ∩O2(H)]) which gives f). 2

amalgam

Lemma 3.10 Let (Gα, Gβ) be an amalgam with S ∈ Syl2(Gα ∩ Gβ) and
S ≤ Mαβ, where Mαβ is the unique maximal subgroup of Gβ which contains
Gα ∩ Gβ. Let further b = bα be odd, b ≥ 3. Fix a critical pair (α, α′), with

d(α, α′) = d(β, α′)+1. Then 〈Y Gβ
α 〉 = Vβ 6≤ O2(Gα′). Set β = δ1 and α′ = δ2.

Then one of the following holds.

(1) For i = 1, 2 there is Li ≤ Gδi
and some µi ∈ ∆(δi), such that for

Vi = 〈Y Li
µi
〉, i = 1, 2 we have the following

a) Vi 6≤ O2(L3−i)

b) Vi ≤ Gδ3−i
and Gδi

∩Gµi
contains a Sylow 2–subgroup of Li.

c) Li ∩Mδiµi
is the unique maximal subgroup of Li, which contains

V3−i

d) [Vi, Yµ3−i
] = 1.

(2) There are µi ∈ ∆(δi) , i = 1, 2, some j ∈ {1, 2} and Lj ≤ Gδj
such

that the following holds

a) Vj ≤ Gµ3−j
, Yµ3−j

≤ Lj, Yµ3−j
6≤ O2(Lj)

b) Yµ3−j
≤ Gµj

and Gµj
∩Gδj

contains a Sylow 2–subgroup of Lj.

c) Lj ∩Mδjµj
is the unique maximal subgroup in Lj which contains

Yµ3−j
.

d) [Yµ1 , Yµ2 ] = 1.

(3) There are µi ∈ ∆(δi), such that Yµi
≤ Gµ3−i

, i = 1, 2 and [Yµ1 , Yµ2 ] 6= 1.

Proof: We will assume that (3) does not hold. Then choose Li ≤
Gδi

,and µi ∈ ∆(δi), i = 1, 2 such that for Vi = 〈Y Li
µi
〉 we have

(1) V3−i ≤ Li ∩Gδiµi

(2) Li ∩ Gδiµi
contains a Sylow 2–subgroup of Li and is contained in a

unique maximal subgroup Mδiµi
∩ Li
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(3) For at least one j ∈ {1, 2} we have that Vj 6≤ O2(L3−j)

Such a setup exist. Choose for µ1 with d(µ1, δ2) = d(δ − 1, δ2) − 1 and µ2

with d(δ1, µ2) = d(δ1, δ2) − 1 and Li = Gδi
, hence there is also a minimal

choice. or example µ+ = α + 2, µ− = α′ − 1, and Lε = Gβε .

We first show [V1, V2] 6= 1. So suppose [V1, V2] = 1. By (3) there is some j

such that Vj 6≤ O2(L3−j). Now choose some ε ∈ ∆(µ
L3−j

3−j ) with Vj 6≤ Mδ3−jε.
Then L3−j = 〈Mδ3−jεVj〉 by (2). Then Yε is normal in L3−j and so also Yµ3−j

is normal in L3−j. Now Yµ3−j
is even normal in 〈Gµ3−jδ3−j

, L3−j〉 = Gδ3−j
.

But then Yµ3−j
£ 〈Gδ3−j

, Gµ3−j
〉, a contradiction. So we have shown

[V1, V2] 6= 1.

We will assume that for both i that if µ ∈ µLi
i and V3−i ≤ Gµ, then

[Yµ, V3−i] = 1.

If Vi ≤ O2(L3−i) for some i, then as [V1, V2] 6= 1, there must be also some
Yµ with [Vi, Yµ] 6= 1, a contradiction. So we have Vi 6≤ O2(L3−i) for i = 1, 2.
Further by (1) we have for both i that [Vi, Yµ3−i

] = 1. Now fix i = 1. By 3.7
with H = L1, P = V2 we get some L ≤ L1 such that V2 ≤ L, but V2 6≤ O2(L),
and some h ∈ L1 with O2(L)V2 ≤ (Mδ1µ1 ∩ L1)

h ∩ L, which is the unique
maximal subgroup of L containing V2. Finally V2 ≤ Sh ∩ L ∈Syl2(L), where
S is a Sylow 2–subgroup of L1. But as L also satisfies (1) - (3) with µ1

replaced by µh. As 〈(µh)L〉 ≤ V1, L2 still also satisfies (1) - (3). By the
minimal choice, we now get L = L1. By the same argument we also get that
V1 is in a unique maximal subgroup of L2. Hence we have the assertion (1)
of the lemma.

So without loss we may now assume that there is some µ ∈ µL2
2 with V1 ≤ Gµ

and [V1, Yµ] 6= 1.

We first show Yµ 6≤ O2(L1). Otherwise as O2(L1) ≤ Gρ for all ρ ∈ (µ1)
L1 , we

may choose ρ such that [Yµ, Yρ] 6= 1, which contradicts the assumption that
we do not have (3) of the lemma.

As Vi ≤ Gµ3−i
and we do not have (3) of the lemma, we see [Yµ1 , Yµ2 ] = 1.

Now we replace µ2 by µ. Then still (1) - (3) is satisfied. Hence we may as-
sume that Yµ2 6≤ O2(L1). Again we apply 3.7. This provides us with L ≤ L1

and h ∈ L1 such that Yµ2 ≤ L, Yµ2 6≤ O2(L), (Gδ1µ1 ∩ L1)
h ∩ L contains a

Sylow 2–subgroup of L and (Mδ1µ1 ∩ L1)
h ∩ L is the unique maximal sub-

group of L containing Yµ2 . In particular Yµ2 ≤ Gh
µ1

and as V1 ≤ Gµ2 we have
Y h

µ1
≤ Gµ2 . As we do not have (3) of the lemma, we have [Yµ2 , Y

h
µ1

] = 1.
With this L with µ1 replaced by µh

1 now (2) of the lemma is satisfied. 2
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dualF1
Lemma 3.11 Suppose that Gα, Gβ are subgroups of a group G, forming an

amalgam as in 3.10. Set R = [O2(Gβ), O2(Gβ)] and V = 〈Y Gβ
α 〉. Assume

[Yα, R] 6= 1. Then one of the following holds

(1) Yα is a dual F–module with offender R and [R, Yα] = [y, R] for all
y ∈ Yα \ CYα(R)

(2) There are O2(Gβ)O2(Gβ)–submodules V1 ≤ V2 ≤ V3 ≤ V4 of V such
that V2/V1 and V4/V3 are nontrivial irreducible modules and V4 ∩ Yα 6≤
V3, V2 ∩ Yα 6≤ V1.

Proof: Set H = O2(Gβ)O2(Gβ) Assume further that (2) is false.
Then there is at most one nontrivial chief factor V2/V1 for O2(H) in V with
Yα ∩ V2 6≤ V1.

We first show that there is at least one such factor. Suppose false. Let
V1 < V be a O2(H)–modules such that V/V1 is irreducible. Then we have
that Yα 6≤ V1. Hence we have that [O2(H), V ] ≤ V1. So we have some mod-
ule V2 such that V1/V2 is non trivial irreducible and [O2(H), V ] ≤ V1. As
S ∩O2(H) normalizes Yα , V/V2 = V1/V2(YαV2/V2) and [S ∩O2(H), V ] 6≤ V2,
we get that Yα ∩ V1 6≤ V2.

From now on we will assume that there is exactly one such chief factor.
Assume that this chief factor is contained in [V, O2(H)]. Then as just seen
this implies that V = [V,O2(H)]Yα. But then as O2(H) is a 2–group we see
[V, O2(H)] ≤ Yα. But then V is normal in 〈Gα, Gβ〉, a contradiction. Hence
[V, O2(H)] does not contain such a chief factor. Now set W = [Yα, O2(H)]H .
But then by the same argument we see that [W,O2(H)] = 1, in particular
[Yα, O2(H), O2(H)] = 1. As V = 〈Y H

α 〉, we get [V, O2(H), O2(H)] = 1.

So we have that R acts quadratically on V . Let now y ∈ Yα \ CYα(R).
Set W = CV (O2(H))〈xO2(H)〉. Suppose W does not contain out chief fac-
tor. Then as above we get that W has just trivial chief factors. But then
[O2(H),W ] = 1, contradicting [x,R] 6= 1. So we have that our chief factor
is in W and then there is no such chief factor in V/W . Again we see that
V = W + Yα. Further we have that [V,O2(H)] ≤ W . As [y, R, O2(H)] = 1
we get

[W,R] ≥ [y,R] = 〈[y, R]O
2(H), 〉 = [W,R]

So we have [W,R] = [y, R]. Now as [V,O2(H), R] ≤ [W,R] = [y,R]
and [R, V,O2(H)] = 1, we get with the 3–subgroup lemma [R, V ] =
[O2(H), R, V ] ≤ [W,R] = [y,R]. This shows [V, R] = [y, R] and so also
[Yα, R] = [y, R]. Now by quadratic action we see

|R/CR(Yα)| ≥ |R/CR(y)| = |[R, y]| = |[Yα, R]|.
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2
dualF

Lemma 3.12 Suppose that Gα, Gβ are subgroups of a group G, forming an
amalgam as in 3.10. Adopt the notation from there. Assume that we do not
have 3.10(3). Assume further that there is exactly one nontrivial chief factor
of Lj in Vj, where j is arbitrary if we have 3.10(1). If [Vj, O2(Gδj

)] 6= 1, then
we have 3.11(1).

Proof: Set V = 〈V Gδj

j 〉. Let W1/W2 some chief factor for O2(Gδj) with
Yµj

∩W1 6≤ W2. Further we may assume that there is no such chief factor
for O2(Lj) with this property in W2/W1 Then we get that (Yµj

∩W1)W2 is
normalized by Lj. But then it is also normalized by 〈Gδjµj

, Lj〉 = G(δj), a
contradiction. So as O2(Lj) induces just one nontrivial chief factor in Vj,
there is also exactly one nontrivial O2(Gδj

)–chief factor W1/W2 in V with
Yµj

∩W1 6≤ W2. This is 3.11(1). 2

strongF1

Lemma 3.13 Suppose that Gα, Gβ are subgroups of a group G, forming an
amalgam as in 3.10. Adopt the notation from there. Assume that we do have
3.10(1). Let further Yα ≤ O2(CG(x)) for all 1 6= x ∈ Yα. Assume further that
there are at least two nontrivial chief factors of Li in Vi, i = 1, 2. Then there
is µ ∈ µL1

1 such that Yµ is a strong F–module with V2 ∩ O2(L1) as offender.
In particular Yα is a strong F–module.

Proof: Choose µ ∈ (µ1)
L1 with Yµ 6≤ O2(L2). We have V2 ∩ O2(L1) ≤

Gµ.

We have that V1 acts quadratically on V2. Further V2 = 〈Y L2
µ2
〉, where

[V1, Yµ2 ] = 1 Hence we may apply 3.9. By 3.9b) applied to L2 with V1 acting
on V2, we get CV2(Yµ) = CV2(V1). By 3.9a) now applied to L1 with V2 acting
on V1 we get CV2(V1) ≤ V2 ∩O2(L1). Let 1 6= x ∈ [Yµ ∩O2(L2), V2 ∩O2(L1)].
Then we have Yµ ≤ CL2(x). By 3.9f) we have Yµ 6≤ O2(CL2(x)), a contradic-
tion.

So we have
[Yµ ∩O2(L2), V2 ∩O2(L1)] = 1.

Suppose now that V2 ∩ O2(L1) is not an offender on Yµ as an F–module.
Then

|V2/V2 ∩O2(L1)||V2 ∩O2(L1)/CV2(V1)| = |V2/CV2(V1)| =
3.9b)

|V2/CV2(Yµ)| ≥
3.9c)

|V1/V1 ∩O2(L2)|2 ≥ |Yµ/Yµ ∩O2(L2)|2 ≥

|Yµ/CYµ(V2 ∩O2(L1))|2 ≥ |V2 ∩O2(L1)/CV2(Yµ)|2.
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The last inequality is because V2 ∩ O2(L1) is assumed not to be an offender
on Yµ as an F–module. Further this inequality is strict besides V2∩O2(L1) =
CV2(Yµ). By 3.9b) we have

|V2 ∩O2(L1)/CV2(Yµ)| = |V2 ∩O2(L1)/CV2(V1)|

so
|V2/V2 ∩O2(L1)| ≥ |V2 ∩O2(L1)/CV2(V1)|.

By 3.9c) now applied to L1 with V2 acting we have

|V1/CV1(V2)| ≥ |V2/V2 ∩O2(L1)|2.

Hence

|V1/CV1(V2)| ≥ |V2/V2 ∩O2(L1)||V2 ∩O2(L1)/CV2(V1)| = |V2/CV2(V1)|.

By symmetry we also have

|V2/CV2(V1)| ≥ |V1/CV1(V2)|.

Hence we have equality everywhere. But this implies V2 ∩O2(L1) = CV2(Yµ)
and then also V2 = CV2(V1), a contradiction.

Hence we have that Yµ is an F–module with offender that V2 ∩ O2(L1).
By 3.9b) we get that it is a strong F–module. 2

strongF2

Lemma 3.14 Suppose that Gα, Gβ are subgroups of a group G, forming an
amalgam as in 3.10. Adopt the notation from there. Assume that we do
have 3.10(2). Let Yα ≤ O2(CG(x)) for all 1 6= x ∈ Yα. Assume further that
there are at least two nontrivial chief factors of Lj in Vj. Then Yµ3−j

is a
strong F–module with offender Vj. Further we have [Vj, a] = [Vj, Yµ§−J

] for
all a ∈ Yµ3−j

\ CYµ3−j
(Vj). In particular Yα is a strong F–module.

Proof: We have Vj ≤ Gµ3−j
and Yµ3−j

6≤ O2(Lj). Further [Yµ1 , Yµ2 ] = 1
and so we may apply 3.10 to Yµ3−j

acting on Vj. As in 3.13 we see with 3.9f)
that [Yµ3−j

∩ O2(Lj), Vj] = 1. Suppose now that Yµ3−j
is not an F–module

with offender Vj. Again we get

|Vj/CVj
(Yµ3−j

)| ≥
3.9c)

|Yµ3−j
/Yµ3−j

∩O2(Lj)|2 ≥ |Yµ3−j
/CYµ3−j

(Vj)|2 ≥
not F−mod.

|Vj/CVj
(Yµ3−j

)|2.

Again this is only possible if Vj = CVj
(Yµ3−j

), a contradiction.
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So we have that Yµ3−j
is an F–module with offender Vj. If 1 6= x ∈

[Yµ3−j
, Vj] ∩ Z(Lj), then Yµ3−j

6≤ O2(CG(x)), a contradiction. So we have
[Yµ3−j

, Vj] ∩ CVj
(Lj) = 1. By 3.9e) we have [Vj, Lj] ∩ CVj

(Lj) ≤ [Vj, Yµ3−j
],

so Vj = CVj
(Lj) ⊕ [Vj, Lj]. Now let a ∈ Yµ3−j

\ O2(Lj). Then [Vj, a] =
3.9d)

C[Vj ,Lj ](a) = =
3.9a)

C[Vj ,Lj ](Yµ3−j
). In particular Yα is a strong F–module. Fur-

ther [Vj, a] = [Vj, Yµ3−j
]. 2

FFsol

Lemma 3.15 Let V be an F–module over GF (2) for PA, where P is a
p–group, p odd, normalized by an offender A. If PA acts faithfully and
CA(P ) = 1, we have that |V : CV (A)| = |A| and p = 3.

Proof: By 2.1 we may assume that PA ∼= D1×· · ·×Dn, where the Di

are dihedral of order 2p. Now |V : CV (PA)| ≤ |A|2. Hence |[V, P ]| ≤ |A|2.
But |A| = 2n and so we get immediately that we must have equality and that
p = 3. 2

FF

Lemma 3.16 Let F ∗(X) be quasissimple and V be an irreducible F ∗(X)–
module over GF (2) which is an F–module for X. Then F ∗(X) is classical,
G2(q), An, or 3A6 and one of the following holds

1) F ∗(X) is classical or An and V is the natural module

2) F ∗(X) ∼= Ln(q) and V is the exterior square of the natural module
or its dual. Further this is sharp, i.e. there is no offender A with
|V : CV (A)| < |A|

3) F ∗(X) ∼= Sp(6, q) or Ω+(10, q) and V is the spin module or half spin
module, respectively. If F ∗(X) ∼= Ω+(10, q), then this is sharp.

4) F ∗(X) ∼= G2(q) and V the natural module or 3A6 and V is the 6–
dimensional module.

5) X ∼= A7 and V is the 4–dimensional module over GF (2).

Proof: [GM], [GM1] 2

sFF

Lemma 3.17 Let F ∗(X) be quasissimple and V be an irreducible faithful
F ∗(X)–module over GF (2) which is a strong F–module. Then one of the
following holds

(1) X ∼= SLn(q) or Sp(2n, q), q even, and V is the natural module

(2) F ∗(X) ∼= 3A6 and V is the 6-dimensional modules over GF (2) or X ∼=
A6 or A7 and V the 4–dimensional module over GF (2). In all cases
an offender is of order 4.
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(3) X ∼= O±(2n, q) or Σn and V is the natural module. In this case an
offender has order 2.

Proof: This immediately follows from 3.16 2
overoff

Lemma 3.18 Let V be the natural module for G = L2(q), U4(q) or G2(q),
q even. Then there are no over offender as an F–module. In case of G2(q)
all offender have order q3.

Proof: Let A be an over offender. As V is defined over GF (q), or
GF (q2) in case of U4(q) we have that |V : CV (A)| ≥ q, q2, respectively. This
settles the case of G ∼= L2(q). By 3.17 we have that V is not a strong module.
Hence we get that |V : CV (A)| > q, q2, which gives |V : CV (A)| ≥ q2, q4,
respectively. This now also settles the case of U4(q) as there are no elementary
abelian subgroups of order greater than q4. So we are left with G2(q). As
there are no elementary abelian subgroups of order greater than q3, we may
assume that |V : CV (A)| = q2. If there are no GF (q)–transvections in K,
we see that again A satisfies 3.17, a contradiction. Then we have, that
|V : CV (A)| = q3 and so also |A| = q3. So it remains to show that there are
no GF (q)–transvections in K. Let r be such an element. Then there is a
conjugate of r, with r 6∈ O2(P ) for one of the two parabolics P containing a
given Sylow 2–subgroup. Hence we may generate P by four conjugates of r.
So we can generate G by five conjugates. But then CV (G) 6= 1. 2

We are now going to classify the irreducible dual F–modules as well.
duF

Lemma 3.19 Let V be a faithful GF(2)–module for G and A be an elemen-
tary abelian subgroup of G with [V, A,A] = 1. Then also [V ∗, A,A] = 1, where
V ∗ is the dual module. Further if |[V, A]| ≤ |A|, then also |V ∗ : CV ∗(A)| ≤
|A|. If further [V, A] = [v,A] for all v ∈ V \ CV (A), then the same is true
for V ∗.

Proof: For U a subspace of V denote by α(U) the annihlator of U in
V ∗. Then by linear algebra we get

|α(U)| = |V/U |.
Now set U = CV (A). Then we get that α(U) = [V ∗, A] and α([V, A]) =
CV ∗(A). Now we see

[V ∗, A] = α(U) ≤ α([V,A]) = CV ∗(A),

hence A acts quadratically on V ∗.

As |[V,A]| ≤ |A|, we have that |α([V, A])| = |V |/|[V, A]| ≥ |V |/|A|. As
α([V, A]) = CV ∗(A), we have |V : CV (A)| ≤ |A|.

The last assertion follows as α([v, A]) = α([V, A]) and so [v∗, A] = [V ∗, A]. 2
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compdual

Lemma 3.20 Let F ∗(K) be quasisimple and A be an elementary abelian
subgroup of K. Let V be a faithful GF (2)K–module with [v, A] = [V,A] for
all v ∈ V \ CV (A). Then [F ∗(K), V ] is quasi irreducible.

Proof: Let W be a quasi irreducible submodule for F ∗(K) in V . Let
A ≤ S, S be a Sylow 2–subgroup of K and T = S ∩ F ∗(K). We first show
that [W,A] ≤ W . Let a ∈ A then [CV/CV (F ∗(K))(T ), A] ≤ CV/CV (F ∗(K))(T ).
As [T, W ] 6≤ CW (K), we see that [W,A] ≤ W as otherwise for some w ∈
W with [w, T ] 6≤ CW (F ∗(K)) we would get [w, A] 6≤ [CW/CW (F∗(K))(T ), A].
Now we get that [V,A] = [W,A] and so [V,A] ≤ W , which shows that also
[V, K] = W . 2

soldual

Lemma 3.21 Let V be a faithful GF (2)G–module, A ≤ G be an elementary
abelian quadratic 2–subgroup of order at least four and [V, A] = [v,A] for all
v ∈ V \ CV (A), or CV (A) = CV (a) for all a ∈ A]. Then [A,F (G)] = 1.

Proof: Suppose false. By 2.1 we may assume that G is a direct product
of dihedral groups D1, . . . , Dn, n ≥ 2, with A as a Sylow 2–subgroup. By
quadratic action we have that [V, D1, D2] = 1. But as [V,A] ≤ [V, D1] ∩
[V, D2] = 1, we get a contradiction. 2

sdFF

Lemma 3.22 Let F ∗(X) be quasissimple and V be an irreducible faithful
F ∗(X)–module over GF (2) which is a strong dual F–module. Then one of
the following holds

(1) X ∼= SLn(q) or Sp(2n, q), q even, and V is the natural module

(2) X ∼= A6 or A7 and V the 4–dimensional module over GF (2). In all
cases an offender is of order 4.

(3) X ∼= O±(2n, q) or Σn and V is the natural module. In this case an
offender has order 2.

Proof: By 3.19 we have that V ∗ is an F–module with an offender,
which is also a dual offender. Now with 3.16 we get the list of the lemma for
V ∗. As this list is closed under duality we get that V is one of these modules.
2

pointstab

Lemma 3.23 Let F ∗(X) quasisimple, V a faithful GF (2)–module for X.
Let L = O2′(CX(CV (S))) for a Sylow 2–subgroup S of X and A ≤ O2(L). If
V is an F–module for X with offender A then F ∗(X) ∼= SLn(q), Sp(2n, q),
G2(q) or Σn and [V, F ∗(X)] is the natural module. Further |V : CV (A)| = |A|.
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Proof: Set K = F ∗(X) and let U = [U,K] be some K–submodule
with U/CU(K) irreducible. Set W = 〈US〉. Assume first that W/CW (K) is
a direct sum of modules isomorphic to U/CU(K). First of all we have that
CW (K)CW (S) = 1, and so CW (K) = 1 and then also CU(K) = 1. Now
let 1 6= v ∈ CW (S). Then v projects onto some u ∈ U which is centralized
by NS(U). Hence we have that U is an irreducible F -module for K which
satisfies the assumptions of the lemma. Inspection of the possibilities in 3.16
shows that we have that K ∼= SLn(q), Sp(2n, q), G2(q) or Σn and U is the
natural module. Further |U : CU(A)| = |A|. In particular U = [V,K], the
assertion.

So we may assume that S induces some graph automorphism on K. Now A
cannot be a sharp offender on U and so we get that K ∼= Ln(q) and U is the
natural module. Now we also get U∗. So we have with the same argument as
before that U +U∗ is a direct sum of the natural module and its dual. and A
is in O2(CK(CU+U∗(NS(K)))) = Y . Let R be the central root group in that
group and H, H∗ the hyperplanes centralized by R in U , U∗, respectively.
Let A1 = CY (H). Then we see that |H : CH(A)| ≥ |AA1/A1|. Further we see
that |A∩A1/R∩A| ≤ |H∗ : CH∗(A∩A1)|. Hence |U +U∗ : CU+U∗(A)| ≥ q|A|,
so A cannot be an offender on U + U∗, a contradiction. 2

quad

Lemma 3.24 Let K be a component of G and V be a GF (2)–module for G
with [V,K] 6= 1. Let A be a quadratic group on V , then one of the following
holds

(i) [K, A] ≤ K

(ii) A 6= NA(K), |A/CA(K)| = 2

(iii) K ∼= SL2(2
k) and |A/NA(K)| = 2

In (ii) and (iii) A is not a quadratic offender as an F -module on [V, K].

Proof: [Cher2] 2

strong

Lemma 3.25 Let X ∼= G(q), q = 2n, be a Lie group and V an irreducible
GF (2)-module. Let A be a fours group with [V,A, A] = 0. If A intersects
some root group R nontrivially but A 6≤ R. Then one of the following holds

(i) X ∼= (S)Ln(q), (S)Un(q), Sp2n(q) or F4(q) and V = V (λ) for some
fundamental weight λ.

(ii) X ∼= Ω±
2n(q) and V is the natural or spin module.

(iii) X ∼= E6(q) and V = V (λ1) or V (λ6)
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(iv) X ∼= E7(q) and V = V (λ7)

(v) X ∼= 2E6(q) and V = V (λ4)

(vi) X ∼= G2(q) or 3D4(q) and V is the natural module.

Proof: [Str] 2

The modules from 3.25 will be called strong quadratic in this paper.

spor

Lemma 3.26 Let X be a group such that F ∗(X) is a perfect central ex-
tension of a finite simple group. Suppose there is some elementary abelian
subgroup A of X, |A| ≥ 4, such that for some irreducible nontrivial faithful
module V over GF (2) we have [V,A, A] = 1. Then

(i) If F ∗(X)/Z(F ∗(X)) is sporadic, then F ∗(X)/Z(F ∗(X)) ∼= M12, M22,
M24, J2, Co1, Co2 or Sz. If |A| ≥ 8, then F ∗(X) ∼= 3 ·M22.

(ii) If F ∗(X)/Z(F ∗(X)) is a Lie group in odd characteristic which is not a
Lie group in even characteristic too, then F ∗(X) ∼= 3 · U4(3). Further-
more V is the 12–dimensional module.

(iii) If F ∗(X)/Z(F ∗(X)) is alternating, then either V is the natural module
or a spin module or F ∗(X) ∼= 3 ·A6 and V is the 6-dimensional module.
If |A| > 8, then V is natural or X ∼= A8 and |V | = 16. If V is the
spinmodule and |A| = 4, then A is conjugate to 〈(12)(34), (13)(24)〉 or
〈(12)(34)(56)(78), (13)(24)(57)(68)〉. If |A| = 8 the A is conjugate to
〈(12)(34)(56)(78), (13)(24)(57)(68), (14)(26)(37)(48)〉 under Σn.

Proof: (i) This is [MeiStr1].

(ii) This is [MeiStr2].

(iii) The first assertion is [MeiStr1]. Suppose |A| ≥ 4. Let a ∈ A]. Let
k be the number of fixed points of a. Then there is K ≤ CX(a), K ∼= Σk.
Furthermore CCX(a)(K

′) is an extension of a 2–group by Σm, m = (n− k)/2.
Now choose a ∈ A with m > 2 if possible. Suppose first [A,CCX(a)(K

′)] 6= 1.
If m ≥ 5, then Σm is nonsolvable and so CCX(a)([V, a]) contains an elementary
abelian subgroup of O2(CX(a)) of order 2m−1. But then this group contains
a conjugate of (12)(34) which contradicts [MeiStr1, (4.3)].

Let m = 4. Then a ∼ (12)(34)(56)(78). Furthermore as we may assume
that no x ∼ (12)(34) is contained in 〈ACX(a)〉 we see that A is conjugate to
a subgroup of 〈(12)(34)(56)(78), (13)(24)(57)(68), (15)(26)(37)(48)〉.

Let m = 3. Then C(K ′) ≤ Σ6 and a ∼ (12)(34)(56). Then 〈ACX(a)〉 contains
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some x ∼ (12)(34), contradicting [MeiStr1, (4.3)].

So let [A,O2′(CCX(a)(K
′))] = 1. If [A,K ′] 6= 1, then [K ′, [V, a]] = 1. If

k ≥ 4, then K ′ contains some x ∼ (12)(34). This again contradicts [MeiStr1,
(4.3)]. Let k ≤ 3. As [A,O2′(CCX(a)(K

′))] = 1 and m > 2, there is x ∼ (12)
in A, a contradiction. So we are left with [A,K ′] = 1 = [A,CCX(a)(K

′)]. But
this is impossible with m > 2.

So we have m ≤ 2 for all a ∈ A]. As there is no fours group of transvections
we may assume a = (12)(34) ∈ A. Now A ≥ 〈a, b〉, b = (13)(24), (12)(56) or
(34). Let [b,K ′] 6= 1. Then b = (12)(56) and so K ′ contains no involutions
by [MeiStr1, (4.3)]. This shows k ≤ 3 and so A ≤ Σ7. But for this group
A = 〈(12)(34), (12)(56)〉 does not act quadratically on the four dimensional
module.

Assume now b = (34). Then [a,E(CX(b))] 6= 1. Now E(CX(b)) ∼= Σn−2,
which is nonsolvable. But then 〈(34), (12)(56)〉 acts quadratically, a contra-
diction. 2

quadfour

Lemma 3.27 Let F ∗(R) be a quasisimple group such that R/Z(R) is spo-
radic. Suppose that R acts faithfully on some irreducible GF (2)–module V .
Let S be a Sylow 2–subgroup with a quadratic normal subgroup W of order at
least 4 such that 〈W P 〉 is abelian and acts quadratically for all S ≤ P < R,
then R/Z(R) ∼= M22. If W acts quadratically then we have that |W | = 4 and
R ∼= 3M22 and V is the 12–dimensional module.

Proof: By 3.26 we have that R/Z(R) ∼= Mn, J2, Co2, Co1, Sz. As
none of this group possess exactly one maximal P with S ≤ P < R, we get
that R must contain a quadratic group of order at least 8. Hence again by
3.26 we get R ∼= 3M22. Here we have two maximal parabolics P1 and P2 and
W ≤ O2(P1) ∩O2(P2), which shows that |W | = 4.

Lie2

Lemma 3.28 Let K be a quasisimple group in Chev(2) and L be some auto-
morphism group of K. Let V be a faithfull GF (2)–module for L and assume
that A is some quadratically acting elementary abelian subgroup of K, which
is normal in some Sylow 2-subgroup T of K. Assume further that for any
proper parabolic P of K, with T ≤ P we have that 〈AP 〉 is abelian and acts
quadratically on V . Then one of the following holds

a) K is a rank 1 Lie group

b) K ∼= Ln(q), Sp(2n, q), Un(q) and A is in a root group and the natural
module is in V .

c) K ∼= G2(q) or 3D4(q) and the natural module is in V
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d) K ∼= Sp(2n, q), V contains the spin module and A is in a short root
group.

Proof: Let the rank of K be at least two. We have that A intersects
a root subgroup nontrivially. If A is not contained in that root subgroup
we have that V is a strong quadratic module. If A is contained in the root
subgroup, then as the rank is at least two, there is a minimal parabolic P ,
such that 〈AP 〉 is not contained in a root subgroup. Hence again V is strong
quadratic. Now application of 3.25 yields K and the module V .

Let first K ∼= Ln(q). Then A contains some V (λi). Let Ki be the parabolic
corresponding to λi. Let B = 〈AKi〉. Then B = O2(Ki). But this is just
quadratic for i = 1, n − 1. So we have the natural module. Suppose that
A is not in a root group. Then there is some parabolic K1 or Kn−1, where
A 6≤ O2(Ki), a contradiction.

Let now K ∼= Un(q) and V (λi) a submodule. Now as before, we get i = 1.
As O2(K1), K1 the point stabilizer, is not abelian, we see that A is in the
transvection group.

Let K ∼= Sp(2n, q). Let K1 be the point stabilizer in the natural represen-
tation. Suppose O2(K1) acts quadratically. Then we have the spin module.
Now consider K2, the normalizer of a short root group. But Z(O2(K2)) does
not act quadratically on the spin module, so we have that A is in the short
root group. If O2(K1) is not quadratic, we have that A is in a long root
group. Now 〈AK2〉 acts quadratically and so [NK(A), [V, A]] = 1, which im-
plies that we have the natural module.

Let K ∼= F4(q) and V = V (λ1) or V (λ4). Then either Z(O2(K1)) or
Z(O2(K4)) has to act quadratically, where K1, K4 are the maximal parabol-
ics related to the roots. But both is not true.

Let K ∼= Ω±(2n, q). Then we have the natural or half spin module. But
on the natural module O2(K1) does not act quadratically. On the half spin
module O2(Kn) does not act quadratically.

For K ∼= E6(q), E7(q), or 2E6(q) and V (λi) we just consider Z(O2(Ki)),
which does not act quadratically. 2

2Flie

Lemma 3.29 Let F ∗(X) be a group of Lie type in characteristic two and V
be an irreducible faithful 2F–module in characteristic 2, which restricted to
F ∗(X) remains irreducible. Then V is an F–module, or one of the following
holds

32



(1) F ∗(X) = Lm(r2) and V = V (λi)⊗ V (λi)
σ, where i = 1 or n− 1 and σ

is a field automorphism of order two.

(2) F ∗(X) = Sp(2n, r) and V = V (λ2), n ≤ 4.

(3) F ∗(X) = L6(r) and V = V (λ3).

(4) F ∗(X) = Sp(2n, r), n = 4, 5, and V = V (λn).

(5) F ∗(X) = Sp(4, r2) and V = V (λ1)⊗ V (λ1)
σ or V (λ2)⊗ V (λ2)

σ, where
σ is a field automorphism of order two.

(6) F ∗(X) = Ω−(8, r), Ω−(10, r), Ω+(12, r) and V is the half spin module.

(7) F ∗(X) = U6(r) and V = V (λ3).

(8) F ∗(X) = SU3(r) or Sz(r) and V = V (λ1).

(9) F ∗(X) = E6(r) and V = V (λ1) or V (λ6).

(10) F ∗(X) = F4(r) and V = V (λ1) or V (λ4).

Proof: [GM1] [GLM] 2

2FAn

Lemma 3.30 Let F ∗(X)/Z(F ∗(X)) ∼= An, n > 5, n 6= 8, and V be an
irreducible faithful 2F–module in characteristic 2 and X = 〈AX〉 for some
offender A, then V is the natural permutation module or n = 7 and V is a
four dimensional one or a direct sum of two of them, n = 9 and V is an
eight dimensional module or F ∗(X) ∼= 3A6 and V is a 6-dimensional module
or a direct sum of two of them.

Proof: [GM] 2

2Fodd

Lemma 3.31 Let F ∗(X)/Z(F ∗(X)) be a group of Lie type in characteristic
r and V be an irreducible faithful 2F–module in characteristic 2, 2 6= r.
Suppose there is an offender A such that X = 〈AX〉. If F ∗(X)/Z(F ∗(X))
is not a group in characteristic 2, too, then X ∼= 3U4(3) and V is a 12 –
dimensional module.

Proof: [GM] 2

2Fspor

Lemma 3.32 Let F ∗(X)/Z(F ∗(X)) be a sporadic simple group and V be
an irreducible faithful 2F–module in characteristic 2. Suppose there is an
offender A such that X = 〈AX〉. Then one of the following holds

(i) F ∗(X) ∼= M12, or M22 and V is a 10–dimensional module.
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(ii) X ∼= M23, or M24 and V is an 11 – dimensional module.

(iii) X ∼= 3M22, or J2 and V is a 12 – dimensional module.

Proof: [GM] [GLM] 2

4t

Lemma 3.33 Let F ∗(X) = L be quasisimple and V be an irreducible faithful
GF (2)–module for X. Let t be some involution in X. Then

a) If |V : CV (t)| ≤ 2, then L ∼= SLn(2), Sp(2n, 2) Ω±(2n, 2), An and V
is the natural module.
b) If |V : CV (t)| ≤ 4, then either (L, V ) is as in a) or L ∼= SUn(2), G2(2)′,
SLn(4), Sp(2n, 4) or Ω±(2n, 4) and V is the natural module, or one of the
following holds

(i) L ∼= 3A6, |V | = 26

(ii) L ∼= 3U4(3), |V | = 212

(iii) L ∼= A7, |V | = 24

(iv) L ∼= Sp6(2), |V | = 28.

Proof: This follows with an easy inspection from 3.16 in case a) and
3.29, 3.30, 3.31 and 3.32 in case b). 2

2Fspor1

Lemma 3.34 Let F ∗(X) be M12, 3M22 or J2 and V be the irreducible 10–
dimensional or 12–dimensional module over GF (2) as in 3.32. Then there
is no offender A as a 2F–module such that |V : CV (A)| ≤ |A|q < |A|2, for
some 2-power q, with |A| = qs, for some s and |V : [V, A]CV (A)| ≤ q.

Proof: Let first F ∗(X) = M12. Let q > 2. As |A| = qs > q, we see
q = 4, s = 2 and A 6≤ F ∗(X). Now there is some a ∈ A] such that C(a)
involves A5 and |[V, a]| = 25. So |V : CV (a)| = 25. As |V : CV (A)| ≤ 26,
we get that A5 would induce transvections on CV (a), a contradiction. So we
have q = 2. We have that |[V, a]| ≥ 24 for all a ∈ A]. Hence if A ≤ F ∗(X),
we get |A| = 8 and CV (a) = CV (A) for all a ∈ A], which is not possible
as centralizers of involutions are maximal subgroups in F ∗(X). So there is
some a ∈ A with |[V, a]| = 25 and then |A| = 24. This shows [A, [V, a]] = 1
and so 〈ACX(a)〉 has to act trivially on [V, a], a contradiction.

Suppose next F ∗(X) = J2. Suppose that A contains a non 2-central in-
volution a. Then |[V, a]| = 26. This gives |A| = 16. As V is defined over
GF (4), we now see that CV (A) = CV (a). So 〈ACX(a)〉 centralizes CV (a),
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which contradicts the P × Q–lemma. Hence A just contains 2–central in-
volutions. In particular |A| ≤ 4. But for a 2-central involution x we have
|[V, x]| = 16 ≥ |A|2, a contradiction.

So we are left with F ∗(X) = 3M22 and |V | = 212. Suppose q = 2. Let
first A ≤ F ∗(X). as for involutions x ∈ F ∗(X) we have |[V, x]| = 16 and
V is not an F–module, we see that |A| ≥ 8. If |A| = 16, then there are
just two possibilities. But in one case we would get |CV (A)| = 64 and in
the other |CV (A)| = 4. So we have |A| = 8. Then CV (a) = CV (A) for all
a ∈ A]. Hence 〈CF ∗(X)(a) | a ∈ A]〉 ∼= 243A6, would act on CV (A), which is
not possible, as this group just induces 6–dimensional modules (recall that
elements of order three in the center of 3A6 act fixed point freely). Now
q > 2. As |A| ≤ 25, we get q = 4 and |A| = 16. Then |V : CV (a)| ≤ 25 for
all a ∈ A. Hence we get A ≤ F ∗(X) and there are exactly two possiblities.
This again shows that NX(A) involves A6, and |CV (A)| = 64. Now A acts
quadratically and so |V : CV (A)| ≤ q = 4, a contradiction.

So assume now A 6≤ F ∗(X). If a ∈ A \ F ∗(X), then |[V, a]| = 26, so |A| = 25

and CV (a) = CV (A). As A contains a conjugacy classes of involutions in
X \ F ∗(X), we may assume that CX(a) ∼= E8L3(2). Now A is not normal
in 〈ACX(a)〉 and so CX(a) acts trivially on CV (a), contradicting the P × Q–
lemma. 2

split1

Lemma 3.35 Let X ∼= An, n ≥ 5, V be a GF (2)X-module with [V, X] the
natural irreducible permutation module. Assume CV (X) = 1. Then |V :
[V, X]| ≤ 2, and V = [V, X] if n is odd. Furthermore V is a factor of the
permutation module

Proof: This will be proved by induction on n. For n = 5 this is well
known. So let n > 5, K ∼= An−1, K ≤ X. If n−1 is odd, then [V, X] = [V,K]
is the permutation module for K. By induction V = [V,K]

⊕
T̃ . Hence there

is v ∈ V \ [V,X], [v, K] = 1, i.e. 〈v X〉 = V is a factor of the permutation
module.

Let n − 1 be even. Then we have a K-chain. 1 < T < T1 < [V, X] <
V , with |T | = 2, T1/T the irreducible permutation module for K and
|[V, X]/T1| = 2. Now by induction CV/T (K) 6= 1. As CV/T (K) 6≤ [V, X]/T ,
we again get some v ∈ V \ [V, X], [v, K] = 1, and so V is a factor of the
permutation module. 2

split

Lemma 3.36 (a) Let X ∼= SLn(q), q even, and V be a module over GF (2)
with [V, X] the natural module and CV (X) = 1. Then V = [V,X], or one of
the following holds:

(i) X ∼= L2(q), q even, and |[V : [V, X]]| ≤ q
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(ii) X ∼= L3(2) and |V | = 16

(b) Let X ∼= Ω±(2n, q), q even, n ≥ 2, and V be a module over GF (2) with
[V, X] the natural module and CV (X) = 1. Then V = [V,X] or X ∼= Ω+

6 (2)
and |V | = 27.

(c) Let X ∼= SLn(q), n ≥ 5, q even, and V be a module over GF (2)
with [V, X] the exterior square of the natural module and CV (X) = 1. Then
V = [V,X].

(d) Let X ∼= Ω±(2n, q), q even, and V be a module over GF (2) with [V,X]
a half spin module and CV (X) = 1. Then V = [V, X], or X ∼= Ω−(6, 2) and
|V | ≤ 210.

(e) Let X ∼= Sp(2n, q), n ≥ 2, q even, and V be a module over GF (2)
with [V, X] the natural module and CV (X) = 1. Then |V : [V,X]| ≤ q.

(f) Let X ∼= Sp6(q), q even, V be a module over GF (2) with CV (X) = 0
and [V, X] ∼= V (λ3). Then V ∼= V (λ3).

(g) Let X ∼= SU(n, q), (n, q) 6= (4, 2), and V be a module over GF (2)
with CV (X) = 1. Assume that [V, X] is the natural module, then V = [V, X].

Proof: (a) Obviously we may assume Z(X) = 1 as otherwise [V,X] =
[V, Z(X)] and V = [V, Z(X)]⊕ CV (Z(X)).

If X ∼= L2(q), then for x ∈ X, o(x) = 2, we have |V : CV (x)| = q. We
have that X is generated by three conjugates of x. Hence |V | ≤ q 3, which is
(i).

Let now X ∼= SL3(q). If q 6= 2, then there are three elements x1, x2, x3

in X acting fixed point freely on [V,X].

x1 =




ω−2

ω
ω


, x2 =




ω
ω−2

ω


, x3 =




ω
ω

ω−2


,

o(ω) = q − 1.

We have [xi, V ] = [V, X], i = 1, 2, 3, and so as [xi, xj] = 1 for all i, j, we
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get CV (x1) = CV (x2) = CV (x3). But X = 〈CX(xi)|i = 1, 2, 3〉, the assertion.

So let q = 2. Let ν ∈ X, o(ν) = 7. Then V = CV (ν) ⊕ [V, ν]. Let
x ∈ CV (ν)]. As [V, X] is the natural module and so [V, X] = [V, ν], we see
that |CX(x)| = 21. Hence |xX | = 8 and so V is a factor module of the per-
mutation module, which shows |V | ≤ 16. This is (ii).

Let next X ∼= L4(2). There is 〈ρ〉 × A5 ≤ X, o(ρ) = 3, [V, X] = [V, ρ]
and [V,X] = [V, γ], for γ ∈ A5, o(γ) = 3. Hence CV (ρ) = CV (γ). Now as
〈CX(γ), CX(ρ)〉 = X, we get V = [V,X].

Let now n ≥ 4 and q > 2 for n = 4. Let P be the parabolic in X
with |O2(P )| = q n−1 and P ′/O2(P ) ∼= SLn−1(q) and |C[V,X](O2(P ))| =
q n−1. Then [P ′, V ] = C[V,X](O2(P )), as P ′ = P ′′. This now shows that
[CV (O2(P )), P ′] is the natural module. By induction on n we have that
CV (O2(P )) = CV (P ′)

⊕
C[V,X](O2(P )). Now application of [Hu, (I.17.4)]

shows CV (P ′) = 1, as CV (X) = 1. Hence as |V : CV (O2(P ))| = q, we get
V = [V,X].

(b) Let first X ∼= Ω−
4 (q). Let ω1 ∈ X, o(ω1) = q2 − 1. Then we see that

there is some power ω of ω1 of order q + 1 such that C[V,X](ω) is of order
q2. We have V = [V,X]CV (ω). We have that ω just centralizes a hyperbolic
plane in [V,X]. Now let g ∈ X such that C[V,X](ω) ∩ C[V,X](ω

g) = 1, this
can be achieved by choosing a hyperplane orthogonal to C[V,X](ω). Then
X = 〈ω, ωg〉. Now |V : CV (X)| = q4 and so we get V = [V, X]CV (X), the
assertion.

Let X ∼= Ω+(4, q). We write X as X1X2, Xi
∼= SL2(q). We may assume

q > 2, as the assertion is obvious for q = 2. There is ωi ∈ Xi, with
o(ωi) = q + 1 and ωi acting fixed point freely on [V,X], i = 1, 2. Now
choose v ∈ V \ [V, X] with [v1, ω1] = 1. Then v1 is uniquely determined in
[V, X]v1. So X2 centralizes v1 too. Hence [ω2, v1] = 1. As there is a unique
fixed point of ω2 in [V, X]v1, we see [X1, v1] = 1, so [v1, X] = 1, a contradic-
tion.

Let next X ∼= Ω+
6 (q), q > 2. Let P be the parabolic with P ′/O2(P ) ∼=

SL2(q) ∗SL2(q). Then let V1 = C[V,X](O2(P )). We have |V1| = q. Further as
[O2(P ), P ] = O2(P ), we get [V, O2(P )] = [V,X,O2(P )]. Let S be a Sylow 2–
subgroup of P . Then |C[V,X,O2(P )]/V1(S)| = q. As [P ′, V ] = [V,O2(P )] we now
see that V/V1 = [V, X]/V1CV/V1(O2(P )). But then V = [V,X]CV (O2(P )).
As [P ′, C[V,X](O2(P ))] = 1, we get that V = [V,X]CV (P ′), but then by [Hu,
(I.17.4)] we get V = [V, X].

Let X ∼= Ω+
6 (2). Now A8

∼= Ω+
6 (2) and [V,X] is the permutation mod-
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ule. Hence the assertion follows with 3.35.

Let now finally X ∼= Ω−
2n(q), n ≥ 3 or X ∼= Ω+

2n(q), n ≥ 4. Let P be the
parabolic with P ′/O2(P ) ∼= Ω±

2n−2(q). Set V1 = C[V,X](O2(P )), |V1| = q. We
have [P ′, V ] = [V,O2(P )], as P ′ = P ′′. Hence we see |V/V1 : CV/V1(O2(P ))| =
q. Furthermore CV/V1(O2(P )) = [CV/V1(O2(P )), P ′]CV (O2(P ))/V1. Now P
acts on CV (O2(P )) and so we get [CV (O2(P )), P ′] = 1. By [Hu, (I.17.4)] we
have CV (O2(P )) ≤ [V,X] and so [V, X] = V .

(c) Let P be the parabolic in X with O2(X) be the natural module
for X/O2(X) ∼= GL(n − 1, q). And assume furthermore that we have cho-
sen P such that C[V,X](O2(X)) is the natural module for X. In particular
C[V,X](O2(X)) is dual to O2(X) as X/O2(X)–module.

Let P1 ≤ P with O2(P ) ≤ P1 and P1/O2(P ) ∼= A7 if n = 5 and q = 2
and let P1 = P ′ else. We have [V, O2(P )] = C[V,X](O2(P )) as n ≥ 5. If n = 5,
q = 2, we see with 3.35 that P1 acts on some submodule V1 with V = V1[V,X]
and V1 ∩ [V, X] = C[V,X](O2(P1)). If n = 5 and q > 2, we get the same result
with (a). If n > 5, we get the result by induction as [V, X]/C[V,X](O2(P )) is
the symmetric square of the natural module for P/O2(P ).

So in any case P1 acts on V1, which is a central extension of the natural mod-
ule. As O2(P ) is not isomorphic to C[V,X](O2(P )), we see that [V1, O2(P )] = 1.
Hence we have that V1 = CV (O2(X)). This shows that P acts on V1 in any
case. But now by (a) we have V1 = (V1∩ [V, X])CV1(P

′). Application of [Hu,
(I.17.4)] shows CV (P ′) = 1 and so V = [V,X].

(d) If X ∼= Ω+(6, q) this is (a). Let now X ∼= Ω−(6, q). Then [V,X] is
the four dimensional unitary module. We will consider it this way. Let first
q > 2. There are x1, x2, x3 ∈ X, (o(ω) = q + 1)

x1 =




ω−3

ω
ω

ω


 , x2 =




ω
ω−3

ω
ω


 ,

x3 =




ω
ω

ω
ω−3


 .

As q > 2, we have [V, X] = [V, xi], i = 1, 2, 3. Now CV (x1) = CV (x2) =
CV (x3). As CX(xi) ∼= 〈xi〉SU3(q), we get X = 〈CX(x1), CX(x2), CX(x3)〉.
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Hence we have the assertion.

Let now q = 2. Let P be the parabolic with P/O2(P ) ∼= L2(4). Now
|C[V,X](O2(P ))| = 16. As C[V,X](O2(P )) 6∼= O2(P ) as P/O2(P )-module, we
get V = [V, X]

⊕
CV (O2(P )). We have |CV (O2(P )) : [CV (O2(P )), P ]| ≤ 4.

Hence |V : [V, X]| ≤ 4 by [Hu, (I.17.4)].

Let next X ∼= Ω−
8 (2). Then there are x1, x2 ∈ X, o(x1) = o(x2) = 3, x1 6∈

〈x2〉, [x1, x2] = 1, [V,X] = [V, xi], CX(xi) = 〈xi〉 × Ω+
6 (2), i = 1, 2. This

shows CV (x1) = CV (x2) is invariant under X = 〈CX(x1), CX(x2)〉. Hence
V = [V,X].

Let now X ∼= Ω±(2n, q), n > 3 and q > 2 for Ω−(8, q). Let P be the parabolic
with P ′/O2(P ) ∼= Ω±(2n− 2, q). Then C[V,X](O2(P )) is the half spin module
for Ω±(2n − 2, q) while O2(P ) is the natural Ω±(2n − 2, q)-module. This
shows V = [V, X]CV (O2(P )) and [CV (O2(P )), P ′] = C[V,X](O2(P )).

Now the restrictions are made such that the half spin module splits for P ′ by
induction. Hence we have CV (O2(P )) = C[V,X](O2(P ))CV (P ′). Application
of [Hu, (I.17.4)] shows CV (P ′) = 1 and then V = [V, X].

(e) Let now X ∼= Sp2n(q). If X ∼= Sp4(2)′, the assertion follows with
3.35. Let now X ∼= Sp2n(q), q > 2 for n = 2. Let P be the parabolic with
P ′/O2(P ) ∼= Sp2n−2(q), A6 for X ∼= Sp6(2). Now V = [V,X]CV (Z(O2(P ))).
Set V1 = CV (Z(O2(P ))). Now [V1, P

′] = [[V,X], P ′]. Set V2 = [V, Z(O2(P ))].
Then |V2| = q. We see that |V1/V2 : CV1/V2(O2(P ))| = q. We have V1/V2 =
([[V, X], P ′]/V2)CV1(O2(P ))/V2. Hence we have [CV1(O2(P )), P ′] = 1 as P ′ =
P ′′. This shows CV1(O2(P )) ≤ [V, X] and so |V : [V, X]| ≤ q by [Hu, (I.17.4)],
or X ∼= Sp6(2) and [P,CV1(O2(P ))] 6= 1. Hence there is some t ∈ P \
P ′, o(t) = 2, with [CV1(O2(P )), t] = V2. We may assume that t induces
a transvection on the natural module. As [t, [V,X]/V2] 6= 1 we now see
|[V, t]| ≥ 4. But 〈t〉 is conjugate to Z(O2(P )) and [V, Z(O2(P ))] = V2 is of
order 2.

(f) Let now X ∼= PSp6(q) and [V, X] be the spin module. Let X1 ≤
X, X1

∼= Ω+
6 (q) ∼= L4(q). Then [V,X] is an extension of the natural L4(q)-

module by the natural module. Hence V = [V, X]
⊕

CV (X1). Let P1 ≤ X1 be
the parabolic which is the stabilizer of a 2-space in the natural representation
of L4(q). Then CV (P1) = CV (X1). We have P1 ≤ P , P the stabilizer of a 1-
space in the natural representation of Sp6(q). Now Z(P ′) centralizes P1 and
so [Z(P ′), CV (P1)] = 0. Hence CV (P1) is centralized by 〈X1, Z(P ′)〉 = X.
This shows CV (X1) = 0 and then V = [V, X].
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(g) Let next X ∼= SUn(q). If X ∼= SU3(q). Then there are x1, x2 ∈
X, x2 6∈ 〈x1〉, o(x1) = q + 1 = o(x2), [x1, x2] = 1 and [V,X] = [V, xi], i = 1, 2.
Hence CV (x1) = CV (x2). As CV (x1) ∼= Zq+1 × L2(q), is a maximal subgroup
of X, we get 〈CX(x1), CL(x2)〉 = X, the assertion.

Let now X = U4(q), q > 2. There are x1, x2, x3 ∈ X, (o(ω) = q + 1)

x1 =




ω−3

ω
ω

ω


 , x2 =




ω
ω−3

ω
ω


 ,

x3 =




ω
ω

ω
ω−3


 .

As q > 2, we have [V, X] = [V, xi], i = 1, 2, 3. Now CV (x1) = CV (x2) =
CV (x3). As CX(xi) = 〈xi〉SU3(q), we get X = 〈CX(x1), CX(x2), CX(x3)〉.
Hence we have the assertion. Let now q = 2. Let P be the parabolic with
P/O2(P ) ∼= L2(4). Now |C[V,X](O2(P ))| = 16. As C[V,X](O2(P )) 6∼= O2(P ) as
P/O2(P )-modules, we get V = [V, X]

⊕
CV (O2(P )). We have |CV (O2(P )) :

[CV (O2(P )), P ]| ≤ 4. Hence |V : [V,X]| ≤ 4 by [Hu, (I.17.4)].

Let now X ∼= U5(2). In this case we have x1, x2, x3, x4,

x1 =




ω−1

ω
ω

ω
ω




, x2 =




ω
ω−1

ω
ω

ω




, . . .

and so on, o(ω) = 3.

Further [xi, xj] = 1. Now [V, X] = [V, xj], i = 1, . . . , 4, and so CV (x1) =
CV (x2) = CV (x3) = CV (x4). We have CX(xi) ∼= 〈xi〉 × U4(2). Hence
X = 〈CX(xi)|i = 1, 2, 3, 4〉 and then V = [V,X].

If X ∼= SU6(2), then [Z(X), V ] = [V, X] and we get V = [V, X], as
|Z(X)| = 3.

Let now X ∼= SUn(q), q > 2 for n = 5 or 6. Let P be the nor-
malizer of a root group R in X. We have |[[V, X], R]| = q 2. We
have P ′/O2(P ) ∼= SUn−2(q) and C[V,X](R)/[[V,X], R] ∼= O2(P )/R. Now
[V, R] = [[V,X], R]. Furthermore as [P ′, V ] ≤ C[V,X](R), we see that
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V/[[V,X], R] = [V, X]/[[V, X], R] · CV/[[V,X],R](O2(P )). Let V1 be the preim-
age of CV/[[V,X],R](O2(P )). Then [V1/[[V,X], R], P ′] is the natural SUn−2(q)-
module. By induction V1/[[V, X], R] = (V1/[[V, X], R])CV1/[[V,X],R](P

′). Now
as P ′ = P ′′, we get that [V2, P

′] = 0 for a preimage V2 of CV1/[[V,X],R](P
′).

Hence V2 = 0 and so V = [V,X], the assertion.

2
split2

Lemma 3.37 (a) Let X ∼= A7 and V be a GF (2)–module such that CV (X) =
1 and [V,X] is the four dimensional module, then V = [V, X].

(b) Let X ∼= A9 and V be a GF (2)–module such that CV (X) = 1 and
[V, X] is the eight dimensional module, which is not the permutation module,
then V = [V, X].

(c) Let X ∼= Sz(q), q > 2, and V be a GF (2)–module, such that CV (X) =
1 and [V,X] is the natural module, then |V : [V, X]| ≤ q.

Proof: (a) Let X ∼= A7, |[V, X]| = 16. Let X1
∼= L3(2), X1 ≤ X, with

|[[V, X], X1]| = 8. Then by 3.36 V = [V,X]CV (X1). Now by [Hu, (I.17.4)]
we see CV (X1) = 1 and so V = [V, X].

(b) Let X ∼= A9 and X1
∼= A8, X1 ≤ X. We have that [V, X] involves

exactly two natural L4(2)–modules. So we have that V = [V,X]CV (X1) by
3.36. Now by [Hu, (I.17.4)] we get CV (X1) = 1 and so V = [V,X].

(c) Let X ∼= Sz(q). Let ν in X with o(ν) = q +
√

2q + 1. Then as ν
acts fixed point freely on [V, X], we see that V = [V, X] × CV (NX(〈ν〉)).
Now let T be a Sylow 2-subgroup of X containing a Sylow 2–subgroup T1

of N(〈ν〉). Then |C[V,X](T1)| = q. Let x ∈ Ω1(T ) \ Φ(T ), Then we see that
CCV (ν)(x) = 1. As x acts on CV (T ), we see that |CV (T )| ≤ q2, the assertion.

2
Scentral

Lemma 3.38 Let L = F ∗(X) be a quasisimple group and V be an F -module
over GF (2) for X. Suppose CV (S) ≤ CV (F ∗(X)) for S ∈ Syl2(X). Then
one of the following holds

(i) L ∼= L3(2) and |[V, L]| = 16.

(ii) L ∼= A2 m and |CV (L)| = 2, [V, L]/C[V,L](L) is the natural module.

Proof: We may assume X = LS and furthermore V = [V, L].
Set V1 = CV (L). Assume CV (S) ≤ V1. Let V2 be an L-submodule of
V, V1 ≤ V2, V2/V1 irreducible. If V1 ∩ [V2, L] = 0, then C〈[V2,L]S〉(L) = 0,
but C〈[V2,L] S〉(S) 6= 0.
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Hence by 3.16, 3.36 and 3.35 we are left with L ∼= L2(q), L3(2), U4(2),
Sp2n(q), G2(q) or A2x, here we consider Sp(4, 2)′ as A6. Let C be a Cartan
subgroup of L. Then C acts on CV2(S ∩ L), and if CV2(S ∩ L) 6≤ V1, then
CV2(S ∩L) = V1[CV2(S ∩L), C]. By 3.16 we have that C acts transitively on
[CV2(S ∩ L), C] and so V1 ∩ [CV2(S ∩ L), C] = 1 As S = (S ∩ L)NS(C). We
see that [CV2(S ∩ L), C] ∩ CV (S) 6= 0. So we may assume that either C = 1
or CV2(S ∩ L) ≤ V1.

Suppose the latter. We may assume V2 = [V, L]. If V2/CV2(L) is the natural
L2(q)-module, then as [x, V2]CV2(L)/CV2(L) = [L ∩ S, V2]CV2(L)/CV2(L) for
all x ∈ S ∩ L, x 6= 1, we see that CV2(S) 6≤ V1.

Let L ∼= L3(2), then |V2| = 16 by 3.36(a). As V is an F -module, we have
V2 = V .

Let V ∼= U4(2). By 3.36(d) |CV2(L)| ≤ 4. Let P be the parabolic with
P/O2(P ) ∼= L2(4). We have CV2(O2(P ))/CV2(L) is the natural L2(4)-module.
Hence as seen in the L2(q)-case this implies CV (S ∩ P ) 6≤ V1.

Let L ∼= Sp2n(q). By 3.36(e) |CV2(L)| ≤ q. Let R be a transvection on
V2/CV2(L). Then [R, V2]CV2(L)/CV2(L) is of order q and [R, [R, V2]] = 0. Let
P = NL(R), then [P ′, [R, V2]] = 0. Hence we have S ∩ L 6≤ P ′. This shows
L ∼= Sp6(2). But in this case |[V2, R]| = 2 and so [S ∩ L, [V2, R]] = 0, too.

Let next L ∼= G2(q). Let R be a root group, r ∈ R ]. Then |[V2, r]| = q 2 and
CL(r) induces the natural module on [V2, r]. As [V2, r]∩CV2(L) 6= 0, we have
CV2(S) 6≤ V1.

Let finally L ∼= A2x. Then by 3.35 V2 is a submodule of the permutation
module. As CV2(S ∩ L) ≤ V1, we have that a Sylow 2-subgroup has to act
transitively and so 2x = 2m for some m. So we have

(∗) If CV2(S ∩ L) ≤ V1, then L ∼= L3(2), |V2| = 16 or L ∼= A2 m , V2 is a
submodule of the permutation module.

Let now C = 1 and CV2(S ∩ L) 6≤ V1, but CV2(L) 6= 0. Hence we have
L ∼= Sp2n(2), G2(2)′ or A2x. Now if L 6∼= A6 we have |X : L| ≤ 2. So assume
|X : L| = 2 and V = V2 + V x

2 for some x ∈ X \ L. But then x centralizes
u + ux, u ∈ CV2(S ∩L) \ V1. This leaves us with X ∼= PΓL2(9). Furthermore
V has at least four composition factors which are natural PSp4(2)-modules.
Now for any 1 6= A ≤ S, A elementary abelian, |V : CV (A)| ≥ 16. As
|A| ≤ 8, this contradicts the fact that V is an F -module. Hence (∗) holds in
general. As V is an F -module we now see that V = V2. 2

multmod
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Lemma 3.39 Let E(G) be quasisimple and V be some 2F–module for G,
which is faithful for E(G). Assume that V = V1 ⊕ · · · ⊕ Vc, where all the Vi

are isomorphic irreducible E(G)-modules. Then

(i) If c > 2, then E(G) is a classical group, V1 is the natural module and
one of the following holds

(1) E(G) ∼= Ln(q), c ≤ 2(n− 1)

(2) E(G) ∼= Sp(2n, q) or Ω±(2n, q), c ≤ n + 1

(3) E(G) ∼= Un(q), c ≤ n
2

(ii) Assume additionally that V is an F -module and c > 1, then one of the
following holds

(1) E(G) ∼= Ln(q), c ≤ n− 1

(2) E(G) ∼= Sp(2n, q) or Ω±(2n, q), c ≤ n+1
2

(3) E(G) ∼= Un(q), c ≤ n
4

Proof: We will prove (i) and (ii) together. As c > 1 we always have
that V1 is an F–module. Now the structure of E(G) and V1 is given by
3.16. As c > 2 in the case of a 2F–module, we see that |V1 : CV1(A)| < |A|
for some offender A. Hence we see that either E(G) is classical and V1 is
the natural module or E(G) ∼= Sp(6, q) and V1 is the spin module. Assume
the latter. Now we see first that |A| 6= q6, as there is a unique elementary
abelian subgroup of this order in E(G) and then |V1 : CV1(A)| = q7. Hence
A just contains elements of type a2 and then |A| ≤ q4. This shows that
|V1 : CV1(A)| = q2 and so all elements in A have the same centralizer in
V1. Then CV (a), a ∈ A] is invariant under 〈CE(G)(b) | b ∈ A]〉 = E(G), a
contradiction.

So we have that E(G) is classical and V1 is the natural module. Let
E(G) 6∼= Ln(q). Set W = CV1(A). Then we have W = W1⊕W2, where W1 is
some module of dimension m carrying the same form as V1 and |W2| = qt, q2t

in case of Un(q). Now we see that |A| is bounded by the size of an elementary
abelian group in Sp(2t, q), Ω±(2t, q), Ut(q) respectively, which centralizes a
subspace of half of the dimension, i.e. GF (q)–dimension t. This gives that
|A| ≤ qt(t+1)/2 or qt2 in case of Ut(q). All these sizes are maximal for t = n,
t = n

2
, respectivelly. This shows that we have cn ≤ n(n + 1), or n2

2
. Hence

we have (i). For (ii), we just have to multiply these by 2.

Let E(G) ∼= Ln(q). Let H be the semidirect product of W by Ln(q), where
W is a direct product of copies of the natural module V . We show

(∗) Either J(H) = W , or the size of as maximal elementary abelian 2–
subgroup E of H is at most qn(n−1).
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We prove (∗) by induction on n. This is clear for n = 2. Let now E
be an elementary abelian subgroup of maximal size and E 6≤ W . Let
|CV (E)| = qm. Then E is in the centralizer Hm on an m-space in Ln(q).
We have |O2(Hm)| = qm(n−m). Assume that we have x copies of V in
W . Suppose |E/CV (E)| ≤ qm(n−m). Then |E| ≤ qmx+m(n−m). Fur-
ther |E| ≥ qnx. This shows x(n − m) ≤ m(n − m), and so x ≤ m.
This shows that |E| ≤ qmn ≤ qn(n−1), the assertion. So we may as-
sume that |E/E ∩ W | > |O2(Hm)|. Hence as E ≤ WO2(Hm)Ln−m(q),
we get by induction that |E/E ∩ W | ≤ q(n−m)(n−m−1). This shows that
|E| ≤ qmx+(n−m)(n−m−1). Now again (n−m)x ≤ (n−m)(n−m− 1), which
shows x ≤ n−m− 1. So |E| ≤ qn(n−(m+1)) ≤ qn(n−1).

Now we come back to our situation of E(G) = Ln(q) and assume first that
we have an F–module. Then by (∗), we get that we have at most n − 1
copies, the assertion. If we have a 2F-module and the number of modules is
even, then we get that we have twice as many copies, as half of them have
to produce an F–module. So assume that we have 2n − 1 natural modules
which give a 2F–module. By (∗), we see that equality holds for n− 1 copies
of the natural module, but then the same holds for 2n− 2 as a 2F -module,
hence 2n− 1 copies cannot produce an 2F–module. 2

oddF

Lemma 3.40 Let G be a subgroup of Aut(L2(p
n)), n > 1, p odd, containing

a Borel subgroup B of L2(p
n) as a normal subgroup. Let V be a faithful 2F–

module for G over GF (2), then p = 3, or 5, n = 2 and |[V, Y ]| = 24, or 28,
or p = 3, n = 4 and |[V, Y ]| = 28. In all cases besides |Y | = 32, the module
is exact.

Proof: Let A be some offender. As a Sylow 2–subgroup of a Borel
subgroup of PGL(2, pn) is cyclic and the group of field automorphisms is
also cyclic , we see |A| ≤ 4.

Let |A| = 4. Then there is some a ∈ A], which inverts Op(B). As
|V : CV (a)| ≤ 16, we get that either p = 3 and |Op(B)| ≤ 34 or p = 5
and |Op(B)| = 52. If |A| = 2, then there is ω ∈ Op(B)] and a ∈ A with
ωa = ω−1. As now |V : CV (a)| ≤ 4, we see o(ω) = 3 or 5. Hence in all cases
p = 3 or 5.

Let first p = 5, then there is some a ∈ A] with |[Op(B), a]| = 5. This
shows n = 2, and |[V, [Op(B), a]]| = 24. Hence |[V, Op(B)]| = 28.

So let p = 3. Then n ≤ 4. Let n = 4, then there is some element in-
verting a subgroup of order 9 and so we get that there are elements ρ of
order three with |[V, ρ]| = 4, which shows that |[V, Op(B)]| = 28. If n = 3,
then |A| = 2 and A inverts Op(B). But then |V : CV (A)| ≥ 8, a contradic-
tion. Let n = 2. If |A| = 2 we get the assertion as in the case of p = 5. So let
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|A| = 4, then |V : CV (A)| ≤ 16 and so |[V, Op(B)]| ≤ 28. But as a dihedral
group of order 8 acts on Op(B), we get |[V,Op(B)]| = 24 or 28. 2

specialF

Lemma 3.41 Let F ∗(G) = X × Y , where Y is an elementary abelian p–
group, p odd, |Y | = pn ≥ p2 and X quasisimple with mp(X) = 1. Assume
that G induces on Y a Cartan subgroup of Aut(L2(p

n)) containing the Car-
tan subgroup of L2(p

n). Let V be some 2F–module for G, then one of the
following holds

(a) [Y, V ] = 1

(b) CV (ρ) 6= 1 for some p–element ρ ∈ X.

(c) X ∼= L2(q), q = 22m, V is a direct sum of two natural modules and
|Y | = 32.

(d) X ∼= L3(q), q = 22m+1, V is a direct sum of four natural modules and
|Y | = 32.

Proof: We may assume that p-elements from X act fixed point freely
on V and [V, Y ] = V . We first show that there is some offender A which acts
faithfully on X. Suppose false. Let A be some offender and B = CA(X).
Suppose that also B induces a 2F–offender on V . Then with 3.40 we see that
X acts faithfully on [V, Y ], a group of order 24 or 28. As X is nonsolvable
we see that |[V, ω]| ≥ 23 for ω ∈ Y . This gives that n = 2 and |[V, Y ] = 28.
In particular X ∼= A5. Hence G contains some involution i centralizing X
and acting fixed point freely on Y . In particular there is some ω ∈ Y with
|[[V, ω], i]| = 4, a contradiction.

So we have that |V : CV (B)| > 2|B|. In particular CA(Y ) 6= 1. By assump-
tion CA(Y ) is not a 2F–offender on V . Then A/CA(Y ) is a 2F–offender on
CV (CA(Y )) which is a little bit better than 2F . Hence by 3.40 we get that
|Y | = 32 and so |[V, Y ]| ≤ 28. Again we see that X ∼= A5, which gives the
same contradiction as before.

So we have that V is some 2F module with faithful offender A on X. Obvi-
ously we have more than one irreducible X-module involved in V . Assume
that there are exactly two of them, V1 and V2. Then we have ρ1 and ρ2 in Y
with Vi = CV (ρi), i = 1, 2. In particular these are all the conjugates of ρ1,
which shows |Y | = 32. Now we have that m3(X) = 1, so by 1.1 we get that
X ∼= L2(q) or SL3(q). As V1 is defined over GF (2), we see with 3.16 that
q is a power of 2. As [V1, ρ2] = V1 and V1 is a GF (q)–module, we get that
3 divides q − 1. Hence we have that X = L2(q), as m3(X) = 1, and V is a
direct sum of two natural modules.
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So we may assume that there are more than two modules involved. By
3.39 we get that X ∼= Ln(q), Sp(2n, q), Ω±(2n, q), or Un(q), q a power of
2. Further V is a direct sum of x copies of the natural module. Suppose
that all hyperplane orbits of Y under G are of length at least four. Let t be
the length of such an orbit. Then we may assume that V = V1 ⊕ · · · ⊕ Vt,
where each Vi is a direct sum of natural modules. Further there is ωi ∈ Y
with [Vi, ωi] = Vi, i = 1, . . . , t. Suppose that Vi is a direct sum of s natural
modules. Then p | qs − 1. By 3.39 we get L2s(q) ≤ X, or X ∼= Ω−(4, q)
and s = 1, t = 4. In the first case we always have an elementary abelian
subgroup of order p2 in X, a contradiction. So we have X ∼= Ω−(4, q) and
so p | q − 1. Then V1 is a sharp F–module, i.e |V1 : CV1(A)| = |A| for any
offender A and so as t = 4, V cannot be a 2F–module. So we have that
|Y | = 32. Now m3(X) = 1 and so again X ∼= L2(q) or SL3(q). This shows
X ∼= L3(q), x = 4 and q = 22u+1, which is (d). 2

good

Lemma 3.42 Let X be a group and V be a nontrivial GF (2)–module for
X. Assume that there is a component K of X/CX(V ) such that V is an
F–module for K. Then one of the following holds

(1) V is centralized by a good E.

(2) There is a prime p with mp(X) ≥ 4 and some nontrivial K–submodule
W of V such that any 1 6= x ∈ W is centralized by a good E in X.

(3) mp(X) ≤ 3 for all odd primes p and there is some prime p and non-
trivial K–submodule W such that any 1 6= x ∈ W is centralized by a
good E in X.

(4) One of the following holds

(i) K ∼= L2(q), q even, [V,K] is a nonsplit extension of the trivial
module by a natural module. Further mp(X) ≤ 2 for all odd p
not dividing q2 − 1. For any p with mp(X) ≥ 3 there is some p –
element ρ centralizing W and mp(CX(ρ)) ≥ 3, or K is normal in
X and ρ induces a field automorphism.

(ii) K ∼= Ω−(6, q), and [V, K] is the natural module. Further mp(X) ≤
3 for all odd primes p.

(iii) K ∼= Sp(4, q), q even, [V, K] is a nonsplit extension of the trivial
module by the natural module and mp(X) ≤ 3 for all odd primes
p which do not divide q − 1. The maximal p-rank is for p which
divides q − 1.

(iv) K ∼= G2(q), q even, [V, K] is a nonsplit extension of the trivial
module by the natural 6–dimensional module. If p is a prime with
mp(X) maximal, then mp(K) = 2.
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(v) K ∼= U4(2) , [V,K] is a nonsplit extension of the trival module by
a natural module and mp(X) ≤ 2 for all primes p > 3.

(vi) K ∼= L4(2), [V, K] is direct sum of two natural modules. There
is some ρ ∈ CX(K), o(ρ) = 3, acting nontrivially on [V,K] and
mp(X) ≤ 2 for all primes p > 3.

(vii) K ∼= Sp(6, 2) [V,K] is the spin module and mp(X) ≤ 2 for all
p > 3.

(viii) K ∼= U4(q), [V, K] is the natural module mp(X) ≤ 3 for all odd
primes and mp(X) ≤ 2 for all odd primes not dividing q + 1.

(5) mp(X) ≤ 2 for all odd primes p.

If we have one of (4)(ii)-(viii) then for any x ∈ W there is some p–element
ρ ∈ CX(x) such that mp(CG(ρ)) ≥ 3. In (4)(ii) - (v) there is always some
1 6= x ∈ [A,W ], where A is an F–module offender, which is centralized by a
good E.

Proof: We go over the possibilities for K and V as given in 3.16. We
may assume that we do not have (5). Let first mp(C(V )) = 2 for some prime
p with mp(X) ≥ 3. Now a Sylow p–subgroup of CX(V ) has a characteristic
subgroup which is either elementary abelian of order p2 or extraspecial of
order p3. By Frattini agrument we get that CX(V ) contains a good E and
so we have (1). Hence from now on we may assume that mp(CX(V )) ≤ 1 for
all odd primes p with mp(X) ≥ 3.

Let first K/Z(K) ∼= An and assume that V involves the permutation module.
Then we see that [V, K] = W is an extension of a trivial module by the per-
mutation module. Let n > 5. Then m3(K) ≥ 2. Suppose that there is g ∈ X
with [Kg, K] = 1. Then [Kg, W ] = 1 and we have (2). So we may assume
that K and so W is invariant under X. Suppose first that n > 11. Then
m3(K) ≥ 4 and any element in the permutation module is centralized by a
good E, so we have (2) again. So let n ≤ 11. Suppose first that mp(X) ≥ 4
for some odd p > 3. Then there is some F ≤ X/C(V ), elementary abelian
of order p2, which centralizes K and W . As we may assume not to be in (1),
we get that the preimage of F contains a good E. So we may assume that
mp(X) ≤ 3 for all odd primes p > 3 . Let n = 9, 10, or 11, then we see that
any x ∈ W is centralized by a good 3-group E in K, and we are done. So let
n ≤ 8. As now m3(K) = 2, we may assume that also m3(X) ≤ 3. Let p > 3,
with mp(X) = 3, then again some elementary abelian subgroup F centralizes
K and we get a good E as before. So we may assume that mp(K) ≤ 2 for all
primes p > 3. Now we have m3(X) = 3. In particular there is some element
ρ of order three centralizing K and W . For any x in W there is some element
of order three in K centralizing x, so we get a good E.
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Assume now that we have some module involved, which is not the permuta-
tion module. The case of A8 on the 4–dimensional module will be handled as
L4(2) later. So we have n = 7 and W = [V, K] is the 4-dimensional module
or K ∼= 3A6 and W = [V, K] is the 6–dimensional module. In both cases
W is centralized by any elementary abelian group F ≤ X/CX(V ) of order
p2, such that mp(KF ) = 3 for p > 3, so we get a good E. Hence we have
mp(X) ≤ 2 for all p > 3. Now let F ≤ C(K) such that m3(KF ) = 3. We
may assume that [F, W ] = 1. But for any x ∈ W there is some element of
order three centralizing x. Together with F this gives a good E centralizing
x.

So we are left with n = 5 and the permutation module is involved. The
case of the L2(4)–module will be handled as L2(4) later. If K is normal in
X/CX(V ), we may argue as above. So assume that we have conjugates of
K. If |KX | ≥ 3, we have two conjugates centralizing W and so we either are
in (2) or (3). Hence we may assume that 〈KX〉 = K ×Kg. If there is some
elementary abelian p-group, centralizing K ×Kg, then it also centralizes W ,
and we are done. So we may assume that mp(X) ≤ 2 for all primes p > 5
and mp(X) = 3 for p = 3 or 5. But then in both cases W is centralized by a
good E.

Let t be the maximal p–rank of X and r = min(4, t). Let p be some odd
prime with mp(X) = r.

Let now K/Z(K) ∼= Ln(q), q even. Suppose first that there is some K-
submodule W in V such that [K, W ] = W and W is an extension of a
trivial module by the natural module. Then any x in W is centralized by
SL(n − 1, q). If mp(SL(n − 1, q)) ≥ 2 for some odd p with mp(K) ≥ 4,
then we have (2). So we may assume that K ∼= SL(2, q), SL(3, q), SL(4, q),
SL(5, 2), SL(6, 2), or SL(7, 2). Let p be dividing q2 − 1. Then by the same
argument we see that K ∼= SL(n, q), n ≤ 4.

Let K ∼= SL(4, q), with q > 2. Then SL(3, q) does not contain an ele-
mentary abelian subgroup of order p2, or we have (2) or (3), so p divides
q + 1. As for any prime dividing q − 1 the rank of K is three, we now get
r = 4, i.e. mp(X) = 4. We have that V can involve at most three natural
modules, so as the p-rank of GL(3, q) is one, we have that mp(C(K)) = 1.
Otherwise as p divides the order of GL(3, q) in K, we get a good E. Hence
there is some element of order p inducing a field automorphism on K and
normalizing W . But then any element in W is centralized by SL(3, q) ex-
tended by the field automorphism and so by a good E.

So let K ∼= SL(4, 2). Then p = 3. If m3(X) > 3, we may argue as be-
fore. So we have m3(X) = 3 and we also have mp(X) < 3 for all p > 3.
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Further we have more than one module involved in [V, K], which shows that
we have (4)(vi). Now any element in [V, K] is centralized by some 3-element
from a good E.

Let K ∼= SL(3, q). Let p divide q + 1, then mp(K) = 1. Hence we have
the same situation as before as p divides the order of SL(2, q). So we may
assume that p divides q − 1. As we now have at most two natural modules
in V , we see that mp(X) ≤ 2 for all p not dividing q − 1. Let F be an
elementary abelian p-group such that mp(KF ) > 2. If F normalizes W we
see that all x in W are centralized by a good E, as all nontrivial elements
in W are conjugate and p divides the order of the centralizer in K of such
an element. So we may assume that [K,V ] is a direct sum of two natural
modules on which F acts. But then there are q + 1 such modules and so F
fixes at least two of them and we are done.

Let finally K ∼= L2(q). Now W = [V, K]. Further there is some elemen-
tary abelian p–sugroup F of order p2 which intersects K trivially. Assume
that F 6≤ NX(K). Then we have at least three conjugates of K and two
of them centralize W , so we have a good E centralizing W . Hence we may
assume that F normalizes K and so mp(KF ) ≥ 3. If W is just the natural
module, we see, as K acts transitively on W ], that any x ∈ W is centralized
by a good E. So W is a nonsplit extension of a trivial module by the natural
module. By 3.35, we have that |W | ≤ q3. Assume now that no p–element
centralizes W . Then K has to be normal, as any conjugate would centralize
W and further p divides q − 1, mp(C(K)) = 1. Hence some p–element has
to induce a field automorphism. This is (4)(i).

So assume now that p does not divide q2−1. Assume further that mp(K) ≥ 2.
Then we see K ∼= L6(2) or L7(2) and p = 7. As L6(2) contains an elementary
abelian subgroup of order 72, we see that for K ∼= L7(2) we have a good E.
So we have K ∼= L6(2). As p 6= 3, we see r = 4 and so there is an elementary
abelian group F of order 49 centralizing K. As there are at most 5 natural
modules in V , we see that there is some element of order 7 centralizing [V,K]
and so W . But then there is a good E for W .

So we may assume mp(K) ≤ 1. If we have K ∼= Ln(2), n = 6, 7, then
we see that there is an elementary abelian p-group F of order p3 centralizing
K. But then there is some good elementary abelian subgroup E centralizing
K and W as well. If K ∼= SL(4, q), q > 2, then we see that there is some
elementary abelian subgroup F of order p2 centralizing K. Hence F either
centralizes W or p divides the order of SL(3, q). In the latter F contains
some element of order p which centralizes W , but now in K there is for any
x ∈ W also some p–element which centralizes x, so we have a godd E in any
case.
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We are left with K ∼= L4(2), L5(2), SL(3, q) and SL(2, q). In the last two
cases, as p does not divide the order of GL(2, q) and we have at most two
natural modules in V , we see that any p–element normalizing K normalizes
W as well. So we get p divides the order of K, otherwise we have some good
E and so K ∼= SL(3, q). If W is the natural module, all elements in W
are conjugate under K and so there is a good E. By 3.35 we are left with
K ∼= L3(2) and |W | = 16. Now p = 7 and so we have an elementary abelian
group of order 72 centralizing K and W as well, so we have a good E.

Let finally K ∼= L4(2) or L5(2). Then there is an elementary abelian sub-
group F of order p2 which centralizes K. So F cannot centralize W . As there
are at most 4 natural modules involved, we see that p = 5 or 7, where p = 7
in case of K ∼= L4(2). Further we see that some p–element in F centralizes
W . But the stabilizer of any element of W in K is divisible by p and so we
have a good E.

By 3.16 we now may assume that W is an extension of the trivial mod-
ule by the exterior square. We may assume that n > 4. The case of L4(q)
will be handled as Ω+(6, q). Then by 3.35 we have W is the exterior square.
Now any x in W is centralized by either Sp(4, q) or L2(q) × Ln−2(q). This
shows that we may assume that p does not divide q − 1. But then as n ≥ 5,
we get q = 2. Now we see that p 6= 3, and so n = 5, 6, or 7. If mp(K) = 1,
there is some elementary abelian subgroup F centralizing K. By 3.16 we
have that W = [V,K], which shows that F centralizes W and we are in (2).
So mp(K) = 2, and K 6∼= L5(2). But now mp(X) ≥ 4 and again there is some
elementary abelian subgroup of order p2 centralizing K and we are done.

Let K ∼= Sp(2n, q). Assume first that W = [W,K] is the extension of a
trivial module by a natural module. Then any x ∈ W is centralized by
Sp(2n − 2, q). If n > 3, we may assume that p divides q2 − 1, but then
Sp(2n− 2, q) contains a good E and we are done. So we may assume n ≤ 3.

Let K ∼= Sp(6, q), then we see that p does not divide q2 − 1, otherwise we
argue as before. Hence mp(K) ≤ 1. As m3(K) = 3, we have that mp(X) ≥ 4
and so there is some elementary abelian subgroup F of order p2 centralizing
K. Now we see that [V,K] can involve at most two natural modules and as
p does not divide the order of GL(2, q) we see that F centralizes W and so
we have a good E centralizing W .

Let K ∼= Sp(4, q). Now W = [K,V ]. Suppose mp(K) ≤ 1. There is some
elementary abelian subgroup F such that mp(KF ) = 3. If W is the natural
module, then all elements are conjugate under K and so any is centralized
by some good E. Hence we must have a nonsplit extension of the trivial
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module by the natural module. But as p divides q2 + 1, we see that there is
no field automorphism of order p and so we have a good E centralizing W .
So we may assume that p divides q2 − 1. Again we must have that W is a
nonsplit extension of the trivial module by the natural module, as p divides
the order of the point stabilizer. Suppose mp(X) ≥ 4. Then there is some
p–element centralizing K. If it also centralizes W we have a good E for any
x ∈ W . So p divides q − 1. So we have (4)(iii). Obviously any x ∈ W is
centralized by some p-element from a good E.

Let now K ∼= Sp(6, q) on the spinmodule W . Then all elements are cen-
tralized by SL(3, q) or G2(q). So we may assume that p does not divide
q − 1. Let q 6= 2. Then we have mp(X) ≥ 4. So if mp(K) ≤ 1, we get
some elementary abelian subgroup F of order p2 centralizing K. If q = 2
and mp(K) ≤ 1, we also get such a group F . As W = [V, K] and p does
not divide q − 1, we see that F centralizes W and we have (2). So we have
mp(K) ≥ 2. Then p divides q2 − 1. Now p divides q + 1. Let q > 2, then
mp(X) ≥ 4. Now there is some ρ ∈ X, o(ρ) = p and ρ either centralizes K or
induces a field automorphism. But then elements in W are either centralized
by G2(q) or some conjugate of SL(3, q)〈ρ〉. So we just have to prove that the
latter group contains a good E. We have q = sp and so p divides sp−1−1 and
sp + 1 as well. Hence p divides s + 1. This shows that the p-rank of CK(ρ)
is three, hence SL(3, q)〈ρ〉 contains a good E. So we have q = 2 and p = 3.
Further m3(X) = 3, which is (4)(vii). Finally any x ∈ W is centralized by
some 3–element from a good E.

Let now K ∼= Ω±(2n, q). Assume first that W = [W,K] is an extension
of the natural module by a trivial module. Then any element in W is cen-
tralized by Ω±(2n− 2, q) or Sp(2n− 2, q). If n ≥ 4, K 6∼= Ω−(8, q), then for
p which divides q2 − 1, we have mp(K) ≥ 4, so any x in W is centralized by
some good E.

Let K ∼= Ω−(8, q) or Ω+(6, q). If p divides q2 − 1 we may argue as be-
fore. So we have mp(K) ≤ 1. If q 6= 2 in case of K ∼= Ω+(6, q), then we see
that mp(X) ≥ 4. In particular there is some elementary abelian subgroup F
of order p2 centralizing K. As W = [V, K] and p does not divide q − 1, we
see that F centralizes W and we have (2). So let K ∼= Ω+(6, 2). But this
case has been handled as A8 before.

Let K ∼= Ω−(6, q). Assume mp(X) ≥ 4. If mp(K) ≤ 2, we may argue
as before. Let ρ be some p–element such that mp(K〈ρ〉) = 4. Then we
see that p divides q + 1 and so any element in W is centralized by Sp(4, q)
or a conjugate of L2(q

2)〈ρ〉. Hence we always have a good E. So we have
mp(X) ≤ 3 and so we have (4)(ii). Any x ∈ W is centralized by some p-
element from a good E.
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Let now W be an extension of the trivial module by the half spin mod-
ule. The case of Ω+(6, q) was treated as L4(q), the case of Ω−(6, q) will be
treated as U4(q). Hence by 3.16, we just have to handle K ∼= Ω+(10, q). So
we have p divides q2−1. But any x ∈ W is centralized by SL(4, q) or Sp(6, q)
and so we have (2).

Next let K/Z(K) ∼= Un(q), n ≥ 4. Let W = [W,K] be an extension of
a trivial module by the natual module. Now any element in W is central-
ized by some SUn−2(q). If n ≥ 5, we may choose p dividing q + 1. But
then the p–rank of SUn−2(q) is at least two, and so we get a good E. So
we just have to treat K ∼= U4(q). Further we have that W = [V,K]. Now
let mp(K) = 1. Then K is normalized by some elementary p–group F such
that mp(KF ) = 3. Now we see that any x ∈ W is centralized by some good
E. Recall that for q = 2, K and so also W is centralized by F , while for
q > 2 we have that W is the natural module by 3.35. So we have p divides
q2 − 1. If p divides q − 1, we again have that W is the natural module and
we have some element ρ such that mp(K〈ρ〉) = 3. Now again any x ∈ W is
centralized by some good E. So we are left with p divides q + 1 and further
mp(X) = 3, if W is the natural module, which is (4)(viii). Assume that W
is not the natural module, then by 3.35 we have q = 2 and we have (4)(v).
In both cases any x ∈ W is centralized by some p–element from a good E.

Let finally K ∼= G2(q). Then W = [W,K] is an extension of the trivial
module by the natural module. Suppose that W is the natural module.
Then W = [V, K] and all nontrivial elements in W are conjugate under K.
In particular we may assume that there is no elementary abelian p group F
such that mp(KF ) = mp(K)+2. Hence we have mp(K) = 2 and mp(X) = 3.
But now p divides the order of the point stabilizer of K and so again we get
a good E centralizing x ∈ W . So we have that the extension is nonsplit and
mp(K) = 2, which is (4)(iv). But still any x ∈ W is centralized by some
p–element from a good E.

The last assertion about [A,W ] follows as we either have CW (K) ≤ [A,W ]
or in the case of Ω−(6, q) on the orthogonal module we have nonisotropic
vectors in [A,W ].

2

As we see from 3.41 we have for the situation of 3.42 in the exceptional case,
that V is always centralized by a good E.

good1

Lemma 3.43 Let X be a group and V be a nontrivial GF (2)–module for X.
Assume that there is a component K of X/CX(V ), such that [V,K] is a 2F–
module for K. Let S be a Sylow 2–subgroup of X and let t be the maximal
p–rank of X and r = min(4, t). Let p be some odd prime with mp(X) = r.
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Then one of the following holds

(α) r ≥ 3 and one of the following holds

(1) V is centralized by a good E, or [V, K] is centralized by a good E
and for all primes p with mp(X) = r, we have that p does not
divide the order of K.

(2) Let T be a Sylow 2–subgroup of K. Then CV (T ) is centralized by
a good E.

(3) There is a prime p with mp(X) ≥ 4 and some nontrivial NS(K)K–
submodule W of [V, K] such that any 1 6= x ∈ W is centralized by
a good E in X. Further any element in CV (K) is centralized by
some p–element whose centralizer in X contains an elementary
abelian group of order p3, or K contains a good E and in W
any element is centralized by some p – element whose centralizer
contains an elementary abelian group of order p3. In particular
CV (K) is not contained in [V,K] and CV (T ) is centralized by a
p–element whose centralizer contains an elementary abelian group
of order p3.

(4) (a) mp(X) ≤ 3 for all odd primes p and there is some prime p
and nontrivial NS(K)K–submodule W of [V, K] such that any
1 6= x ∈ W is centralized by a good E in X. Further any ele-
ment in CV (K) is centralized by some p–element whose cen-
tralizer in X contains an elementary abelian group of order p3,
or K contains a good E and in W any element is centralized
by some p – element whose centralizer contains an elemen-
tary abelian group of order p3. In particular CV (K) is not
contained in [V, K] and CV (T ) is centralized by a p–element
whose centralizer contains an elementary abelian group of or-
der p3.

(b) mp(X) ≤ 3 for all odd primes p and there is some prime p
such that all elements in [V,K] are centralized by some good
E and CV (K) = 1.

(5) One of the following holds

(i) K ∼= L2(q), q even, [V, K] is a nonsplit extension of the trivial
module by a natural module. Further mp(X) ≤ 2 for all odd
p not dividing q2 − 1.

(ii) K ∼= Ω−(6, q), and [V, K] is the natural module. Further
mp(X) ≤ 3 for all odd primes p.

(iii) K ∼= Sp(4, q), q even, [V,K] is a nonsplit extension of the
trivial module by the natural module and mp(X) ≤ 3 for all
odd primes p which do not divide q − 1. The maximal p-rank
is for p which divides q − 1.
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(iv) K ∼= G2(q), q even, [V, K] is a nonsplit extension of the trivial
module by the natural 6–dimensional module. If p is a prime
with mp(X) maximal, then mp(K) = 2.

(v) K ∼= U4(2) , [V, K] is a nonsplit extension of the trival module
by a natural module and mp(X) ≤ 2 for all primes p > 3.

(vi) K ∼= L4(2), [V, K] is direct sum of two natural modules. There
is some ρ ∈ CX(K), o(ρ) = 3, acting nontrivially on [V,K]
and mp(X) ≤ 2 for all primes p > 3.

(vii) K ∼= Sp(6, 2) [V,K] is the spin module and mp(X) ≤ 2 for
all p > 3.

(viii) K ∼= U4(q), [V,K] is the natural module mp(X) ≤ 3 for all
odd primes and mp(X) ≤ 2 for all odd primes not dividing
q + 1.

(ix) K ∼= A9, [V, K] is the spin module and mp(X) ≤ 2 for all
primes p > 3.

(x) K/Z(K) ∼= An, n ≤ 7.

(xi) K ∼= 3M22 or J2 and [V, K]/C[V,K](K) is the 12–dimensional
module. Further mp(K) = 2.

(xii) K ∼= Ω−(8, 2), [V, K] has the half spin module as a submodule
and maybe the natural module is also involved, which is not a
submodule, mp(X) ≤ 2 for all primes p > 3, m3(X) = 3.

(xiii) K ∼= U3(q), [V,K] is the natural module and mp(K) = 2.

(xiv) K ∼= Sp(4, q) and [V, K]/C[V,K](K) is the natural module.

(xv) K ∼= L3(q
2), CV (K) ≤ [V, K] and [V, K]/CV (K) is the tensor

product of two algebraically conjugate natural modules. Fur-
ther mp(X) ≤ 2 for all primes p which do not divide q2 − 1
and mp(X) ≤ 3, if p divides q2 − 1.

(xvi) K ∼= Sp(4, q2) and [V,K]/C[V,K](K) is a tensorproduct of two
algebraically conjugate natural modules. Further p divides q2−
1.

(xvii) K ∼= G2(q) or U4(q) and [V, K] involves exactly two natural
modules.

(xviii) K ∼= Sp(6, q) and [V,K] involves a spin module and a natural
module or a further spin module. Further there is no sub-
module, which is the natural module. We have that p divides
q2 − 1. If there are two spin modules, then p does not divide
q − 1.

(xix) K ∼= Sp(4, q) and [V, K] involves exactly two 4–dimensional
modules.

(xx) K ∼= Ω+(8, 2) and [V, K] contains two half spin modules,
which are interchanged by a Sylow 2–subgroup of X.
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(xxi) K ∼= L4(q) or L3(q) and [V, K] contains a direct sum of two
natural modules or a natural module and a dual one. In case
of L4(q) also the orthogonal module is involved.

(xxii) K ∼= L2(q) and there are exactly two natural modules involved.

(xxiii) K ∼= L5(2) or L4(2), [V,K] is a direct sum of two natural and
two dual modules. A Sylow 2–subgroup of X acts transitively
on theses modules. Further mp(X) ≤ 2 for all primes p > 3
and m3(X) = 3.

(xxiv) K ∼= L6(2), [V, K] is a direct sum of at least six natural mod-
ules, p = 7 and r = 4.

(xxv) K ∼= Ln(2), 3 ≤ n ≤ 5, [V, K] has a submodule which is a
sum of at least three natural modules, mp(K) = 1 and r = 3.

(xxvi) L ∼= Sz(q), [V, L] is a nonsplit extension of a trivial module
of order at most q by the natural module.

(β) r ≤ 2.

Proof: We go over the possibilities for K and V as given in 3.29,
3.30 , 3.31 and 3.32. We may assume that we do not have (5). Let first
mp(CX(V )) = 2 for some prime p with mp(X) ≥ 3. Now a Sylow p–subgroup
of CX(V ) has a characteristic subgroup which is either elementary abelian of
order p2 or extraspecial of order p3. By Frattini agrument we get that CX(V )
contains a good E and so we have (1). Hence from now on we may assume
that mp(CX(V )) ≤ 1 for all odd primes p with mp(X) ≥ 3.

Let first K ∼= An. Let p = 3. If n ≥ 9 then we have (3) or (4), or n = 9
and we have some spin module involved. As this module is not an F -module
and offenders on the permutation module are not overoffender, we see with
3.37 that [V,K] is the spin module. Now as we not are in (4), we have that
mp(X) ≤ 2 for all primes p > 3, which is (ix). The case n = 8 will be handled
as Ω+(6, 2) and L4(2).

So we may assume that p > 3. Then n ≤ 11. If mp(K) ≥ 2, we have
that p = 5 and n = 10 or 11. Now we have a permutation submodule, such
that any element is centralized by some p–element in K and CV (K) is cen-
tralized by some good E, this is (4). So we are left with mp(K) ≤ 1. If
mp(K) = 1, we have (4). If mp(K) = 0, we have (1).

Let now K be sporadic. Then by 3.32 K ∼= M12, M22, M23, M24, 3M22

or J2. As none of these possesses an F–module, we have that [V,K] involves
just one nontrivial irreducible module. Let mp(K) ≤ 1, then we have (3),(4)
or (2). Hence we may assume that mp(K) ≥ 2. If K is one of the Math-
ieu groups, not 3M22, then every element in [V, K] is centralized by some
3–element and CV (K) is centralized by some good E and so we have (3) or
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(4). In the remaining case we have (5)(xi).

Let now K be of Lie type in odd characteristic. Then by 3.31 we have
K ∼= 3U4(3), and so CV (T ) is centralized by a good E, which is (2).

So we have to treat the case of K/Z(K) is of Lie type in characteristic two.
We will first assume that [V, K] involves exactly one nontrivial irreducible
module, which is some V (λ). Let P be the parabolic corresponding to λ.
If P contains a good E, then we have (2). So we may assume that P does
not contain a good E. This immediately shows that K 6∼= E6(q). If we have
F4(q), we get q = 2 and so r = 3. Now we are either in (3),(4) or (2).

Let K ∼= G2(q). We may assume that we are not in (2) or in (3), (4) with
mp(K) = 1. Then we have mp(K) ≥ 2 and so p divides q2 − 1. In particular
mp(K) = 2. If C[V,K](K) = 1, we would get that any element in [V,K] is
centralized by some good E. If CV (K) 6= 1, we have (4)(a) otherwise we
have (4)(b). So we may assume that C[V,K](K) 6= 1, then we have (5)(iv).

Let next K ∼= Sz(q) and the module involved be the natural module. Then
all Sylow p–subgroups of K are cyclic. If C[V,K](K) = 1, so we have that any
element in [V, K] is centralized by a good E, so we have either (3) or (4). So
we must have a nonsplit extension and so by 3.37 we get (5)(xxvi).

Let now K ∼= Ω±(2n, q). Suppose that the nontrivial module in [V, K] is
the natural module. If we are not in (2), then K ∼= Ω−(4, q), Ω±(6, q) or
Ω−(8, q). Let K ∼= Ω−(4, q), then all Sylow p–subgroups are cyclic. By 3.37
we have that C[V,K](K) = 1. Hence every element in [V,K] is centralized by
some good E, so we have (3) or (4).

Let K ∼= Ω+(6, q). If p divides q2 − 1, then we have (2). So we may as-
sume that mp(K) ≤ 1. Then we see that we have either (3) or (4).

Let K ∼= Ω−(6, q). By 3.36 we have that C[V,K](K) = 1. So if mp(K) ≤ 1, we
have (3) or (4). So we may assume that mp(K) ≥ 2. In particular p divides
q2 − 1. If mp(X) ≥ 4, then we get that any element in [V, K] is centralized
by some good E, and so we have (3). Hence we have mp(X) ≤ 3 and then
we have (5)(ii).

Let finally K ∼= Ω−(8, q). By 3.36 we have C[V,K](K) = 1. If mp(K) ≤ 1, we
get (3) or (4). So we have that p divides q2 − 1. Then we have (2).

Let next the module in [V, K] be the half spin module. If we are not in
(2), we have K ∼= Ω±(6, q) or Ω−(8, q). Let first K ∼= Ω−(8, q). If r ≥ 4
but mp(K) ≤ 1, we get (3) or (4). So we have mp(K) ≥ 3. Further by 3.36

56



C[V,K](K) = 1. If r ≥ 4, then every element in [V, K] is centralized by some
good E, so we have (3) or (4). Let r = 3. If p divides q − 1, then we have
(2). Hence q − 1 = 1, so q = 2 and p = 3. This is (5)(xii).

Ω−(6, q) on the half spin module will be treated as U4(q) and Ω+(6, q) will
be treated as L4(q) on the natural module.

Let next K ∼= Un(q) on the natural module. Then we have (2) or K ∼= U3(q)
or U4(q). Then by 3.36 we have that C[V,K](K) = 1 or K ∼= U4(2) in which
case the centralizer in [V,K] may have order up to four. If mp(K) ≤ 1, we
get (3) or (4). Let K ∼= U3(q). Then we have (5)(xiiii). If we have K ∼= U4(q)
and p divides q − 1, then we see that any element is centralized by a good
E and so we have (1),(3) or (4). Hence we are left with p divides q + 1 and
mp(K) = mp(X), which is (5)(viii) or (5)(v).

Let next K ∼= Sp(2n, q). Let first the natural module be involved. Then
we have (2) or n ≤ 3. Let K ∼= Sp(6, q) then we have (2) besides p does
not divide q2 − 1, which gives mp(K) ≤ 1. But then we have (3) or (4). For
K ∼= Sp(4, q) we get (5)(xiv).

Let next the spin module be involved. Then we get (2) or K ∼= Sp(6, q)
and p does not divide q − 1. So assume the latter. If mp(K) ≤ 1, we have
(1), (3) or (4). So we may assume that p divides q + 1. If r > 3, then we
see that all elements in [V,K] are centralized by some good E, as by 3.36
C[V,K](K) = 1. Hence we have (3) or (4). So let r = 3, then we get q−1 = 1,
and so q = 2, which is (5)(vii).

Let finally V (λ2) be involved and so K ∼= Sp(6, q) or Sp(8, q). If we are not
in (2) we have K ∼= Sp(6, q) and p does not divide q2− 1, hence mp(K) ≤ 1.
Then we have (1), (3) or (4).

Let next K/Z(K) ∼= Ln(q). Suppose that the natural module is involved.
Let first q = 2. If p = 3, we have (2) or K ∼= L4(2) or L3(2). Now there is a
p–element centralizing [V, K] and so we have (3) or (4). So we may assume
that p 6= 3. If mp(K) ≤ 1, we have (1), (3) or (4). So we have p = 7 and
K = L6(2) or L7(2). But then there is a 7–element centralizing [V, K] and
so we have (3) or (4).

So we may assume q > 2. By 3.36 we have that C[V,K](K) = 1 or K ∼= L2(q).
If mp(K) ≤ 1, then we have (1), (3) or (4) as all elements in [V, K]] are con-
jugate, or C[V,K](K) 6= 1 and we have K ∼= L2(q). But then we have (5)(i).
So we may assume mp(K) ≥ 2. If p divides q − 1, we get (2) or K ∼= L3(q).
As C[V,K](K) = 1, all elements in [V, K]] are conjugate, so we get that any
is centralized by a good E, which is (3) or (4). So we now may assume that
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p does not divide q − 1. In particular n = 4 and p divides q + 1. As any
element is centralized by some p–element in K, we see that any element is
centralized by some good E, which is (3) or (4).

Assume next that V (λ2) is involved. Then we have (2) or p does not di-
vide q2 − 1. As L4(q) has been handled as Ω+(6, q), we may assume that
n ≥ 5. Hence we must have q = 2. Now mp(K) ≤ 1 and so we have (1), (3)
or (4).

Let finally K ∼= L6(q) and V (λ3) be involved, then we have (2) or q = 2.
Further we may assume that p 6= 3, 7 as this also would lead to (2). Then
mp(K) ≤ 1 and so we have (1), (3) or (4).

Let now still just one nontrivial module be involved, but this let be a tensor
product of two algebraically conjugate natural modules for either Ln(q2) or
Sp4(q

2). In the first case we have (2) or n ≤ 4. Let n = 4, we get mp(K) ≤ 1,
otherwise we have (2). But then we get (1), (3) or (4). Let n = 2, this is just
the orthogonal module, a case handled before. Let n = 3. If mp(K) ≤ 1,
we get (1),(3) or (4). So let mp(K) = 2, in particular p divides q2 − 1. If
CV (K) 6= 1, then as any element in [V, K] is centralized by a p–element, we
have (3) or (4). So we may assume that CV (K) = 1 and then r = 3. This is
(5)(xv).

So we have Sp(4, q2). If mp(K) ≤ 1, we get that p does not divide q2 − 1.
Then we get (1), (3) or (4). Hence we have that p divides q2 − 1 and so we
have (5)(xvi).

Now we may assume that [V, K] involves at least two nontrivial modules,
where one of these now has to be an F -module. This gives K ∼= G2(q),
Ln(q), Un(q), Ω±(2n, q) or Sp(2n, q).

If we have K ∼= G2(q) then there are exactly two natural modules involved,
as there are just exact F–module offender on the natural module, which is
(5)(xvii).

Let K ∼= Un(q), then just natural modules are involved. So we have (2)
or n = 4 and as in the G2(q)–case we get (5)(xvii).

Let K ∼= Sp(2n, q). Suppose n ≥ 4. Then we may assume that p divides
q2 − 1. If we just have natural modules, then we have (2). As the spin
module is not an F–module, we get that one of the modules involved has to
be a natural module. So we have the natural module and the spin module
involved. Hence we are in (2) or q = 2. But in the spin module and also in
the natural module every element is centralized by a good E, so we have (3)
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or (4).

So we have n ≤ 3. Let n = 3. Let first p divide q2 − 1. Then as above
we have (2) or there is a spin module or V (λ2) involved. As there are at
least two modules involved, we see that V (λ2) is not possible. Hence we
have twice the spin module or the spin module and the natural module. In
any case there is no module in [V, K]/C[V,K](K) which is the natural module.
This is (5)(xviii). Suppose now that mp(K) ≤ 1. If mp(K) = 0, there is a
good E centralizing K and so it centralizes [V, K], which is (1). So we have
mp(K) = 1. Now also r > 3 and so there is a good E centralizing K and
then also [V,K] , which gives (3).

Let finally K ∼= Sp(4, q), then there are exactly two 4–dimensional mod-
ules involved, which is (5)(xix).

Let next K ∼= Ω±(2n, q). Then the modules involved are natural ones or
half spin modules. Let first n ≥ 5, then we have (2) or n = 5, q = 2 and both
natural and half spin modules are involved. If we have Ω−(10, 2), then we
have a natural or half spin submodule W , which is invariant under NS(K).
But then we have (3) or (4) or (1). Suppose we have Ω+(10, 2), then we
have the same conclusion, or there are two half spin modules interchanged
by a Sylow 2–subgroup of X. Further there is a natural module involved.
But this cannot be a 2F– module as on the half spin modules we have exact
offenders as F–modules.

Let now K ∼= Ω+(8, q). If there are three different modules involved then we
do not have a 2F–module. Hence we have that C[V,K](K) is centralized by
SL3(q), so we have (2) or q = 2. If one half spin module is invariant under
a Sylow 2-subgroup of X we have (3). So we just have that there are two of
them interchanged by a Sylow 2–subgroup of X, which is (5)(xx).

Let next K ∼= Ω−(8, q). As the half spin modules are not F -modules, we have
at most one involved. So we have a natural module in [V, K]. If mp(K) ≤ 1,
we see that we get (1), (3) or (4). So we have that p divides q2 − 1. If we
have a natural submodule, we get (3) or (4). So we just have the half spin
module as submodule. Then we have mp(X) = 3 and q = 2. This is (5)(xii).

K ∼= Ω+(6, q) will be handled as L4(q), K ∼= Ω−(6, q) has been handled
as U4(q) and K ∼= Ω−(4, q) will be handled as L2(q

2).

Let now K/Z(K) ∼= Ln(q). We may assume that we are not in (2). Then
n ≤ 7. Suppose first that no natural modules are involved. Then V (λ2) is
involved. Hence L2(q) × L2(q) centralizes CV (T ), which gives (2) or q = 2,
or n = 4.
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Suppose first n = 4. Then p does not divide q2−1. In particular mp(K) ≤ 1.
As there are at most two nontrivial modules involved, we see that there is a
good E, centralizing [V, K] and so we have (1), (3) or (4).

Let next q = 2 , n ≥ 5. We now have p 6= 3. Again there are at most
two nontrivial modules involved. If we do not have (1), (3) or (4), we see
that there is no good E centralizing K. In particular r = 3 . Then there is
no elementary abelian 3-subgroup of order 27 in K, so K = L5(2), but then
mp(K) = 1, a contradiction.

So we have shown that there are natural modules involved. Let first q > 2.
As not V (λ2) and V (λn−2) can both be involved, because of exact offenders,
we have that n ≤ 5, otherwise we have (2).

Let n = 5. Then we must have V (λ1), V (λ2) and V (λ4) be involved in [V,K].
But then there are no more modules. Now we either have V (λ1)⊕ V (λ4) or
V (λ2) as a submodule. But in both modules any element is centralized by a
good E, so we have (3).

Let n = 4. Then as we have a 2F–module not all three types of mod-
ules can be involved. So assume that V (λ2) and V (λ1) are involved. If V (λ1)
occurs just once, then we see that we have (1), (3) or (4). Hence we have
(5)(xxi).

Let now n = 3. Then just natural and dual modules are involved, alto-
gether at most 4 such modules. This is (5)(xxi).

Let next n = 2. As the tensor product is not an F–module and offenders for
the natural module are exact, we have that at least two natural modules are
involved, which is (5)(xxii).

So let now q = 2. Suppose first p = 3. Then as above, we get n ≤ 5.
In case of L3(2), we have (5)(xxi). Let n = 4 or 5. Let ρ be a 3–element in
CX(K). Suppose [[V, K], ρ] = [V,K], then r = 3 and any module involved
occurs twice. Let now first n = 5, then V (λ2) is not involved. Hence we have
two natural and two dual modules involved. Further S has to act transitively
on these modules. This is (5)(xxiii). So let C[V,K](ρ) = W 6= 1. Again any
submodule in here has to occur at least twice, otherwise we have (3) or (4).
This shows that we must have two natural modules and two dual ones, which
then shows that [[V,K], ρ] = 1, again (5)(xxiii).

Let next K = L4(2). Suppose first [[V,K], ρ] = [V,K]. Again V (λ2) cannot
occur. If we just have two natural modules involved we have (5)(vi). So
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assume that we have two natural and two dual modules involved, we have
(5)(xxiii). So assume that W = C[V,K](ρ) 6= 1. Then again submodules of W
have to show up at least twice. We cannot have just two natural modules in
W , this would lead to (3) or (4). So we must have two natural and two dual
ones, which is (5)(xxiii) again.

So we are left with p 6= 3. Let first mp(K) = 2, then n = 6 or 7 and
p = 7. Further r > 3. In particular there is a good E centralizing K. Let
E = 〈ν, τ〉 and assume W = C[V,K](ν) 6= 1. Then [W, τ ] = W , as [E, V ] 6= 1.
This now shows that we have CV (K) ≤ [V,K], otherwise we would have (3)
or (4). Assume next [ν, V ] = 1. Then W = [V, K] and we have (2) as just
natural or dual modules are involved. So we have W1 = [CV (τ), ν] 6= 1. Now
we see that there are just natural and dual modules in [V,K]. If n = 7,
we have to have both types. This shows that we have exactly three natural
modules and three dual ones. As in the direct sum of three natural mod-
ules still any element is centralized by some L4(2), we get (4). So we have
K ∼= L6(2). If we have both types of modules, we get as before (4). So we
just have natural modules involved. This in (5)(xxiv).

So we now have mp(K) ≤ 1. If r − mp(K) > 2, we have (1), (3) or (4).
So we may assume r = 3 and mp(K) = 1. Hence we have that n ≤ 5. Let
again E = 〈ν, τ〉 in CX(K). We may assume that W = [C[V,K](ν), τ ] 6= 1.
Hence any module shows up at least three times. This gives that just natural
or dual modules can be involved. An easy inspection shows that we can just
have a 2F–module if all these modules are equal. This is (5)(xxv). 2

Sp6over

Lemma 3.44 Let G = Sp(6, q), q even. Let V be some GF (2)G–module,
which involves exactly two nontrivial irreducible modules, where one is the
spin module and the other is either the natural module or the spin module
again. Let A be a quadratic offender on V as a 2F–module. If |A| ≥ q4,
or |A| = q3, then for both modules W we have that |W : CW (A)| = q4, q3,
respectively.

Proof: First of all we see that A has to induce an F–module offender
on one of the two modules.

Let first |A| ≥ q4. If A ≤ O2(P ), where P is the point stabilizer in the natural
module, then we have that for the spin module W we have |W : CW (A)| = q4

and |A| ≤ q5. But then on the natural module A cannot act quadratically,
so we have that the second module again is a spin module and we have the
assertion.

So we may assume that A 6≤ O2(P ). Then as |A| ≥ q4, we have at
least A ∩ O2(P ) 6= 1. As [CW (O2(P )), A] 6= 1, W the spin module, we
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see that A ∩ O2(P ) just can contain elements of type a2. In particular
|A∩O2(P )| ≤ q2. If A intersects more than one root group in O2(P ), then we
get that |[W,A ∩ O2(P )]| = q3 and so A has to induce a transvection group
on CW (O2(P )), which shows that |A/A∩O2(P )| ≤ q, a contradiction. So we
have that |A ∩ O2(P )| = q and |A/A ∩ O2(P )| = q4. Now A corresponds to
the centralizer of a 2–space in the natural module, as |[W,A ∩O2(P )]| = q2.
This gives that |W : CW (A)| = q4. If both modules in V are spin modules,
we are done. So assume that W1, the natural module is involved. Then
|CW1(O2(P ))| = q and on [W1, O2(P )]/CW1(O2(P )), we have that P induces
a four dimensional module which is not isomorphic to the ones induced in
W . Hence we see that |W1 : CW1(A)| = q4, the assertion.

Let now |A| = q3. It is enough to show that A is not an over offender
on the spin module W and the natural module W1. Suppose first that A
does not contain transvections. Then with 3.17 we get that A has to induce
a strong F–module offender on W1, i.e. |W1 : CW1(A)| = q2. Let P be as
before, then we get that |A ∩ O2(P )| ≤ q. But as all elements in A have
the same centralizer, we get that A/A ∩ O2(P ) is a group of order q2 in
Sp(4, q), which induces transvections to a hyperplane in the natural mod-
ule, or A ∩ O2(P ) = 1. As Sp(4, q) does not have a transvection group of
order q2, we get that A ∩ O2(P ) = 1. But now we have that A corresponds
to the 2-space stabilizer in the Sp(4, q)–modules in the spin module and so
it corresponds to the point stabilizer in the module involved in the natural
Sp(6, q)–module and so |W1 : CW1(A)| ≥ q3, a contradiction.

So we have that A contains transvections x. In particular [W,x] = CW (A)
and so A ≤ O2(P ). But there are no over offender on the natural module in
O2(P ). 2

minmod

Lemma 3.45 Let X be a group, denote by min(X) the minimal dimen-
sion of a nontrivial X-module over GF (2). Ten we have for r = 2n that
min(G2(r)) = 6n, min(Sp(2m, r)) = 2mn, min(Lm(r) = mn, min(U5(r)) =
10n, min(Ω−(2m, r)) = 2mn, min(3D4(r)) ≥ 12n and min(2F4(r)) ≥ 12n.

Proof: For all the values in the assertion there is one module, the nat-
ural one. Hence we just have to show that this module in fact is the minimal
one. Let X be one of G2(r), Sp(2m, r), Lm(r), U5(r), Ω−(2m, r), and p be a
Zsygmondy prime dividing r6−1, r2m−1, rm−1, r5 +1, rm +1 respectively.
Then the smallest GF (2)–module on which an element of order p can act
nontrivially is of dimension 6n, 2mn, nm, 2mn, 8n, respectively. Hence in
these cases the bounds are sharp. Assume that we do not have a Zsigmondy
prime, then we have G2(2), Sp(6, 2), L6(2) or Ω−(6, 2). In all cases we have
an nonabelian Sylow 3–subgroup and so the smallest dimension for this group
will be 6.

62



Let now X ∼=2 F4(r). Then r6 +1 divides |X|. If X ∼=3 D4(r), then r8 +r4+1

divides |X|. In both cases we may choose p as a Zsigmondy prime dividing
r12 − 1, which yields the assertion. 2

lower

Lemma 3.46 Let F ∗(X) = L be a quasisimple Lie group in odd character-
istic p, Z(L) a p′-group, L 6∼= L2(q),

2G2(q), G 2(q),
3D4(q) or PSp4(3). Let

V be a faithful GF (2)-module for X and t ∈ X be some involution. Then
m([V, t]) ≥ (q − 1)q wd(p)/2εp, where d(p) is the degree of the smallest non-
trivial representation of Zp, q

2w+1 is the order of Op(CL(R)), R a long root
group (see table below) and ε = 1 or L ∼= PSp2n(q), ε = 2, q > p.

L Ln(q) Un(q) Ω ±
n (q) PSp2n(q) F4(q) E6(q)

2E6(q) E7(q) E8(q)
w n− 2 n− 2 n− 4 n− 1 7 10 10 16 28

Proof: This is [Asch, (10.4)]. We just sketch his proof. Let R be a
long root group in X and Q = Op(CL(R)). Then Q is a special group of
order q 1+2w, where w is as described above.

By [Asch, (10.1)] we may assume that t inverts some U, |U | = p, U ≤ Q,U 6≤
R, or X = PSp4k(q) and t induces a field automorphism. In the former we
get the assertion with [Asch, (7.2)].

So assume the latter. Now E(CL(t)) ∼= PSp2k(q
2) and t ∼ tz, tz induces

a nontrivial inner automorphism on CL(t).

We can proceed by induction. First of all by 3.26 [[V, t], E(CL(t))] 6= 0.
Set W = [V, t]. Let first k = 1. Then E(CL(t)) ∼= L2(q

2). Let R1 be a
subgroup of order q 2 in E(CL(t)). Then NE(CL(t))(R1) has at most two orbits
on the hyperplanes of R1. Now there is some orbit 4 with

[W,R1] =
⊕

H∈4
C[W,R1](H) .

This shows m([W,R1]) ≥ (q 2 − 1)d(p)/2(p − 1) > (q − 1) q wd(p)/2p, since
w = 1.

Let now k > 1. Then by induction

m([V, tz]) ≥ (q 2 − 1)q 2ud(p)/4p ,

where u = k − 1 and w = 2k − 1. Hence w = 2u + 1 and so

m([V, t]) ≥ (q 2 − 1)q w−1d(p)/4p > (q − 1) q wd(p)/4p .

2
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codsmall

Lemma 3.47 Let F ∗(X) = L be a quasisimple group such that L/Z(L) is
a Lie group over a field of odd characteristic which is not a Lie group over
a field of characteristic 2 too. Let t ∈ X be an involution and V be an
irreducible faithful GF (2)-module for X. Then one of the following holds:

(1) |V : CV (t)| ≥ 2 8

(2) L ∼= L3(3), |V : CV (t)| ≥ 2 4

(3) L ∼= U4(3), L4(3), G2(3), 3 ·G2(3), PSp6(3) and |V : CV (t)| ≥ 2 6

(4) L ∼= 3 · U4(3)

(5) L ∼= L2(25) or L2(p), p prime, |V : CV (t)| ≥ 2 4

Proof: ([Asch, (10.5)]). Assume |V : CV (t)| ≤ 27. Let first
L ∼= L2(q), q odd. Suppose furthermore q = p f > p. Let t ∈ PGL2(q). Then
L〈t〉 is generated by three conjugates of t and so |V | ≤ 2 21. Let P ∈ Sylp(L)
and 4 be one orbit of hyperplanes under NG(P ). Then V =

⊕
U∈4

CV (U).

We have |4| = (q − 1)/(p − 1) or G does not induce PGL2(q) on L and
|4| = (q− 1)/2(p− 1). Let d (p) = |CV (U)|. We get d (p)(q− 1) ≤ 42(p− 1).
As d (p) ≥ 2, we get a rough bound by p + 1 ≤ 21, and so p ≤ 19. If p > 7,
then d (p) ≥ 8 and so p + 1 ≤ 5, a contradiction. Hence p = 3, 5 or 7. Let
p = 7, then d (p) = 3 and so q − 1 ≤ 14(p − 1). This shows L ∼= L2(7

2)
and we have exactly two orbits on the hyperplanes. But now t inverts P , a
contradiction.

Let p = 3. Then f ≥ 3 as L2(9) ∼= Sp4(2)′. Now L ∼= L2(27). But
then there is just one orbit on the hyperplanes and we have 2 · 26 ≤ 21 · 2, a
contradiction. Let finally p = 5. Then we get L ∼= L2(25). As |V | ≥ 2 9, we
get |V : CV (t)| ≥ 2 4.

Suppose next that t induces a field automorphism on L. Let L1 = E(CL(t))
(recall q > 9). Suppose [[V, t], L1] = 0. Then we have a quadratic fours group
and so we get a contradiction with 3.26. Suppose now [[V, t], L1] 6= 0. Then L1

acts faithfully on [V, t] and |[V, t]| ≤ 2 7. In particular L1
∼= L2(p), p

∣∣∣ |L7(2)|,
or L1 = L2(9). But in the latter PGL2(9) acts on [V, t] and so |[V, t]| ≥ 2 8.
We are left with L2(5), L2(7), L2(31) and L2(127). But in all cases PGL2(p)
is involved and so there is some involution s which inverts a Sylow p-
subgroup. This shows |[V, t]| ≥ 2 14(L2(127)), |[V, t]| ≥ 2 10(L2(31)). Let
CL(t) ∼= PGL2(7). Then |[V, t]| ≥ 2 6. There is z ∈ L1, o(z) = 2, such
that t ∼ tz. Hence we see that |[V, P ]| ≤ 2 18 for P ∈ Syl7(L1). As
L2(7

2) 6≤ L18(2), we see that CV (P ) 6= 1. Let 4 be the orbit of P in
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NG(E), E ∈ Sylp(L), P ≤ E. Then |4| = 4 and V =
⊕

U∈4
CV (U). Now

there is some U ∈ 4 with [U, t] = U . This shows |CV (P ) ∩ [V, t]| ≥ 8. But
then |[V, t]| ≥ 2 9, a contradiction.

Let now L ∼= L2(25). We may assume |[V, t]| ≤ 8. Hence [[V, t], L1] = 1.
As t inverts some elements of order 13, we see that L〈t〉 is generated by three

conjugates of t. Now |V | ≤ 2 9 but 13 6
∣∣∣ |L9(2)|.

So we are left with L ∼= L2(p), p prime, p ≥ 11. Suppose |[V, t]| ≤ 8,
then |V | ≤ 2 9 and so L . L9(2). This shows p = 31, 127, 73, 17. As

37
∣∣∣ |L2(73)|, but 37 6

∣∣∣ |L9(2)|, L 6∼= L2(73). In L9(2) the normalizer of a

Sylow 127-subgroup is of order 2 · 3 · 7 · 127, hence L2(127) 6≤ L9(2). On a
Sylow 31-subgroup just a group of order 5 is induced, as this is true in L5(2),
hence L2(31) 6≤ L9(2). As t cannot invert an element of order 17, we get
L〈t〉 ∼= PGL2(17) if L ∼= L2(17). Now t centralizes a group of order 9. Hence
we get some element of order 3 which centralizes [V, t] and V/CV (t) as well.
But |CV (t) : [V, t]| ≤ 8 and so this element centralizes V , a contradiction.

Let now [[V, t], E(CL(t))] = 0, then we get the assertion with 3.26. So assume
[[V, t], E(CL(t))] 6= 0.

If L ∼= 2G2(q), then E(CL(t)) ∼= L2(q), q ≥ 27. But L2(q) 6≤ L7(2).

Let L/Z(L) ∼= G 2(q). If t ∈ L, then CL(t) ∼= (SL2(q)∗SL2(q)) ·2. Hence the
structure of L7(2) shows q = 3 or 7. If q = 3, then t inverts some element of
order 13 and so |V : CV (t)| ≥ 2 6. If q = 7, t inverts some element of order
817.

Let t 6∈ L. Suppose t induces a field automorphism. Then E(CL(t)) ∼=
G2(

√
q) 6≤ L7(2). So assume that q = 3 f and E(CL(t)) ∼= 2G2(q). This shows

again q = 3 and L2(8) acts on [V, t], i.e. |[V, t]| ≥ 2 6.

Let now L/Z(L) ∼= 3D4(q). Then t acts on some G2(q) in L. Hence we
may assume q = 3. Now t induces PGL2(27) on a subgroup SL2(27) of L.
Hence we see |[V, t]| ≥ 2 8 as before.

Suppose now that L is none of these groups but p 6
∣∣∣ |Z(L)|. Then the con-

clusion follows from 3.46. If L ∼= L3(3) then either t inverts an element of
order 13 or an elementary abelian group E ∼= E9, with NL(E) transitive on
E ]. In both cases |[V, t]| ≥ 2 6.

So we are left with p
∣∣∣ |Z(L)|. This now leaves us with 3 · Ω 7(3). As

3 · Ω 7(3) 6≤ L 14(2), we get t ∈ C(Z(L)). Furthermore we may assume
[Z(L), V ] = V . Now E(CL(t)) ≤ GL3(4). As t ∈ L, we see E(CL(t)) ∼= U4(3)
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or Sp4(3), or we have CL(t)/Z(L) ∼= Σ4 × (SL2(3) ∗ SL2(3)) · 4 [CCNPW].
But the first two are not in GL3(4). For the latter the embedding in GL3(4)
gives some kernel which contains a fours group. Now we have a quadratic
fours group and can apply 3.26 for a contradiction. 2

cododd

Lemma 3.48 Let F ∗(X) ∼= G(r) be a Lie group over a field of odd char-
acteristic which is not a Lie group in characteristic two too. Let V be a
faithful irreducible GF (2)-module for X and t be an involution in X with
|[V, t]| ≤ 2m2(X)+1. Then F ∗(X) ∼= 3 · U4(3), L3(3), U4(3), L4(3), L2(25),
where we have equality in the last four cases and m2(F

∗(X)) < m2(X).

Proof: (The proof follows [Asch, (10.9)]). Let first F ∗(X) ∼= L2(r).
Then m2(X) ≤ 3 or m2(X) = 2 for r prime . Now the assertion follows with
3.47. If F ∗(X) ∼= 2G2(r), (S)L3(r), (S)U3(r), (S)L4(r), (S)U4(r), 3 · U4(3),
PSp4(r), G2(r), 3 · G2(3) or 3D4(r), then m2(X) ≤ 6 and the assertion fol-
lows with 3.47, unless F ∗(X) ∼= L3(3), U4(3), L4(3) or 3 · U4(3), where we
have equality in the first three cases.

Let now T ∈ Syl2(X),4 = Fun(T ), k = |4|, Y = 〈4〉, and Y T ∗ =
Y T/CY T (Y ). Then Y ∗ is a direct product of k copies of L2(r) permuted
by T . Let B ∗ be an elementary abelian subgroup of T ∗ of maximal or-
der, K ∈ 4, D ∗ a complement to E ∗ = NB(K) ∗ in B ∗, t = m2(D

∗),
and S = 〈K D〉 ∩ T . Then S ∗ is the direct product of 2 t copies of
L2(r) and ε = m2(CK ∗(E ∗)) = 1 or 2. Hence m2(CS ∗(E

∗)) = ε2 t and
m2(S

∗ ∩B ∗) = m2(CS ∗(B
∗)) = ε, so m2(E

∗CS ∗(B)) ≥ m2(E
∗) + ε2 t− ε ≥

m2(E
∗) + t = m2(B

∗), so that E ∗CS ∗(E
∗) is also elementary abelian of

maximal order. Thus we may choose B to fix each member of 4. Let C ∗

be the subgroup of B ∗ inducing inner automorphisms in PGL2(r) on each
member of 4 ∗. Then m2(B/C) ≤ 1 and m2(C

∗) ≤ 2k, so m(B ∗) ≤ 2k + 1.
Set Z = T ∩ Z(Y ). Then m2(Z) ≤ k and m2(CT (Y )) ≤ m2(Z) + i(F ∗(X)),
where i(F ∗(X)) can be found in [Asch, (10.8)]. So we have

m2(X) ≤ 3k + 1 + i(F ∗(X)) , i(F ∗(X)) ≤ 3 .

Let m be the lower bound for [V, t] supplied by 3.46. Then

m ≥ (p− 1)pw−1d(p)/2ε ≥ 2(3w−1)ε,

where r = p s, w is given by |Op(CF ∗(X)(R))| = r 1+2w, R some root group in
F ∗(X), ε = 1 or F ∗(X) = PSp2n(r), r > p, where ε = 2. Furthermore k is
listed in [Asch1, Theorem 2]. In particular k ≤ w unless F ∗(X) = PSp 2n(r),
where k = n and w = n− 1.

So assume F ∗(X) 6= PSp 2n(r), n ≥ 3. Then

2(3w−1) > 3w + 5 ≥ 3k + 2 + i(F ∗(X)) .
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Hence the lemma holds.

So let F ∗(X) ∼= PSp 2n(r). Then i(F ∗(X)) = 0, k = n,w = n− 1. Hence

(p− 1)r n−1d(p)/2εp > 3n + 2 ≥ m2(X) + 1 ,

unless F ∗(X) ∼= PSp 6(3). But then |[V, t]| ≥ 2 6. As m2(Aut (PSp6(3))) =
4, the lemma holds. 2

codspor

Lemma 3.49 Let F ∗(X) be a perfect central extension of a sporadic sim-
ple group, V be a faithful GF (2)X-module. Then m2(G) and the minimal
codimension of CV (t) in V , for t an involution in X are listed in table 1

Proof: This is [Asch, (11.1)]. 2

L2q

Lemma 3.50 Let X ∼= Sz(q), U3(q) or L2(q), q even, and V be some faithful
GF (2)-module for X.

(i) We have |[V, t]| ≥ q 2, q2, q, respectively, where t is some involution in
X.

(ii) Let X ∼= Sz(q), V be irreducible and |V : CV (t)| ≤ q 2 for some invo-
lution t. Then V is the natural module.

(iii) Let q > 2, T ∈ Syl2(X) and S = Ω1(T ). If V = CV (S)
⊕

CV (S g)
for some g ∈ X, then V is a direct sum of natural modules.

(iv) Let X ∼= L2(q) or Sz(q), T = Ω1(S), S ∈ Syl2(X). If V is irreducible
with [V, T, T ] = 0, then V is the natural module.

Proof: (i) Let X 6∼= U3(q). We have that t inverts an element of order
q +

√
2q + 1, q + 1, respectively, and so |[V, t]| ≥ q 2, q.

So let X ∼= U3(q). Let U ≤ X with U ∼= Zq+1 × L2(q) and t ∈ U . As-
sume further that |[V, t]| < q2. Then we get that there is just one nontrivial
irreducible L2(q)–module in V , which then is centralized by Zq+1. Hence we
have that Zq+1 acts trivially on [V, t] and so, as this group acts irreducibly
on S/Z(S) for a Sylow 2-subgroup S containing t, we have that Z(S) acts
quadratically and so Z(S) ≤ U yields |[V, Z(S)]| = q. But we can generate
X by three conjugates of Z(S), which now gives |V | ≤ q3 contradicting the
fact that the order of X is divisible by q3 + 1.

(ii) By 1.14 X is generated by three conjugates of t. Hence |V | ≤ q 6.
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F ∗(X)/Z(F ∗(X)) m2(X) codimension of CV (t)

M11 2 4
M12 4 4
M22 5 3
M23 4 4
M24 6 4
J1 3 8
J2 4 4
J3 4 6
Mc 4 8
Ly 4 33
HS 5 6
He 6 10
Sz 6 8
Ru 6 12
O′N 4 21
Co3 4 8
Co2 10 6
Co1 11 8

M(22) 10 18
M(23) 11 18
M(24)′ 12 18

F5 6 40
F3 5 9
F2 22 54
F1 24 54
J4 11 50

Table 1
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Set W = V
⊗

GF (2) GF (q). By the tensor product lemma W =
⊕

Mσ where
M is a tensor product of algebraic conjugates of the natural module N . Let
q = 2n, then dim W ≤ 6n. But this shows W = N .

(iii) We have that for t ∈ S, t inverts some ω ∈ X, o(ω) = 3 for X ∼= L2(q)
and o(ω) = 5 for X ∼= Sz(q). As 〈S, S g〉 = X by 1.14, we may assume ω = g.
Now CV (ω) = 0. The assertion follows with [Hi, (8.2)] and [Mar].

(iv) By 1.14 there is g ∈ X with 〈T, T g〉 = X. Hence V = [V, T ] + [V, T g].
Furthermore CV (T ) ∩ CV (T g) = 0. As [V, T, T ] = 0, we get V =
CV (T )

⊕
CV (T g). The assertion now follows with (iii). 2

normalpar

Lemma 3.51 Let X = G (r) be a Lie group, r = 2n, X 6∼= Sz(r), L2(r),
U3(r). Let S ∈ Syl2(X), A / S, A elementary abelian. Then there is some
parabolic P of X, O 2′(P/O2(P )) ∼= L2(r), L2(r

2) or U3(r), such that A ≤
O2(P ). If X ∼= 2F4(r), A ≤ O2(P ) for both minimal parabolics. If X ∼=
3D4(r) then O 2′(P/O2(P )) ∼= L2(r

3).

Proof: By way of induction it is enough to prove the assertion for Lie
groups of rank two, i.e. X ∼= L3(r), Sp4(r), U4(r), U5(r), G2(r),

3D4(r),
2F4(r).

Let P1, P2 be the two minimal parabolics. In case of X ∼= U4(r), U5(r),
3D4(r),

2F4(r) choose notation such that O 2′(P1/O2(P1)) ∼= L2(r), SU3(r),
L2(r

3), Sz(r), respectively.

If X ∼= L3(r) or Sp4(r), O2(P1) and O2(P2) are the only maximal elemen-
tary abelian subgroups of X. Hence A ≤ O2(P1) or O2(P2).

Let X ∼= U4(r). Let A 6≤ O2(P1). We have that P1 ≤ NX(R), R a root group.
Further O2(P1)/Z(O2(P1)) is elementary abelian and for a ∈ A \ O2(P1) we
have that |[O2(P1)/Z(O2(P1)), a]| = r 2. This implies |〈Z(O2(P1)), A〉| > r 3.

Let now A 6≤ O2(P2). We have Ω1(O2(P2)) is elementary abelian of or-
der r 4 and O 2′(P2/O2(P2)) ∼= L2(r

2). Furthermore Ω1(O2(P2)) is the
Ω−(4, r)-module for L2(r

2). As A acts quadratically on Ω1(O2(P2)), we
see |A : A ∩ O2(P2)| ≤ r. Now |〈Z(O2(P1)), A〉 ∩ Ω1(O2(P2))| > r 2. Hence
|[Ω− 1(O2(P2)), a]| < r2 for a ∈ A \ A ∩O2(P2), contradicting 3.50(1).

Let X ∼= G2(r). Let Let P1 be the normalizer of a root group normal
in a Sylow 2–subgroup. Then O2(P1)/Z(O2(P1)) is elementary abelian of
order r 4. If a ∈ A \ O2(P1), then |[a,O2(P1)/Z(O2(P1))]| = r 2. Hence
|〈A,Z(O2(P1))〉| > r 3, contradicting the fact that G2(r) contains no elemen-
tary abelian subgroup of order greater than r 3 by 1.5.
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Let X ∼= 3D4(r). Then V = O2(P1)/Z(O2(P1)) is the 8-dimensional GF (r)-
module for L2(r

3). Suppose that A 6≤ O2(P1). As O2(P )/Z(O2(P ) is a tensor
product of three algebraically conjugates of the natural module for L2(r

3),
we see that |[a,O2(P1)/Z(O2(P1))]| = r 4. Then [a,O2(P1)] = CO2(P1)(a).
Let γ ∈ NX(S), o(γ) = r 2 + r + 1. Then [γ, CV (S)] = 0, as |CV (S)| = r.
Hence CO2(P1)(γ) is a Sylow 2-subgroup of L3(r). But we may assume there
is a g = b ∈ L2(r

3) with γ b = γ −1. But there is no automorphism b of a Sy-
low 2-subgroup T of L3(r) such that [T, b] is elementary abelian of order r 2,
since a Sylow 2–subgroup of L3(r) contains exactly two elementary abelian
subgroups of order r2 which bot are either normalized by b or interchanged.

Let X ∼= 2F4(r). We have Z2(O2(P1)) = Ω1(O2(P1)). Now [a,O2(P1)] ≤
Z2(O2(P1)) for a ∈ A, and so A ≤ O2(P1). Hence A ≤ Z2(O2(P1)) ≤
C(Z(O2(P1))) ≤ O2(P2). 2

fourL2

Lemma 3.52 Let V be a nonsplit extension of a trivial module by the natural
module for X = L2(q), q even. Let S be a Sylow 2-subgroup of X and A be
a fours group in S. Then [V, A] = [V, S].

Proof: Let ν ∈ X, o(ν) = q + 1 and νa = ν−1 for some a ∈ A.
We have that |[V, ν]| = q2 and so [V, a] ≤ [V, ν]. Let A = 〈a, b〉. We
have that 〈[V, ν], [V, b]〉 is invariant under 〈A, ν〉 = X. Hence we have that
〈[V, ν], [V, b]〉 = V and so [V,A] = [V, S]. 2

Sp4

Lemma 3.53 Let K = Sp(4, q), q = 2n > 2. Let V be an indecomposable
GF (2)–module for K such that V/CV (K) is the natural module and CV (K) 6=
1. Then the following holds

(i) Let U ≤ R, R the transvection group in K and |U | = 4, then CV (K) ≤
[U, V ].

(ii) Let A ≤ K be an elementary abelian 2–subgroup, which is a quadratic
offender on V as an F–module, then CV (K) ≤ [V, A].

(iii) Let A ≤ K be an elementary abelian 2-subgroup which is a quadratic
offender on V as an F–module. If |V : CV (A)| < |A|, then [V, A] =
[V,B] for any quadratic group B in K with A ≤ B.

Proof: (i) Let P be a parabolic of K with U ∩O2(P ) = 1. Then there
are two conjugates of U which generate P/O2(P ). hence we can generate
P with three conjugates of U . As P is a maximal subgroup in K we can
generate K with four conjugates. Let W = [U, V ] ∩ CV (K). Then we have
that |[U, V ]/W | = q. Hence |[V,K]/W | = q4 and then W = CV (K).
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(ii) We have |A| ≥ q. If A induces a transvection group then the asser-
tion follows from (i). So we have |V : CV (A)| ≥ q2, and then |A| ≥ q2.
Let now P be the parabolic which stabilizes [V,A]CV (K)/CV (K). Then
A ≤ O2(P ). If A ∩ Z(O2′(P )) = 1, we get that the other parabolic P1

is generated by two conjugates on A. Set again W = CV (K) ∩ [V,A]
then we get that V = U × [V, P1], where U is a complement of W in
CV (K). By [Hu, (I.17.4)] we get that W = CV (K). So we have that
L = A∩Z(O2′(P ) 6= 1. Let W be as before that we see that [V, A] = W [L, V ].
Hence we have [V, Ag] = W [L, V ] = [V, A] for all g ∈ O2′(P ). This shows
that [V,O2(P )] = [A, V ]. But CV (K) ≤ [V, O2(P )] by (i).

(iii) We have |A| > q and so |V : CV (A)| ≥ q2. Hence |A| > q2. By (ii)
we have that CV (K) ≤ [V, A]. So we have that [V, A] = [O2(P ), V ], where P
is the stabilizer of [V, A]CV (K)/CV (K). But B ≤ O2(P ). 2

G2

Lemma 3.54 Let G = G2(q), q even, and V be a nonsplit extension of a
trivial module by the natural module. Let A be an offender in G on the natural
module as an F–module. Then [V, A] ∩ CV (G) 6= 1.

Proof: By 3.18 we have that |A| = q3. So suppose that |[V,A]| = q3.
Let R be a root group R ≤ A. Then [V, R] ≤ [V, A] and so A ≤ O2(NG(R)).
Let P be the other parabolic of G containing S, S a Sylow 2–subgroup of
NG(R). Then there is a conjugate Ag, g ∈ NG(R) such that Ag 6≤ O2(P ).
Hence we can generate P by two conjugates of A. Hence we have that
|[V, P ]| = q6 and so complements CV (G). But this contradicts [Hu, (I.17.4)].
2

Szq

Lemma 3.55 Let X ∼= Sz(q) or L2(q), q > 2 and U be a 2-group on which
X acts. Let V be a normal subgroup of U of order 2 and U/V be the natural
module for X. In case of X ∼= Sz(q) assume additionally that U contains an
elementary abelian subgroup U1 with |U1|2 = 2|U |. Then U is abelian.

Proof: If X ∼= L2(q), then X acts transitively on (U/V )]. As q > 2
there are involutions in U \ V , so all elements in U are involutions, the
assertion. So let X ∼= Sz(q). Then elements of order 5 act fixed point freely
on U/V . We may assume that U is extraspecial. By assumption it is of +–
type. But as q = 22n+1, we get |U/V | = 28n+4 and so U is a central product
of 4n + 2 dihedral groups. On such a group U an element of order 5 cannot
act fixed point freely on U/V . 2

noquadoff

Lemma 3.56 Let K ∼= L3(q
2) or Sp(4, q2) and V be the tensor product of

two algebraically conjugate modules. Then V does not admit a quadratic
2F–module offender.
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Proof: Let A be a quadratic subgroup in K. By 3.25 A is contained
in a root group or in case of Sp(4, q2) we might have |A| ≤ q4. Let first
K ∼= L3(q). Then A is contained in some L2(q

2), which induces on V a
natural and an orthogonal module. As A has to act quadratically on the
orthogonal module, we see |A| ≤ q. But then on the natural module W we
have |W : CW (A)| = |A|2, a contradiction.

So we have K ∼= Sp(4, q). Let S be a Sylow 2–subgroup containing A and
assume that |A : A ∩ Z(S)| ≥ 4. Let E be an elementary abelian subgroup
of S with A 6≤ E, then |A : A ∩ E| ≥ 4. As NK(E) acts indecomposably
on E, we get with 3.52 that 〈AS〉 contains a root group. But then there is
some a ∈ A ∩ Z(S) and some root element r such that 〈a, r〉 acts quadrat-
ically , contradicting 3.25. So we have that |A : A ∩ Z(S)| ≤ 2. On the
other hand there is some g ∈ K with (A ∩ Z(S))g ∩ E = 1. So (A ∩ Z(S))g

acts as a subgroup of L2(q
2) on the chieffactors of NK(E) in V . But there

are tensor products for this group, so |A ∩ Z(S)| ≤ q. This shows that
|A| ≤ 2q and then |V : CV (A)| ≤ 4q2. But as elements in A are conjugate
into NK(E) \ E and NK(E)/E has at least three chieffactors, we get with
3.50, that |V : CV (A)| ≥ q6, a contradiction. 2
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4 Small modules for small groups
module

Lemma 4.1 Let G be a group with F ∗(G) = O2(G) 6= 1 and A ≤ G be
elementary abelian with A 6≤ O2(G) but A £ S for some Sylow 2–subgroup
S of G. Then either there is some g ∈ G such that for X = 〈A,Ag〉 the
following hold

(1) X/O2(X) ∼= L2(q), Sz(q) or X/O2(X) is a dihedral group of order 2u,
u odd.

(2) S ∩X is a Sylow 2–subgroup of X

(3) Y = (A ∩O2(X))(Ag ∩O2(X)) £ X

(4) Y 6= A ∩O2(X)

(5) |A : CA(Y )| ≤ |Y : CY (A)|q ≤ |Y : CY (A)|2, where q = 2 if X/O2(X)
is dihedral.

(6) If X/O2(X) is not dihedral, then Y/(A∩Ag) is a direct sum of natural
modules for X/O2(X).

or there is some g ∈ G with g2 ∈ NG(A) such that Ag ≤ S, 1 6= [Ag, A] ≤
A ∩ Ag and |A : CA(Ag)| = |Ag : CAg(A)|.

Proof: We start the proof with some general remarks. Let X be as
in (1) and (2). Then obviously (3) follows. If (4) would be false, then as
[O2(G), A] ≤ O2(G)∩A ≤ O2(X)∩A, we get that [O2(G), X, X] = 1, which
contradicts CG(O2(G)) ≤ O2(G). Hence also (4) holds. Next we see that
CY (A) = A ∩ Y and so we see that CY/(A∩Ag)(A) = (A ∩ Y )/(A ∩ Ag) and
Y/(A∩Ag) = (Y ∩A)/(A∩Ag)⊕ (Y ∩Ag)/(A∩Ag). So (5) follows. Further
we see that elements of odd order in X act fixed point freely on Y/(A∩Ag).
Hence [Hi] and [Mar] yield (6). So we see that in case (1) we just have to
prove (2) which will become clear by the particular construction.

Set Ḡ = G/O2(G). Let r be some odd prime and R be a r–subgroup of
Ḡ with 1 6= [R, Ā] ≤ R. Then R = 〈CR(B̄) | |Ā : B̄| = 2〉. Hence there
is some B̄ with CR(B̄) 6= 1 and [CR(B̄), Ā] 6= 1. So there is some ele-
ment ω ∈ CR(B̄), with o(ω) = r and 〈A,ω〉/O2(〈A,ω〉) ∼= D2r. Suppose
there is some component L with 1 6= [L, Ā] and |Ā : CĀ(L)| = 2. Then as
Ā 6≤ O2(〈L, Ā〉) there is some ω ∈ 〈L, Ā〉, o(ω) odd, which is inverted by
some ā ∈ Ā \ CĀ(L). Then 〈A,ω〉/O2(〈A,ω〉) ∼= D2u, u odd. In both cases
of course S ∩X is a Sylow 2-subgroup of X.

So we may assume that F ∗(Ḡ) = E(Ḡ). We have that A acts quadratically on
O2(G). Further for any component L we may assume that |Ā : CĀ(L)| ≥ 4.
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Hence by 3.24 we have [L, Ā] ≤ L.

Assume first that L is of Lie type in odd characteristic, which is not also of
Lie type in even characteristic. Then by 3.26 we have that L/Z(L) ∼= U4(3).
Let B be the projection of Ā onto AutḠ(L). As A £ S, there is some 2–
central involution s in B. If B 6≤ O2(CL(s)), then there is a conjugate Bg

such that W = 〈B, Bg〉 ∼= D6 and S̄ ∩W is a Sylow 2-subgroup of W . Hence
we may set X = 〈A,Ag〉. So we may assume that B ≤ O2(CL(s)). As
we may generate CL(s) by elements g with g2 ∈ S, the action of CL(s) on
O2(CL(s)) gives us some Bg ≤ O2(CL(s)) with 1 6= [B, Bg] ≤ B ∩ Bg. Then
also 1 6= [A,Ag] ≤ A ∩ Ag and Ag2

= A. Obviously |A : CA(Ag)| = |Ag :
CAg(Ag2

)| = |Ag : CAg(A)|.

Let next L ∼= G(r) be a group of Lie type in even characteristic. Let R
be a root subgroup in Z(S̄ ∩ L). Let B be again the projection of A onto
AutḠ(L). Suppose B 6≤ O2(NAutḠ(L)

(R)). Then we have induction and the

lemma holds. So we may assume that B ≤ O2(NAutḠ(L)
(R)). If we may

generate CL(R) by elements g with g2 ∈ O2(NL(R)), then we get the sec-
ond alternative , or 〈BNL(R)〉 is abelian. If B ≤ R, then B ≤ L̃ ≤ L, with
L̃ ∼= L2(r) or Sz(r) and S ∩ L̃ is a Sylow 2–subgroup of L̃.

Hence we just have to handle rank 1 groups or L ∼= Ln(r), Sp(2n, r), 3 · A6

F4(r),
2F4(r).

If we have a rank 1 group then as |B| ≥ 4, we either get X such that
X/O2(X) is dihedral or we get X with X/O2(X) ∼= L2(q) or Sz(q) and a
Sylow 2-subgroup of X is contained in S̄. So we may assume that B 6≤ R.

Assume next L ∼= Ln(r), n ≥ 3. Assume that B acts trivially on the Dynkin
diagram. Let P1, Pn−1 be the two parabolics containing S̄ ∩ L which in-
volve Ln−1(r). If B 6≤ O2(Pi) for one i, then we have induction. So we
have B ≤ O2(P1) ∩ O2(Pn−1) = R, a contradiction. Now let b ∈ B act-
ing nontrivially on the Dynkin diagram. Then we get a parabolic P3 with
P3/O2(P3) ∼= L2(r) × L2(r) such that B acts nontrivially on P3/O2(P3). If
r > 2, we have induction. If r = 2 this is solvable and we get a dihedral
group X/O2(X).

Let next L ∼= Sp(2n, r)′, n ≥ 2. We may assume that B ≤
Z(O2(NAutḠ

(R))). So we may embed B into some L̃ ∼= Sp(4, r)′ with

S ∩ L̃ a Sylow 2–subgroup of L̃. Hence we may assume L ∼= Sp(4, r)′.
Now we have two parabolics P1, P2, containing S̄ ∩ L. By induction we
may assume that B ≤ O2(P1) ∩ O2(P2). As B is not contained in a root
subgroup we see that 〈BPi〉 = O2(Pi) for i = 1, 2. Let Hi be the preim-
age of Pi, i.e. Hi/O2(G) = Pi. Now suppose that 〈AHi〉 is abelian. Then
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we see that O2(Hi) ≤ CS∩L(A)O2(G). If this is true for both i, we get
S ∩L = CS∩L(A)O2(G). As A acts quadratically on O2(G) by 3.25 there is a
chief factor V in O2(G) which is the natural module. We have |[V,B]| = r2,
while |CV (S ∩ L)| = r. As [V, B] is covered by A this is a contradiction. So
we have the latter. Now by quadratic action B ≤ A6 and then |B| = 2, a
contradiction.

Let next L ∼= 3 · A6 and the 6–dimensional module be involved in O2(G).
Then by quadratic action we get B ≤ L and further B ≤ O2(P1) ∩ O2(P2).
But then |B| = 2, a contradiction.

Let next L ∼= F4(r). By induction we may assume that B acts trivially
on the Dynkin diagram. We have two root groups R1 and R2 and we may
assume that B ≤ Z(O2(NL(R1))) ∩ Z(O2(NL(R2))). But this group is con-
tained in some Sp(4, r) and we get the assertion by induction.

Let next L ∼= 2F4(r). As B acts quadratically we get with 3.25 B ≤ R,
a contradiction.

Let now L ∼= An, n ≥ 5. So we may assume n = 7 or n ≥ 9. If n is
odd, then there is L̃ ≤ L, L̃ ∼= An−1, which is normalized by S̄. Hence we
may assume n to be even right from the beginning. So n ≥ 10. Let n = 2m.
Then there is a subgroup L̃ ≤ L with S∩L ≤ L̃ ≤ Σn

2
oZ2. As n ≥ 16 we may

apply induction. Let m1, . . . , mr be the dyadic decomposition of n. Let L̃ be
the subgroup of L with S ∩ L ≤ L̃ ≤ Σm1 × · · · ×Σmr . Let X1 be one of the
components of L̃ on which B acts nontrivially. Then we may apply induc-
tion. So as |B| > 2 and B acts nontrivially on L̃, we see that B ≤ Σ4×Z2. If
we can embed B into some X2

∼= Σ6 such that S̄ ∩X2 is a Sylow 2–subgroup
of X2. Now again we may apply induction. Hence we may assume that 4 | n
and B is a Sylow 2–subgroup of X2

∼= A4. Then B ∼ 〈(12)(34), (13)(24)〉
and so there is some conjugate Bg with 〈B, Bg〉 ∼= A5

∼= L2(4), the assertion.

Let finally L be sporadic. By 3.26 we get that L/Z(L) ∼= M12, M22, M24, J2,
Co1, Co2, or Suz. Now we choose s ∈ Z(S̄ ∩ L ∩B). If B 6≤ O2(CAutḠ

(s)),

then by induction we get the assertion again. If there is some involution g in
CL(s) with [B, Bg] 6= 1, we have the second alternative. So we may assume
that 〈BCL(s)〉 is abelian. This gives L/Z(L) ∼= Mi. If L ∼= M24 there is a
subgroup L̃ ≤ L with S ∩ L ≤ L̃ and L ∼= E16A8. Now by induction we may
assume B ≤ O2(L̃). But there is no quadratic foursgroup in O2(L̃) according
to [MeiStr2]

Let next L/Z(L) ∼= M22. Then we may embed B into a subgroup SL(3, 4)
and again we get the assertion by induction.
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So we are left with L ∼= M12. If B 6≤ L, then with [MeiStr2] we see that B
6 £ S ∩ L, so we have B ≤ L. Now in L there are two parabolics P1, P2 such
that Pi/O2(Pi) ∼= Σ3. So if B 6≤ O2(Pi) for some i we have induction again.
Hence we may assume that B is contained in O2(P1)∩O2(P2) and 〈BCL(s)〉 is
elementary abelian of order 8. Then this group contains an involution i which
acts fixed point freely on the 12 points moved by L. So CL(i) ∼= Z2 × Σ5.
Further S contains a Sylow 2–subgroup of CL(i). As B ≤ CL(i), we get the
assertion by induction. 2

2Fmodule

Lemma 4.2 Suppose Y and H are subgroups of a group G with a common
Sylow 2–subgroup S and F ∗(Y ) = O2(Y ), F ∗(H) = O2(H). Assume further
YY 6≤ O2(H). Then one of the following holds.

(1) There is some g ∈ H, g2 ∈ NH(YY ) with Y g
Y ≤ S ≤ Y , YY ≤ Y g.

Further 1 6= |YY : CYY
(Y g

Y )| = |Y g
Y : CY g

Y
(YY )|. In particular YY is an

F–module.

(2) There is some g ∈ H such that for L = 〈YY , Y g
Y 〉 we have L/O2(L) ∼=

L2(q), Sz(q), q even, or D2u, a dihedral group of order 2u, u odd. Set
q = 2 in the latter. Further we have that A = Y g

Y ∩ O2(L) ≤ S ≤ Y .
For the action of A on YY we have [YY , A, A,A] = 1, If x ∈ YY \O2(L),
then CA(x) = A∩YY , and |YY : CYY

(A)| ≤ q|A/(A∩YY )|. In particular
YY is a 2F–module with offender A/(A∩ YY ) and an F + 1–module in
case of q = 2.

(3) If we are in (2) then |YY : CYY
(A)| < |A/(A ∩ YY )|2.

(4) If we have that A acts quadratically then YY is an F–module.

Proof: We find everything for (1) and (2) in 4.1 where G = H and
A = YY .

For (3) assume that we have |YY : CYY
(A)| = |A/(A ∩ YY )|2. Then

|(Y ∩O2(L))(Y g∩O2(L))/Y ∩Y g| = q2. Hence we have that L/O2(L) ∼= L2(q)
or L induces Σ3 on (Y ∩O2(L))(Y g∩O2(L))/Y ∩Y g. In both cases L acts tran-
sitively on ((Y ∩O2(L))(Y g∩O2(L))/Y ∩Y g)] and so (Y ∩O2(L))(Y g∩O2(L))
is abelian. But then |YY : CYY

(A)| = |A/(A ∩ YY )|, a contradiction.

In (4) we have that [A, YY ∩ O2(H)] = 1. So the assertion follows with
4.1(6). 2

Knormal1

Lemma 4.3 Let the notation be as in 4.2. Let K be a component of
Y/CY (YY ) with [K,A] 6= 1. Suppose 4.2(2) with [K, A] 6≤ K then |A| > 4,
K ∼= Ln(2) for some n. Let a ∈ A with Ka 6= K. Then |[YY , a]| = 2n and A
induces the full transvection group on [YY , a]. In particular |Y g

Y : A| = 2.
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Proof: Suppose first q > 2. By 4.1 we know that Y := (YY ∩
O2(L))(Y g

Y ∩ O2(L))/(YY ∩ Y g
Y ) is a direct sum of natural modules. So let

A1 be contained in the intersection of A with one of this modules V1, with
|A1 : A1∩YY | = q. We have [YY , A1, A1] ≤ YY ∩Y g

Y . Suppose [YY , A1, A1] 6= 1.
Let R be a hyperplane in YY ∩Y g

Y with [YY , A1, A1] 6≤ R. As |YY ∩V1|2 = 2|V1|,
we have the assumptions of 3.55, a contradiction. So A1 acts quadratically
on YY . Hence by 3.24 we have three posibilities

(1) [K, A1] ≤ K

(2) |A1 : CA1(K)| > 2, [K,A1] 6≤ K and K ∼= L2(2
n)

(3) |A1 : CA1(K)| = 2 and [K, A1] 6≤ K.

Let [K, A1] 6≤ K. Assume (3). Let a ∈ CA1(K). Then KA1 acts on
[YY , a]. By quadratic action we have [YY , a,K] = 1. In particular we get
that [YY , K] is centralized by a and so by 4.2 [YY , K] ≤ O2(L). Hence
A acts quadratically on [YY , KA]. Assume now |A : CA(K)| = 2. Then
[YY , A](YY ∩YMg) = [YY , CA(K)](YY ∩YMg). In particular [YY , K] ≤ YY ∩YMg ,
a contradiction.

So we may assume that KA = Ω+(4, 2n). In particular we may assume
that we are in (2). Suppose first [YY , K] ≤ O2(L). By 3.36 there is some
y ∈ CYY

(K) \ O2(L). Hence we see [y, A](YY ∩ A) = YY ∩ O2(L). Now
[YY , K, A] ≤ [YY ∩ O2(L), A] = [y, A, A]. But [y, A] ≤ CYY

(K), a contra-
diction. So we have [YY , K] 6≤ O2(L). In particular there is some minimal
module V such that V 6≤ O2(L) and V/CV (K) is the natural Ω+(4, 2n)–
module. As above we see that CA1(K) = 1. Choose y ∈ V \ O2(L), then
we get [y,A1](YY ∩ A) = [YY , A1]. As |[V/CV (K), A1]| > |A1|, we see that
V ∩ A 6≤ CV (K). Let a ∈ CA(K). Then [V, a] < V , and so [V, a] = 1,
which gives a = 1, as V 6≤ O2(L). So we have CA(K) = 1. But then A acts
quadratically on V , which then gives that V is an F–module, a contradiction.

So we have shown that KA1 = K. As A is generated by such subgroups
A1, we have the contradiction [K, A] ≤ K.

So we have q = 2. If [YY , K] ≤ O2(L), then again A acts quadratically
on [YY , K]. If we have |A : CA(K)| > 2, we may argue as before. So
let |A : CA(K)| = 2. Then for a KA–module W we have that A induces
transvections, as W must be in [YY , a] for some a ∈ CA(K), which is not
possible.

So we have [YY , K] 6≤ O2(L). Let a ∈ A with Ka 6= K. Assume first
[YY , a, A] = 1, then by 3.24 either |A : CA(K)| = 2, or K ∼= L2(r) and or-
thogonal Ω+(4, r)–modules are involved. Suppose the latter. Then as before,
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we get some y 6∈ CYY
(K) with [A, y](A ∩ YY ) = [YY , A], a contradiction. So

we have |A : CA(K)| = 2. Now we have that [K, YY , CA(K)] = 1, but as
[YY , K] 6≤ O2(L) this shows |A : A ∩ YY | = 2. Now A induces transvections
on YY and so A has to normalize K, a contradiction.

So we have that [YY , a, A] 6= 1. Now A induces transvections on [V, a] to
a hyperplane. Let b ∈ CA(K) and assume first that [YY , b, K] = 1. Then also
[YY , K, b] = 1 and so [YY , K] ≤ O2(L), a contradiction. Hence K acts non-
trivially on [YY , b]. But b induces a transvection on [YY , a], a contradiction.
So we have that CA(K) = 1. Further KA = K × Ka. As [YY , a, A] 6= 1,
we see that K1 = CK×Ka(a) ∼= K acts faithfully on [YY , a], and so, as
A induces transvections to a hyperplane, we get with 3.16 K ∼= Ln(2),
Sp(2n, 2), Ω±(2n, 2) or An. We have |A| > 2. So assume first |A| = 4.
Then |[YY , a]| ≤ 4, but K1 has to act nontrivially on [V, a], a contradiction.
So |A| > 4 and then K ∼= Ln(2). 2

2Fsmall

Lemma 4.4 Let Y , H be as in 4.2. Assume further that Y is a minimal
parabolic with respect to S. Set X = Y/O2(Y ). Assume m3(X) ≤ 3. If X is
nonsolvable and P a normal p–subgroup, then assume that mp(P ) ≤ 3. Set
V = YY . Assume that |V : CV (A)| < |A|2. Let finally CX(V ) be nilpotent.
Then one of the following holds:

(1) E(X) ∼= SL3(r) and V is a direct sum of the natural and the dual
module.

(2) E(X/CX(V )) ∼= L2(r), r = t 2, V is the orthogonal module.

(3) E(X) ∼= X1X2, X1
∼= X2

∼= L2(r), V = V1
⊕

V2, [Vi, X3−i] = 1,
[Vi, Xi] = Vi, i = 1, 2, and Vi is orthogonal, a direct sum of two natural
modules, or r = 4 and Vi is a direct sum of two orthogonal modules.

(4) E(X) = X1X2, X1
∼= X2

∼= L2(r) and V is the natural O +
4 (r)-module.

(5) E(X) = X1X2, X1
∼= X2

∼= L3(r), V = V1
⊕

V2, [Vi, X3−i] = 1,
[Vi, Xi] = Vi, i = 1, 2, and Vi is a direct sum of the natural and the
dual module.

(6) E(X) ∼= Sp4(r), V is a direct sum of the natural and the dual module.

(7) E(X) ∼= 3 · A6, [V, Z(E(X))] = 1 and V is a direct sum of the natural
4–dimensional module and its dual.

(8) E(X) = X1 ∗X2, X1
∼= X2

∼= 3 · A6, [V, Z(E(X))] = 1, V = V1
⊕

V2,
[Vi, X3−i] = 1, [Vi, Xi] = Vi, i = 1, 2 and Vi is a direct sum of the
4–dimensional module and its dual.

(9) E(X) ∼= A9

78



(10) X is a solvable

Proof: We may assume that X is nonsolvable. Suppose E(X) = 1. Let
P be some normal p–subgroup of X on which X induces a nonsolvable group.
Now by assumption mp(P ) ≤ 3 and so on some critical subgroup C of P the
group X induces a subgroup of L3(p) or Sp4(p). Let R be the preimage of
Op(X/CX(C)) and R1 the preimage of O2(X/R). Then NX(S ∩R1)R1 = X.
As R1S 6= X, we get S ∩ R1 = 1. This shows that X induces a subgroup
of L3(p). Now we have |A| = 4 as 4 ≤ |[V : CV (A)| < |A|2. Now there
is a subroup Y which is generated by three conjugates of A which covers
X/CX(C). Hence this group is in GL(9, 2). As X/CX(C) is a minimal
parabolic, we see with 2.6 that p = 5 or 7, C is elementary abelian of or-
der p3 and E(X/CX(C)) ∼= L2(p). This with 2.1 shows that we must have
C ≤ CX(V ). Now 3.29 gives (i) or (ii).

So we may assume that E(X) 6= 1. Then we have that X = E(X)S. Let us
go over the list of possibilities for X. Let E(X) be quasisimple. As S is in a
unique maximal subgroup, we see with 1.1 that E(X) ∼= L2(r), Sz(r), U3(r),
Sp4(r), L3(r) or A9. Set W = V/CV (E(X)).

Let E(X) ∼= Sz(r). Then with 3.50 we get that A has to act quadrati-
cally, a contradiction.

Let E(X) ∼= L2(r). Let first A ≤ E(X). We have |A| > 2 then by 1.14
E(X) = 〈A,A g〉 for suitable g ∈ E(X). As |A| ≤ r, we get |W | ≤ r 4. If
|W | = r 4, then A ∈ Syl2(E(X)) and by 3.50 W = V1

⊕
V2, Vi the natural

module for E(X). But then A acts quadratically, a contradiction.

So assume |W | < r 4. Then W involves exactly one nontrivial irreducible
module. So we have (2) by 3.29.

Assume next A 6≤ E(X). Then r = t 2 and |A| ≤ 2t. As |A| > 2 we
have |A ∩ E(X)| 6= 1, then as before |W | ≤ 16t 4 = 16r 2. If |W | < r 4 we
may argue as before. So assume r = 4 and |W | = r 4. Then |A| = 4 and so
W is a direct sum of two orthogonal modules, which is (3).

Let E(X) ∼= (S)L3(r). Suppose first A ≤ E(X). If W is not irreducible
as (S)L3(r)–module then we get some submodule W1 of W which is an F–
module. By 3.16 W1 is a natural module. But now as some element in S has
to induce a diagram automorphism also W ∗

1 is involved. This is (1).

So assume that W is an irreducible (S)L3(r)-module. Then by 3.29 W is
the natural module or a tensor product of the natural module with an al-
gebraically conjugate module. As X contains some x inducing a Dynkin
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automorphism on E(X) this is impossible.

So we have A 6≤ E(X). Suppose first |A : A ∩ E(X)| = 4. Then r = t 2

and |A ∩ E(X)| ≤ t. So |W : CW (A)| ≤ 16t 2 = 16r. As |W : CW (A)| > r 2,
we get r = 4, |A| = 8. There is some x ∈ A such that CX(x) contains
U ∼= L3(2) · 2. There is t ∈ U ′ such that x ∼ xt. As |W : CW (t)| ≥ 32,
we get |W : CW (x)| ≥ 8. But there is some y ∈ U \ U ′, y ∈ A. Hence
|CW (x) : CCW (x)(〈y, t〉)| ≥ 2 4. This implies |W : CW (A)| ≥ 2 7, a contradic-
tion.

So we have |A : A ∩ E(X)| = 2. Suppose A contains a field × diagram
automorphism. Then r = t 2 and |A| ≤ 2t. So |W : CW (A)| ≤ 4t 2 = 4r.
As |W : CW (A)| > r 2, we get a contradiction. Let p be a primitive prime
divisor of r 3 − 1, p = 9 if r = 4. Then there is some a ∈ A \ E(X) inverting
some ω, o(ω) = p. Now we get |W : CW (a)| ≥ t 3, where r = t 2 or r = t, if r
is not a square.

Let a be the diagram automorphism. Then CE(X)(a) ∼= L2(r). Hence
|W : CW (A)| ≥ rt 3. So 4 ≥ t. This shows E(X) ∼= L3(2), (S)L3(4)
or (S)L3(16). In case (S)L3(16) we have |W : CW (a)| = 4 3 and so
[[W,ω], a] = 1. Hence |CW (ω)∩CW (A)| = 1. But this implies |CW (ω)| ≤ 16,
i.e. |W | ≤ r 4, a contradiction.

Let E(X) ∼= (S)L3(4). Now |CW (ω) : CCW (ω)(a)| ≤ 2. Hence |CW (ω)| ≤
2 ·4 = 8. This shows |W | ≤ 2 9, again |W : CW (t)| ≤ 2 4 for t ∈ E(X), t 2 = 1,
a contradiction.

Let E(X) ∼= L3(2). Then we get the natural and the dual module and a
interchanges both modules. This is (1).

So we have r = t 2 and A contains a, a field automorphism. Hence CX(a) con-
tains U ∼= (S)L3(t) · 2. Again |W : CW (a)| ≥ t 3. As |W : CW (A)| > r 2 = t 4,
we get |A ∩ U | > t. Now |CW (a) : CW (A)| > t 2. Hence |W : CW (A)| >
t 5 = r 2t, so 4 > t, i.e. r = 4. Now |W : CW (a)| = 8. So |[W,ω]| = 2 6 and
CCW (ω)(A) = 1. This shows |CW (ω)| ≤ 2 3. So |W | ≤ 2 9, a contradiction.

So we are left with A ∩ E(X) = 1. Then we have |A| = 4 and r = t 2.
There is some a ∈ A ] with |W : CW (a)| ≥ t 3. This shows t = 2. But then
for this a we may assume CX(a) ≥ U ∼= L3(2) · 2 and |CW (a) : CW (A)| = 2.
But there is now b ∈ (U ∩ A) ] inducing a transvection on CW (a), a contra-
diction

Let E(X) ∼= (S)U3(r). Then |A| ≤ r. So |W : CW (a)| ≤ r 2 for any a ∈ A ].
Now 3.50 gives a contradiction with the quadratic action..
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Let E(X) ∼= Sp4(r), including E(X) ∼= A6 or 3A6. Suppose first A ≤ E(X).
If W is a reducible E(X)–module, then we have some submodule W1 which is
an F–module. By 3.16 we have that W1 is the natural module or E(X) ∼= 3A6

and W1 is the 6–dimensional module. As X contains some diagram automor-
phism also the dual module is involved. The two 6–dimensional modules for
3A6 do not have the same offender. So we have A6 and then (6) or (7).

Suppose that W is irreducible as Sp4(r)–module. Then by 3.29 it is the
natural module or a tensor product module, but as a diagram automorphism
is involved, this is not possible.

So we have A 6≤ E(X). Assume first A∩E(X) 6= 1. Recall |W : CW (t)| > r 3

for any a ∈ A∩E(X), a 6= 1. Suppose |A∩E(X)| ≤ r. Then |W : CW (A)| ≤
16r 2, 4r 2, if r is not a square. Hence r ≤ 4.

Let r = 4, then |A| ≤ 8, so |W : CW (A)| ≤ 64 = r 3, a contradiction.
So let r = 2, |A| = 4. But now inspection of the A6-modules just implies (7).

So assume |A ∩ E(X)| > r. Then r = t 2 and A contains a field auto-
morphism. So |A| ≤ 2t 3. Hence |W : CW (A)| ≤ 4t 6 = 4r 3. Now as
there is some x ∈ E(X) ] such that a ∼ ax, a the field automorphism, we
get |W : CW (a)| ≥ 2t 3. So |CW (a) : CW (A)| ≤ 2t 3 and by induction just
the natural and its dual is involved. As |A ∩ E(X)| = t 3, we then get
|CW (a) : CW (A)| ≥ t 5, a contradiction.

So we are left with A ∩ E(X) = 1. Hence |A| = 4. For u ∈ E(X) ], u 2 = 1,
we have |W : CW (u)| ≤ 2 8. This implies r = 4. Now |W : CW (a)| = 16 for
any a ∈ A ]. This yields that E(X)A = 〈CE(X)(a)|a ∈ A ]〉 acts on CW (A), a
contradiction.

Let E(X) ∼= 3 · A6 and [W,Z(E(X))] 6= 1. Hence by 3.30 we get a con-
tradiction as there is a diagram automorphism x in X.

From now on let E(X) not be quasisimple but nontrivial. Let first Xa
1 =

X2 6= X1 for some component X1. Then by 4.3 we have X1
∼= L3(2). But as

with the natural X1–module also the dual one is involved this is not possible.
So we have that any component is normalized by A. If A acts faithfully on
some component, we get the assertion. So we may assume that CA(X1) 6= 1.
As all components are conjugate, they have to induce 2F–modules. Hence
we have the same possibilities for X1 as before. In particular we see that
Sz(r) and U3(r) again are not possible. In particular we have exactly two
components.
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Let [V, X1, X2] = 1. Assume further that [V, X1] involves just one nontrivial
irreducible module, then we get (3). So assume that [V,X1] contains more
than one irreducible module. Then these modules have to be F -modules and
with 3.16 we see that there are exactly two such modules involved, which
gives (3), (5) and (8).

So we may assume that [V,X1, X2] 6= 1. In particular [V,X1] involves at
least two nontrivial irreducible isomorphic F–modules for X1. This now
shows that we must have X1 = L2(r) and there are exactly two natural
modules, which is (4). 2

sol

Lemma 4.5 Let R be a p-group, p odd, and E be an elementary abelian
2-group acting faithfully on R. Let V be a GF (2)–module for RE on which
E acts qudratically. Then we have V = 〈v | |E : CE(v)| ≤ 2〉.

Proof: By 2.1 we may assume that RE is a direct product of dihedral
groups D1×D2×· · ·×Dr of order 2p. Further we may assume that RE acts
faithfully and CV (R) = 1. As E acts quadratically we see that CE(Op(D1))
acts trivially on [Op(D1), V ]. This implies that V = [Op(D1), V ] ⊕ · · · ⊕
[Op(Dr), V ] and if v ∈ [Op(Di), V ] then |E : CE(v)| ≤ 2. 2

FG2

Lemma 4.6 Let V be a nontrivial F -module for X, where X is a minimal
parabolic with respect to the Sylow 2–subgroup S, O2(X) = 1. Assume fur-
ther that m3(X) ≤ 3, CX(V ) is nilpotent, O2(X/CX(V )) = 1 and mp(P ) ≤ 3
if P is a normal p–subgroup of X and X is nonsolvable. Then one of the
following holds

(i) E(X/CX(V )) ∼= L2(r), r even, Z2 involves exactly one nontrivial irre-
ducible module which is the natural module, or r = 4 and this module is the
orthogonal module. An offending subgroup A is a Sylow 2-subgroup of E(X)
or r = 4 and |A| ≤ 4, |A ∩ E(X)| ≤ 2.

(ii) E(X) = X1 × X2
∼= L2(r) × L2(r), r even. Denote by W the group

[E(X), V ]CV (E(X))/CV (E(X)). Then W = W1 ⊕ W2, [Wi, X3−i] = 1, i =
1, 2. Furthermore Wi is the natural Xi-module, or r = 4 and Wi is the
orthogonal Xi-module. In the first case an offending subgroup is a Sylow 2-
subgroup of X1, X2 or E(X), while in the second case the offending subgroup
A normalizes X1 and X2 and |A ∩X1| ≤ 2 ≥ |A ∩X2| , |A| ≤ 16.

(iii) E(X) ∼= A9 and there is exactly one nontrivial irreducible module in-
volved which is the natural module.

(iv) X is solvable and X is a {2, 3}-group.
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Proof: Let E(X) 6= 1. Then as X = E(X)NX(S ∩ E(X)). Hence
X = E(X)S. By 3.24 any quadratic offender normalizes any component.
Hence components induce F–modules. By 3.16 we have that components of
X are L2(r), SL3(r), Sp4(r) or A9. But in the case of SL3(r) and Sp4(r) the
Sylow 2–subgroup S also induces a diagram automorphism and so with the
natural module also the dual is involved, which shows that V cannot be an
F–module. If we have a component L2(r), then as S acts transitively on the
components, we see that we have at most two of them, otherwise m3(X) ≥ 4.
If we have a component A9 we just have one component. Now the assertion
about the modules follows easily with 3.16.

We now determine the offending subgroups. Let E(X) = X1
∼= L2(q), q

even. By 3.16 V involves exactly one irreducible module. This is the natural
one, or q = 4 and it is the orthogonal module. Furthermore an offending sub-
group is a Sylow 2-subgroup or X ∼= Σ5 and |A| = 2, 4 with |A : A∩X1| = 2.

Let now E(X) = X1X2, X1
∼= L2(q) ∼= X2, q even. Let [A,X1] 6= 1.

Then CV (CA(X1)) is an F -module for X1. So V involves exactly one ir-
reducible nontrivial X1-module, as |V : CV (CA(X1))| ≤ |CA(X1)|. Now
[[V, X1], X2] = 0. As there is some x ∈ X with X x

1 = X2, we get the asser-
tion.

So assume now E(X) = 1. Let next X be nonsolvable. Let P be some
normal p–subgroup of X on which X induces a nonsolvable group. Now
by assumption mp(P ) ≤ 3 and so on some critical subgroup C of P the
group X induces a subgroup of L3(p) or Sp4(p). Let R be the preimage of
Op(X/CX(C)) and R1 the preimage of O2(X/R). Then NX(S ∩R1)R1 = X.
As R1S 6= X, we get S ∩ R1 = 1. This shows that X induces a subgroup
of L3(p). Now three conjugates of some offender, if the offender has order 4
and five conjugates in case of an offender of order two, generate a subgroup
Y which covers X/CX(C). Hence this group is in GL(6, 2). Now 2.6 gives,
as X/CX(C) is a minimal parabolic, that p = 5, C is elementary abelian of
order 53 and E(X/CX(C)) ∼= L2(5). In particular an offender has order at
most 4. This with 2.1 shows that we must have C ≤ CX(V ). This gives
|[V, X]| = 16, and so X/CX(V ) satisfies (i).

Let now X be solvable, then by minimality it is a {2, r}–group for some
prime r. By 2.1 and the fact that we have some quadratic offender, we get
r = 3. 2

We will now treat the solvable case separately.

Fmin

Lemma 4.7 Let X be a minimal parabolic,i.e. a Sylow 2–subgroup is in
exactly one maximal subgroup, and V be a faithful F -module for X over
GF (2). Assume further that X is a {2, 3}–group with m3(X) ≤ 3. Then
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X ∼= Σ3 or Σ3 o Z2 and |[V, F (X)]| ≤ 16.

Proof: Set F (X) = P . Then P is a 3-group. Let T be a Sylow
2–subgroup of O3,2(X), then NX(T ) contains a Sylow 2–subgroup S, the
same applies for F (X)S. As S is in exactly one maximal subgroup we get
X = PS. Let C1 be a critical subgroup of P and C = Ω1(C1). Let first C
be elementary abelian. Then |C| ≤ 27 and so by 2.1 we have that |A| ≤ 8.
Let |A| = 8. Then |[V, C]| = 26 and so X ≤ GL(6, 2). As S cannot act
irreducibly on C, we see that P = Z3 o Z3 and so P cannot be normal in
X. Hence we have that |A| ≤ 4. If C is extraspecial then |C| ≤ 35. If
now |A| = 8, there is some a ∈ A which inverts Z(C). Hence we have that
|[V, Z(C)]| ≤ 26. But C cannot be a subgroup of GL(6, 2). So in any case
we have that |A| ≤ 4. If |A| = 4, then by 4.5 there we must have elements in
a ∈ A] with CV (a) 6= CV (A), hence we have elements a with |V : CV (a)| = 2.
This of course is true for |A| = 2.

If first P be cyclic. Then we get |[V, P ]| = 4. So |P | = 3 and X ∼= Σ3.
So let P be noncyclic. Let a ∈ A ] such that |V : CV (a)| = 2, then there is
some ω ∈ P \Φ(P ) with |[V, ω]| = 4. By irreducible action there is a minimal
generating system for P with elements ω such that |[V, ω]| = 4. Hence we see
that [Φ(P ), V ] = 1. So P is elementary abelian and as S acts irreducibly we
have that |P | = 9 and X ∼= Σ3 oZ2 and [V, O3(X)] is the orthogonal module.
2

min2Fquad

Lemma 4.8 Let F ∗(L) ∼= (S)L3(q), (S)U3(q), L2(q), or Sz(q), q even and
further let S be a Sylow 2-subgroup of L which is contained in a unique
maximal subgroup of L. Let V be a faithful irreducible F– or 2F–module for
L with a non quadratic offender in case of a 2F–module. Then L ∼= L2(q).

Proof: Let L 6∼= L2(q). Let V be an F–module. Then by 4.6 we get
the assertion. So we may assume that V is a 2F–module. Let A be the
offender which does not act quadratically. Then |A| ≥ 4. We have that
V restricted to F ∗(L) remains irreducible. As in case of L ∼= (S)L3(q) we
have some diagram automorphism induced on F ∗(L), we see with 3.29 that
F ∗(L) ∼= Sz(q) or SU3(q) and V is the natural module. Now we have that
|V : CV (A ∩ F ∗(L))| = q2. As A does not act quadratically, we see that
A 6≤ F ∗(L) and so F ∗(L) = SU3(q) and |A| = 2q. But for involutions i not
in F ∗(L) we have that |V : CV (i)| = q3. But then we get |V : C : V (A)| ≥ q4,
a contradiction.
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5 Uniqueness groups

In this section M is always some uniqueness group satisfying the assumptions
of this paper.

ex2

Lemma 5.1 Let M be exceptional with respect to p and E ≤ P with
mp(E) ≥ 2, then NG(E) ≤ M , in particular NG(P ) ≤ M .

Proof: If E ≤ Q, the assertion is clear. So it is enough to consider
|E| = p2, |E ∩ Q| = p. Let g ∈ NG(E). Then (E ∩ Q)g ≤ M g and so
P ≤ CG((E ∩Q)g) ≤ M g. But then M = M g and so g ∈ M .

goodEex

Lemma 5.2 Let M be exceptional with respect to p. Set CM = CM(YM) and
M0 = NM(S ∩ CM), for S a Sylow 2–subgroup of M . Let R be the preimage
of Op(M/O2(M)). Then either R ≤ CM or R ≤ M0.

Proof: Let R 6≤ CM . As M acts irreducibly on R/O2(M), we get
R ∩ CM = O2(M). Now [S ∩ CM , R] ≤ R ∩ CM = O2(M) ≤ S ∩ CM , the
assertion. 2

stark

Lemma 5.3 Let M be a uniqueness group. Let p ∈ σ(M) and E be a p-
subgroup of M , E elementary abelian of order at least p2, with ΓE,1(G) ≤ M .
Let further R ≤ G, with E ≤ R ∩ M , Then R ≤ M or one of the following
holds

(a) E(R/Op′(R)) = L is simple and we have one of the following, where
P ∈ Sylp(R ∩M):

(i) L ∼= L2(p
n), n > 1, U3(p

n) or 2G2(3
n), n > 1; M ∩L = NL(P ∩L)

(ii) p = 3 , L ∼= L2(8) , L3(4),M11, A6; M ∩ L = NL(P ∩ L)

(iii) p = 5 , L ∼= Sz(32),McL, 2F4(2)′; M ∩ L = NL(P ∩ L)

(iv) p = 5 or 7 and L ∼= HS, Ru, He, O′N , or M(24)′ ; mp(L) = 2
and ΓP∩L,1(G) 6≤ M

(v) p = 5 , L ∼= A10

(vi) p = 11 , L ∼= J4; M ∩ L = NL(P ∩ L).

(vii) p = 5, L ∼= M(22) and E(M) = F ∗(M). Further E(M) involves
D4(2) and e(G) ≥ 4.

(b) M is exceptional with respect to p and E(R/Op′(R)) = X1L, where
X1 ≤ X and L is as in (a)(i) or (ii).

(c) M is exceptional with respect to p and F ∗(R/Op′(R)) ∼= Zp×L, with L
as in (a)(i) or (ii).
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(d) p = 3, R/Op′(R) ∼= 32SL2(3) or 32GL2(3), further a Sylow 3–subgroup
T of M is isomorphic to Z3 o Z3 and ΓT,2(G) 6≤ M .

In any case Op′(R) = O2′(R) and O2(R∩M) = 1 or L ∼= L3(4) and some
graph × field automorphism is involved.

Proof: Let R 6≤ M . Set K = Op′(R). As K = 〈CK(x)|x ∈ E ]〉 we get
K ≤ M . Set U = Op′,p(R). Let P ∈ Sylp(R) with E ≤ P and 1 6= x ∈ Z(P ).
Then [x,E] = 1 and so x ∈ M . If x ∈ E, then P ≤ M . Assume x 6∈ E.
Now mp(〈x,E〉) ≥ 3 and so P ≤ NG(〈x〉) ≤ M for M being not exceptional.
In the other case we have that P is abelian by 5.1 and so [P, E] = 1, again
P ≤ M .

So U ≤ M in any case. We show next that U = K. Suppose P ∩ U 6= 1.
Let first M be exceptional with respect to p. Then by 5.1 and the Frat-
tini argument we have |U/K| = p. Further Q ∩ U = 1. Then we get with
Gaschütz lemma a subgroup R1 of R containing E such that R1 ∩ U = K
and R1 6≤ M , so we are in (c). Hence we may assume K = U . So let now
M be not exceptional. If mp(P ) ≥ 3, then NR(Z(U ∩ P )) ≤ M . So we
have mp(P ) = 2. Let first P ∩ U be cyclic. But as mp(P ) = 2, we get that
E ∩ U 6= 1, a contradiction. So we have that mp(Z(U ∩ P )) = 2 and p = 3.
Further Z3 o Z3 is a Sylow 3–subgroup of G. As NG(E) ≤ M , we have that
E 6≤ U . Hence P ∼= 31+2 and R induces SL2(3) or GL2(3) on U ∩ P , which
is (d).

Hence from now on we may assume that U = K. Let now W be the
preimage of E(R/U). Then W > K and p

∣∣∣ |W |. We first show that

W/K is simple. Let E ≤ P ∈ Sylp(R), then as before P ≤ M . Let
W1/K · W2/K · · ·Wr/K = W/K, where Wi/K are the components. Sup-
pose there is ω ∈ E with (W1/K)ω 6= W1/K. Then we see that r ≥ p.
As p ≥ 3, we get that W2/K · · ·Wr/K ≤ NW/K((P ∩W1)K/K) ≤ M and
W1/K · · ·Wr−1/K ≤ NW/K((P ∩ Wr)K/K) ≤ M . Hence W ≤ M and as
R = WNR(W ∩ P ) we see R ≤ M .

So we have E ≤ N(Wi/K), for all i. Let first M be exceptional with respect
to p. Then by 5.1 we see that NW (P ∩W ) ≤ M , as r ≥ 2. As NW1(P ∩W )
normalizes Q ∩ W , we see that either Q ∩ W1 6= 1 or Q ∩ W2 · · ·Wr 6= 1.
Hence we may assume that W2 · · ·Wr ≤ M . So Q ∩ W ≤ W1. Hence we
have that r = 2 and W2 ≤ X. So we are in (b). All what is left to show is
that W1 is as in (a)(i) or (ii). This will be done later.

Let now M be not exceptional with respect to p. There is x ∈ Z(P ∩W1)
with NG(〈x〉) ≤ M , so W2W3 · · ·Wr ≤ M . But the same is true for Wr, i.e.
W1W2 · · ·Wr−1 ≤ M . Hence we have W ≤ M . By Frattini argument we get
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R ≤ M . So we have that W/K is simple.

Now we may apply [GoLy, (24-9)] to W or W1. Recall that if M is ex-
ceptional for the prime p we have ΓP,2(G) ≤ M by 5.1. We get a list of
possibilities for L.

Assume that L is not one of (i) - (vii). Then we have that L ∼= PSp4(p),
L3(p), A2p, A3p, or p = 3 and L ∼= G2(8), Sp4(8), Sp6(2), J3, M12,

2F4(2)′

or p = 5 and L ∼= 2F4(32). We first show that L 6∼= PSp4(p), L3(p) or A3p.
If ΓP,2(G) ≤ M , then we see that we cannot have one of these groups. So
we have that ΓP,2(G) 6≤ M . Then we have that p = 3 and that a Sylow
3–subgroup of G is isomorphic to Z3 o Z3. Let L ∼= A9 or PSp4(3). Then
there is an elementary abelian subgroup F of P of order 27. We have that
ΓF,1(G) ≤ M . But as ΓF,1(G) covers L we cannot have one of these. We
are left with L ∼= L3(3). We have NL(P ∩ L) ≤ M and E is contained in
the elementary abelian subgroup F of order 27 in a Sylow 3-subgroup of M .
Now NL(E) ∼= EGL2(3). As F is a Sylow 3–subgroup of CG(E), we see
that NM(F ) involves GL2(3). But FGL2(3) does not have Z3 o Z3 as a Sylow
3–subgroup.

Suppose next p = 3 and L ∼= G2(8), Sp4(8), Sp6(2), J3, M12,
2F4(2)′. Then

ΓP∩L,1(G) 6≤ M . This shows m3(M) = 3. Let first L ∼= G2(8) or Sp4(8),
then we have that E 6≤ L. This gives that E induces a field automorphism.
Then some element from E centralizes G2(2) or Sp4(2) in L. But by [GoLy,
24-10] we have that M ∩L ∼= SU3(8) or L2(8) o Z2, a contradiction. Let next
L ∼= Sp6(2). Then there is some elementary abelian subgroup F in L of order
27 with ΓF,1(L) = L, a contradiction. Let next L ∼= J3, then m3(CL(x)) = 3
for any element of order three in P ∩ L and then again ΓP∩L,1(L) = L, a
contradiction. Let L ∼= M12. Then E ≤ L and we have that ΓP∩L,1(L) 6= L.
Hence again Z3 o Z3 is a Sylow 3–subgroup of G. Now we get the same con-
tradiction as in the L3(3)–case above. Let finally L ∼= 2F4(2)′. By [GoLy,
24-10(2)] we have that L contains some L3(3) in M ∩ L. But then we have
the same contradiction as before.

So let p ≥ 5. Let L ∼= 2F4(32). Then mp(P ) ≥ 3 and so also W sat-
isfies the assumption for some Ẽ ≤ P ∩ W . But this contradicts [GoLy,
(24-9)].

Let L ∼= A 2p, then Ap × Ap is in M ∩ R. If p > 5, then Ap contains a
2–group which is normalized by an elementary abelian group of order 9. As
now 3 ∈ σ(M) and m3(L ∩M) ≥ 4, we get R ≤ M , a contradiction.

In all cases the assertions about M ∩ L follow from [GoLy, 24-10(1)].
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If L ∼= M(22), then M ∩ R involves D4(2). If 1 6= O2(M) or e(G) = 3,
then 3 ∈ σ(M). As m3(M ∩ R) ≥ 4, we have that R also satisfies the as-
sumptions with respect to the prime 3. But then we would get R ≤ M .

It remains to show that in (b) and (c) we have L of type (a)(i) or (ii).
As P is abelian the other possibilities are (v) or (iii). In (v) we get that L
contains a subgroup A5 ×A5, which is in M . But this contradicts the struc-
ture of M being exceptional. So we have (iii). Then L ∼= Sz(32) or 2F4(2)′.
In 2F4(2)′, some SL2(3) acts on a Sylow 5–subgroup, which also contradicts
the structure of M . In Sz(32) there is a cyclic subgroup of order 25. Hence
we must have an automorphism of order 5 in E. This shows that a Sylow
5–subgroup of G is nonabelian. But a Sylow 5–subgroup of M is abelian in
the exceptional case.

We just have to prove the additional assertion about M ∩ R. Let 2
∣∣∣ |K|.

Then let T ∈ Syl2(K). So R = K NR(T ). As we may assume E ≤ NR(T ),

we get NR(T ) ≤ M , a contradiction. So 2 6
∣∣∣ |K|.

Let O2(R ∩ M) 6= 1. Then obviously we are not in (d). Assume that we
have M ∩ L = NL(P ∩ L). We see that O2(NL(P ∩ L)) = 1. So assume
there is some ω ∈ Aut (L) with [ω, P ∩ L] = 1, o(ω) = 2. Then we just have
L ∼= L3(4). So we are left with (a)(iv), (v) and (vii). As there is no involution
in the automorphismen group of L centralizing D4(2) or A5×A5, we cannot
have (v) or (vii). In (iv) it is easy to see that there are no 2–locals of L con-
taining a Sylow p–subgroup. Hence again we just have to investigate outer
automorphisms. But there is no such, which centralizes a Sylow p–subgroup
of L. (see [CCNPW]). 2

rank2

Lemma 5.4 Let M be a uniqueness group, S a Sylow 2–subgroup and as-
sume that NG(S) ≤ M . Let p ∈ σ(M) and H be some 2–local containing
S. Suppose H contains some elementary abelian p–subgroup E such that
|E| = p2 and ΓE,1(G) ≤ L for some uniqueness group L, then H ≤ M .

Proof: We have that H ≤ L. Now as both L and M contain a Sylow
p–subgroup of G, we have some x ∈ G such that M ∩Lx contains a common
Sylow p–subgroup of M and Lx. This now shows that Lx ≤ M . Now there
is some y ∈ M such that S ≤ Lxy. So we may assume hat xy ∈ NG(S). By
assumption we have xy ∈ M , so L ≤ M and then L = M , the assertion. 2

Proof: Let P be a Sylow p–subgroup of M with x ∈ P . By assumption
Ω1(Z(P )) is not cyclic. Hence mp(CP (x)) ≥ 3 and so CG(x) ≤ M . 2

uniqueMg

Lemma 5.5 Let M be a uniqueness group, g ∈ G and ω ∈ M ∩M g be a p–
element, p ∈ σ(M). Suppose that NG(〈ω〉) ≤ M . Then M = M g, or p = 3,
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a Sylow 3–subgroup of M is isomorphic to Z3 oZ3 and not for all 3–elements
ρ ∈ M we have that CG(ρ) ≤ M . If we have that NG(〈ω〉) ≤ M ∩M g, we
get M = M g without restrictions.

Proof: Let R be a Sylow p–subgroup of M ∩ M g. If NG(R) ≤ M ,
then R is a Sylow p–subgroup of M and so M = M g. If mp(R) = 1, then
NG(R) ≤ NG(〈ω〉), hence we may assume that mp(R) ≥ 2. Suppose first
that M is exceptional. Then with 5.1 we get the assertion. So M is not ex-
ceptional. Then we have that p = 3, R is elementary abelian of order 9 and
a Sylow 3–subgroup of G is isomorphic to Z3 o Z3. Further not all elements
in R have centralizers in M . This settles the first assertion.

So assume now additionally that NG(〈ω〉) ≤ M g. Let R1 be a Sylow 3–
subgroup of NMg(R). Now in R there is exactly one subgroup of order three,
whose normalizer is in M , this is 〈ω〉. Also there is exactly one subgroup of
order three, whose normalizer is in M g, which by assumption again is 〈ω〉.
But then we have that R1 ≤ NG(〈ω〉) ≤ M , a contradiction, as R1 6= R. 2

We now collect some properties of the exceptional uniqueness groups.
ex3

Lemma 5.6 Let M be exceptional with respect to p. Let τ ∈ P be an element
of order p. If CO2(M)(τ) 6= 1, then CG(τ) ≤ M .

Proof: We have P ≤ CG(τ). Now we may apply 5.3. This gives
p = 3 and E(CG(τ)/O3′(CG(τ)) ∼= L3(4). Hence |P | = 27. Further we see
that [P,CO2(M)(τ)] = 1, which contradicts the fact hat P contains elements
acting fixed point freely on O2(M).

exp

Lemma 5.7 Let M be exceptional with respect to p. Let S ≤ M ∩ H and
YM ≤ YH and H 6≤ M . Then p does not divide |CH(YH)|.

Proof: Let P be a Sylow p–subgroup of CH(YH) and assume P 6= 1.
As YM ≤ YH , we get that that CH(YH)) ≤ M . As [YM , P ] = 1, we get with
5.6 that NG(P ) ≤ M . As H = CH(YH)NH(P ), we get the contradiction
H ≤ M . 2

ex4

Lemma 5.8 Let BM be normal in M and |BM : Y | = 2, and |BM : Y | = 4
for 3 6∈ σ(M). Then there is some 1 6= y ∈ Y which is centralized by some
E ≤ M , E ∼= Ep2, p ∈ σ(M) with ΓE,1(G) ≤ M .

Proof: Let F be elementary abelian of order p3, p ∈ σ(M), where we
choose F in the exceptional case such that F ∩X 6= 1. Then there is some
E ≤ F with |CBM

(E)| ≥ 4, ≥ 8 for p 6= 3. Now by 5.6 we get the assertion.
2
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exF

Lemma 5.9 Let M be exceptional with respect to p and V ≤ YM be some
F–module for M , then we have [V, Q] = 1.

Proof: This is 3.41. Recall that (c) and (d) of 3.41 are not F–modules.
2

ex2F

Lemma 5.10 Let M be exceptional with respect to p and V ≤ YM be some
2F–module for M . Suppose [V,Q] 6= 1. Then an offender acts quadratically.

Proof: We have 3.41(c) or (d). Now we have a direct sum of F–modules
on which an offender acts quadratically. 2

pnormal

Lemma 5.11 Let M be a uniqueness group for a prime p and K be a normal
subgroup of M with mp(K) ≥ 2. Then K contains some elementary abelian
subgroup E of order p2 with ΓE,1(G) ≤ M .

Proof: This is evident if M is exceptional. So let M not be excep-
tional. Then all we have to show is that there is some E ≤ K such that
CM(E) contains an elementary abelian subgroup of order p3. In particular
we may assume that mp(K) = 2. Let P be a Sylow p–subgroup of K and
R a Sylow p–subgroup of M with P ≤ R. Let C be some characteristic
elemententary abelian subgroup of P . Suppose |C| = p2. Then we have
that C = Ω1(CR(C)). This gives mp(R) = 2, a contradiction. So we have
that any characteristic abelian subgroup of P is cyclic and then Ω1(P ) is
extraspecial. As mp(P ) = 2, we get that |Ω1(P )| = p3 and so M induces
a subgroup of GL2(p) on Ω1(P ). In particular |R : CR(Ω1(P )P | ≤ p. As
Ω1(P ) = Ω1(CR(P ))P , we get that there is some elementary abelian sub-
group of order p3 which intersects Ω1(P ) in a group of order p2. 2

gengood

Lemma 5.12 Let M be a uniqueness group and K be a normal component
in M/O2(M). Let further p be a prime with p ∈ σ(M). Assume that M
is not exceptional with respect to p. Suppose that p divides |K| and also
|CM/O2(M)(K)|. If p does not divide |Z(K)| then for all p–elements x ∈ M
we have that CG(x) ≤ M .

Proof: Let P be a Sylow p–subgroup of M with x ∈ P . By assumption
Ω1(Z(P )) is not cyclic. Hence mp(CP (x)) ≥ 3 and so CG(x) ≤ M . 2

For a uniqueness group M with F ∗(M) = O2(M) we set CM = CM(YM).
Let S be a Sylow 2–subgroup of M then set M0 = NM(S ∩ CM).
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CM

Lemma 5.13 Suppose M(M0) 6= {M}, then for any p ∈ σ(M) there is an
elementary abelian subgroup E of CM such that ΓE,1(G) ≤ M .

Proof: Let H 6= M , H ∈ M(M0). We have M = M0CM . Suppose
that for some p we have that mp(CM) ≤ 1. Then by 2.5, 5.2 we have that
M0 contains a good E As M0 ≤ H we get a contradiction. So we have that
mp(CM) ≥ 2. Hence we may assume that M is not exceptional by 5.2. If
mp(CM) > 2, we are done. So assume mp(CM) = 2. Then there is a Sylow
p–subgroup P of M and a normal subgroup Q, which is elementary abelian
of order p2 or extraspecial of order p3 and Q ≤ CM . Hence Q contains a
good E as mp(P ) ≥ 3. 2

CentY

Lemma 5.14 Suppose M(M0) 6= {M}. Let x ∈ Y ]
M then CG(x) ≤ M .

Proof: This follows from 5.13. 2
PinM

Lemma 5.15 Let M be some uniqueness group with F ∗(M) = O2(M). Let
H be a group with S ≤ M ∩H, S a Sylow 2–subgroup of M , and F ∗(H) =
O2(H), but H 6≤ M . Let further P be a Sylow p–subgroup of F (H/CH)
and x ∈ S with [P, x] 6= 1 and |YH : CYH

(x)| = 2. Assume that for any
1 6= V ≤ YM we have that NG(V ) ≤ M . If YM ≤ YH then the preimage of
[P, x] in H is not containied in M .

Proof: Suppose that [P, x] ≤ M ∩ H/CH .First of all we have that
p = 3. Set U = 〈[x, P ]S〉 and W = CU(YM). But as S acts on [W,YH ]
and CYH

(S) ≤ YM , we see that [W,YH ] = 1, i.e. W = 1. We have that
[x, P ] is generated by elements u with |[YH , u]| = 4. Now as [YM , u] 6= 1,
we see that [YH , u] ≤ YM . So we have that 1 6= [YH , [x, P ]] ≤ YM . As
[x, P ] is normal in P we now have that P ≤ M ∩ H/CH . In particular
U1 = 〈[x, P ]H〉 ≤ M ∩ H/CH . Set U2 = CU1(YM). Then U2 is S–invariant
and so as before we see that [U2, YH ] = 1, i.e. U2 = 1. Again we see that
[YH , U1] ≤ YM and then we have that H ≤ M , a contradiction. 2

l323

Lemma 5.16 Let N be a subgroup of the uniqueness group M , with S ≤ N .
Let 3, 7 6∈ σ(M). Assume further that one of the following holds

(i) N has a factor group N/R isomorphic to L3(2)× L3(2) o Z2.

(ii) N/O2(N) ∼= L3(2) o Z2

Then there is a 3-element in at least two of the components L3(2) whose
centralizer is in M .
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Proof: In case of (i) we first show that a Sylow 3–subgroup of N is
elementary abelian of order 27. Let T be a Sylow 3–subgroup of R, then
NN(R) involves N/R. As m3(T ) ≤ 3, we get that N/R has to act on a
group of order at most 35 which is the Ω1(C) for some critical subgroup C.
This shows that just trivial action is possible, as the smallest faithfull rep-
resentation of L3(2) over GF (3) is of dimension 6. Hence N/R is covered
by C(T ). As L3(2) has no 3–elements in the Schur multiplier we get that
T = 1, otherwise m3(N) > 3. Hence in both cases a Sylow 3–subgroup of N
is elementary abelian.

We will study the action of N on F ∗(M/O2(M)). We set R = O2(N) in
case (ii) and N = NlNt where Nl ∩ Nt = R and NlNt = N , Nt/R ∼=
L3(2) o Z2,Nl/R ∼= L3(2) in case (i) and Nl = R in case (ii). Let first K
be some component of M/O2(M). Let N1 = NN(K). If 3 divides the order
of K, we see that N1 covers E(N/R). So suppose that K is a Sz(q) and N1

does not cover E(Nt). Then we have at least 7 components under the action
of Nt . So the Sylow 3-subgroup of a component of Nt centralizes in KNt

an elementary abelian p–subgroup of order p3. As this component contains
an frobenius subgroup of order 21, the element also centralizes nontrivial
elements in O2(M). Hence application of 5.3 shows that its centralizer is in
M .

So we may assume that E(Nt) normalizes any component. Assume that
CNt(K) ≤ R. Then we see that E(Nt) induces inner automorphisms on K,
in particular as a parabolic, since S ≤ N . We have m3(K) ≤ 3. So with
1.1 we get that K ∼= L6(2) or L7(2), or S does not normalize K and then
K ∼= L3(2). Suppose we have the latter, then E(Nt) is centralized by some
E, |E| = p2 with ΓE,1(G) ≤ M . Then as above, we get the assertion with
5.3. Hence we have the former. We have mp(K) ≤ 1. Hence again K is
centralized by some E, |E| = p2 and ΓE,1(G) ≤ M . As before we get the
assertion.

We have shown that E(Nt/R) ≤ CNt(E(M/O2(M)))R/R. Let now P be
a Sylow p–subgroup of F (M/O2(M)) with CNt(P ) ≤ R. Let C be a maxi-
mal elementary abelian characteristic subgroup of P . Suppose CNt(C) ≤ R.
Then |C| ≥ p4 and so p 6= 3, 7. There is a subgroup of order 21 in Nt project-
ing in one of the components which acts faithfully on C. Hence the element
of order 3 has fixed points. The other component acts on the fixed points
and on the commutator as well. Hence by the same argument an element
of order three now has fixed points on both modules, recall that C is com-
pletely reducible. But then this 3-element centralizes a good E and so also
the other does. As before application of 5.3 gives the assertion. So we may
assume that CNt(C)R/R contains E(Nt/R). Hence E(Nt/R) centralizes any
characteristic abelian subgroup of P . So there is a special subgroup U on
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which Nt acts nontrivially. Further U = Ω1(U).

Let first p ∈ σ(M). Then we see that |Φ(U)| = p, otherwise we may ap-
ply 5.3. Hence U is extraspecial. Now let x be of order three in one of the
components of Nt. Then CU(x) 6≤ Z(U). Hence x centralizes an elementary
abelian subgroup of order p2 in U . If this group is good, we get the assertion
as before. So we have that |U | ≤ p3, a contradiction to CNt(U) ≤ R. So
we have that p 6∈ σ(M). We have |U/Φ(U)| ≥ p4. If |Φ(U)| = p2, then for
y ∈ U \ Φ(U), we get that CU(y) = 〈y, Z(U)〉. This gives the contradiction
|U : Z(U)| ≤ p3. So again we have that U is extraspecial and so |U | = p5.
So Nt is isomorphic to a subgroup of Sp4(p). By [Mi2] we see p = 7 and
SL2(7) o Z2 is induced. Now there is some element of order 7 in Nt which
centralizes 71+2SL2(7). But the 7-rank of that group is three and so we get
m7(M) ≥ 4, a contradiction. 2

ln2

Lemma 5.17 Let M be a uniqueness group and M0 = NM(S ∩ CM(YM)),
S a Sylow 2–subgroup of M . Let K ≤ M0, containing S such that
E(KCM0(YM)/CM0(YM)) is a component of M0/CM0(YM) which is isomor-
phic to L7(2), L6(2), L5(2) or L4(q), q even. Then K contains a 3–element ρ
with NG(〈ρ〉) ≤ M , or we have E(KCM0(YM)/CM0(YM)) ∼= L4(q) and there
is some ρ with o(ρ) divides q − 1, such that NG(〈ρ〉) ≤ M .

Proof: Assume otherwise. We have that all groups contain some L4(2).
Hence it is enough to show that this group contains such a 3–element. Set
L = K∞. Then L/O2,2′(L) ∼= L7(2), L6(2), L5(2) or L4(q).

We first prove that L acts trivially on F (M/O2(M)). Let T be a Sylow
t–subgroup of F (M/O2(M)). Assume that there is some elementary abelian
characteristic subgroup C ≤ T , with CL(C) ≤ O2,2′(L). Then in particular
mt(C) ≥ 4. As centralizers in C of 3–elements of L are of order at most t
by 5.3, we see that |C| = t4. We claim that GL(4, t) does not involve A8.
We see that L/CL(C) either has a subgroup A8 or 2A8. In both cases there
is some elementary abelian subgroup of order 16 in L/CL(C), which by 2.1
implies that we have transvections on C. But those are not in GL(4, t)′.
Hence we have that L centralizes any characteristic abelian subgroup of T .
So assume now that it acts on a special subgroup C with C = Ω1(C). Again
|C/Φ(C)| ≥ t5. But then mt(C) ≥ 4 and 3-elements in L which are in a
Frobenius group of order 21 centralize Z(C) and some t-element in C \Z(C)
and so some good E. As they also centralize nontrivial elements in O2(M),
we get the assertion with 5.3.

So we may assume that L centralizes F (M/O2(M)). Let now U be some com-
ponent of M/O2(M). If L does not normalizes this component, we are im-
mediately done. So we may assume that [U,L] ≤ U . If U 6= L/O2,2′(L), then
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L centralizes U . Hence there is some U which is not centralized by L, which
shows that L/O2(L) is some component. Suppose now first L/O2(L) 6∼= L4(q),
q > 2. If 3 ∈ σ(M) then L contains elements ρ of order three, which are
centralized by some elementary abelian subgroup of order 27 in M . Hence
NG(〈ρ〉) ≤ M . So we may assume that 3 6∈ σ(M), we now see that L/O2(L) is
centralized by some good E, a contradiction. So we have L/O2(L) = L4(q),
q > 2. By the same argument as before we may assume that there is no
uniqueness prime dividing q− 1. But then there is some good E normalizing
L and so centralizing a Sylow 3–subgroup of L. 2

alperin

Lemma 5.18 Let M be a uniqueness group, p ∈ σ(M) and P a Sylow p–
subgroup of M . Suppose N is a normal subgroup of M such that P = (N ∩
P )Z, with a cyclic group Z 6∈ N . If NM(ZN/N) 6= CM(ZN/N), then p = 3
and Z3 o Z3 is a Sylow 3–subgroup of M .

Proof: Assume that P 6∼= Z3 o Z3. Then for any subgroup X of P
with mp(X) ≥ 2, we have that NG(X) ≤ M . Let H be any subgroup of
P . Then by assumption we have that [H,NM(H)] ≤ N . If mp(H) > 1,
then NM(H) = NG(H), so [H, NG(H)] ≤ N . Let mp(H) = 1. If CP (H)
is cyclic, then H ∩ Z(P ) 6= 1 and so NG(H) = NM(H). So assume that
CP (H) is not cyclic. As normalizers of p-goups of rank at least two are
in M , we get that a Sylow p–subgroup R of CG(H) is contained in M .
Now NG(H) = CG(H)NG(R), where again NG(R) ≤ M . As [H,NG(H)] =
[H,NG(R)], we see that [H, NG(H)] = [H, NM(H)] ≤ N . Hence we have
that 〈[H, NG(H)] | 1 6= H ≤ P 〉 ≤ N . Application of [Go, (7.4.1.9)] gives the
contradiction that G has a subgroup of index three.
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6 The nonconstrained case

The purpose of this chapter is to prove that a uniqueness group M has to
satisfy F ∗(M) = O2(M). For this we assume that M is a uniqueness group
with F ∗(M) = KO2(M), where O2(M) might be trivial and K is some
component which is a group of Lie type in characteristic 2, not L2(q), U3(q),
Sz(q), L3(q), Sp4(q) or 2F4(q), Z(K) = O2(K), and for every p ∈ σ(M) we
have mp(K) ≥ 2 and mp(CM(K)) ≤ 1. In particular we have m3(K) ≥ 2.
For the remainder of this chapter we assume that M does not satisfy the
conclusion of the main theorem.

3sigma

Lemma 6.1 Let m2,3(G) ≥ 4, then 3 ∈ σ(M).

Proof: Let 3 6∈ σ(M). Let further H be a uniqueness group for the
prime 3. Let P be a Sylow 3-subgroup of M , P ≤ H. As m3(H) ≥ 4, we
have that ΓP,1(G) ≤ H, if H is not exceptional for the prime 3. So assume
first ΓP,1(G) ≤ H. We have that m3(K) ≥ 2, so by 5.3 we get that M ≤ H.
If O2(H) 6= 1, then we now have H ≤ M , the assertion. So assume that
O2(H) = 1. Let p ∈ σ(M), then p > 3. With 5.3 we see that H ≤ M , the
assertion.

Hence we are left with H exceptional for the prime 3. Suppose that K has
an elementary abelian Sylow 3-subgroup E of order 9, with ΓE,1(G) 6≤ H.
Application of 1.1 shows K ∼= L4(q), L5(q), U4(q) or U5(q). Now by 5.1 we
have that NK(E) ≤ H. But NK(E) acts irreducibly on E, which shows that
E ≤ O3(H/O2(H)), a contradiction, as CG(x) ≤ H for any x, o(x) = 3 with
xO2(H) ∈ O3(H/O2(H)). So we have m3(K) ≥ 3. Now P contains some
E, |E| = 9 and EO2(H)/O2(H) ≤ O3(H/O2(H)). Application of 5.3 gives
M ≤ H, a contradiction as m3(K) ≥ 2. 2

3sigma1

Lemma 6.2 Let K be defined over GF (2), then one of the following holds

(i) 3 ∈ σ(M).

(ii) K ∼= 3D4(2), O2(M) 6= 1, e(G) = 3, σ(M) = {7} and 7||CM(K)|.

Proof: Let 3 6∈ σ(M). Let p ∈ σ(M), p > 3, with mp(K) ≥ 2. If
O2(M) 6= 1 we have that m3(K) ≤ 3. Then by 1.1 we have that K ∼= L6(2),
L7(2) or 3D4(2) and p = 7. In the first two cases we have m3(K) = 3 and so
we must have that m7(M) ≥ 4, which contradicts m7(CM(K)) ≤ 1. So we
have K ∼= 3D4(2). We have m2,7(K) = 1. Hence 7||CM(K)|. As m7(K) = 2,
we also see that m7(M) = 3 and so e(G) = 3. This is (ii).

So we have that K = F ∗(M). As we do not have an outer automorphism of
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order p, we get that m2,p(K) ≥ 3. Now K possesses maximal parabolics P
which involve Ln(2), Ln(4), Un(2), or Ω±(2n, 2). As m3(P ) ≤ 3 we get with
1.1 that we have Ln(2), 2 ≤ n ≤ 7, Ln(4), 2 ≤ n ≤ 4, U4(2) or Ω−(6, 2). But
none of them contains an elementary abelian subgroup of order p3 for some
p > 3. 2

Suppose in case of K ∼= F4(q) that S does not induces a diagram automor-
phism on K. Then for the remainder of the proof we fix a long root group
R in K/Z(K), with R ≤ Z(S ∩ K). Let R̃ be a Sylow 2–subgroup of the
preimage in K and G1 = NM(R̃). Then G1 ∩K is 2-constrained. In case of
K ∼= F4(q) and S induces a diagram automorphism we choose G1 such that
G1 ∩K is the parabolic with Sp4(q) on top. Hence in all cases S ≤ G1.

goodE1

Lemma 6.3 There is a prime p ∈ σ(M) and E ≤ G1, E ∼= Ep2 with
ΓE,1(G) ≤ M . Further CG1(Z(S)) involves some L2(q), U3(q) or L3(2),
which contains a good p–element.

Proof: Let first K ∼= G(q), q > 2. Then application of 1.3 shows
that we have the assertion or K/Z(K) ∼= L4(q), Sp6(q), Un(q), n ≤ 7, Ω−

8 (q),
3D4(q) or G2(q).

Let K/Z(K) ∼= L4(q), Sp6(q), U4(q), or Ω−
8 (q). If we have mp(K) ≥ 3, then

p | q − 1, q2 − 1, q + 1, q2 − 1 respectively, and the assertion holds. So let
mp(K) = 2. As there is always some prime r with mr(K) ≥ 3, we get
e(G) > 3 and so mp(CM(K)) = 1 and mp(AutM(K)) = 3, which gives the
assertion again.

Let K/Z(K) ∼= Un(q), 5 ≤ n ≤ 7. We have that mp(K) ≥ 4 for p|q + 1.
Now G1 involves SUn−2(q) and so mp(G1) ≥ 3 and we are done, or n = 5,
p = 3 and m3(G1) = 2. But as m3(K) = 4, we have that all elementary
abelian subgroups of order 9 are good, the assertion.

Let K/Z(K) ∼= 3D4(q) or G2(q). We have mp(K) = 2, so either
mp(AutM(K)) = 3, or mp(CM(K)) = 1. Then in the case of G2(q) we
are done, as p divides q2 − 1, and in case of 3D4(q) as p divides q6 − 1, so
there is always some E ∼= Ep2 , E ≤ G1, which is centralized by some elemen-
tary abelian group of order 27.

Let now K = G(2) be defined over GF (2). By 6.2 we have 3 ∈ σ(M) or
K ∼= 3D4(2). Let first 3 ∈ σ(M). Let E be an elementary abelian group of
order 9 in G1 ∩K. If m3(M) ≥ 4, we are done. So assume m3(M) = 3. If
m3(CM(K)) = 1, also any element of order 3 is centralized by some elemen-
tary abelian group of order 27, the assertion. So we have m3(AutM(K)) = 3.
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With 1.1 we get K ∼= U4(2), Sp6(2), Ω−(8, 2), L6(2), or L7(2). But in all
these groups an element of order 3 is centralized by an elementary abelian
group of order 27.

So we may assume that G1 ∩ K does not contain an elementary abelian
subgroup of order 9. Then K ∼= G2(2)′, 3D4(2), L4(2), or L5(2). If 3 di-
vides |CM(K)|, then all elements of order 3 are good and G1 contains an
elementary abelian subgroup of order 9, so we are done. So we may assume
that CM(K) is a 3′–group. So m3(AutM(K)) = 3. This shows K ∼= 3D4(2).
Now we have an elementary abelian subgroup E of order 9 in G1, where
E ≤ K1

∼= Z3 ×G2(2), and so E is good.

Let finally K ∼= 3D4(2) and p = 7. By 6.2 we have that 7||CM(K)|. Hence G1

contains an elementary abelian subgroup E of order 49. As Ω1(Z(T )) con-
tains an elementary abelian subgroup of order 49, for T a Sylow 7–subgroup
of M , we see that all 7–elements are good. 2

Let G2 be a subgroup of G such that S ≤ G2, O2(G2) 6= 1 and G2 is minimal
with respect to G2 6≤ M . Such a group exists, as otherwise M would satisfy
the conclusion of the theorem. We have that m3(G2) ≤ 3 by 6.1

amalgam1

Lemma 6.4 O2(〈G1, G2〉) = 1.

Proof: This follows from 6.3 and the definition of the uniqueness case.
2

2constr

Lemma 6.5 We may assume that CG2(O2(G2)) ≤ O2(G2).

Proof: Suppose that G2 has a component L. Let x be some involution
in CG2(L) ∩ Z(S). Set H = CG(x). As S ≤ G2, we get that H also has
a component L1 ≥ L. Now L1 ∈ C2 and we may assume that L1 6≤ M . If
〈L1, S〉 is generated by groups X with S∩L1 ≤ X and CX(O2(X)) ≤ O2(X),
we are done, as we may choose G2 in 〈X, S〉. So we are left with L1

∼= L2(p),
p a Fermat - or Mersenne - prime, L3(3) or M11. By 6.3 we have that CG(x)
involves some T ∼= L2(q), U3(q) or L3(2), which contains a good p–element.
Hence this group cannot centralize L1. Let 3 ∈ σ(C(x)), then with 6.1 we get
that m3(CG(x)) = 3. Hence in any case we have that m3(CG(x)) ≤ 3. This
now implies that T ∼= Σ3 and either there are three components of type L2(p)
or T induces an inner automorphism group on L3(3) or M11. In the latter, as
we have a good 3–element, we see that 9 divides the order of L1 ∩M . Hence
L1∩M ∼= 32GL2(3). But there are no groups of order 9 in M on which S∩K
acts nontrivially. So we have that there are three components permuted by
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T . But now S ∩ L1 is a maximal subgroup of L1 and the element ρ of order
three in T centralizes some element of odd order in L

〈ρ〉
1 , which then shows

L1 ≤ M , a contradiction. 2

Set Z2 = 〈Ω1(Z(S))G2〉. Then by 6.5 Z2 ≤ Z(O2(G2)).

nontriv1

Lemma 6.6 If [Z2, O2(G1 ∩K)] = 1, then CG(Z2) ≤ M

Proof: Suppose CG(Z2) 6≤ M . As mp(K) ≥ 2, we get CZ2(K) = 1. In
particular O2(M) = 1. As R ∩ Z(S) 6= 1, we see with 6.3 that CR(E) = 1.
This shows that K = G(q) and p | q − 1. Furthermore mp(G1) = 2. Hence
mp(K) ≥ 3. Application of 1.3 shows K ∼= L4(q), Sp6(q), Un(q), 5 ≤ n ≤ 7,
or Ω−(8, q). As mp(K) ≥ 3 and p | q − 1, we get a contradiction. 2

nontriv2

Lemma 6.7 Let [Z2, O2(G1∩K)] = 1. If P ∈ Sylp(CM(Z2)), then NG(P ) 6≤
M , in particular mp(P ) ≤ 1.

Proof: Suppose false. Then NG(Z2) = CG(Z2)NG(P ) ≤ M by 6.6 and
the Frattiniargument.

Suppose that mp(P ) ≥ 2, then we have that p = 3, P ∼= Z3 × Z3 and Z3 o Z3

is a Sylow 3–subgroup of M . In particular we have that mp(CM(K)) = 0.
With 1.1 we get K ∼= Sp6(q), Ω−(8, q), L6(q), or L7(q). In all these cases P
is contained in the corresponding group over GF (2). Hence one can see that
any element of order 3 is centralized by an elementary abelian group of order
27, and so NG(〈ω〉) ≤ M for all 1 6= ω ∈ P , a contradiction. 2

NS

Lemma 6.8 We have NG(S) ≤ M .

Proof: Suppose false. Then we can choose G2 inside of NG(S), as
CG(S) ≤ S. But now by 6.3 a Sylow p–subgroup P of CM(Z2) is nontrivial, as
Ω1(Z(S)) = Z2. By 6.7 it is cyclic. Further NG(P ) 6≤ M , which contradicts
6.3 2

nontriv

Lemma 6.9 We may choose G2 such that [Z2, O2(G1 ∩K)] 6= 1.

Proof: Suppose false. Let K = G(q). Let Z(O2(G1 ∩K))/Z(K) = R.
Let E be as in 6.3. If CE∩K(R) 6= 1, then also CE∩K(Z2) 6= 1 and so by
6.7 E ∩ K = Ω1(P ), where P is a Sylow p–subgroup of CM(Z2). But then
NG(P ) ≤ NG(E∩K) ≤ M by 6.3. Hence CE∩K(R) = 1 and so p divides q−1
and mp(G1) = 2,mp(G1 ∩K) = 1. Application of 1.3 yields a contradiction.
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So let now K ∼= Sp2n(q) or F4(q) and (Z2 ∩ K)Z(K) not be contained in
RZ(K), otherwise we argue as before. If K ∼= Sp2n(q), then Z2 is central-
ized by Sp2n−4(q). If n ≥ 4, then p | q2 − 1, a contradiction. Hence we
have K ∼= Sp6(q). But in this case there is a p-element ω ∈ CK(Z2) with
mp(CM(ω)) ≥ 3, hence NG(〈ω〉) ≤ M , contradicting 6.7.

So let K ∼= F4(q). Then we have that there is no diagram automorphism
induced by S. Otherwise G1 ∩K/O2(G1 ∩K) ∼= Sp4(q)× Zq−1, and so Z2 is
centralized by some Sp4(q) and so by some E as in 6.3. But this contradicts
6.7. So we have that G1∩K/O2(G1∩K) ∼= Sp6(q)×Zq−1. Now as Z2 projects
onto Z(O2(G1 ∩K)), we see with 1.4, that Z2 is centralized by some Sp4(q)
in K, and so by some good E, which contradicts 6.7. 2

center

Lemma 6.10 We have Ω1(Z(S)) is not normal in G2.

Proof: This follows from 6.9 2
strukturG2

Lemma 6.11 We have CG2(Z2) is 2–closed and CG2(Z2)/O2(G2) is nilpo-
tent. Further m3(G2) ≤ 3. If G2 is nonsolvable and U is some normal
r–subgroup in G2/O2(G2), r a prime, then mr(U) ≤ 3.

Proof: Let T = S ∩ CG2(Z2). Then G2 = CG2(Z2)NG2(T ). If
NG(T ) ≤ M , then CG2(Z2) 6≤ M . Hence G2 = CG2(Z2)S, and so Ω1(Z(S))
is normal in G2, which contradicts 6.10. So we have that CG2(Z2) ≤ M and
T = O2(G2).

Let U be a Sylow r–subgroup of CG2(Z2), r odd. Then G2 = CG2(Z2)NG2(U).
In particular NG2(U) 6≤ M . So TNG2(U) 6≤ M . But S ≤ TNG2(U). Hence
U is normal in G2/T . This shows that CG2(Z2)/T is nilpotent.

Let X be the preimage of O2(G2/CG2(Z2)) and T1 = S ∩ X. Then
G2 = XNG2(T1). As X ≤ M , we have that NG2(T1) 6≤ M and so T1 is
normal in G2, which gives T1 = O2(G2).

Let m3(G2) ≥ 4. Then 3 ∈ σ(G) and so by 6.1 3 ∈ σ(M). Hence G2 ≤ M g

for some g ∈ G. But S ≤ M g and so by 6.8 G2 ≤ M , a contradiction.

Let U be some r–subgroup in G2 such that O2(G2)U is normal in G2. Then
G2 = O2(G2)NG2(U). Hence US is a subgroup of G2. Now assume that G2

is nonsolvable. Then US 6= G2 and so U ≤ M . If mr(U) ≥ 4, then r ∈ σ(M)
and so NG(U) ≤ M , hence G2 ≤ M , a contradiction. 2

nono2

Lemma 6.12 We have [Z2, K ∩G1] 6≤ O2(G1).
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Proof: Suppose false. By 6.9 we get [Z2, O2(G1 ∩ K)] 6= 1. Suppose
first that [Z2, NK(R)] ≤ O2(NK(R)), where in case of F4(q) R might be one
of the two root groups in Z(S ∩K). Now by 1.6 there is a group U of order
q in O2(G1 ∩ K) with U ∩ C(Z2) = 1 and | Z2 : CZ2(U) |≤ q. Hence Z2 is
an F -module. If [Z2, NK(R)] 6≤ O2(NK(R))), then K ∼= F4(q) and S induces
a diagram automorphism. We see with 1.7 that | Z2 : CZ2(Z(O2(NK(R)))) |
≤| Z(O2(NK(R))) : CZ(O2(NK(R)))(Z2) |. Hence also in this case Z2 is an F -
module. Now by 6.11 and 4.6 we have that G2 is solvable or E(G2/CG2(Z2))∼= L2(r), L2(r)× L2(r), r even, or A9.

Assume first that in case of K ∼= F4(q) we have that Z2 ≤ O2(NG1(R))
for both root groups R in Z(S ∩K)

Let first K = G(q), q > 2. For every u ∈ U ] we have CZ2(u) = CZ2(U)
by 1.6 and so we get E(G2/Q2) ∼= L2(r) or L2(r) × L2(r), and | U |= r.
Now we see q = r. Let ω ∈ M ∩ G2, o(ω) = t | q − 1, t a prime. As
G2 = 〈S,NG2(〈ω〉)〉 we have that NG(〈ω〉) 6≤ M .

Suppose there is some p ∈ σ(M) with p | q − 1. Then we may choose ω
with o(ω) = p. Now mp(CM(ω)) ≤ 2. As ω is in a minimal parabolic of M ,
we see that ω is either an outer automorphism of K or centralizes a Cartan
subgroup C. Hence mp(C) ≤ 2 in any case. By 1.3 we see K ∼= U4(q),
U5(q), G2(q) or 3D4(q). In all cases we have that mp(K) = 2 and so as
mp(CM(ω)) = 2, we see that mp(CM(K)) = 0. This shows that we have a
field automorphism of order p. Now ω is in a minimal parabolic and so it
centralizes an elementary abelian group of order p3, a contradiction.

So we have that there is no p ∈ σ(M) with p | q − 1. Hence with 1.3
we get that K ∼= L4(q), Un(q), n ≤ 7, Sp6(q),

3D4(q), G2(q) or Ω−(8, q).

We have [Z2, O2(G1 ∩K)] = R, so [U,O2(G1 ∩K)] = R. Further by 6.3 we
have some x ∈ R], which is centralized by E, with ΓE,1(G) ≤ M . In partic-
ular CG(x) ≤ M . This shows that E(G2/CG2(Z2)) ∼= L2(q) and Z2 = A×B,
with R ≤ B, B the natural module. Now let g ∈ G2 \M , with B = RRg and
[U,Rg] = R. There is some a ∈ Rg, aR ∈ Z(S/R). Let a = uv, u ∈ CM(K),
v ∈ K. Then v 6= 1. Suppose that v ∼ x in K. Then we have some
ν ∈ K, o(ν) = p, [ν, v] = 1, such that NG(〈ν〉) ≤ M . Suppose next that
v 6∼ x in K. Then K 6∼= G2(q),

3D4(q), Ω−(8, q). Let K ∼= L4(q). Then
E(CK(v)/O2(CK(v))) ∼= L2(q). As mp(K) = 2, we see that all p–elements in
K are good, so also NG(〈ν〉) ≤ M , where o(ν) = p | q + 1. Let K ∼= Un(q).
Then CK(v)/O2(CK(v)) involves L2(q) and so v is centralized by some ν,
o(ν) = p again. This ν now is contained in some U4(q) ∼= Ω−(6, q). But then
it is contained in some Ω−(2, q)× Ω−(2, q)× Ω−(2, q). Hence NG(〈ν〉) ≤ M .
Let finally K ∼= Sp6(q). By normal form it is easy to see that all involutions
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in K are centralized by some L2(q) and so also by some ν, o(ν) = p. As
Ω−(6, q) and Sp6(q) have the same Sylow p–subgroup, we get NG(〈ν〉) ≤ M .

Hence in any case a is centralized by some ν, o(ν) = p and NG(〈ν〉) ≤ M .
As CG(x) ≤ M , we have CG(a) ≤ M g, so ν ∈ M g. Set W = NMg(〈ν〉). Then
W ≤ M and mp(W ) ≥ 2. Assume now that NG(P ) ≤ M for any p–subgroup
P of M with mp(P ) ≥ 2. Then M and M g share a Sylow p–subgroup T .
Hence we have M g = Mh for some h ∈ NG(T ) ≤ M , so M = M g. So
g ∈ NG(M) and then 〈M, g〉 = MN〈M,g〉(T ) = M . So we have g ∈ M ,
contradicting the choice of g.

So we have that there is some p–subgroup P ≤ M with mp(P ) = 2 and
NG(P ) 6≤ M . This gives p = 3 and |P | = 9. Further a Sylow 3–subgroup
of G is isomorphic to Z3 o Z3. As e(G) = 3 and there is no p ∈ σ(M) with
p | q−1 and 3 | q+1, we see that K 6∼= L4(q), Sp6(q), Ω−(8, q), U6(q) or U7(q),
as in all these cases there is a 2–local whose order is divisble by (q − 1)3. If
O2(M) 6= 1, then (q+1)3 does not divide |K|, as q+1 6= 3. Hence K ∼= G2(q)
or 3D4(q). But in none of these case AutM(K) has a Sylow 3–subgroup Z3 oZ3,
a contradiction. So O2(M) = 1. In G2(q) and 3D4(q) we have m2,3(K) = 1,
but we must have m2,3(K) = 3, a contradiction. So we have that K ∼= U4(q)
or U5(q). But then the Sylow 3–subgroup is in some U4(2), as 3 | q+1 and so
all elements of order 3 in U4(2) are centralized by some elementary abelian
subgroup of order 27, i.e. NG(P ) ≤ M , a contradiction.

So we are left with K = G(2). Now U induces transvections and so G2

is solvable or E(G2/CG2(Z2)) ∼= L2(4), L2(4)× L2(4) or A9.

Let first 3 ∈ σ(M). If m3(M) ≥ 4, then all elements of order 3 are
good. Let m3(M) = 3. Then we see that K ∼= Ln(2), 4 ≤ n ≤ 7, U4(2),
Ω−(8, 2), Sp6(2), G2(2) or 3D4(2). In any case all 3-elements are good, as
either m3(CM(K)) 6= 1 or any element of order 3 in K is centralized by
some elementary abelian group of order 27. Let G2 be nonsolvable. As
G2 = 〈G2 ∩M, NG2(〈ν〉)〉, for ν a 3–element in G2 ∩M , we get a contradic-
tion.

Hence G2 is solvable. If m3(G2) > 1, then we have that G2 ≤ M g for
some g ∈ G. But then S ≤ M ∩M g and so we have g ∈ NG(S) ≤ M by 6.8,
a contradiction. So we have shown that G2/CG2(Z2) ∼= Σ3 and |[G2, Z2]| = 4.
Let g be as before with xg = a. Then as all elements of order 3 are good,
we see that a cannot be centralized by a 3–element. By 1.9 we see that
m3(K) ≤ 3 and so by 1.3 K ∼= Ln(2), 4 ≤ n ≤ 7, U4(2), Ω−(8, 2), Sp6(2),
G2(2)′ or 3D4(2). But in Ln(2), U4(2), Ω−(8, 2), Sp(6, 2) or G2(2)′ all in-
volutions are centralized by some 3-element, a contradiction. In 3D4(2) the
elements in [G2, Z2] are conjugated in K, which shows that we also have a
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3-element centralizing t ∈ Z2 with [t, O2(G1)] 6= 1, a contradiction.

So we are left with K ∼= F4(q) and Z2 6≤ O2(NG1(R)), R a root group.
Now choose x ∈ Z(O2(NK(R))), [x, Z2] 6= 1. Then | [x, Z2] |≥ q. Let
y ∈ O2(NK(R)) \ Z(O2(NK(R))) with [y, Z2] 6= 1, then | [y, Z2] |≥ q2.

Let first q > 4. Then we get |[y, Z2]| ≥ 64 and so by 4.6 we see that
E(G2/CG2(Z2)) ∼= L2(r) or L2(r) × L2(r) and just natural modules are in-
volved.

If q ≤ 4, we get 3 ∈ σ(M) and m3(M) ≥ 4. Hence all elements of order
3 are good. If G2 contains an elementary abelian group of order 9, then
G2 ≤ Mh for suitable h ∈ G. But now as M and Mh contain S, we get
M = Mh by 6.8, a contradiction. This shows that G2/CG2(Z2) is an auto-
morphism group of L2(r) and 3 6 ||G2∩M |. This shows that Z2 is the natural
module.

We have that [[y, Z2], O2(NK(R))] = R and further that |O2(NK(R)) :
CO2(NK(R))([y, Z2])| ≥ q2. Let yCG2(Z2) be in E(G2/CG2(Z2)), or arbitrary
for solvable G2, then we see that [y, Z2] is centralized by a Sylow 2–subgroup
of this group. Hence we have that |O2(NK(R)) : CO2(NK(R))([y, Z2])| ≤
4, hence q = 2 and |[y, Z2]| = 4. Suppose that no yCG2(Z2) is
contained in E(G2/CG2(Z2)), then q2 ≤ |O2(NK(R)) : (O2(NK(R)) ∩
CG2(Z2))Z(O2(NK(R)))| ≤ 4. This again shows that q = 2. In both cases
we have that either |[Z2, y]| = 4 or Q contains a foursgroup which intersects
E(G2/CG2(Z2)) trivially. Hence in both cases G2 contains an elementary
abelian subgroup of order 9. As q = 2 and m3(F4(2)) = 4, we see that all
elements of order three are good. So G2 ≤ Mh for some h, a contradiction.
2

Now we have Z2 6≤ O2(G1). By 4.1 we get that there is some g ∈ G1 such
that for X = 〈Z2, Z

g
2 〉 we either have

(1) X/O2(X) ∼= D2u (u odd), L2(q1) or Sz(q1), q1 even

(2) Y = (Z2 ∩O2(X))(Zg
2 ∩O2(X) £ X

(3) Y 6= Z2 ∩O2(X)

(4) | Z2 : CZ2(Y/CY (Z2)) |≤| Y : Y ∩O2(G2) |2

or 1 6= [Z2, Z
g
2 ] ≤ Z2 ∩ Zg

2 , with g2 ∈ N(Z2).
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echt2F
Lemma 6.13 If Z2 is not an F–module, then | Z2 : CZ2(Y ) |<| Y : Y ∩
O2(G2) |2.

Proof: This is 4.2(3) 2

If Z2 is not an F–module, then G2 is as in 4.4 with YY = Z2. If Z2 is an
F–module, we have that G2 is solvable or E(G2/CG2(Z2)) ∼= L2(r), L2(r) ×
L2(r), r even, or A9. by 4.6.

Let us first assume that we have in G2 a group of Lie type over GF (r).
Let t be a primitive prime divisor of r − 1, t = 9 in case of r = 64, and
ω ∈ G2 ∩M , o(ω) = t. Hence in all cases we have that NG(〈ω〉) 6≤ M .

noncent

Lemma 6.14 [K,ω] 6= 1.

Proof: Otherwise by 5.3 we have NG(〈ω〉) ≤ M . But this contradicts
the structure of G2. 2

borel

Lemma 6.15 ω normalizes a Borel subgroup of K.

Proof: Suppose false. As 〈S, ω〉 is a {2, t} - group, we have that K has
to have a solvable minimal parabolic. This now implies K = G(2) and t = 3
or 5. In particular r = 4, 64 or 16 and t = 3, while t = 5 would imply K ∼=
2F4(2), a contradiction. So t = 3. By 6.2 we have 3 ∈ σ(M) or K ∼= 3D4(2)
and σ(M) = {7}. As O2(M) 6= 1, we see that m3(M) = 2. In particular
we get that 3 6 ||M : K|. This gives ω ∈ K. But then ω centralizes a good
E, E ∼= E49. Now 5.3 shows that NG(〈ω〉) ≤ M , as CO2(M)(ω) 6= 1. So
let 3 ∈ σ(M). Then NG(〈ω〉) ≤ M , if m3(M) ≥ 4, again a contradiction.
We also have that m3(CM(K)) = 0, as otherwise |Ω1(Z(U))| ≥ 9 for U a
Sylow 3–subgroup of M and so also NG(〈ω〉) ≤ M . Let m3(K) = 3. Now
with 1.1 we have K ∼= L6(2), L7(2), U4(2), Sp(6, 2) or Ω−(8, 2). But it
is easy to see that in these groups all 3–elements are centralized by some
elementary abelian group of order 27, a contradiction. So let m3(K) = 2.
Then K possesses an outer automorphism of order 3 and so K ∼= 3D4(2).
But m2,3(K) = 1, a contradiction. 2

small

Lemma 6.16 G2 is solvable or E(G2/CG2(Z2)) ∼= L3(2), A6, 3 · A6, A9,
L3(2)× L3(2) or 3A6 ∗ 3A6.

Proof: Assume false. Then there is some element ω as before. Let
r ≤ q. By 6.15 ω normalizes a Borel subgroup of K. This implies
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O2(G1 ∩ K)CG2(Z2)/CG2(Z2) ≤ E(G2/CG2(Z2)). Now we see | O2(G1 ∩
K)/R : CO2(G1∩K)/R(t) |≤ r2 ≤ q2, for t ∈ Z2, and | O2(NK(R)/R) :
CO2(NK(R)/R)(t) |≤ r2 ≤ q2 for K ∼= F4(q) and M involves a diagram au-
tomorphism.

This now implies with 1.8 that q = r and K ∼= (S)Ln(q), (S)Un(q), Sp2n(q)
or G2(q). Furthermore | O2(G1 ∩K)/R : CO2(G1∩K)/R(t) |= q2. Inspection of
the groups in 4.4 shows that we have E(G2/CG2(Z2)) ∼= (S)L3(q), Sp4(q) or
L2(q)× L2(q), where Z2 is the O+(4, q) - module in the latter.

Let E(G2/CG2(Z2)) ∼= (S)L3(q) or Sp4(q). Then we may assume that

Z
(1)
2 6≤ O2(G1 ∩ K), where Z

(1)
2 is one of the two natural modules in Z2.

We have O2(G1∩K) ≤ N(Z
(1)
2 ). So 1 6= [Z

(1)
2 , O2(G1∩K), O2(G1∩K)] ≤ R.

This gives R ∩ Z
(1)
2 6= 1. Let u ∈ R] ∩ Z

(1)
2 , then CE(G2/CG2

(Z2))(u) involves
a minimal parabolic of E(G2/CG2(Z2)) and so CG(u) 6≤ M . This shows that
CM(u) does not contain a good E. With 6.3 we see that p | q−1. Further as
no good E centralizes R, we see that K ∼= U4(q), G2(q) or 3D4(q). Hence in
any case mp(K) = 2 and we see that p does not divide |CM(K)|. This shows
e(G) = 3 and some field automorphism of order p is induced on K. But then
again any u ∈ R] is centralized by a good E, a contradiction.

We are left with the O+(4, q) - module. Let p ∈ σ(M), p | q − 1. Let U
be a Sylow p–subgroup of M ∩ G2. Then |Ω1(U)| = p2 and so U contains
some ω with NG(〈ω〉) ≤ M , as either U contains a p–central element from
M or U is centralized by some p–central element not in U . But we have that
G2 = 〈M ∩G2, NG2(〈ω〉)〉, a contradiction. So p 6 | q − 1 for p ∈ σ(M). This
implies K ∼= L4(q), Sp6(q), (S)Un(q), n ≤ 7 or G2(q) by 1.3. As M ∩G2 has
a factorgroup isomorphic to Zq−1 oZ2, we see that in the cases of K ∼= Sp6(q)
or G2(q) there is some ω1 ∈ M ∩K, o(ω1) = t, [ω1, K] = 1. Now we get with
5.3 NG(〈ω1〉) ≤ M , a contradiction.

Let K ∼= (S)Un(q). Then there is p ∈ σ(M) such that Ω1(Z(S)) is cen-
tralized by an elementary abelian group of order p2 in K. This implies
Z(G2) = 1 and so | Z2 |= q4. Now we see that R ≤ [Z2, O2(G1 ∩K)] and so
Ω1(Z(S)) ≤ R. Hence F ∗(M) = K. Now we see | O2(G1) : CO2(G1)(Z2) |= q2.
Hence CO2(G1)Z2(Z2) = Z2 · T , where T is a special group of order q1+2(n−2).
In particular Z2 contains a conjugate Rg, g ∈ K,Rg 6= R. As NG(R) ≤ M ,
we have that NG(Rg) ≤ M . But 〈NG2(R), NG2(R

g)〉 = G2, a contradiction.

So we are left with K ∼= L4(q) and some element in S induces a diagram
automorphism on K. Now we get that p ∈ σ(M) divides q + 1. Further all
p–elements are good. This implies that G2 ≤ Mh for some h ∈ G. But then
we may assume that h ∈ NG(S). By 6.8 we have NG(S) ≤ M , a contradic-
tion.
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So assume r > q. By 1.10 K ∼= (S)Un(q),2E6(q), Ω
−
2n(q), r = q2, or K ∼=

3D4(q) or Ω+(8, q). Let K 6∼= 3D4(q). Then by 1.10 in all cases 3 | r − 1.
If 3 ∈ σ(M), then we see that in all cases elements of order 3 are central-
ized by an elementary abelian group of order 27 and so they are good. As
3 | |G2∩M |, we see that 3 6∈ σ(M). Let K 6∼= Ω+(8, q). Then in any case there
is p | q2−1, p ∈ σ(M). This implies that there is some ω1 ∈ G2∩M, o(ω1) = p.

Let K ∼= 2E6(q), then ω1 normalizes some parabolic P with P/O2(P ) ∼=
L3(q

2)× L2(q) and so mp(CM(ω1)) ≥ 3, a contradiction.

Let K ∼= Ω−
2n(q), then ω1 normalizes a parabolic P with P/O2(P ) ∼=

L2(q) × L2(q
2). If ω1 6∈ K, we have again that mp(CM(ω1)) ≥ 3. If ω1 ∈ K

we get the same, as all p–elements in K are good.

So we are left with K ∼= (S)Un(q). Let n > 5, then ω1 normalizes a parabolic
P with P/O2(P ) contains L2(q)× L2(q

2), or L2(q)× (S)U3(q), respectively.
Again we get ω1 ∈ K, but all p–elements in K are good, a contradiction.
So we are left with K ∼= U4(q) or U5(q). We now get that p does not divide
|CM(K)|, otherwise any p–element is good. In case of U4(q) we have P with
L2(q)× Zq2−1 and so we are done again. So let K ∼= U5(q). If p 6= 5, we can
look at the parabolic P with L2(q

2)×Z(q2−1)/5. Otherwise we have q = 4 and
then ω1 normalizes P with P/O2(P ) contains SU3(4). Now ω1 has to be in
P again, but these elements of order 5 are all good.

Let next K ∼= Ω+(8, q). Then by 1.10, o(ω1) = 3 or 9 and q ≤ 16. Hence we
get r = 64 or r = 4. As 3 6∈ σ(M), we get O2(M) = 1 and e(G) = 4. As
m2,p(M) = 4 for some p ∈ σ(M), we see that q > 2. This shows r = 64. As
Out(Ω+(8, q)) does not contain a cyclic group of order 9, we see that ω3 ∈ K.
By 6.15 ω3 normalizes a Borel subgroup of K and so 3 | q − 1. But then
the normalizer of R contains an elementary abelian subgroup of order 34, a
contradiction.

So we are left with K ∼= 3D4(q). Then by 1.4 we see that |Z2CM(K)/Z2 ∩
O2(G1)CM(K)| ≤ q, as Z2 acts quadratically on O2(G1 ∩K). As ω acts on
this group, we see with the action of L2(q

3), that if ω induces an inner au-
tomorphism, then o(ω) divides q − 1, a contradiction. So we are in 1.10(ii).
Then we have that o(ω) = 3 or 9 and q ≤ 32. If o(ω) = 3, then q = 2
and so 3 6∈ σ(M). So by 6.2 we have 7 ∈ σ(M). Suppose that M ∩ G2

contains some subgroup U isomorphic to Z3 × Z3. Then by 1.10 we have
that U normalizes a Borel subgroup of K. Hence we have some element of
order three, which centralizes K. But by 6.2 we have that O2(M) 6= 1 and
e(G) = 3. As now m3(M) = 3, we see that 3 ∈ σ(M), a contradiction.
Hence we have that r = 4 and E(G2/CG2(Z2)) ∼= L2(4). But we have that
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|O2(G1 ∩K) : CO2(G1∩K)(Z2)| ≥ 16 by 1.4, a contradiction. So we have that
o(ω) = 9 and r = 64.

If q = 2, then as before we have that ω3 centralizes K. But then m3(M) = 3
and as M does not contain elementary abelian subgroups of order p4 for p
odd, we get 3 ∈ σ(M), a contradiction. So we have 4 ≤ q ≤ 32. Now choose
ν ∈ M ∩ G2, with o(ν) = 7. If ν does not normalize the Borel subgroup,
we must have a {2, 7}–parabolic in K, different from the Borel subgroup,
which is not the case. So ν normalizes a Borel subgroup of K. Suppose
that ν centralizes K. As mp(K) ≥ 2 for p ∈ σ(M), we get with 5.3 that
NG(〈ν〉) ≤ M . But we may choose ν such that G2 = 〈G2 ∩ M, NG2(〈ν〉)〉,
a contradiction. As ν normalizes Z2O2(G1 ∩K) and by quadratic action we
have that |Z2O2(G1 ∩ K)/O2(G1 ∩ K)| ≤ q, we see that o(ν) | q − 1. This
shows q = 8. Now ω also acts on K and centralizes ν. This implies that
ω3 centralizes K. Application of 5.3 shows NG(〈ω3〉) ≤ M , a contradiction
again. 2

char2

Proposition 6.17 If M is a uniqueness group in G then F ∗(M) = O2(M).

Proof: Suppose false. Then we have the set up of this section for some
M . In particular we can start with the result of 6.16 .

We first investigate the case of a solvable G2. Suppose that M covers
O(G2/O2(G2)). Then we have that this group normalizes O2(G1∩K), a con-
tradiction as O2(G1 ∩K) 6≤ O2(G2). So we have that G2 = LS, where L is a
preimage of O(G2/O2(G2)). Now let U be some Sylow r–subgroup of L such
that [O2(G1∩K), U ] 6≤ O2(G2). Then we may assume that US is a subgroup
of G2 and by the same reason as before it is not in M , hence US = G2. Now
by 2.1 there is some subgroup U1 of G2/CG2(Z2) with U1

∼= D2r × · · · ×D2r

where the D2r are dihedral groups of order 2r and A is a Sylow 2–subgroup
of U1, where A is the offender as F–module or as 2F–module as given by
6.13. In any case we have |Z2 : CZ2(A)| < |A|2. Now U1 is generated by two
conjugates of A and so |Z2 : CZ2(U1)| < |A|4. This shows r = 3. Hence if G2

is solvable it is a {2, 3}–group. By 6.2 we have m3(G2) ≤ 3.

Assume next that E(G2/CG2(Z2)) ∼= A9. Then we have 3 6∈ σ(M). Fur-
ther M ∩G2/CG2(Z2) ≥ A8. If (M ∩G2)

(∞) ≤ C(K), then m3(K) = 1. But
then we have a contradiction to 1.1 (i),(ii). Hence we have that K possesses
a parabolic P with O2′(P/O2(P )) ∼= A8. Then K ∼= Ln(2), Sp2n(2), Ω+

2n(2),
or En(2). But then by 6.2 we get 3 ∈ σ(M), a contradiction.

Let next K ∼= F4(q) and assume that S induces a diagram automorphism
on K. If this is realized by some element t ∈ Z2, then we see that [t, S] is
not elementary abelian, a contradiction. Hence in any case we have that Z2
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centralizes R. Let Q = O2(CK(R)). Then we have that QO2(G2)/O2(G2) is
elementary abelian. So by 6.16 and as m3(G2) ≤ 3 for solvable G2 and 2.1,
we see that |Q : CQ(Z2)| ≤ 16.

Let E(G2/CG2(Z2)) ∼= 3A6 ∗ 3A6. Then |Q : CQ(t)| ≤ 16 and so by
1.8 |R| ≤ 4. Further we have that 3 6∈ σ(M) as otherwise G2 ≤ M g

for some g ∈ G and so again by 6.8 M = M g, a contradiction. Hence
by 6.3 we have CG(x) ≤ M for all x ∈ R∗. Now by 4.4 we have that
E(G2/CG2(Z2)), Z2] = V1 ⊕ V2, where any element in V1 centralizes a com-
ponent in E(G2/CG2(Z2)). Hence R ∩ V1 = 1. But 1 6= [Q, V1] ≤ V1 and so
V1 ∩ R 6= 1. So we have seen that E(G2/CG2(Z2)) 6∼= 3A6 ∗ 3A6. This then
implies that |Q : CQ(Z2)| ≤ 8 and equality can just hold for G2 solvable.

Now application of 1.8 again yields K ∼= Ln(2), Un(2), Sp(2n, 2), or G2(2)′,
or G2(4). Further we have that |Q : CQ(Z2)| ≥ 4. If K 6∼= G2(4), we have
by 6.2 that 3 ∈ σ(M). Let K ∼= G2(4). Then just for p = 3, 5 we have that
mp(K) ≥ 2. Assume that 5 ∈ σ(M). As Sylow 5–subgroups of 2-locals in K
are cyclic and mp(CM(K)) ≤ 1, we see that there is no 2-local H in G with
m5(H) ≥ 3. This also shows that 3 ∈ σ(M) in the case of K ∼= G2(4).

Suppose that there is an element of order three in M whose centralizer in G is
not contained in M . Then we have that m3(CM(K)) = 0, further m3(M) = 3.
This shows K ∼= L6(2), L7(2), Sp6(2), or U4(2). But in all these cases any
element of order three is centralized by an elementary abelian subgroup of or
der 27, a contradiction. So we have that all elements of order 3 are good. If
now G2 contains some elementary abelian subgroup of order 9, we have that
G2 ≤ M g, for some g ∈ G. But now S ≤ M ∩M g and so by 6.8 M = M g, a
contradiction. This shows that Sylow 3–subgroups of G2 are cyclic. Appli-
cation of 6.16 shows that G2 is solvable or E(G2/CG2(Z2)) ∼= L3(2) and then
G2/CG2(Z2) ∼= PGL2(7). As QCG2(Z2)/CG2(Z2) is an elementary abelian
normal subgroup of SCG2(Z2)/CG2(Z2) of order at least 4, we see that G2

must be solvable. But then O3(G2/O2(G2)) is cyclic and QO2(G2)/O2(G2) is
elementary abelian of order at least 4 and acts faithfully on O3(G2/O2(G2)),
a contradiction. 2
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7 The centralizers of involutions in YM

In this chapter we fix a uniqueness group M and a Sylow 2-subgroup S of M .
If H is a subgroup of G with CG(O2(H)) ≤ O2(H) then set CH = CH(YH).
We will show that O2(CG(x)) = F ∗(CG(x)) for all x ∈ Y ]

M . Remember that
by 6.17 we have that F ∗(M) = O2(M). We fix the following notation. Set
M0 = NM(S ∩ CM) and Q = O2(M0).

central

Lemma 7.1 Let g ∈ G with [YM , YMg ] ≤ YM ∩ YMg , then [YM , YMg ] = 1.

Proof: Suppose false. Then we may assume that YM is an F–module
with offender YMg . Let first M be exceptional. Then by 5.9 we have that Q
centralizes YM . But then there is some ω ∈ Qg with C[YM ,Y g

M ](ω) 6= 1. Then
we have that ω ∈ M and as a Sylow p subgroup of M is abelain, we have
Q ≤ M g, which shows M = M g, a contradiction. Hence M is not excep-
tional.

Set M̄ = M/CM . Let R be a component of M̄ such that YMg = Y CYMg (R)
and Y is an F–module offender for R on [R, YM ] = V . Recall that by 3.24
we have that YMg normalizes all components of M̄ . Now the group R is one
of the groups from 3.16.

Suppose that for all choices of R we have some W , a nontrivial RYMg–
submodule of [V, R], such that for any x ∈ W ] we have that x is centralized
by some good E ∼= Ep2 . Let R1 = Rg be the corresponding component in
M g/O2(M

g). Then we have that [W,R1] = 1, as otherwise there is some
1 6= x ∈ [W,W g], which is centralized by some good E in M and M g as well,
which would give M = M g. Hence R1 acts on [W,YMg ]. But we have that
M is the unique maximal 2–local containing CG(x) for any 1 6= x ∈ [W,YMg ].
So we see that R1 is in M . This now implies that R1 does not contain a good
F ∼= Ep2 in M g. Hence we have mp(R) ≤ 1. As by 3.24 R ≥ [Y, R] 6= 1,
we see that RR1

∼= R ∗ R1. In particular mr(RR1) ≤ 3 for all odd primes
r. This now shows that R ∼= L2(q), q even, L3(2), SL(3, 4), 3A6 or 3A7.
Further [V,R] involves at most two nontrivial modules the natural ones or
R ∼= L2(4) and we have the orthogonal module. Suppose that also W acts
as an F–module offender on YMg . Hence there is some component R2 in
M g/O2(M

g) which is not centralized by W and induces an F–module in
YMg or it acts on a Sylow group of F (M g/CMg). By assumption we have
some element in [W,YMg ] which is normalized by a good E in M and M g as
well, or W just induces F -module offenders on F (M g/CMg). In the latter
we get that E(M g/CMg) is in M , a contradiction. So we now get M = M g,
a contradiction.
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If two modules are involved, then W always acts as an F–module offender.
So R 6∼= SL(3, 4) and if 3 divides the order of Z(F ), then Z(F ) acts trivially.
But then as W is not an F–module offender, we see that R ∼= L3(2) and [V, R]
involves exaxtly one irreducible module and |Y | = 4. But then 3–elements
in R1 are centralized by a good E in M g and so by 5.3 their centralizers are
in M g, which implies R ≤ M g, contradicting [R, YMg ] 6≤ O2(M

g).

So we have that we may choose R in such a way that for any nontrivial
submodule W for RYMg there is some x ∈ W ] which is not centralized by a
good E. Hence we have one of the cases from 3.42(4)(i) - (viii). Set again
R1 = Rg.

Let first mp(R) ≤ 1. Then we have R ∼= L2(q) and W is the extension
of the trivial module by the natural module. Assume that YMg normalizes
R. Let x ∈ W , [x, YMg ] 6= 1 and [x,R1] = 1. As |[x, YMg ]| = q, we see that
R1 centralizes this group. Now [x,W g] = 1. As CYMg (x) = CYMg (W ), we
see [W,W g] = 1 and so [R1,W ] = 1, which implies that [R1, [W,YMg ]] = 1.
But CW (R) is centralized by a good E in M , so we get that R1 is in M . So
we have RR1

∼= L2(q) × L2(q). But then R1 contains a p–element ρ whose
normalizer is in M . But the normalizer of ρ in M g contains a good E, so M
contains a good E from M g, yielding the contradiction M = M g. So we may
assume that W acts as an F–module offender on R1. Now [W,W g] contains
CW (R) and CW g(R1). Further [W,W g]/CW (R)] is a 1–dimensional subspace
in W/CW (R). So we have that [W,W g] is normalized by a good E in M and
M g as well, so NG([W,W g]) ≤ M ∩M g and so M = M g, a contradiction.

So assume that there is some y ∈ YMg with RRy = R×Ry. But by quadratic
action we get |W ∩W y| = q2, which is not possible.

So we have mp(R) ≥ 2. Let W be as in 3.42(4). Then any x ∈ W is
centralized by some p–element ρ with NG(〈ρ〉) ≤ M . As [W,Y ] 6= 1 and YMg

normalizes R and acts quadratically we have that [YMg , W ] ≤ W . Assume
first that there is some x ∈ W with [x, YMg ] 6= 1 and [R1, x] = 1. Then first
R1 acts on [YMg , x], which is of size smaller than W and so [R1, [YMg , x]] = 1.
This now shows that CG(y) ≤ M g for all 1 6= y ∈ [YMg , x]. Hence we may
assume ρ ∈ M g. If mp(CMg(R1)) ≥ 1, we have that the center of a Sy-
low p–subgroup contains an elementary abelian subgroup of order p2 and so
CMg(ρ) contains an elementary abelian subgroup of order p3, which implies
that we have a good E in M and M g as well, a contradiction. So we have
that mp(CMg(R1)) = 0. Inspection of the groups in 3.42 now shows that
mp(CR1〈ρ〉(ρ)) ≥ 3, and so again we have a contradiction.

So we have that W acts nontrivially on W g. Hence we may assume that
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W g induces an F–module offender on W . Suppose that we do not have
(4)(vi) - (vii), then there is some 1 6= x ∈ [W,W g] which is centralized by
some p–element τ in M g with CG(τ) ≤ M g and some good E in M . Hence
we get the same contradiction as above.

So we have to handle (4)(vi)-(viii). Suppose we have R ∼= L4(2). Set
W2 = [YM , R] = W ⊕W1. Then we have that [W2,W

g
2 ] ≤ W2∩W g

2 . Suppose
that |[W,W g

2 ]| = 4, then [W2,W
g
2 ] is normalized by some good E in M and

M g as well, a contradiction. So we have that |[W,W g
2 ]| = 8. Now W2 induces

a fours group on W2 which centralizes a subgroup of index eight, which is
not possible.

Suppose next R ∼= Sp(6, 2) or U4(q). Then W = [YM , R]. Now |[W,W g]| = 16
or q4, respectively. There are elements in x ∈ W g such that CW (x) =
[W,W g]. Hence all elements in [W,W g]x are conjugate under W . As
NR1([W,W g]) acts transitively on [W,W g]] and (W g/[W,W g])] as well, this
would imply that R1 acts transitively on (W g)], which is not the case.

So we may assume that there is a normal r–group R in M̄ on which Y
acts faithfully and induces an F–module offender and further there is no
component of this type. In particular r = 3. Hence by quadratic action and
4.5, there is some x ∈ YM inducing a transvection on YMg . If 3 6∈ σ(M),
then m3(R) ≤ 3 and so by 2.3(a), we have that R is centralized by some
good E. But as there are transvections we have by 4.5 some x ∈ YM and
y ∈ YMg such that [x, y] = [x, YMg ] = [y, YM ] is of order two. Hence there is
some 3–element ρ ∈ R and ρ1 ∈ R1, such that [x, y] ≤ [YM , ρ]∩ [YMg , ρ1] and
|[YM , ρ]| = |[YMg , ρ1]| = 4. But as R is centralized by a good E ∼= Ep2 , p > 3,
we have that [x, y] is centralized by some good E in M and M g as well, a
contradiction. So we have 3 ∈ σ(M). Let C be a characteristic subgroup of
R, C = Ω1(C). Assume m3(C) > 1. We may assume that C is elementary
abelian or extraspecial. If m3(C) > 2, there is a good E in CC(x) and so it
centralizes [x, y] and we have a contradiction as before. So C is elementary
abelian of order 9 or extraspecial of order 27. As CM(C) acts on [x, y], we
may assume that C ≥ Ω1(CM(C)). But as m3(M) > 2, we get C is extraspe-
cial. As x centralizes in C an elementary abelian subgroup C1 of order 9, we
have that C1 cannot be good. So not all elements of order 3 in M are good.
Let P be a Sylow 3–subgroup of M containing C. Then Z(C) = Ω1(Z(P ))
and there is a subgroup F of order 9, which is in Z2(P ). Hence F is normal in
P and as m3(P ) > 2, we have that F is good. As not all subgroups of order
9 are good, this shows that M induces on C either Σ3 or Z2 × Σ3. In both
cases F is normal in M̄ and the other subgroups of order 9 are conjugate.
Hence F is normalized by x. As [F, x] 6= 1, we see that |[F, YM ]| = 4 and so
as F ≤ F1, F1 elementary abelian of order 27, we see that there is a good E
in F1, which centralizes [x, y], a contradiction again. Hence we are left with
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R cyclic. Now |[R, YM ]| = 4, and so M acts on this group, in particular it is
centralized by a good E, a contradiction. 2

wc

Lemma 7.2 Suppose that M0 contains a good E ∼= Ep2. Then Q is weakly
closed in S with respect to G.

Proof: Let Q 6= Qg ≤ S. Then there is also T ≤ S such that Q ≤ T
and there is some h ∈ NG(T ) with Q 6= Qh. Then we consider the group
〈M0, NG(T )〉 = H. Assume H ≤ M . Then NG(T ) ≤ M . Hence Qh ≤ CM ,
as CM is normal in M . But then Q and Qh are Sylow 2–subgroups of CM

and as QQh is a 2–group we have Q = Qh, a contradiction. Hence H 6≤ M .
As M0 contains a good E, we now have that O2(H) = 1. So we have an
amalgam with G1 = M0 and G2 = NG(T ). Let Γ = Γ(G1, G2) be the coset
graph and β ∈ Γ of minimal distance from 1 such that YM 6≤ O2(Gβ). As
Q ≤ T , we get β ∼ 1. As Q contains all 2–elements centralizing YM we see
that YM ∩ Yβ ≥ [YM , Yβ] 6= 1, which contradicts 7.1. 2

Snormalizer

Lemma 7.3 NG(S) ≤ M

Proof: Suppose that CM contains a good E. As Ω1(Z(S)) ≤ YM by
3.4, we have CM ≤ CG(Ω1(Z(S))). Hence NG(S) ≤ NG(Ω1(Z(S))) ≤ M . So
we may assume that M0 contains a good E. By 7.2 now Q is weakly closed
in S. So we get that NG(S) ≤ NG(Q) and so Q is normal in 〈M0, NG(S)〉
which gives NG(S) ≤ M as M0 contains a good E. 2

Let
H = {CG(x) | x ∈ Y ]

M}
Tnormalizer

Lemma 7.4 Let H ∈ H. Then H ∩M contains a Sylow 2–subgroup of H.

Proof: This is clear if H ≤ M . So assume that H 6≤ M . As CM ≤ H,
we see that CM does not contain a good E. Then M0 contains a good E by
2.5 and 5.11. Let Q ≤ T ≤ H∩M , T be a Sylow 2–subgroup of H∩M . Then
by 7.2 we have that NH(T ) ≤ NG(Q) ≤ M and so T is a Sylow 2–subgroup
of H. 2

From now on we choose H = CG(x) ∈ H with F ∗(H) 6= O2(CG(x)) and
x ∈ Y ]

M . Then H 6≤ M . In particular we have that CM does not contain
a good E. By 2.5 and 5.11 M0 contains a good E. Further by 7.2 we may
assume that S ∩H is a Sylow 2–subgroup of H.

Recall that in the exceptional case p does not divide |CM | or CM covers
Op(M/O2(M)).
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unique

Lemma 7.5 H is not contained in some uniqueness group. In particular
mp(H) ≤ 3 for all odd p.

Proof: Suppose H ≤ K, K some uniqueness group. Let R = O2(K).
Set L = E(H)O2′(H). Then we see that [CR(x), L] = 1. So by the A × B–
lemma, we get [L,R] = 1, a contradiction to 6.17. 2

comp1

Lemma 7.6 We have [L, YM ] ≤ L for any component L of H.

Proof: Suppose [L, YM ] 6≤ L. As YM is normal in S ∩ H, we get
that L/Z(L) has abelian Sylow 2–subgroups, so L ∼= L2(q), or L ∼= SL2(5).
Suppose the former. Then there is a group of order q in S, which induces
transvections to a hyperplane on YM . As q > 2, we get that there is a
component K ∼= Ln(2) in M/CM . Let y ∈ YM with [y, L] 6= 1. Then
CL×Ly(y) ∼= L2(q) and so L ≤ 〈S ∩ (L × Ly), CL×Ly(y)〉. In particular
there is no good E in M which centralizes y. So K is not centralized by
some good E. This shows mp(CM/CM

(K)) ≤ 1 and so mp(K) ≥ 2. Sup-
pose mp(CM/CM

(K)) = 1, then we have that p does not divide the order
of CK(y) and so of Ln−1(2). But this is not possible. So we have that
mp(CM/CM

(K)) = 0 and then mp(K) ≥ 3. This then shows p = 3 ∈ σ(M)
and so n ≥ 6. But then Ln−1(2) contains a good E, a contradiction.

So we have L ∼= SL2(5). Then |YM : CYM
(L)| = 8. Let x ∈ YM \ N(L).

Then x centralizes some element ρ of order 5 in LLx. As ρ does not normal-
ize YM and |YM : CYM

(ρ)| ≤ 4, we see that σ(M) = {3}. Let now P be a
Sylow 3–subgroup of LLx, which is contained in some M g. Then P is not
good, as otherwise H ≤ M g, contradicting 7.5. Hence we have that a Sylow
3-subgroup of G is isomorphic to Z3 oZ3. Now let ν ∈ M ∩LLx be an element
of order 3. Then we have that |[YM , ν]| = 4 and CG(ν) 6≤ M . Hence there is
a subgroup P1 in M , |P1| = 9 and ν ∈ P1. In particular P1 is generated by
M–conjugates of ν. This shows |YM : CYM

(P1)| ≤ 16. Suppose that P1 cen-
tralizes some element v ∈ CYM

(L). Then as 9 not divides the order of LLx,
we see that CG(v) contains 〈LLx, P1〉 and so an elementary abelian group of
order 27, in particular CG(v) contains some good E, contradicting 7.5. So we
have that CYM

(P1) ∩ CYM
(L) = 1 and then |YM | ≤ 32. Now some 3-central

element in M . But then CM contains a good E, a contradiction. 2

comp2

Lemma 7.7 We have [L, YM ] = L for any component L of H.

Proof: Suppose [L, YM ] = 1 for some L. Then L ≤ M . So
[L,O2(M)] ≤ O2(M). As O2(M) ≤ H we get [L,O2(M)] = 1, a contra-
diction. 2
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3strukL

Lemma 7.8 Let 3 ∈ σ(G) and T be a Sylow 3-subgroup of L. Then
|Ω1(Z2(T ))| ≤ 9.

Proof: Let P be a Sylow 3–subgroup of G with T ≤ P and R be a
uniqueness group for the prime 3 with P ≤ R. If there is a good E in T ,
then we get H ≤ R, contradicting 7.5. So suppose that |Ω1(Z2(T ))| ≥ 27.
Let F be normal in P , F elementary abelian of order 9. Then CΩ1(Z2(T ))(F )
contains an elementary abelian group of order 9. Hence, as there is no good
E in T , we have F ≤ T . But m3(CP (F )) ≥ 3, a contradiction.

complie

Lemma 7.9 Let L be a component of H then L/Z(L) is a group of Lie type
in characteristic two.

Proof: Assume otherwise. Then L/Z(L) is some sporadic group in C2

or L3(3), U3(3), U4(3), G2(3) or L2(p), p some Fermat- or Mersenne prime.
As L 6≤ M , we see that |YM : CYM

(L)| ≥ 4, as any hyperplane in YM contains
some element centralized by a good E by 5.8. As YM is normal in a Sylow
2–subgroup of H, we get that L/Z(L) 6∼= L2(p) or L3(3). Recall that we
consider L2(5) as L2(4) and L2(7) as L3(2).

Let next L/Z(L) ∼= G2(3), U4(3) or U3(3). By 7.5 we have L/Z(L) 6∼= U4(3).
By 7.8 we have that 3 6∈ σ(G). Now by 5.8 any subgroup of index 4 in
YM contains some element v such that CM(v) contains some good E and so
CG(v) ≤ M and so |YM : CYM

(L)| = 8. But now for any t ∈ YM \CYM
(L) we

have that CL(t) ≤ M . As L is generated by such centralizers we get L ≤ M ,
a contradiction.

So we have that L/Z(L) is sporadic. By 7.5 we have that m3(L) ≤ 3. This
shows L/Z(L) is some Mathieu group, some Janko group, HS or Ru. Fur-
ther in any case we have that |YM : CYM

(L)| ≥ 4 by 5.8, so L/Z(L) 6∼= M11.
If L/Z(L) ∼= J2 or J3, then we get that |YM : CYM

(L)| = 4, recall that YM is
normal in S ∩H. By 7.8 we have that 3 6∈ σ(M). But then CL(y) ≤ M for
all y ∈ Y ]

M , a contradiction.

By 5.8 we always have at least one fours group V in YM all of whose el-
ements have a centralizer which is in M . Hence U = 〈CL(v), S ∩L | v ∈ V ]〉
is a proper subgroup of L. Application of [CCNPW] gives L/Z(L) ∼= M22,
M23 or M24 and U/Z(L) ∼= 24A6, 24A7, 24A8 or 263Σ6, respectively. Now we
see that Q ∩ L, which is the preimage of U2(U) in L is elementary abelian
and so as Φ(Q) is normal in M , and L ≤ CH(Φ(Q)), we get that Q is el-
ementary abelian and then Q = YM . Let first 3 ∈ σ(M). Then by 7.8 we
have L 6∼= M24. Now U contains a 3–element ρ with CG(ρ) ≤ M . This now
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implies L/Z(L) ∼= M22. Further we see that for P ≤ U , |P | = 9, we have
NL(P ) 6≤ U , hence we get e(G) = 3 and a Sylow 3–subgroup of G is iso-
morphic to Z3 o Z3. Now NU(P )/CU(P ) ∼= Z4 and NM(P )/CM(P ) contains
Z3. So we see that NM(P )/CM(P ) must contain SL(2, 3). But then all 3–
elements in P are conjugate in M and so ΓG,1(P ) ≤ M , which gives that P is
good, a contradiction to 7.5. So 3 6∈ σ(G). Now as U induces an F–module
on YM and U/O2(U) cannot act faithfully on a 3–group of rank at most 3,
we get that there is some component K in M/CM involving U/O2(U). As
m3(K) ≤ 3 we get with 1.1 and 3.16 that K ∼= Ln(2), n ≤ 7, Sp(2n, 2),
n = 2, 3, Ω±(2n, 2), n ≤ 4, or An, n ≤ 11. As [L ∩M, YM ] involves just one
nontrivial irreducible module, we also have that [YM , K] involves just one
irreducible module. Further there is no good E in C(K) as this group has
to centralize [K, YM ]. This shows mp(K) ≥ 2 and so K ∼= L6(2), L7(2), A10,
or A11. In any case any element in [YM , K] is centralized by some good E.
This gives [YM , K] = [YM , L∩M ] and so |[YM , K]| = 26 and K ∼= L6(2). But
now we have CYM

(K) = CYM
(U). Hence any x ∈ CYM

(U) is centralized by a
good E in K, which shows H ≤ M , a contradiction. 2

Now we choose H and L such that L is maximal. Hence by the A×B–lemma
we have that L is a component for any x ∈ CYM

(L)].
root

Lemma 7.10 Let L ∼= G(q). Set V0 = CYM
(L). Then V g

0 ∩ V0 = 1 for
V g

0 6= V0 and g ∈ M .

Proof: Let first [Q,L] 6≤ L. Then we have LQ = L × Lt for some
t ∈ Q, as mp(L

Q) ≤ 3 for all odd p. Further [V0, L
Q] = 1, as V0 ≤ Z(Q). So

by abuse of notation we identify L with L× Lt in that case.

Let g ∈ M with V g
0 ∩ V0 6= 1. Then there are v, w ∈ V0 with vg = w.

Hence we get that both L and Lg are components of CG(v) and CG(w).

Suppose L 6= Lg, then we see that mp(L) = 1 for all odd primes p, as
Op(L) = 1 by definition of C2. This shows L/Z(L) ∼= L2(q), Sz(q) or L3(2).
In particular we see that [L,Q] ≤ L. Let Y be the projection of YM into
L. We first show Y = YM ∩ L. Suppose false. Set T = S ∩ L. We have
that T is a Sylow 2–subgroup of L. As YM = Ω1(Z(Q)) by 3.4 we see that
YM ∩ L = Ω1(CT (Q)). Suppose there is uv ∈ YM , u ∈ L, v ∈ C(L) \ L
and [uv, Q] = 1. As [u,Q] ∈ L and [v, Q] ∈ C(L), we see that u ∈ YM or
Z(L) 6= 1. So assume the latter. Then we have that L ∼= SL2(5), SL2(7) or
Sz(8).

In the first two cases we have that |YM : V0| ≤ 4. By 7.5 we get that
σ(M) = {3}. Further we have that m3(M) = 3. We now see that M induces
a fours group of transvections to a point on YM . Let K be a component of
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M/CM which realizes this fours group. Then K ∼= Ln(2). So we see that
n ≤ 6. This shows |YM | = 26, as m3(M) = 3. Now all involutions are conju-
gate and so we have that CG(i) ≤ M for all i ∈ Y ]

M . So this group acts on
a 3–group. But then we see with 2.1 that 3 divides the order of CM , which
contradicts CM ∩ L ≤ Z(L).

So we have that L/Z(L) ∼= Sz(8). As Ω1(S ∩ L) centralizes YM , we see
that this group is in Q and so it is Ω1(Q ∩ L). Hence Y = YM ∩ L).

Let q1 = |Y |. Also F ∗(CG(y)) 6= O2(CG(y)) for y ∈ L ∩ YM . We have that
Lg is a component of CG(L). Let {Lh | h ∈ M} be the set of components of
CG(L) which are conjugate to L by some element in M . Then we have a group
U = LLh1Lh2 · · ·Lhr , with hi ∈ M , which is a central product of its compo-
nents. Suppose now q1 < |V0|. Then we have that Lh ∈ {L,Lh1 , . . . , Lhr} for
all h ∈ M . In particular U is normalized by M . This now shows that we
have at most three components and so there is M1 ≤ M such that M/M1 is
a subgroup of Σ3 and M1 normalizes L. Then M1 also normalizes V0. But
M1 contains a good E and so NG(V0) ≤ M , a contradiction.

Hence we have that |YM | = q2
1. But then CYM

(L × Lg) = 1, a contradic-
tion.

Suppose now L = Lg. Then V0 = V g
0 . Hence we have that V0 ∩ V g

0 = 1
if V0 6= V g

0 . 2

root1

Lemma 7.11 Let L ∼= G(q) then YM does not project into a long root sub-
group R of L.

Proof: Assume false. Let first L/Z(L) ∼= L2(4), L3(2), A6, L3(4) or
Sz(8). By 7.10 we get |YM | ≤ 26. If there is a good p–element ω centralizing
YM , then this element normalizes L and U = 〈S ∩ L,NL(〈ω〉)〉 ≤ M . Hence
L/Z(L) ∼= L3(2) and U/Z(L) ∼= Σ4, p = 3. But YM projects into Z(L) as
ω centralizes YM , a contradiction. Hence we have that L/Z(L) ∼= Sz(8),
p = 3 and |YM | = 26. But there is just one class of elementary abelian
subgroups of order 27 in GL(6, 2), which shows that there is some ω ∈ M ,
with CG(ω) ≤ M and |CYM

(ω)| = 16. Hence ω normalizes V0. But again
L = 〈S ∩ L,CL(ω)〉 ≤ M , a contradiction.

As there are no outer automorphisms of L which centralize a Sylow 2–
subgroup modulo R, we get that |YM : CYM

(L)| ≤ |R|. Hence by 5.8 we
get that q > 2. We have that O2(M) = O2(CM). Let Q1 be the preim-
age of O2(CL/Z(L)(R)). Suppose that Q1 = O2(M) ∩ L and O2(M) =
Q1(CO2(M)(L)). Then NL(Q1) ≤ M . Hence there is a group W of order q−1
acting transitively on R = [YM ,W ]]. By 7.10 we have that V0 = CYM

(L) is a
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TI-set in M . We have that V0 is not normalized by O2(M). So by O’Nan’s
lemma [GoLyS2, (14.2)] we get that |YM | = 8. But then CM contains a good
E, a contradition.

So suppose first that Q1 6= O2(M) ∩ L. Then as CL(R) = CL(YM), we
see that Z(L) 6= 1 and Z(L) = Z(Q1). In particular there is a subgroup of
index q in O2(CL/Z(L)(R)), which is invariant under CL/Z(L)(R). With 1.4 we
now see that L/Z(L) ∼= L3(q), L2(q) or Sz(q). This now, as Z(L) 6= 1, shows
L/Z(L) ∼= L3(4), L2(4) or Sz(8), a contradiction.

So suppose now that O2(M) induces outer automorphisms on L. As
[O2(M), CM ∩ L] ≤ O2(CL(R)), we see that L ∼= L2(q) or U3(q). In all
cases CL(O2(M)) is of the same shape, i.e. L2(r) or U3(r), where r > 2.
But now we can argue as before as long as no element of YM induces an
outer automorphism. As [S ∩ L, YM ] ≤ R, we see that we have L ∼= L2(q),
q = r2. Now in particular we have a group of transvections on YM to some
hyperplane. Suppose first r > 2, then we get a foursgroup of transvections
and so M/CM has a component K ∼= Ln(2). We have that no element in
[K, YM ]] is centralized by a good E as otherwise some y which induces a field
automorphism on L would be centralized by a good E, which gives L ≤ M .
So we have that mp(K) ≥ 2 for p ∈ σ(M) and if p divides the order of CK(y)
for some y ∈ [YM , K], we even get mp(K) ≥ 3. Now we see that we always
get some good E in CM(y), a contradiction. So we are left with L ∼= L2(4).
But this we have handled at the beginning.

So what is left is [L,O2(M)] 6≤ L. Then LO2(M)/Z(LO2(M)) = L1 × L2, with
L1
∼= L2(q), L3(2) or Sz(q). If Z(L) 6= 1, then we have L1

∼= L2(4), L3(2) or
Sz(8), a contradiction. So we have Z(L) = 1. By 7.6 we have [L, YM ] ≤ L.
If YM induces some outer automorphism on L1, then L1 ∩ YM 6= 1 and as
[O2(M), YM ] = 1, we get the contradiction [L1, O2(M)] ≤ L1. Hence YM

induces just inner automorphism on L, then we have that S ∩ L centralizes
YM . Now there is some L3

∼= L, L3 ≤ L1 × L2, L3
∼= L2(r) or Sz(q) and

O2(M) = (O2(M)∩L3)CO2(M)(L3). Further CYM
(L3) = V0. But then we get

a contradiction as above, applying O’Nan’s Lemma and |YM : V0| > 2. 2
NT

Lemma 7.12 Let T be a Sylow t–subgroup of CM , t odd. Then NG(T ) ≤ M .

Proof: We have that M = CMNM(T ). Hence by 2.5 we have that
NM(T ) contains a good E. But then we get that NG(T ) ≤ M with 5.3. 2

O2

Lemma 7.13 Let U be the projection of YM onto L. Let R be a root sub-
group. Then U 6≤ O2(CL(R)).

Proof: Suppose false. Let first [Q,L] ≤ L. Assume further that no el-
ement from YM induces an outer outomorphism on L. As by 7.1 we have that
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V = 〈Y CL(R)
M 〉 is abelian, we have that there is a normal abelian subgroup

W of CL(R) which by 7.11 is not contained in R. This shows L ∼= Sp(2n, q),
F4(q),

2F4(q), or Ln(q).

Let L ∼= Sp(2n, q). By 7.5 we have that mp(L) ≤ 3 for all odd primes
p. So n ≤ 3. Let L ∼= Sp(6, q). Then |W | = q3. We have Sp(2, q) involved
in CM ∩ L. Let t be a prime which divides q + 1. Let 1 6= T be a Sylow
t–subgroup of CM ∩ L. Then we have with 7.12 that NL(T ) ≤ M , which
then shows L = 〈CM ∩ L,NL(T )〉 ≤ M , a contradiction.

Let next L ∼= Sp(4, q), q 6= 2, or L ∼= Ln(q), (n, q) 6= (3, 2). Assume further
that NL(W ) ≤ M . We have NL(W )/W ∼= GL(n−1, q) in case of L ∼= Ln(q).
Hence in both cases we see that W = YM ∩ L. Now YM ∩ L = Q ∩ L. This
shows Φ(Q) ≤ CG(L). Hence Φ(Q) = 1 and then YM = Q = O2(M). Further
M induces an F–module on YM . Let NL(W ) act on a nontrivial p–group P
p odd, in M/CM . Then we see that p = 3, as NL(W ) induces an F–module
offender on YM . Further, as NL(W )/W 6∼= L2(2), we see that m3(P ) ≥ 4.
Hence 3 ∈ σ(M) and for all 3–elements ρ ∈ M we have NG(〈ρ〉) ≤ M . This
with 7.5 shows m3(L) = 1 and then L ∼= L3(q), 3 | q + 1. Let ρ ∈ NL(W ),
o(ρ) = 3. Then CYM

(ρ) = V0. As ρ is centralized by an elementary abelian
group of order 27 in M , we see that also V0 is normalized by such a group
and then L ≤ NG(V0) ≤ M , a contradiction. Hence we may assume that
NL(W )′/W is involved in some component K of M/CM . With 3.16 we get
K ∼= Lm(r), Sp(2m, r), Ω±(2m, r), G2(r) or Am.

As NL(W ) induces just one nontrivial irreducible module in YM the same
holds for K. Let V0 ∩ [K,YM ] = 1. Then we have that [K, YM ] =
[NL(W ), YM ] ≤ L. This shows that CYM

(K) 6= V0 and so CW (NL(W )′) 6= 1.
Hence we have that L ∼= Sp(4, q). Now there is some ν ∈ NL(W ),
o(ν) = q − 1, [W, ν] = W and [NL(W )/W, ν] = 1. This now shows
[K, ν] ≤ K. Hence [CYM

(K), ν] ≤ CYM
(K). So we get CYM

(K) 6= V0, or
CYM

(K) = V0⊕CW (NL(W )′). By the choice of L, we have that K ≤ H and
so K ∼= L2(q). Now some element ρ of order q+1 in NL(W ) is normalized by
some good E in M , which with 5.3 shows that 〈NL(W ), NL(〈ρ〉)〉 = L ≤ M ,
a contradiction.

So we have that there is 1 6= t ∈ [K, YM ] ∩ V0. Then E(CK(t)) 6= 1, as
L ≤ E(CK(t)). This shows that K ∼= Am. Let 3 ∈ σ(M) and m3(L) ≥ 2.
Then we have that m3(M) ≤ 3 by 7.5. Hence m ≤ 11. If m3(L) = 1, then
L ∼= L3(q) and as NL(W ) is a component in K, we get q ≤ 4, a contradiction.
If 3 6∈ σ(M), then also m ≤ 11. Then we have that L ∼= Sp(4, 4), L3(4) or
L5(2). But on the natural module for Am these groups induce a permutation
module, which they do not induce in L, a contradiction.
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So we have that NL(W ) 6≤ M . Let first L ∼= Sp(4, q), q > 2. If YM does
not project into Z(S ∩ L), then W = CS∩L(YM). But then we have that W
is normal in CM , which then again shows YM ∩ L = W , a contradiction. So
we have that YM projects into the center of a Sylow 2–subgroup of L. We
have that J(O2(M)) = J(CO2(M)(L)(S ∩ L)) and so the Cartan subgroup
of L is in M . Hence YM ∩ L = Z(S ∩ L). Now [S ∩ L, YM ] = 1 and so
S ∩ L = Q ∩ L = O2(M) ∩ L. Now let g ∈ M0 with V0 ∩ V g

0 = 1. As
Ω1(Z(CQ(L))) = V0 and CQ(Lg) ∩ V0 = 1, we see that CQ(L) ∩ CQ(Lg) = 1.
Hence also CO2(M)(L)∩CO2(M)(L)g = 1. As a Cartan subgroup of L is in M ,
we have that O2(M) = (O2(M) ∩ L)(O2(M) ∩ C(L)). This now shows that
CO2(M)(L)g is isomorphic to a subgroup of S ∩ L and so also CO2(M)(L) is.
This shows that O2(M) possesses at most 4 elementary abelian subgroups of
maximal order. Let E1 be one of them. Then we have that |M/NM(E1)| ≤ 4.
In particular there is some good E normalizing E1 and then NG(E1) ≤ M .
Hence we have that NL(E1) ≤ M , but M ∩ L was NL(S ∩ L), while NL(E1)
involves L2(q). So we have that M0 ≤ NM(V0). Then a good E normalizes
V0 and so L ≤ M , a contradiction again.

Let now L ∼= Ln(q), (n, q) 6= (4, q), (3, 2). As some elements in YM are
centralized by some good E in M , there is some t ∈ YM \ V0 such that
CL(t) ≤ M . As all elements in U are conjugate in L, we may assume that
the centralizer of some root element in L is in M . Hence YM ∩ L = W and
so NL(W ) ≤ M , a contradiction.

So let L ∼= L4(q). Suppose that C(R) is not in M . As there is some y ∈ L
with CL(y) ≤ M , and S ∩ L is a Sylow 2–subgroup of L, we get that the
normalizer of an elementary abelian subgroup of order q4 is in M . So YM ∩L
is of order q4, a contradiction to YM ∩ L ≤ O2(C(R)). So we always have
that C(R) ≤ M and so YM ∩ L is of order q3 and centralized by a graph
automorphism of L. Again M induces an F -module on YM . Let q > 2. As
YM ∩ L ≤ L1

∼= Sp(4, q), we may argue as in the case before to see that
NL(W ) ≤ M and YM = Q. Let t ∈ YM such that t projects onto some
element in YM ∩ L \ R. As L = 〈CL(R), CL(t)〉, we see that CG(t) 6≤ M . In
particular RM ≤ R × V0. Let now as before K be a component of M/CM

involving NL(W )′. As [NL(W )′, RM ] = 1, we get that [K,R] = 1. Now
[O2(NL(W ))), YM ] ≤ R and so O2(NL(W )) ≤ CM as [YM , K] 6≤ R, a con-
tradiction. So we are left with L ∼= A8. There is a foursgroup V1 the cen-
tralizers of all of its elements are in M . Obviously V1 ∩ L contains the root
group. But then V1 contains both types of involutions L. But then again
L = 〈CL(t) | 1 6= t ∈ V1〉 ≤ M , a contradiction.

Let next L ∼= A6, or L3(2). We have that |V0| ≤ 4, as it has to be a
TI-set and |YM ∩ L| ≤ 4. Hence we have that |YM | ≤ 24. Let p ∈ σ(M). If
p > 3, then a good E centralizes YM , a contradiction. So p = 3, e(G) = 3
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and |YM | = 16. Now CM contains a 3–element ρ with CG(ρ) ≤ M . As such
an element is not contained in L, we see that [ρ, L] = 1, a contradiction.

By 7.5 and 1.2 we see L 6∼= F4(q). So let finally L ∼= 2F4(q). Then we
get |W | = q5. As W = Ω1(CL(W )), we see that there is some conjugate W h,
where h is in the other minimal parabolic P of L containing S ∩L such that
[W,W h] 6= 1. This shows with 7.1 that YM ∩ L ≤ W ∩ W h. In particular
NL(W ) 6≤ M . Further |W ∩W h| = q3 and Z(O2(P )) ≤ W ∩W h, where all
elements of Z(O2(P )) are root elements and [W ∩W h, O2(P )] = Z(O2(P )).

If q = 2, then we have that |YM ∩ L| ≤ 8. As there is a fours group in
YM intersecting V0 trivially, which is centralized by a good E, we get that for
some root element y ∈ L, CL(y) ≤ M . But then YM = W , a contradiction.

So we have that q > 2 and then |YM ∩L| ≤ q3. Let first YM ∩L ≤ Z(O2(P )).
Then all elements in YM ∩ L are conjugate. As there is some t ∈ YM \ V0,
which is centralized by a good E in M , we get that CL(t) ≤ M and so we
have that CL(R) ≤ M , which would give the contradiction YM = W again.
So YM ∩ L 6≤ Z(O2(P )). Then we have that Z(O2(P )) ≤ YM , as YM is
normal in S ∩ P . Hence NL(YM) contains a subgroup of index q − 1 in P .
Now we have that YM is an F–module for M and NL(YM) induces q2L2(q).
As above we get some component K of M/CM , where K is isomorphic to
Lm(r), Sp(2m, r), Ω±(2m, r), G2(r) or Am, and contains NL(WW h)CM/CM .
As CYM

(NL(WW h)) = V0, we get that CYM
(K) ≤ V0. and so V0 ≤ [K, YM ].

Let now t ∈ V0, then CK(t) has a normal subgroup isomorhic to q2L2(q).
Inspection of the groups K shows that we must have K/Z(K) ∼= L3(q) and
|[K, YM ]| = q3. Now K acts transitively on [K,YM ]] and so any such element
in [YM , K] is centralized by some good E. Hence there is also some element
in V ]

0 with this property, a contradiction.

So we are left with the case that YM induces an outer automorphism on
L. Then [YM , CL(R)] ≤ O2(CL(R)). Hence YM does not induce a field au-
tomorphism. So we get that L ∼= L4(q), L3(q), or A6. In case of L3(q), we
have that [YM , S] is not abelian.

Let L ∼= L4(q). Then we have that |YM ∩ L| = q3. Further we have some
fours group in YM all of whose elements have centralizers in M . Hence we
have such an element t in L. As S ∩ L ≤ M we see that M ∩ L is in some
parabolic, which has to be NL(YM ∩ L). This shows that t ∈ R. Now we
have that CL(t) ≤ M for some element in R]. But there must be some outer
automorphism x ∈ YM such that x ∈ O2(CAut(L)(t))). This shows q = 2.
Then |YM : V0| = 16. Now we see that YM contains some s with CG(s) ≤ M
and CL(s) ∼= Σ6. Then L = 〈CL(t), CL(s)〉 ≤ M , a contradiction.
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So let now L ∼= A6 and YM induces Σ6. Then as V0 is a TI–set, we get
|YM | ≤ 26. Let µ ∈ CM , o(µ) = p ∈ σ(M). As Sylow p–subgroups of CM

are cyclic, we have that NG(〈µ〉) ≤ M . But CL(YM) is a 2–group and so
[µ, L] = 1, a contradiction. Hence σ(M) ∩ π(CM) = ∅. This now shows
σ(M) = {3} and |YM | = 26. Further we have that e(G) = 3. As M/CM

is a subgroup of GL(6, 2) we get with 7.5 that Sylow 3–subgroups of G are
isomorphic to Z3 o Z3. We have that NL(YM)/YM ∩L ∼= Σ3. Let ρ ∈ NL(YM)
be an element of order three. Then NL(〈ρ〉) 6≤ M . Let P be a Sylow 3–
subgroup of M with ρ ∈ P . Then |CP (ρ)| = 9. But all these elements in
GL(6, 2) satisfy |[YM , ρ]| = 16, contradicting [V0, ρ] = 1 and |V0| = 8.

We are left with [L,Q] 6≤ L. As L ∈ C2, we have that O(L) = 1. Hence
mp(L) = 1 for all odd primes p. This shows with 7.9, 7.5 and 1.2 L ∼= L2(q),
Sz(q) or L3(2). By 7.11 we have that L ∼= L3(2) and then by 7.10 we get that
|YM | ≤ 16. Hence in any case CM contains some p–element ρ, p ∈ σ(M), with
CG(ρ) ≤ M . But as CL(YM) is a 2–group, we get [L, ρ] = 1, a contradiction.
2

constrain

Proposition 7.14 If 1 6= x ∈ YM , then O2(CG(x)) = F ∗(CG(x)).

Proof: Suppose false. Then we may choose H as before. Let L again
be as before and R be a long root subgroup. Then by 7.13 for the projection
U of YM onto L we have that U 6≤ O2(CL(R)). Then in any case we get
R ≤ YM and in particular [L,Q] ≤ L. Further with 4.1 we have that YM

is a 2F–module. Let M be exceptional, we see with 5.10 that offenders
act quadratically. But then 4.1 shows that we have an F -module, which
contradicts 5.9. So we have that

(i) M is not exceptional.

Let q > 2. Then by 1.2 and we have that L ∼= L4(q), Sp(6, q), Ω−(8, q), U4(q),

G2(q),
3D4(q), or 2F4(q). In 3D4(q) we easily see that V = 〈Y NL(S∩L)

M 〉 is not
abelian which contradicts 7.1. Let L ∼= G2(q) or 2F4(q) and t ∈ YM which
does not project into O2(CL(R)). Then we have |[t, O2(CL(R))/R]| ≥ q2, q4,
respectively. As R ≤ YM , we see that YM projects onto a group of order at
least q3, q5 in O2(CL(R)). But as L does not possesses an elementary abelian
subgroup of order greater than q3, q5, respectively, we get a contradiction.

Let q = 2. Then we have at least that m3(L) ≤ 3. Hence L ∼= Ln(2),
4 ≤ n ≤ 7, Sp6(2), Ω−(8, 2), U4(2) by 1.2, as G2(2), 3D4(2) and 2F4(2) are
not possible by the same reason as for q > 2. So we have

(ii) L ∼= L4(q), L5(2), L6(2), L7(2), Sp6(q), Ω−(8, q), or U4(q).
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Next we determine YM ∩ L. Let W ≤ YM be of maximal order such that
CG(w) ≤ M for all w ∈ W ]. Let first L ∼= L6(2) or L7(2). Then we have that
3 6∈ σ(G) by 7.5 and so also e(G) ≥ 4. Hence we get that |W | ≥ 26. We have
that CG(r) 6≤ M for r ∈ R] as YM does not project into O2(CL(R)). Let W1

be the projection of W onto AutH(L). As S ∩ L ≤ M , we see that W1 ≤ L.

Let first L ∼= L6(2) and U be the transvection group, U normal in S ∩ L.
If CL(u) ≤ M for some u ∈ U ], we get that L ∩ M = NL(U) and
O2(NL(U)) = U ≤ O2(CL(R)), a contradiction. So we have that U ∩W1 = 1.
As NL(U)/U ∼= L5(2) there are just two possibilities for W1 and then
|CU(W1)| = 8 or |CU(W1)| = 4. In both cases we see that CL(YM) is
elementary abelian and so Q = YM . Hence |YM ∩ L| = 28 or 29 and
NL(YM∩L)/YM∩L ∼= L4(2)×Σ3 or L3(2)×L3(2), respectively. Let p ∈ σ(M)
and t ∈ CM with o(t) = p. As Sylow p–subgroups of CM are cyclic we have
that CG(t) ≤ M . But we have that [L, t] = 1, as CL(YM ∩L) = YM ∩L, and
so L ≤ M , a contradiction. So we have that mp(CM) = 0. As |W1| = 64,
we get that p = 7 and m7(M) = 4. By 7.10 |YM | ≤ 218 and so Sylow 7–
subgroups of GL(18, 2) are abelian. Hence all groups of order 49 are good.
In particular L contains a good E, which contradicts 7.5.

Let now L ∼= L7(2). Let U = O2(CL(R)). Assume W1 ∩ U = 1. Then
we see again that the projection of YM onto L is of order 212, as YM is nor-
mal in S. Hence we get |YM | ≤ 224 and NL(YM)/YM ∩ L ∼= L4(2) × L3(2).
Again mp(CM) = 0 and we get p = 7. Let now P be a Sylow 7–subgroup
of L ∩ M . Then we have that NG(P ) ≤ M . But NL(P ) 6≤ NL(YM). So
we have that W1 ∩ U 6= 1. In U \ R we have three CL(R)–conjugacy
classes of involutions. Two of them are in L conjugate to r ∈ R. If one
of these involutions is in W1, we get that L ∩ M/O2(L ∩ M) ∼= L6(2) and
so W1 ≤ O2(L ∩M), a contradiction. So W1 ∩ U contains just involutions t
with CCL(R))(t)/O2(CCL(R)(t)) ∼= L3(2). Let U1 be the projection of YM onto
L, then we see that |U1 : U1 ∩ U | ≤ 16 and so |U1| ≤ 210. Hence with 7.10
we get that |YM | ≤ 220. Now as above we get p = 7 and Sylow 7–subgroups
of M are abelian. But this contradicts m7(L) = 2 and 7.5.

Let L ∼= L5(2). We now have |W1| ≥ 4. If W1 contains a root ele-
ment, we get that L ∩ M/O2(L ∩ M) ∼= A8. But then YM projects into
O2(CR). Hence W1 does not contain root elements. Hence L ∩ M is con-
tained in the normalizer of an elementary abelian subgroup of order 64 and
then L ∩ M/O2(L ∩ M) ∼= Σ3 × Σ3 or L3(2) × Σ3. In particular we get
|L ∩ YM | = 16 or 64. Suppose the former. As in L ∩ YM any subgroup of
order 8 contains some root element, we get |W1| = 4 and so 3 ∈ σ(M). Let
P be a Sylow 3–subgroup of L ∩ M . Then NL(P ) 6≤ L ∩ M . So we have
that Z3 o Z3 is a Sylow 3–subgroup of G and P contains a unique subgroup
P1 of order 3 with NG(P1) ≤ M . Hence we see that NL(P1) ∼= Σ3 × L3(2),
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which is not in L ∩ M . So we have that M ∩ L/O2(M ∩ L) ∼= L3(2) × Σ3

and either p = 3 or p = 7. If p = 3, we argue as before to see that
NL(P1)O2(L ∩M) = L ∩M . There is a Sylow 3–subgroup P2 of M which
normalizes P1. Then as O2(L ∩ M) = [YM , P1], we see that P2 acts on
CL(P1) = V0, a contradiction. So let p = 7. We have with 7.10 that
|YM | ≤ 212 and so Sylow 7–subgroups are abelian. Again a Sylow 7–subgroup
acts on V0 = CYM

(µ), µ some 7–element in M ∩ L.

So we are left with

(iii) L ∼= L4(q), Sp6(q), U4(q) or Ω−(8, q).

Let t be some element in YM which projects not into O2(CL(R)). If L ∼= L4(q)
or U4(q), then |[t, O2(CL(R))]| = q3. In both cases we see that CS∩L(〈t, YM ∩
O2(CL(R))〉) is elementary abelian. Hence Q = YM . In both cases we get
|YM ∩ L| = q4 and

(iv) M ∩ L/YM ∩ L ∼= L2(q)× L2(q)× Zq−1, or L2(q
2)× Zq−1.

Let L ∼= Ω−(8, q), then we get |[t, O2(CL(R))]| = q5. We have that
CL(R)/O2(CL(R)) ∼= L2(q

2) × L2(q). Let t project nontrivially onto the

L2(q
2), then 〈Y NL(S∩L)

M 〉 is nonabelian as L2(q
2) induces Ω−(4, q) on O2(CR).

Hence by 7.1 we see that t projects trivially on the L2(q
2) and nontrivially

onto the L2(q). This now shows that CS∩L(〈t, [t, O2(CL(R))]〉) is elementary
abelian of order q6. Again Q = YM and so

(v) NL(L ∩ YM)/L ∩ YM
∼= Ω−(6, q)× Zq−1.

Let L ∼= Sp(6, q). If t ∈ C(Z(O2(CL(R)))), then we see that |[t, O2CL(R)]| ≥
q3. Then CS∩L(〈t, [t, O2(CL(R))]〉) is elementary abelian of order q6 and
NL(YM ∩ L)∞/YM ∩ L ∼= SL(3, q). If [t, Z(O2(CL(R)))] 6= 1, then
|[t, O2(CL(R))]| = q4. We have CL(R)/O2(CL(R)) ∼= L2(q) × L2(q). Sup-
pose that t does not centralize some component or Σ3 in case of q = 2. Then
we see that 〈Y NL(S∩L)

M 〉 is not abelian as it covers S/O2(CL(R)) for q > 2. If
q = 2, then t acts as a c2–element and so [t, O2(CL(R))] is not abelian. Hence
we have that t centralizes one of the components or one Σ3. So we get that
|YM ∩ L| = q5 and

(vi) M ∩ L/YM ∩ L ∼= Sp(4, q)× Zq−1.
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Let 3 ∈ σ(M). Then by 7.5 we get that L ∼= L4(q). Let further P be a
Sylow 3–subgroup of L ∩ M . Then we see that NL(P ) 6≤ M . This now
shows that Z3 o Z3 is a Sylow 3–subgroup of G. In particular P contains
exactly one subgroup P1 of order three with NG(P1) ≤ M . As L ∩M/YM ∩
L ∼= L2(q) × L2(q) × Zq−1, we see that P1 is in one of the components and
[YM , P1] = YM ∩L. Now we have that P1 is normal in a Sylow 3–subgroup P2

of M and so P2 normalizes CYM
(P1) = V0, a contradiction. Hence we have

shown that

(vii) 3 6∈ σ(M).

Further in all cases we have that CL(YM ∩ L) = YM ∩ L. Let µ ∈ CM with
o(µ) = p, p ∈ σ(M). Then [µ, L] = 1. As mp(CM) = 1, we have that
CG(µ) ≤ M , a contradiction. So we have that mp(CM) = 0 for all p ∈ σ(M).

Let next q = 2. Then by 7.10 we have that |YM | ≤ 212. Let e(G) ≥ 4. Hence
by the structure of GL(12, 2), we see that σ(M) = {7}, and |YM | = 212.
Further all 7–elements are good. We have L ∼= Sp(6, 2) or Ω−(8, 2). Let
µ ∈ M ∩ L, o(µ) = 7. Then we must have NL(〈µ〉) ≤ M . But in case of
Sp(6, 2) we have L ∩M ∼= 26L3(2), where an element of order 7 is inverted
in L.

Let e(G) = 3, then we see by 7.5 that L ∼= L4(2) and so |YM | ≤ 28. But
GL(8, 2) contains no elementary abelian subgroup of order p3 for p > 3.

So we have shown

(viii) If q = 2, then L ∼= Ω−(8, 2), e(G) = 4 and σ(M) = {7}.

Let now first K be a component of M/CM which induces an 2F–module on
YM and involves NL(YM)CM/CM . We will show that

(ix) [YM , K] = YM ∩ L = [YM , L ∩M ]

Let YM ∩L > [YM , K] then we may assume without loss that YM = [YM , K].
We may apply 3.43. We cannot have (α)(1), (3) or (4). Suppose we have
(α)(2). If we do not have L ∼= Sp6(q), we have that NL(R) ≤ M , a contra-
diction. Hence we have L ∼= Sp6(q) and |YM ∩ L| = q5. Then even YM is an
F–module and so 3.42 applies. In particular we may have 3.42(4)(ii), (iii),
(v), (vi), (vii) or (viii). As mp(L) = 3 for p a prime dividing q2 − 1, we have
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that e(G) ≥ 4 by 7.5. Further [L ∩ M, YM ] involves exactly one nontrivial
irreducible module. This shows that we must have K ∼= Sp4(r). But CK(t)
has a component Sp(4, q) for any t ∈ V ]

0 . But [K, YM ] is an extension of
the trivial module by the natural module and so r = q. Now we see that K
contains a good E, a contradiction.

Hence we have one of 3.43(5). Suppose that [YM , K] involves exactly one
nontrivial irreducible module, we get (5)(i)-(xvi). If [V,K] contains a trivial
module, we have that [NL(YM), YM ] contains a trivial module and so as be-
fore we get that L ∼= Sp(6, q) and we have the same contradiction as before.
So we are left with (5)(ii), (vii) - (xvi). Suppose e(G) = 3. Then by 7.5 we
have that q = 2 and L ∼= L4(2), a contradiction.

So we have that e(G) ≥ 4. But then YM is centralized by some good p–
element according to 3.43(5). As CL(YM ∩ L) = YM ∩ L, we see again that
L ≤ M , a contradiction.

So we have that [YM , K] involves two nontrivial irreducible modules. Then
we have L ∼= Sp(6, q), |YM ∩ L| = q6 and (L ∩M)′/YM ∩ L ∼= SL(3, q). Now
we have (xvii) - (xxi). For t ∈ V0, we see that CK(t) involves SL(3, q). This
shows that we have (xviii), (xx) or (xxi). In the first two cases L ∩M had
to induce at least four nontrivial irreducible modules on YM , a contradiction.
So we have (xxi) and K ∼= SL(3, r). But then [t,K] = 1, a contradiction.

So we have that (ix). Again as CG(R) 6≤ M , we do not have 3.43(α)(1),(3)
or (4). Suppose first that we have (2). Then as before we have L ∼= Sp(6, q)
and YM is an F–module for K. Hence we have 3.42 with e(G) ≥ 4. So
we might have 3.42(iii) or (iv). But there is no Sp(4, q) in G2(r), hence we
have K ∼= Sp4(r), [YM , K] involves just one nontrivial irreducible module
the natural one and p | r − 1 for p ∈ σ(M). As there is some t ∈ L ∩ M ,
o(t) = q−1 and [t, YM ∩L] = YM ∩L, we see that t normalizes K and acts on
C[K,YM ](K), which is nontrivial by (iii). So C[K,YM ](K) = CYM∩L((L ∩M)′).
This gives r = q. But then mp(L) = 2 for some p ∈ σ(M) and contains a
good E, contradicting 7.5.

So we have 3.43(5). Let L be defined over GF (2). Then |[YM , K]| = 26,
σ(M) = {7}, L ∼= Ω−(8, 2) and e(G) = 4. But then again [YM , K] is central-
ized by a good E, a contradiction. So we have that L is not over GF (2).

Assume first that in [YM , K] there is exactly one nontrivial irreducible K–
module involved. As 3 6∈ σ(M), we have 3.43(5)(ii), (iii), (iv), (viii), (x), (xi),
(xiv), (xv) or (xvi). As L is not defined over GF (2) we see that (x) and (xi)
are not possible. Further as q > 2 we see that m3(L) = 3 for L 6∼= L4(q) and
mp(L) = 3 for p | q − 1. So we have e(G) ≥ 4. Then we just can have (iii),
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(iv), (xiv) or (xvi). Then K ∼= Sp(4, r) or G2(r). Suppose CYM
(K) 6= 1, then

we have that L ∼= Sp(6, q). So we must have Sp(4, q) ⊆ Sp(4, r) or G2(r).
This now shows that we must have q = r and K ∼= Sp(4, q) as above. But
now L contains a good E, a contradiction.

So let now [YM , K] involve more than one nontrivial irreducible module. This
gives L ∼= Sp(6, q) and |YM∩L| = q6. Further e(G) ≥ 4. As before we are not
in 3.43(α)(1), (3), (4). If we are in (2), then as YM ∩L is an indecomposable
module for L∩M we get a root element in CYM

(T ) for a Sylow 2–subgroup T
of K, a contradiction. So we have 3.43(5)(xviii) - (xxii), (xxiv). As there are
exactly two such modules we get (xviii), (xix) or (xx). As Ω+(8, 2) does not
involve SL(3, q), q > 2, (xx) is possible. Also SL(3, q) 6≤ Sp(4, r) for q > r.
So we are left with K ∼= Sp(6, r). Now |YM ∩ L| ≥ r14 and so q6 ≥ r14. This
gives q > r2. But then SL(3, q) 6≤ Sp(6, r).

So we are left with the possibility that L ∩ M/YM ∩ L does not involve
in some component. There are two possibilities for this. One is that it splits
into two components K1K2. Then L ∼= L4(q). Now as YM ∩ L is an irre-
ducible L ∩M–module we see that [K1K2, YM ] is a tensor product module.
Then we get that [K1K2, YM ] = [L ∩ M,YM ] and so either there is a good
E in K1K2 and then in L, or σ(M) ∩ π(K1K2) = ∅. So K1K2 is normal in
M/CM and so M acts on CYM

(K1K2) = V0, a contradiction.

So we are left with the case that L ∩M/YM ∩ L acts nontrivially on some
p–group P of M/CM , and so also on some p–group of M/O2(M). Let q > 2.
We see that mp(P ) ≥ 4. So p > 3, as 3 6∈ σ(M). Now S ∩ L contains a sub-
group U of order q such that CYM

(U) = CYM
(u) for all u ∈ U ]. By 2.1 there

is a subgroup W of M/O2(M) which is a direct product of dihedral groups of
order 2p with U as a Sylow p–subgroup. But then the A×B– lemma shows
that [Op(W ), YM ] = 1, which contradicts q > 2 and mp(CM) ≤ 1.

So q = 2 and L ∩ M/YM ∩ L ∼= U4(2). We again see that mp(P ) = 4
and so p = 7. But as now |YM | = 212 we have that M/CM is a subgroup of
GL(12, 2). But there is no extension of an elementary abelian group of order
74 by U4(2) in GL(12, 2). 2
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8 M contains 2-central centralizers

In this chapter we fix a uniqueness group M and a Sylow 2-subgroup S of M .
If H is a subgroup of G with CG(O2(H)) ≤ O2(H) then set CH = CH(YH).
We will show that M contains CG(x) for all x ∈ Ω1(Z(S))] .

Let
H = {CG(x) | x ∈ Ω1(Z(S))]}

We will show that all members of H are contained in M . By 7.14 we have
O2(H1) = F ∗(H1) for all H1 ∈ H. So assume there is some H1 ∈ H with H1 6≤
M . We have CMS ≤ H1 ∩ M . Hence CM does not contain an elementary
abelian subgroup E of order p2 with ΓE,1(G) ≤ M . Set M0 = NM(S ∩ CM).
Then M0 contains some elementary abelian subgroup E of order p2 with
ΓE,1(G) ≤ M by 2.5, 5.2 and 5.11. Now choose H ≤ H1 minimal with
respect to S ≤ H and H 6≤ M . We are going to investigate the amalgam
(M0, H) (recall O2(H) = F ∗(H)). As usual (see 3.5) we have the parameter
b.

CH

Lemma 8.1 Let YH 6= Ω1(Z(S)), then CH ≤ M .

Proof: Suppose false. Then H = CHS, but then Ω1(Z(S)), which is
in YH , would be normal in H. 2

CH1

Lemma 8.2 Let YH 6= Ω1(Z(S)), then O2(H) is a Sylow 2- subgroup of CH .

Proof: By 8.1 we have that CH ≤ M . As H = CHNH(S ∩ CH), we
get that S ∩ CH is normal in H, so S ∩ CH = O2(H). 2

Hstruk

Lemma 8.3 Let H̄ = H/CH . Then either H̄ is solvable, or H̄ = LS̄,
where L is a product of isomorphic quasisimple groups K on which S̄ acts
transitively. If KNS̄(K) induces an F–module on some H̄–module V with
offender A in O2(CM0), then we have that K ∼= L2(q), q even. In this case,
if L 6= K, there are exactly two components.

Proof: Let K be a component of E(H̄). If K 6≤ ¯H ∩M , we have
H̄ = 〈K, S̄〉 and we are done. So we may assume that E(H̄) ≤ ¯H ∩M .
Let T = S ∩ E(H̄). Then S̄ normalizes T and NH̄(T ) is not in M . By the
minimal choice of H we have E(H̄) = 1. Now we have that F (H̄) 6≤ H̄ ∩ M̄ ,
otherwise O2(M0) = O2(H) and so as YM = Ω1(Z(O2(M0))) by 3.4, we get
that YH = YM is normal in 〈M,H〉, a contradiction. So H̄ = F (H̄)S̄ is
solvable.
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Assume now that KNS̄(K) induces an F–module. Then K is a group of
Lie type in characteristic two or alternating. The minimality of H shows
that 〈K,S〉 is a minimal parabolic. Hence K is a minimal parabolic group
and we get with 3.16, that K ∼= L2(q).

Suppose now L 6= K. The number of conjugates of K is a power of two
and the Cartan subgroup of K is in M by minimal choice. As H 6≤ M , we
have that mp(H ∩M) ≤ 3 for each odd prime p. Hence we get that there are
exactly two components. 2

beven

Lemma 8.4 We have that b is odd.

Proof: Suppose false. Let first b = bM0 . Hence there is Mα, with
YM ≤ Mα but YM 6≤ Hβ for at least one neighbour β of α. But by 7.1
YM ≤ O2(Mα) ≤ Hβ for all neighbours β of α, a contradiction.

So we have b = bH . Now [YH , Yα] ≤ YH ∩ Yα. By 8.2 we have [YH , Yα] 6= 1.
In particular YM is an F–module. Now we have that YH ≤ Cα−1. But the
choice of M0 shows that any 2–element of CM0 is in O2(M0). The structure
of H is given by 8.3. Now make the notation such that M0 is of distance
b + 1 from α and Yα 6≤ M . We have that YMYH acts on Yα.

Assume first that H/CH has one or two components A5 which induce
a permutation module. We have that some A4 in K is in M . Now
K ≤ 〈O2(M0), Yα〉CM/CM . Hence K is generated by elements which
centralize a subgroup of index four in YM . This shows that p = 3 for
p ∈ σ(M) and |YM : CYM

(Yα)| = 4. As YM ≤ O2(Mα−1), we see that
YM ≤ CYMYH

(O2(Mα−1)), which is the centralizer of a Sylow 2–subgroup of
A5 in the permutation module and so is centralized by some A4 in K. Hence
we see that there is some 3–element ρ in CM∩K and so as CM cannot contain
a good E, we see that NG(〈ρ〉) ≤ M , a contradiction.

So we have L2(q) on the natural module and we have that O2(M0)CH/CH is
a Sylow 2–subgroup of E(H/CH). Further we see that [YH , Yα] = [YHYM , Yα]
and then YHYM is normal in H. In particular O2(M0) ∩ O2(H) is normal in
H and CH(O2(H)/(O2(H)∩O2(M0)) covers E(H/CH). Hence we have that
O2(M0) is a Sylow 2-subgroup of U = 〈O2(M0)

H〉. Let U1 be the preimage of
one of the components of U/O2(U) and U2 = U1O2(M0). Now applying [Ste,
Theorem 3], we get a normal subgroup 1 6= C of U2 which is normalized by
all odd order automorphisms of O2(M0). But then there is also some good
E in NM(C), and so H ≤ NG(C) ≤ M , a contradiction.

Hence we are left with H to be solvable. As YMYH acts quadratically on
Yα, we get with 4.5 that Yα is generated by elements centralizing a hyper-
plane in YM . But then all these elements are in M , a contradiction. 2
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triv
Lemma 8.5 We have that YH = Ω1(Z(S)).

Proof: Suppose false. By 8.4 we have that b = bM0 = bH . So we have
that [YM , Yα] ≤ YM ∩ Yα, where Yα is conjugated to YH . By 8.2 we get that
[YM , Yα] 6= 1. Hence one of both is an F–module. We are going to prove that
YM is an F–module. Otherwise YH is an F–module. Now we may apply 8.3.
We see that we cannot have transvections on YM , so H is not solvable. But
then we have a component L2(q). Hence in all these cases we also have an
F–module YM .

Now we are going to show b = 1. So assume b > 1. Choose β ∈ ∆(α),
with YM 6≤ Mβ. We adopt notation of 3.42. Assume first we have some
submodule UM where every element from UM is centralized by some good E.
Then [Yα, UM ] contains such an element and so as b > 1, this is centralized
by Yβ. In particular Yβ ≤ M . As M = M0CM , we see that Uβ acts on UM

and as UM 6≤ Mβ, we see that CUβ
(UM) = 1, which is not possible. By 5.9

we have that M is not exceptional. So we have one of the cases in 3.42(4).
As in any case Yα contains an offender on YM , we also see with 3.42(4) that
we do not have the cases (ii) - (v).

Let K ∼= Sp(6, 2) be a component of M/CM on the spinmodule. Then
p = 3 and for all elements of order three, we have that the centralizer is in
M . This now shows that we must have that either H is solvable or we have
some L2(q) component q > 4. But as there are no transvections on YM , we
get L2(q). As an offender has order at least 16, we get L2(32). But then we
have a group of order 32 acting on YM , where all elements have the same
centralizer, which does not fit with the action on the spin module.

Next let K ∼= U4(r) acting on the natural module. Again there are no
transvections. So H is nonsolvable. In that case we have a unique offender,
and so |[YM , Yα]| = r4. This group contains a subgroup, which is normalized
by some good E in M . So as b > 1, we see that Yβ ≤ M . Now YβYα acts
on [YM , K], and we get that [[YM , K], YαYβ] = [[YM , K], Yα]. This shows that
YαYβ is normal in Hα. But then we see that Yα would centralize YHYM , a
contradiction.

Let now K ∼= A8. Then again p = 3 and we have that H has components
L2(q), q of order eight, which then have to induce transvections on each of
the two modules in [K, YM ]. Now we have that [Yα, YM ] is normalized by
some good E, and we get the same contradiction as before.

Asume now that we have that K ∼= L2(r) and [YM , K] is a nonsplit extension
of the trivial module by the natural module. Now C[YM ,K](K) ≤ [YM , Yα] and
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as this is normalized by some good E, we get again the contradiction YHYM

is normal in H.

So we may assume that there is a normal r–group R in M/CM on which
Yα acts faithfully and induces an F–module offender and further there is
no component on which Yα induces some F–module offender. In particular
r = 3. Hence by quadratic action and 4.5, there is some x ∈ YM inducing
a transvection on Yα. If 3 6∈ σ(M), then m3(R) ≤ 3 and so by 2.3, we have
that R is centralized by some good E. But then we have Yβ ≤ M , a con-
tradiction. So we have 3 ∈ σ(M). Let C be a characteristic subgroup of
R, C = Ω1(C). Assume m3(C) > 1. We may assume that C is elementary
abelian or extraspecial. If m3(C) > 2, there is a good E in C and so it
centralizes some element in [YM , Yα] and we have a contradiction as before.
So C is elementary abelian of order 9 or extraspecial of order 27. Further
we may assume that C = Ω1(CM(C)). But as m3(M) > 2, we get C is ex-
traspecial and M induces at least SL(2, 3) on C. But then all subgroups of
order 9 in C are conjugate and so they are all good, which means that there
are elements in [YM , Yα] which are centralized by a good E, a contradiction.
Hence we are left with R cyclic. Now |[R, YM ]| = 4, and so M acts on this
group, in particular it is centralized by a good E, a contradiction.

So we have shown that b = 1. Let first |YM : CYM
(L)| = 2 for some compo-

nent L of H/O2(H) or H be solvable. By 5.9 M is not exceptional. Then
YH induces a transvection on YM . So we may apply 3.42 and 5.9. Suppose
first that we have some submodule W in YM , which is not centralized by
YH such that any x ∈ W is centralized by some good E in M . Then we
have W 6≤ CH . Further also |W : CW (L)| = 2 for some component L, if
there are components. Hence there is some g ∈ H such that 〈W,W g〉 = R
is some extension of a 2–group by a dihedral group of order 2r. Obviously
R centralizes W ∩ W g. As CG(W ∩ W g) ≤ M we see that W ∩ W g = 1.
Further O2(H) centralizes [YH ,W ], which is a nontrivial group. Now YH

induces on W y, y ∈ O2(H) the same transvections as on W . So we get that
O2(H) normalizes W . Now [W g ∩ O2(R),W ∩ O2(R)] ≤ W ∩ W g = 1.
So CW (y) = W ∩ O2(R) for any 1 6= y ∈ W g ∩ O2(R). In particular
W g ∩ O2(R) is the full transvection group on the hyperplane W ∩ O2(R).
But then R1 = 〈YM , YMg〉 = O2(R1)R and we have that YMg ∩ O2(R1) nor-
malizes YM and then YMg ∩O2(R1) = CYMg (W )(W g ∩O2(R)). In particular
(YMg ∩O2(R1))(YM ∩O2(R1)) = (YM ∩ YMg)(W ∩O2(R))(W g ∩O2(R)). So
we have a component K ∼= Ln(2) on W . Suppose first 3 ∈ σ(M). As the
point stabilizer of Ln(2), n ≥ 5, contains a good E, we have in that case that
Ω1(Z(S)) is centralized by a good E, which contradicts Z(H) 6= 1. So we
have n ≤ 7 in any case and n ≤ 4 if 3 ∈ σ(M). Let ω be an r–element in R.
Then we see that |YM ∩ O2(R) : CYM∩O2(R)(ω)| = 2n−1. If e(G) ≥ 4 then ω
centralizes some element in YM which is centralized by a good E. So we have
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e(G) = 3 and then n ≤ 5. Let n = 5. Then p = 5 or 7. Let ρ be a p–element
in K. There is some p–element ν in C(K) which centralizes a group of order
16 or 8 in CYM

(K), respectively. Hence we have that there is a subgroup of
order 32 in YM ∩ O2(R) centralized by a good E, a contradiction as before.
Let n ≤ 3, then as in the case of n = 5, some 3-element in K centralizes
some nontrivial element in W , we see that there is a good E centralizing
an elementary abelian group of order 8 or 4, respectively and so we have
a contradiction as before. We are left with n = 4. If p ≥ 5, then we can
argue as before. So we may assume p = 3. Then we get that |CYM

(K)| ≤ 8
and so we see that for x ∈ Z(H) we have that CM(x)/O3′(CM(x)) ∼= L3(2).
This now shows from the structure of a Sylow 3-subgroup of CG(x) that
CG(x)/O3′(CG(x)) ∼= L3(2). If H is nonsolvable we get that K ∼= Sz(q).
Then |YM : CYM

(W )| ≥ q2 and so |YM : CYM
(W )| ≥ 16, a contradiction. So

we have that H is solvable.

Now if r = 3, then, as all elementary abelian 3-groups are good, we get that
Sylow r-subgroups of H are cyclic. Let r > 3, then as |W ∩ O2(R)| = 8,
we see r = 7. Now as |YH : YH ∩ CM | ≤ 8 and W inverts the Frat-
tini factorgroup of F (H/CH), we see that also in that case Sylow r–
subgroups of H are cyclic. Hence in any case YMO2(H) = O2(M0)O2(H).
As O2(H) = (W ∩ O2(H))(W g ∩ O2(H))CO2(H)(ω), this now shows that
Φ(O2(M0)) ≤ CO2(H)(ω). Hence O2(M0) = YM , as Φ(O2(M0)) is normalized
by a good E. But now (W ∩O2(R))(W g ∩O2(R)) is normalized by L3(2) in
K and centralized by some 3–element in C(K), a contradiction.

By 3.42 and as we have transvections, we just have to handle the case
that we have K ∼= Ω−(6, 2) on the natural module, in which case p = 3.
Now let W be the orthogonal module and built R as above. Then we have
|W g∩O2(R)| = 32, and as the 2-rank of O−(6, 2) is four we have W∩W g 6= 1.
Hence this intersection corresponds to singular vectors in W . In particular
|W ∩W g| ≤ 4. Suppose equality, then W ∩W g, would be normalized by some
good E in K, a contradiction. So we have |W ∩W g| = 2 and W g ∩O2(R) in-
duces a group of order 16 on W , which contains a transvection. But CK(YH)
is isomorphic to Σ6 and W is the permutation module for this group. But
there is no elementary abelian subgroup in this group whose commutator
with W is of index two.

Hence we are left with the case that YH acts on a normal u-group U , and
as it induces transvections we have u = 3. If 3 6∈ σ(M), then by 2.5 we get
that U is centralized by some good E and so again we have some module W
where all elements are centralized by a good E. Using R as above, we get
that |W | = 4 (there are no fours groups of transvections acting nontrivially
on U). But now ω centralizes a subgroup of index 4 in YM , a contradic-
tion. So 3 ∈ σ(M). As YM also induces transvections by 4.5, we get that
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F (H/CH) is a 3–group by 8.3 as H is solvable. So m3(H/CH) ≤ 2 and then
|YM : YM ∩ CH | ≤ 4. Choose x ∈ YH , y ∈ YM with |[x, y]| = 2. Then in any
case [x, y] is centralized by a good E in M . This shows that m3(H) = 1.
Now YMO2(H) = O2(M0)O2(H). Further [x, y] = [YM , YH ] is normalized by
O2(H) and so y centralizes a subgroup of index two in O2(H). This shows
that O2(H) = V × CO2(H)(F (H/CH)), where V = 〈xH〉 is of order 4. Hence
Φ(O2(M0)) ≤ CO2(H)(F (H/CH)), and so we see that O2(M0) = YM . Now
〈y, YM〉 is normalized by some good E in M and so, as there are exactly
two elementary abelian sugroups of order |YM | in this group, we see that
V (YM ∩O2(H)) is normalized by some good E. But this group is normal in
H, a contradiction.

Now H is nonsolvable and |YM : CYM
(L)| ≥ 4. We have that H is a minimal

parabolic with a quadratic fours group. Now we get by 3.26 and 3.28 that
L ∼= L3(q), L2(q), Sz(q) or U3(q). Further we may apply 4.2 with the roles
of M and H interchanged. Then we get that YH either is an F–module or
a 2F–module with non quadratic offender. With 4.8 we get that L ∼= L2(q),
q > 2. As YM is normal in M ∩H we see that YM covers a Sylow 2-subgroup
of that component and so by quadratic action 3.50 YH just involves trivial
and natural modules. Suppose first that we have some component K in M
and some module W as in 3.42 where all elements are centralized by some
good E. Again this module is invariant under O2(H). Define R and R1 as
above, we see that Φ(O2(M0)) is centralized by some element in H \M , as
W ∩W g = 1. Hence we get O2(M0) = YM again.

We have that YM is a strong F–module, i.e there is a subgroup X ≤ YH

|X| = q and |YM : CYM
(X)| = q = |YM : CYM

(x)| for all x ∈ X]. We have
that XO2(M0) is normal in S. Now by 3.17 we have that K ∼= SLn(r),
Sp(2n, r), A7 or 3A6, recall as q > 2 we do not have GF (2)–transvections.
Choose ρ to be some generator of a cyclic group of order q − 1 in H such
that ρ acts transitively on X. As for SLn(r) we have that [YM , K] contains
at most n− 1 natural modules, while for the other groups we have just one,
we see that ρ has to normalize K.

Let K ∼= SLn(r). Then X intersects a root group nontrivially. As
〈S ∩K, ρ〉 = (S ∩K)〈ρ〉, we see that for r > 2, we have that X is contained
in a root group, while for r = 2, we may have 〈S∩K, ρ〉/O2(〈S∩K, ρ〉) ∼= Σ3

and |X| = 4 = q.

Let K ∼= Sp(2n, r). Then X ∩ Z(S ∩ K) 6= 1. If X does not contain a
root element, then |YM : CYM

(X)| = r2. Now as centralizers of elements of
type a2 in K are maximal subgroups, we see that X consists of elements
of type c2. Let R be a long root element with X ∩ O2(NK(R)) 6= 1. As
CYM

(X) = CYM
(x) for all x ∈ X], we see that |X ∩O2(NK(R))| ≤ r. As X is
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normal in S∩K, we get that X induces GF (r)–transvections on O2(NK(R)).
But this is only possible if r = 2 and q = 4.

Let first r = q and W g ∩ M is the full transvection group of W . This
shows K ∼= Ln(r) and just one natural module is involved. We have
CYM

(X) = CYM
([YH , R1]). This shows that 〈XR1〉 is an extension of the

trivial module by the natural module. We have n ≤ 4, as Ω1(Z(S)) is not
centralized by a good E. As W g ∩ M centralizes a subgroup of index q in
YM , we get that W g ∩M projects onto K. So (W g ∩O2(R1))(W ∩O2(R1)) is
unique in (W g ∩M)YM , and so it cannot be normalized by a good E. Hence
mp(K) ≥ 2 and p divides q − 1. Then (W g ∩M)YM is normalized by some
p–element in K. As mp(N(K)/K) ≥ 1, we get that it is normalized by some
good E, a contradiction

Let K ∼= SLn(2), Sp(2n, 2), A7 or A6. If p = 3 ∈ σ(M), then any 3–element
of M is in some elementary abelian subgroup of order 27, so NG(〈ρ〉) ≤ M ,
which than yields H = 〈M ∩ H, NH(〈ρ〉)〉 ≤ M . So p = 3 6∈ σ(M). As
mp(K) ≥ 2, we get K ∼= SLn(2) and n = 6 or 7. As now m3(K) = 3 and so
e(G) ≥ 4, we see that there is some good E centralizing K and so normaliz-
ing XYM , a contradiction.

So assume now that we are in 3.42(4). Still YM is a strong F -module and
so by 3.17 we have that K ∼= L2(r), Sp(4, r) or L4(2). Choose ρ as be-
fore, then we see that K ∼= L2(q), Sp(4, q). In the case of L4(2) or Sp4(2)′

we have q = 4, but 3 ∈ σ(M) by 3.42(4)(vi), which is not possible. Let
K ∼= Sp(4, q), then by 3.42(4)(iii), there is some power of ρ whose nor-
malizer is in M , a contradiction. So we have K ∼= L2(q) and [YM , K] is
a nonsplit extension of the trivial module by the natural one. Now we see
that [O2(R1), O2(H)] ≤ [R1, YH ]. Hence again Φ(O2(M0)) ≤ CO2(H)(O

2(R1))
and so YM = O2(M0). Let K not be normal in M/CM . Then we have at
least two conjugates centralizing K, so K is centralized by a good E and as
[YH , R1] centralizes all components but K by the strong action, we get that
[YH , R1](O2(R1) ∩ YM) is normalized by a good E, a contradiction. So we
have that K is normal, but then mp(N(K)/K) ≥ 2 and we get the same
conclusion that [YH , R1]YM is normalized by a good E.

We finally have to treat the case that X acts on a u-group U . But by
4.5 we then get transvections on YH , which contradicts q > 2. 2

zunique

Lemma 8.6 Let 1 6= X ≤ Ω1(Z(S)) then X is not normalized by a good E
in M .

Proof: Suppose false. Then CH(Ω1(Z(S))) ≤ M . As H =
CH(Ω1(Z(S)))NH(S), we would get H ≤ M with 7.3.

132



2
b = 1

Hypothesis 8.7 There is 1 6= x ∈ Ω1(Z(S)) with YM 6≤ O2(CG(x)).

Assume 8.7. Then we may apply 4.2. By 7.1 we have that 4.2(1) cannot
occur. Let L be the group given by 4.2. Then A = Y g

M ∩ O2(L) is a 2F–
module offender on YM . We will study the action of A. for the remainder we
will fix the notation A and L.

Knormal

Lemma 8.8 Assume 8.7. Let K be a component of M/CM with [K,A] 6= 1.
If A is as in 4.2(2) then [K,A] ≤ K.

Proof: By 4.3 we have |A| > 4 and then K ∼= Ln(2). Further
|[YM , a]| ≥ 2n. As |A| ≤ 2n, we get equality everywhere and NA(K) induces
the full transvection group on [YM , a]. This shows that [YM , K] just involves
the natural module. By 3.36, we get [YM , KKa] = [YM , K] ⊕ [YM , Ka]. We
see that all elements in [YM , KKa] are centralized by Ln−1(2) × Ln−1(2),
which contains a good E besides n = 3. As A ∩ [YM , KKa] 6= 1, we would
get YMg ≤ M in the first case. So we have the latter and 3 6∈ σ(M) and we
may assume that 7 ∈ σ(M). Now [YM , 〈KA〉] = YM , otherwise 〈KA〉 would
centralize some element in YM ∩ Y g

M , and so Y g
M ≤ M , a contradiction. Fur-

ther |Ω1(Z(S))| = 2. Now we have that CG(Ω1(Z(S))) ∩ 〈KA〉A ∼= Σ4 o Z2.
This group induces in YM the following modules

Ω1(Z(S)) < V < YM

where |V | = 4 and YM/V is irreducible. Let Ω1(Z(S)) = YM ∩
O2(CG(Ω1(Z(S)))). Then we see that O2(〈Y CG(Ω1(Z(S)))

M 〉) centralizes
O2(CG(Ω1(Z(S)))), which contradicts 7.14. So V = YM∩O2(CG(Ω1(Z(S)))).
This shows that YM induces a transvection group of order 16 to a point on
O2(CG(Ω1(Z(S))))/Ω1(Z(S)). Hence shows there is exactly one component
in CG(Ω1(Z(S)))/O2(CG(Ω1(Z(S)))) which is not centralized by YM and this
component must be some Ln(2), n ≥ 5. As M/CM

∼= L3(2) o Z2 we get that
O2(CG(Ω1(Z(S)))) 6≤ CM . So we see that CM(Ω1(Z(S)))/O2(CG(Ω1(Z(S))))
is an extension of CM by Σ3 o Z2. But there is no such subgroup in Ln(2), a
contradiction. 2

faithful

Lemma 8.9 Assume 8.7. Then
a) If we have 4.2(2) with A acting cubic but not quadratic, then there is
a component K of M/CM or a Sylow t-subgroup of F (M/CM) such that
ACM/CM acts faithfully on K and induces a 2F–module offender on [YM , K].

b) We do not have M/CM
∼= Σ3 × Σ3 or Σ3 o Z2, where YM is an irre-

ducible 4-dimensional module and 3 ∈ σ(M). Further A acts cubic but not
quadratic.
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Proof: By 5.10 we have that M is not exceptional. Choose a com-
ponent K with [K, A] 6= 1, where K always also can be a Sylow subgroup
of F (M/CM). By 8.8 we have [K,A] ≤ K. If CA(K) = 1, we have a).
So assume that B = CA(K) 6= 1. Then there is some further component
(or a Sylow subgroup of F (M/CM)) K1 with [B,K1] 6= 1. Choose K1 with
|B : CB(K1)| maximal. Let C = CA(K1). If [C, K] = 1, then C ≤ B. Now
choose K2 with [C, K2] 6= 1.

By the choice of B we have that |B : CB(K2)| ≤ |B : CB(K1)|. As
C ≤ CB(K1) and C 6≤ CB(K2), we have that CB(K1) 6= CB(K2). In par-
ticular CB(K2) 6≤ CB(K1). Hence there is some b ∈ B with [K1, b] 6= 1 but
[K2, b] = 1. So we may choose two components K1, K2 (or Sylow subgroups
of F (M/CM)) with Ai = CA(Ki) 6= 1 and [Ai, K3−i] 6= 1, i = 1, 2.

Let A = Ã1 × CA(K1) and V1 be a quasi irreducible K1Ã1–submodule in
YM . Suppose first that V1 6≤ O2(L), in particular CA(V1) = YM ∩ Y g

M . Let
V1 ∩ Y g

M 6≤ CV1(K1). Then for all a ∈ A we have V1 ∩ V a
1 6≤ CV1(K1). In

particular V A
1 = V1. Then [V1, A1] = 1, which contradicts V1 6≤ O2(L). So

we have that V1 ∩ Y g
M ≤ CV1(K1). Let v ∈ V1 \ O2(L), then we have that

[v, Ã1] ∼= Ã1. As no element in A]
1 centralizes any element in V1 \ CV1(K1),

we get that [v, Ã1]CV1(K1) = V1 ∩ O2(L) and |V1 ∩ O2(L)/CV1(K1)| = |Ã1|.
Now let 1 6= a ∈ A1. Set V2 = V a

1 . Then also V2 is a quasi irreducible
K1Ã1–module. Further [V1, a] is also such a module. As [V1, a] ≤ O2(L), we
see that [[V1, a], Ã1] ≤ YM ∩ Y g

M .

We collect some facts about the action on Ṽ1 = V1/CV1(K1). We have that Ã1

acts quadratically on [V1, a] and so also on Ṽ1. Further Ṽ1 is an F–module
with offender Ã1. We have that CV1(a1) = CV1(Ã1) for all 1 6= a1 ∈ Ã1.
Application of 3.17 now gives that K1 is solvable or K1/Z(K1) ∼= Ln(r),
Sp(2n, r), r even, or A7 or 3A6, or |Ã1| = 2. Suppose the latter, then we
have that |Ṽ1| = 4 and so K1 is solvable. If K1 is solvable it is a 3–group as
it induces an F–module.

As we can look at 〈Ṽ1
K2〉, we see that there is also some module for K2

which is not in O2(L) and so K2 also has the structure above.

Suppose there is a good E normalizing a nontrivial subgroup U of
[[V1, a], Ã1]]. As U ≤ YM ∩ Y g

M , we see that L ≤ NG(U), but as NG(U) ≤ M ,
we have a contradiction. In particular we see that there is no good E in K1

normalizing a nontrivial subgroup of [Ṽ1, Ã1].

Let first K1
∼= 3A6. But then in the 6–dimensional module we see that

there is no element v with [v, Ã1] = CV1(Ã1).
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Let W = 〈V K2
1 〉. Then W is an irreducible module for K1 × K2 with

W ∩Y g
M 6= 1 and W 6≤ O2(L). Let a ∈ CA(K1×K2) with [a,W ∩Y g

M ] = 1, so
W = W a. As W was irreducible this shows [a,W ] = 1. But the W ≤ O2(L),
a contradiction. Hence A acts faithfully on W .

Let next K1/Z(K1) ∼= A7. Then Ṽ1 is the four dimensional module and
|Ã1| = 4. Now as any fours group in Ṽ1 is normalized by some elemen-
tary abelian subgroup of order 9 in K1, we see that 3 6∈ σ(M). This shows
m3(K2) ≤ 2 and K2/Z(K2) ∼= L2(r), L3(r), A7, or a 3–group. If we have
K2

∼= L3(r), then W is a tensor product of the natural SL3(r)– module with
V1 and so |W : CW (A)| ≥ r8. As |A| ≤ 4r2, we get K2/Z(K2) ∼= L3(2). If
K2

∼= L2(r), we see that |W : CW (A)| ≥ r6, which shows r = 2, which is also
the case for K2 to be solvable. If K2/Z(K2) ∼= A7, we get |W : CW (A)| ≥ 28.
In all cases we have that |YM : CYM

(A)| = |A|2, which contradicts 4.2.

Let next K1
∼= Sp(2n, r). Then no 1–dimensional module in the natural

module is normalized by some good E in K1, which shows n ≤ 3. Let first
K1

∼= Sp(6, r). Then we see that mp(K1) ≤ 1 for p ∈ σ(M). In particular
3 6∈ σ(M), but then m3(K2) = 0, a contradiction. So we have K1

∼= Sp(4, r).
Now we have that p does not divide r − 1 if p ∈ σ(M). Further we have
that |Ã1| = r2. Suppose first that K2/Z(K2) ∼= L2(t), L3(t) or solvable. Set
s = max(r, t). In the case of L3(t), we have that |W : CW (A)| ≥ s8. As
|A| = r2t2, we get |W ; CW (A)| = |A|2, contradicting 4.2. Let K2

∼= L2(t),
then |W : CW (A)| ≥ s6, again a contradiction to |A| ≤ r2t. If K2 is solv-
able we get that |W : CW (A)| ≥ r6, a contradiction again. So we have that

K2/Z(K2) ∼= Ln(t), n ≥ 4 or Sp(2n, t). If x ∈ Ã1
]
, then [Ṽ1, x] is normalized

by CK1(x) and so by some L2(r). As [Ṽ1, x] = CṼ1
(x) for all x ∈ Ã1

]
, we see

that [Ã1, Ṽ1] is normalized by some L2(r)×L2(t). As 3 ∈ σ(M) it is normal-
ized by a good elementary abelian subgroup of order 9, a contradiction.

Let now K1
∼= Ln(r). Then we have that K2

∼= Lm(t) or K2 is solv-
able. Suppose first r > 2, then we see that n ≤ 4, otherwise some one
dimensional subspace in the natural module is normalized by a good E.
Let first K1

∼= L4(r). As [Ṽ1, Ã1] contains a 2–dimensional submodule,
which is normalized by some elementary abelian subgroup of order 9, we
see that 3 6∈ σ(M). This shows that K2/Z(K2) ∼= L3(t), L2(t) or solv-
able. Let GF (`) be the largest common subfield of GF (r) and GF (t). Let
r = `x, t = `y. Then W = V1 ⊗ V2, V2 be the natural K2–module and
U = [V1, NA(V1)] ⊕ [V2, NA(V2)] = CV1(NA(V1)) ⊕ CV2(NA(V2)) is contained
in a complement of YM ∩ Y g

M in YM ∩ O2(L) and so of size at most |A|. We
have that |A| ≤ `3x+2y, `3x+y, 2r2, respectively. Further |U | ≥ `5xy, `4xy, r4.
As r > 2, we see that K2 is nonsolvable. Further we get that r = t = `. But
then p divides r − 1, for some p ∈ σ(M). So a good E normalizes a 1–space
in Ṽ1, a contradiction.
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Let next K1/Z(K1) ∼= L3(r). Then as before we see that K2
∼= L2(r) or

r = 4 and K2
∼= K1 = SL(3, 4). Let K2

∼= SL(3, 4). Any 1-space in
Ṽ1 is normalized by some elementary abelian group of order 9. So we see
that 3 6∈ σ(M) and so e(G) > 3. But then there is a good E centralizing
K1K2 and so also W , a contradiction. So we have that K2

∼= L2(r). Also
p does not divide r − 1 for p ∈ σ(M). So we get that e(G) > 3. Further
mp(K1×K2) ≤ 2 for p ∈ σ(M). In particular some elementary abelian group
of order p4 normalizes K1 ×K2 and so a good E normalizes CV1⊗V2(T ), T a
Sylow 2-subgroup of K1×K2 which contains A. But CV1⊗V2(T ) ≤ YM ∩ Y g

M ,
a contradiction.

So we are left with K1
∼= K2

∼= L2(r) and W be the tensor product of
two natural modules. Now A is a Sylow 2–subgroup of K1 × K2. Then
CW (A) ≤ YM ∩ Y g

M is normalized by some group Zr−1 × Zr−1. Hence if
p ∈ σ(M), we have p does not divide r− 1. Further no good E normalizes a
nontrivial 2–group in K1×K2 and so e(G) = 3 and mp(K1×K2) = 2 for all
p ∈ σ(M). So we have that K1 ×K2 is invariant under S. This shows that
CYM

(K1 ×K2) = 1. Further we have |A| = r2 and W = YM . Hence we see
that F ∗(M/CM) = K1 ×K2 and p divides |CM |. So we have

Either r = 2 or F ∗(M/CM) ∼= L2(r)×L2(r), YM is the tensor product module

and p divides |CM |, p ∈ σ(M)

Let now r = 2. We then have n ≤ 7. As 3 divides the order of K2, we even
get n ≤ 5. Let n = 4 or 5, then there is a foursgroup in [Ṽ1, Ã1] which is
normalized by some elementary abelian group of order 9. Hence 3 6∈ σ(M).
So we have that K2

∼= L3(2) or solvable. In both cases we have a good E,
which centralizes K1×K2 as e(G) > 3. As CA(K1×K2) = 1, we see that E
acts on W and so has to centralize W , which contradicts W ∩ Y g

M 6= 1.

So we may assume that K1
∼= L3(2). Suppose K2 is solvable. Then as

no good E can centralize W , we see that p = 3 ∈ σ(M). But then there is
some 3–element centralizing W . As in K1 we have some 3–element normaliz-
ing [V1, Ã1], we get some subgroup of YM∩Y g

M , which is normalized by a good
E, a contradiction. So we have K2

∼= L3(2) and 3 6∈ σ(M), but 7 ∈ σ(M).
Further e(G) = 3 and we get W = YM as above and F ∗(M/CM) = K1×K2.
So we have

F ∗(M/CM) = K1 ×K2, K1
∼= K2, K1

∼= L2(r) or L3(2)

Let first K1
∼= L3(2). Then |YM | = 29, |Ω1(Z(S))| = 2. Set H2 =

CG(Ω1(Z(S))). Then we have that H2 ∩ M/CM
∼= Σ4 × Σ4 or Σ4 o Z2. In
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both cases we have that |YM ∩O2(H2)| = 32 and YM/YM ∩O2(H2) is an irre-
ducible module for M ∩H2, as YM 6≤ O2(H2). Further YM acts quadratically
on O2(H2) and induces an F–module offender on O2(H2)/Ω1(Z(S)). This
shows that YM has to centralize F (H2/O2(H2)). Let R be a component of
H2/O2(H2) with [YM , R] 6= 1. Then by 3.16 we have that R/Z(R) is a clas-
sical group, G2(q) or an alternating group. As e(G) = 3, we see that in the
latter we just have R/Z(R) ∼= A7 or A6. But as |YM : YM ∩O2(H2)| = 16 and
R is normalized by M ∩H2, this is not possible. Suppose first that R is not
normalized by M ∩H2. Then we have that R has cyclic Sylow 3–subgroups,
so R ∼= L2(q) or L3(q), or 3 divides the order of Z(R) and R has extraspecial
Sylow 3–subgroups. As e(G) = 3, in the latter we have R ∼= SL3(4), but
then Z(R) has to act nontrivially, a contradiction. As YM is an F–offender,
we get L2(4) or L3(2) in the first case. In H2 ∩M there is some 7–element ν
centralizing YM , which implies that ν centralizes R. As Sylow 7–subgroups of
CM are cyclic, we have that M = CMNM(〈ν〉). So NM(〈ν〉) contains a Sylow
7–subgroup of M and then we have that m7(NM(〈ν〉) = 3, so CG(ν) ≤ M ,
which cannot be the case as YM is not normal in CH2(ν). So we have that
R is normalized by H2 ∩ M . As |YM/YM ∩ O2(H2)| = 16 and offenders in
G2(q) are of order q3, we get that R 6∼= G2(q). Further as m3(R) ≤ 2, we
get R ∼= L4(q), L5(2), Sp4(q) or Ω+(6, q). As Aut(Sp4(q)) has no subgroup
of type M ∩ H2/CM , we get that R 6∼= Sp4(q). Let q > 2, then 3 does not
divide q − 1. So, as |[O2(H2)/Ω1(Z(S)), x]| ≤ 16 for x ∈ YM , we get that
we just have L4(8). But then m7(R) = 3, which contradicts 7 ∈ σ(M).
So we have R ∼= L4(2), Ω+(6, 2) or L5(2). As CM 6= O2(M), we must have
YM ≤ Φ(O2(M)), so we cannot have R ∼= L4(2) or Ω+(6, 2). This shows that
R ∼= L5(2). Now choose ν as before, then [ν, R] ≤ O2(H2), a contradiction
as before.

So let now K1
∼= K2

∼= L2(r). We also include the case of Σ3
∼= K1,

which then will give b). Again YM ≤ Φ(O2(M)). Let first r > 2.
Then there is some ρ ∈ K1 × K2 acting fixed point freely on T =
S ∩ (K1 × K2) and centralizing Ω1(Z(S)). We see |YM ∩ O2(L)| = r3.
Now X = [A, YM ∩ O2(L)] = CYM

(T ). Hence we have [X,L] = 1. Set
H3 = NG(X), then YM 6≤ O2(H3). Hence we have that O2(M)O2(H3) ≥ T
with equality in case of r > 2. This gives that |YM ∩ O2(H3)| = r3.
Hence in all cases there is some subgroup U in YM with U ∩ O2(H3) = 1,
|U | = r and some group of order r − 1 acts fixed point freely on U . Fur-
ther [Z(O2(H3)), U ] = 1, CO2(H3)/Z(O2(H3))(U) = CO2(H3)/Z(O2(H3))(u) for all
u ∈ U ]. Finally |O2(H3)/Z(O2(H3)) : CO2(H3)/Z(O2(H3))(U)| = r2.

Suppose that U act nontrivially on F (H3/O2(H3)). Then we get r = 2
and so it acts on a t–group, t = 3 or 5. Let t = 5, then we have that
|[U, F (H3/O2(H3))]| = 5. But as U ≤ Φ(O2(M)), we get that O2(M) induces
a cyclic group of order four. As [[U,O2(H3)], O2(M)] = 1, this contradicts the
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action of a Frobenian group of order 20 on a 4-dimensional GF (2)–module.
So we may assume t = 3 and so we have that [U, F (H3/O2(H3))] is extraspe-
cial of order 27 or elementary abelian of order 9. But in the case of r = 2, we
have that 3 ∈ σ(M). Further M/CM

∼= Σ3×Σ3 or Σ3 oZ2 and so m3(M) = 3.
But then all elementary abelian 3-groups of order 9 are good, which contra-
dicts 7.3 and 5.4.

Let R be some component with [R, U ] 6= 1. As U is normal in S/O2(H3),
we see that [R, U ] ≤ R. As e(G) = 3 and m3(M) ≥ 2, we get m3(H3) ≤ 2.
Further there is some p–element ν ∈ M ∩H3, with CG(ν) ≤ M . In particular
[ν, R] 6= 1.

Let first R be alternating, then we may assume R/Z(R) ∼= A6 or A7. In
particular R is normal in H3/O2(H3), we see that ν ∈ R and so we have that
p = 3 and R ∼= A7, but this contradicts m3(R) = 2. Let next R be sporadic.
As R induces a 2F–module and m3(R) ≤ 2, we get with 3.32 that R ∼= M12,
M22, M23, M24, 3M22 or J2. In all cases r > 2. Now we see that p divides
the order of the centralizer of a 2-central involution in R. Further p 6= 3. So
we get R ∼= M23, M24 or J2. As ν has to centralize a fours group, we now
get a contradiction.

By 3.31 we now see that R is a group of Lie type over a field of charac-
teristic two. This shows with 3.29, as m3(R) ≤ 2, that R/Z(R) ∼= L2(q),
L3(q), L4(q), L5(q), Sp4(q), Ω−(4, q), Ω+(6, q), U3(q), G2(q) or Sz(q). Let
R/Z(R) ∼= U3(q), or Sz(q), then r = q. In the second case ν centralizes
R, while in the first we get mp(R) = 2, both is not possible. If we have
R ∼= G2(q), then we see that q ≤ r. But the action of an element of order
r − 1 and the maximality of the normalizer of some root group shows that
we must have r = q and then mp(R) = 2, a contradiction.

Now as ν has to induce an inner automorphism on R which centralizes U ,
we see that we have R ∼= L3(q), L4(q) or L5(q). Finally, as mp(R) = 1, we
get that R ∼= L5(q) and p divides q3 − 1 but not q − 1. This also shows that
U is contained in a root subgroup. In particular we get r = q or r2 = q,
as |[u, V ]| = r or r2 for any nontrivial irreducible R–module V involved in
O2(H3) and any u ∈ U ]. But as p divides r2 +1 we have that p divides r +1,
so it cannot divide q2 + q + 1 at the same time.

So we now have that any quasi irreducible submodule for K1 is contained in
O2(L) and the same applies for K2. Let W1 be the submodule generated by all
these submodules for K1Ã1 and correspondingly W2 the one for KÃ2. As for
any V1, we have that V1∩Y g

M 6≤ CV1(K1), we see that [V1, A1] = 1, so we have
that [W1, K2] = 1 and also [W2, K1] = 1. Let now B = CA(K1 × K2) 6= 1.
Then we have K3 with [K1 × K2, K3] = 1 and [B,K3] = K3. We have
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[W1, B] ≤ Y g
M . But then we see that [W1, B] ≤ CW1(K3) and so we have that

[K3,W1] = 1 and by the same argument we have that [K3,W2] = 1. So we
see that [K3, YM ] ≤ CYM

(K1 × K2). Assume [K3, YM ] 6≤ O2(L). We then
have W1W2[K3, YM ] ≤ [K3, YM ](YM ∩ Y g

M). But then we would have that A
and so K1 ×K2 centralizes W1W2[K3, YM ]/[K3, YM ], a contradiction. So we
have that [K3, YM ] ≤ O2(L).

In particular there are K1 × K2 × · · · × Ks, such that A acts faithfully on
K1K2 · · ·Ks and there is a faithful module W for K1 · · ·KsA, which is in
O2(L). Hence A acts quadratically and as an F–module offender on W .

So we may assume that K1 induces an F -module on W1 with offender
Ã1. Suppose mp(K1) ≥ 2 for some p ∈ σ(M). As K1 centralizes W2 and
W2 ∩ Y g

M 6= 1, we get elements in YM ∩ Y g
M which are centralized by a good

E, contradicting L 6≤ M . So we have mp(K1) ≤ 1 for any p ∈ σ(M).

Let K1 be not normal in M , then all Sylow r–subgroups, r odd, of K1 are
cyclic, or r divides |Z(K1)|. As K1 induces an F–module, we get with 3.16
that K1 is solvable, L2(q), L3(2), SL(3, 4), 3A6 or 3A7. Now W1 contains at
most two nontrivial irreducible modules. Further there is no good E which
centralizes both. If K1

∼= L3(2), we must have p = 3 and e(G) = 3. As
|W1 : CW1(A)| = |Ã1|, we get that also K2 induces an F–module and so we
may assume K2

∼= K1. In particular, s = 2. Hence we have that |A| = 16.
Then CW1(A) ≤ YM ∩ Y g

M . But now CW1(A) is normalized by an elemen-
tary abelian 3–subgroup of order 9 in K1K2, a contradiction. If we have
K1

∼= SL(3, 4), 3A6 or 3A7, then 3 6∈ σ(M). But then a good E centralizes
K1 and so also W1, a contradiction. So we just have one module involved.
Then K1

∼= L2(q) and p divides q − 1. Again we have K1
∼= K2 and so we

get |A| = q2 and then an elementary abelian group of order p2 normalizes
CW1(A), which is in YM ∩ Y g

M .

So we may assume that K1 is normal in M . Suppose first that K1 is solvable.
Then |W1| = 4 and W1 is centralized by a good E. But CYM

(S) ∩W1 6= 1,
as W1 is normal in M . This contradicts 8.6. So we can apply 3.42. Let
first W̃ be a submodule such that any element is centralized by a good E.
As 1 6= [Ã1, W̃ ] ≤ YM ∩ Y g

M , we get a contradiction. So we have one of the
cases in 3.42(4). As mp(K1) ≤ 1, for p ∈ σ(M), we just have K1

∼= L2(q)
and W1 is an extension of a trivial module by the natural module. Now
1 6= CW1(K1) is normalized by a good E, which contradicts the fact that
CW1(K1) ≤ [W1, A] ≤ YM ∩ Y g

M . 2
2Fcubic

Lemma 8.10 Assume 8.7. Let 4.2(2) then A acts quadratically.

Proof: Assume that A does not act quadratically. Then by 5.10 we
have that M is not exceptional. Then by 8.9 there is a component K (maybe
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solvable) of M/CM on which ACM/CM acts faithfully. Let first K be non-
solvable. Then we may apply 3.43. We have that no subgroup of YM ∩Y g

M is
normalized by a good E. Suppose we have 3.43(1). Then [YM , K]∩Y g

M 6= 1, a
contradiction. Let next 3.43(2). Let T = S∩K and 〈KS〉 = K1 · · ·Ks. Then
CYM

(S ∩ 〈KS〉) is centralized by a good E. Hence also CYM
(S) is centralized

by a good E, a contradiction.

Assume next that we have 3.43(3) or (4). Let W be the corresponding
module. Suppose [W,A] 6= 1. Let W ≤ O2(L), then W ≤ M g. This implies
now [W,W g] = 1. In particular [W,CYMg (Kg)] 6= 1. But then as there is
some x ∈ W ] which is centralized by a good E in M and some p–element
ν with CG(ν) ≤ M g, we get ν ∈ M . As we are not in 3.43(1), we have
that p divides |K| and as we may assume that CW (K) is not centralized by
a good E, we have that mp(K) = 1. As ν cannot centralize an elementary
abelian subgroup of order p3 in M , we get that Kν is a direct product of
p conjugates of K. As ν centralizes a group isomorphic to K, we see that
Sylow r–subgroups, r odd, of K are cyclic. This shows that K ∼= L2(q) or
L3(2). Further either p = 3 and e(G) = 3, or p > 3. In both cases any odd
prime dividing |K| is in σ(M). Further as [W,K]/C[W,K](K) is irreducible
we get that (3) or (4) is true for any odd prime dividing |K|. So choose
first p > 3, which gives us more than 3 conjugates, and then choose p = 3,
which shows that CM(ν) contains an elementary abelian subgroup of order
27, a contradiction. Now W 6≤ O2(L). Then Y g

M ∩W 6= 1, a contradiction.
So we may assume that [W,K] = 1. Then we have CK ≤ O2(L) and so
CYM

(K) ≤ M g. As A centralizes CYM
(K) and CYM

(K) 6≤ [YM , K] we see
that Y g

M ∩ CYM
(K) 6= 1, a contradiction.

So we have one of the cases in 3.43(5). Let first [YM , K]/C[YM ,K](K) be
irreducible. Let [K, S] 6≤ K. Then we see that for mp(K) ≥ 2 we get (3)
or (4). Then we have that mp(K) ≤ 1. Then we have 3.43(5)(i). Now
C[YM ,K](K) 6= 1. As C[YM ,K](K) ≤ Y g

M and this group is normalized by some
good E, we get a contradiction.

So we have that S normalizes K. We see that CYM
(S) does not contain

subgroups normalized by a good E by 8.6. In particular 3.43(5)(i), (iii), (iv)
and (v) are not possible. Further A must not act quadratically. We show
next

(∗) If [YM , K]/C[YM ,K](K) is irreducible, we have K ∼= Ω−(6, q) on the natu-
ral module, or K ∼= Sp(6, 2) or A9 on the 8–dimensional module. In all cases
e(G) = 3 and 3 ∈ σ(M).

If we have (viii) or (xii), then an offender A has to induce inner automorphism
on K. Hence [YM , A, A] contains CYM

(S ∩K). But this group is normalized
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by a good E and centralized by L, showing L ≤ M , a contradiction.

Assume next that we have (x). Let first K ∼= A7. We have at most
two 4–dimensional modules involved. If p 6= 3, then a good E centralizes
[YM , K]. Hence we are in (1), (3) or (4). So we may assume that p = 3. As
|YM : CYM

(A)| < |A|2, we see that [YM , K] involves exactly one nontrivial
irreducible module. But then we have (3) or (4), a contradiction.

Let next K ∼= 3A6 and the 6–dimensional module involved in [YM , K]. Then
as before we get p = 3 and so we are in (3) or (4).

Let K ∼= A6 and the 4-dimensional module be involved in [YM , K]. Then
again we have p = 3, and we are in (3) or (4).

Let K ∼= A5, then we have the natural module and p = 3. But this is
(3) or (4) or (5)(i).

Suppose (xi), then we get a contradiction with 3.34

If K ∼= U3(q) or Sz(q), we have that A acts quadratically.

If we have (xiv), then C[YM ,K](K) = 1, otherwise there is some 1 6= x ∈ Z(S)
centralized by a good E, contradicting 8.6. But now as mp(K) ≥ 2, we see
that any element in [YM , K] is centralized by some p–element and we have
(3) or (4).

If we have (xv) or (xvi). Then p divides q2 − 1. Further mp(K) = 2. This
now shows that CYM

(K) = 1. Now all elements in CYM
(S∩K) are conjugate

and centralized by L2(q
2). As e(G) > 2, they are all centralized by some

good E, a contradiction.

So we have shown (∗).

We now go over the three cases in (∗). Let first K ∼= Ω−(6, q). Then
YM = [YM , K] and CYM

(K) = 1. Further [YM , A,A] is normalized by
L2(q

2) × Zq−1, which shows q = 2. So we have |YM : YM ∩ O2(H2)| = 2,
for H2 = CG(Ω1(Z(S))). By 5.4 we know that m3(H2) ≤ 1. Suppose first
that YM acts nontrivially on a Sylow t–subgroup U of F (H2/O2(H2)). As
M ∩H2 involves L2(4), we see that t > 3. Assume that the L2(4) centralizes
U . Then we may choose L = 〈YM , Y g

M〉, with g ∈ U such that the L2(4) acts
on L. But as YM ∩ O2(H2)/Ω1(Z(S)) is the orthogonal L2(4)–module, we
see that L × L2(4) acts on a direct sum of two such modules, which is just
possible for t = 3. So we have that the L2(4) has to act nontrivially on U .
Let C be a critical subgroup, C = Ω1(C). As e(G) = 3, we have mt(C) ≤ 3.
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Let first C be elementary abelian. and U1 be an irreducible submodule which
is inverted by YM . As |[YM , O2(H2)/Ω1(Z(S))]| = 16, we see that t = 5 and
|U1| = 25. In particular we induce SL2(5) on U1. Choose ν ∈ U1, o(ν) = 5,
which is centralized by some 5–element in H2 ∩M and inverted by YM . Let
V be some nontrivial irreducible U1(M ∩ H2)–module involved in O2(H2).
Then we get that |[ν, V ]| = 28 and [YM , CV (ν)] = 1. But U1 is inverted by
YM , so we get that [U1, CV (ν)] = 1, which shows CV (ν) = 1. Then |V | = 28,
but GL(8, 2) does not contain such a subgroup. So we have that C is ex-
traspecial. In particular it is of order t3. Again t = 5 and SL2(5) is induced.
Then m5(H2) = 3 and so 5 ∈ σ(H2). We have that (M ∩ H2)Z(C) acts on
YM ∩ O2(H2). Hence there is some 5–element ν centralizing this group. In
particular ν ∈ M . But now M ∩H2 contains an elementary abelian subgroup
of order 25, which is contained in some elementary abelian sugroup of order
125 in H2. Let H3 be a uniqueness subgroup containing H2, then by 5.4 we
have that M ≤ H3. But this now shows M = H3 ≥ H2, a contradiction.

So we have seen that [YM , F (H2/O2(H2))] = 1. Hence there is some compo-
nent R of H2/O2(H2), which is not centralized by YM . As m3(R) ≤ 1, we
get R/Z(R) ∼= Sz(r), L2(r), L3(r), U3(r) or J1. As R 6≤ M , we see that the
L2(4) has to induce an inner automorphism on R centralizing YM . Let r be
odd. Then by 3.47 we get R ∼= L2(25) and YM induces field automorphisms
on R. But then some y ∈ YM inverts some element of order 13 in R. So we
could have chosen L with L/O2(L) ∼= D26. But no element of order 13 acts
on a group of order 512, which is the order of (YM ∩ O2(L))(Y g

M ∩ O2(L)).
If R ∼= J1, then y inverts some element of order 11, which gives the same
contradiction as before. So we have R/Z/R) ∼= L2(r), L3(r), U3(r), Sz(r),
r even. As y centralizes some L2(4) in H2, we see that that y induces some
outer automorphism on R. But [y, S ∩R] = 1, a contradiction.

Let next K ∼= Sp(6, 2) or A9 and [YM , K] = YM be of order 28. Let again
H2 = CG(Ω1(Z(S))). Then M ∩ H2 involves L3(2). Again m3(H2) ≤ 1.
If YM acts nontrivially on a Sylow t–subgroup U of F (H2/O2(H2)), we get
t > 3. Let ρ ∈ M ∩ H2 be of order three. Then [ρ, U ] 6= 1, as U 6≤ M .
As [YM , O2(H2)/Ω1(Z(S))] is of order 8 or 64, we get that t = 7 or 5 in the
latter. If t = 7, we get as above that a critical subgroup C of U is elemen-
tary abelian of order 72 and M ∩H2 induces SL2(7). Hence with the same
arguments as above we see that for a module V involved in O2(H2) we have
|[V, C]| = 212. But Sylow 7–subgroups of GL(12, 2) are abelian. So we have
the case of t = 5. Let C be again a critical group with C = Ω1(C). We have
C is elementary abelian of order at most 125 or extraspecial of order at most
55. But in all these cases L2(7) cannot act on C, a contradiction. So YM

acts nontrivially on some component R, which has to be Sz(r), L2(r), L3(r),
U3(r) or J1. As the L3(2) in H2 ∩M has to induce an inner automorphism
group normalizing YM , we get a contradiction with 3.47 as above.
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So we have seen that [V, K] involves more than one nontrivial irreducible
K–module. We are going over the remaining cases in 3.43(5).

Suppose first that we have one of (xvii) - (xxiii). Then in all cases we see
[K, S] ≤ K, otherwise we would have (3) or (4). Now we have two modules
involved, where at least one of them has to be an F -module.

If we have (xvii), then F–module offenders are exact, so |YM : CYM
(A)| =

|A|2, a contradiction to 4.2(3).

Assume we have (xviii). If we have two spin modules, we get that |A| > q4,
otherwise we would have exact offenders. Then A acts quadratically on one
of these modules, which gives that it is in O2(L). Now there is a subgroup in
YM ∩Y g

M , which is normalized by Sp(4, q), a contradiction. So we have an ex-
tension of the spin module by the natural module and A is not an F–module
offender on the spin module. So A is better than an offender on the natural
module. This shows for the natural module W that |W : CW (A)|q2 ≤ |A|.
This implies that |A| ≥ q5 and so A stabilizes a 3–dimensional subspace in W
and acts cubic on the spinmodule W1. This shows W1 6≤ O2(L), so we have
YM = [W1, A](YM ∩ Y g

M) and then A is trivial on YM/W1, a contradiction.

Assume next (xix). Then we get |A| = q3 and A acts quadratically on the
natural submodule W and cubic but not quadratically on [YM , K]/W . Hence
W ≤ O2(L) and [A,W ] ≤ YM ∩ Y g

M . This shows that there is no p-element
in M centralizing W , and then p divides q − 1. But [W,A] is normalized by
L2(q)× Zq−1 in K, a contradiction.

Suppose we are in (xx). Then we have p = 3 ∈ σ(M). Let W = V1 ⊕ V2,
where the Vi are the two half spin modules. Then we see that CG(x) ≤ M
for any x ∈ V ]

i , i = 1, 2. As L 6≤ M , we get that A ∩K acts quadratically.
This shows that A has to interchange the two modules. Now we see that
|W : CW (A ∩K)| ≤ 2|W : W ∩ O2(L)|. This shows |W : W ∩ O2(L)| ≥ 8.
Then we see that |W : CW (A)| ≥ 210 and so |A| ≥ 26. Hence |A ∩K| ≥ 25,
which would give |W : W ∩ O2(L)| ≥ 25. But then we see that A would act
quadratically, a contradiction.

In (xxi) and (xxii) any F–module offender acts quadratically, a contradic-
tion.

Assume next (xxiii). Then we have four modules involved. In particular
A is better than an F–module offender. If A is a transvection group, we get
that A acts quadratically, a contradiction. So we have that K ∼= L5(2) and
we may assume that |W : CW (A)| = 4, for the natural module W . Now A
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acts quadratically on W . As this cannot be the case for the dual module
too, we see that |YM : CYM

(A)| = 210 and then |A| = 26. But then A acts
quadratically on the natural module and the dual one as well, a contradic-
tion.

So we are left with (xxiv) and (xxv). Let n > 3. Then [K, S] ≤ K, as
3 6∈ σ(M). In all cases there is some good E centralizing K. Hence this
group cannot normalize A. This shows that [A,CYM

(K)] 6= 1. In particular,
we do not have (xxiv), as in that case CYM

(K) is centralized by a good E
and so there are elements in Z(S) centralized by a good E, contradicting 8.6.

Assume that A acts on another component K1, then this is a 3′–group and so
isomorphic to Sz(r). As there are at most 8 nontrivial modules in [YM , K],
we get that [YM , K, K1] = 1. As A does not act quadratically on [YM , K],
we see that |[YM , K] : C[YM ,K](A)| ≥ 64 and so |YM : CYM

(A)| ≥ 212. But
|A| ≤ 26, a contradiction. So we have that A acts nontrivially on F (M/CM).
In particular it acts nontrivially on a Sylow p–subgroup. Hence A inverts
some p – element ν which acts nontrivially on [YM , K]. As p ≥ 5, we get
that |[YM , K] : C[YM ,K](A)| > 22n. This shows n = 5 and |A| = 26. But then
A acts quadratically, a contradiction.

Let finally K ∼= L3(2). Then [YM , K] is a sum of three natural submodules
and so A has to induce a transvection group. In particular A acts quadrati-
cally, a contradiction.

So we are left with the case that A acts faithfully on some Sylow t–subgroup
of F (M/CM). Let |A| = 2s. By 2.1 we have a subgroup D1 × · · · ×Ds of di-
hedral groups with A as a Sylow 2-subgroup. Set Di = 〈νi, ai〉, i = 1, . . . , s,
with ai ∈ Ai and o(νi) = t. As we do not have quadratic action we may
assume that [YM , a1, a2] is nontrivial. Now [YM , a1, a2] ≤ YM ∩Y g

M and so not
normalized by a good E. This shows s ≤ 3.

We may assume for the moment that Ot(D1 × · · · × Ds) acts faithfully, as
there is a similar group in M/CM . Now a2 induces a transvection on [YM , a1].
This gives that either t = 3 or [YM , ν1, ν2] = 1. So assume that t > 3, then
we see that |[YM , Ot(D1 × · · · ×Ds)] : C[YM ,Ot(D1×···×Ds)](A)| ≥ 22s, a contra-
diction to |YM : CYM

(A)| ≤ 2s+1 and s > 1. So we have t = 3.

We first show 3 ∈ σ(M). Assume otherwise. If |A| = 8, we get that e(G) > 3
and so by 2.3 there is some elementary abelian subgroup F of order p3,
p ∈ σ(M), which centralizes O3(D1 ×D2 ×D3). Let |A| = 4. Then we may
assume e(G) = 3, otherwise we have the same as before. Now we get with 2.3
again that there is some elementary abelian subgroup F of order p3, which
centralizes O3(D1×D2). As A acts faithfully we may again assume that also
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O3(D1×D2) acts faithfully. But then we have |[νi, YM ]| ≤ 26. As we may as-
sume that some p–element acts nontrivially on [ν1, YM ], we see that either we
have |[ν1, YM ]| = 24, or 26. Now F acts on a 2–dimensional or 3–dimensional
module over GF (4). As there is no elementary abelian p–subgroup of order
p2 in GL(3, 4), p > 3, we get a good E centralizing [O3(D1 × D2), YM ], a
contradiction.

So we have 3 ∈ σ(M). Let first |A| = 8. Set W = [YM , O3(D1 ×D2 ×D3)].
Then we have |W | ≤ 28. Assume |[W,a1]| = 8. Then as Y g

M ∩ [W,a1] 6= 1,
we may assume that D2 acts nontrivially on [W,a1]. So |C[W,a1](D2)| = 2,
which then is also centralized by D3. But C[W1,a1](D2) ≤ Y g

M , a contradic-
tion. So we have |[W,ai]| ≤ 4 for all i. This now gives that D1 ×D2 induces
a 4–dimensional tensorproduct module W1. As |YM : CYM

(A)| = 8, we get
W1 = [YM , O3(D1 × D2)] and that O3(D3) centralizes this module. But
W1 6≤ O2(L) and so [A, W1] ≤ W1 is of order at least 16, a contradiction to
|W1| = 16. So we have |A| = 4. Let P be a Sylow 3–subgroup of F (M/CM).
Let C1 be a critical subgroup in P and C = Ω1(C1) and D = [A,C]. Then
m3(D) ≥ 2. Suppose first m3(D) > 2. We have |[C, a1]| = |[C, a2]| = 9. This
shows that DA induces Σ3 × Σ3 on YM and so m3(C) ≤ 3. Hence we get C
elementary abelian of order 27 and so C = D. As S normalizes D, we get
that CYM

(D) = 1 by 8.6. We have |[YM , a1]| = |[YM , a2]| = 4 and DA induces
the orthogonal module. We now see that |[D, YM ]| = 16. As YM = [YM , D],
we see that 3 divides |CM | and M induces the orthogonal module on YM ,
contradicting 8.9(b).

Let m3(D) = 2, then D is elementary abelian of order 9 or extraspecial
of order 27. Suppose that D contains no good E. Then we have D = C
and so D is normal in a Sylow 3–subgroup of M , which is of rank at least
three, a contradiction. Hence D always has a good E. Let first D = C.
Then CYM

(D) = 1. We see |[YM , D]| ≤ 26. As YM = [YM , D] we get that
|YM | ≥ 24. Let |YM | > 24, then |YM | = 26. As some element in A inverts
Z(D) if D is extraspecial, we see that [Z(D), YM ] = 1. Hence in both cases
an elementary abelian group of order 9 is induced. But then there is some
element of order three in D, which has to act nontrivially on [YM , a1], oth-
erwise we get YM = [YM , a1]. As before we see that [D, YM ] is of order 16.
So in any case we have |YM | = 16, 3 divides |CM | and M induces an or-
thogonal module on YM , contradicting 8.9(b). Hence we have C > D. We
have that CYM

(A) = YM ∩ Y g
M . Further CYM

(D) ∩ Y g
M = 1. This shows that

CYM
(D) = 1. Now we may argue as before.

2
uniquecent

Proposition 8.11 Let S be a Sylow 2–subgroup of M then YM ≤ O2(CG(x))
for any 1 6= x ∈ Z(S).
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Proof: Assume false. By 7.1 we have that 4.2(1) is not possible. Hence
8.7 is satisfied and we may choose H = CG(x). By 4.2 we get an offender A
on the 2F–module YM . Now 8.10 shows that A acts quadratically on YM and
so by 4.2 CYM

(a) = CYM
(A) for all a ∈ A]. Further A induces an F–module

offender. Suppose first that A normalizes any component. By 3.24 this is the
case if |A| > 2. Suppose further there is some component K with [K, A] 6= 1,
such that KA induces an F–module on [YM , K]. By quadratic action and
CYM

(A) = CYM
(a) for all a ∈ A], we see that A acts faithfully on K. Then

by 3.17 we have that K/Z(K) ∼= Ln(q), Sp(2n, q), A6 or A7, or |A| = 2.

Let us assume |A| ≥ 4. Let K ∼= A7 or 3A6, then [YM , K] is the four
dimensional module or 6–dimensional module. In both cases we have
|[YM , K] : C[YM ,K](A)| = |A| and any element in [YM , K] is centralized by
a good E. This shows that there is some element in CYM

(S)] which is cen-
tralized by a good E contradicting 8.6.

Let next K/Z(K) ∼= Ln(q). Then [YM , K] just involves natural or dual
modules. Let first q = 2 and 3 6∈ σ(M). Then we have that n ≤ 7. Suppose
n > 3, then [K, S] ≤ K. Let n = 6, 7, then e(G) > 3 and so K is centralized
by a good E. As we have at most n−1 natural modules involved and [YM , K]
cannot be centralized by a good E, we see p = 7. But as 7 divides the order
of CK(CYM

(S ∩K)), we get some element in CYM
(S)] centralized by a good

E, a contradiction. Let next n = 5. Then we have at most 4 modules and
so they all have to be of the same type. But then p = 5 or 7 and so CYM

(S)]

again contains elements centralized by a good E. Let finally n = 4. Then
we have three modules and p = 7. But as 7 divides the order of L3(2), we
get hat some element in CYM

(S)] is centralized by a good E.

So assume now that 3 ∈ σ(M). As L4(2) contains a good E we have that
for n > 5 elements in C[YM ,K](S ∩K)] are centralized by a good E, so we get
that elements in CYM

(S)] are centralized by a good E, a contradiction. So we
have n = 4 or 5. If [S, K] 6≤ K, then C〈KS〉(CYM

(S∩〈KS〉)) involves Σ3×Σ3,
a contradiction. So we have [K, S] ≤ K. If n = 5 we now must have natural
and dual modules be involved. But as there is a 3–element centralizing K, we
get two natural and two dual modules. But this is not an F–module. So let
n = 4. Then we get at most three natural modules in [YM , K]. Further we see
that CYM

(K) = 1. Hence we have that M/CM
∼= L4(2)×L3(2) or L4(2)×Σ3.

In the first case |YM | = 212 and we see that CM(Z(S)) contains some good
E. So we have the second case. Then we have |YM | = 28. Let |A| = 8 and
V be one of the modules in YM with V 6≤ O2(L). Let v ∈ V \ O2(L). Then
|[v,A](Y g

M ∩ V )/(Y g
M ∩ V )| = 8. This shows Y g

M ∩ V = 1. But all elements in
YM , which are not in one of these three L4(2)–modules are centralized by a
good E. Hence there are such elements in YM ∩ Y g

M , a contradiction. So let
|A| = 4. Then |YM ∩Y g

M | = 16. But in this case we have [V, a](Y g
M ∩V ) = V ,
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and so again there are elements in YM ∩ Y g
M which are not in those three

modules. But all these elements are centralized by some elementary abelian
group of order 9, a contradiction.

So we are left with K ∼= L3(2). Now we have at most two natural mod-
ules involved, which are of the same type. If 3 ∈ σ(M) we see that S has to
normalize K, otherwise there are elements in Z(S) centralized by Σ3×Σ3 in
〈KS〉. But now there is some elementary abelian group of order 9 centralizing
K, which gives a 3–element centralizing [YM , K] and so there is some element
in C[YM ,K](S)] centralized by a good E. So 3 6∈ σ(M). Then a good E central-
izes [YM , K] and so [K, S] 6≤ K. Now we see that p = 7, KS ∼= L3(2)×L3(2)
and |Ω1(Z(S))| = 2. This shows [YM , K] is the natural module and |A| = 4.
But also |YM : CYM

(A)| = 4. This shows that L/O2(L) ∼= L2(4) and so
A ≤ O2(CG(Ω1(Z(S)))C(YM), since O2(L)/YM ∩ Y g

M is an irreducible mod-
ule. But O2(C〈KS〉(Ω1(Z(S)) does not contain A, as A is the transvection
group to a hyperplane and not to a point.

Assume now q > 2. Then we see n ≤ 4. Let n = 4. We see that p does not
divide q − 1. In particular e(G) > 3, further [K,S] ≤ K. We have at most
three natural modules. Let first mp(K) ≤ 1 and p not be a divisor of q3− 1.
Then we have some good E which centralizes [YM , K], a contradiction. Let
next p be a dividsor of q3−1. Then there is some p–element in K centralizing
CW (S ∩K), where W is some natural module. As e(G) > 3, there is some
good E centralizing K and so there is some p–element centralizing [YM , K].
Hence there are elements in Z(S)] which are centralized by some good E,
or S induces a graph automorphism on K. Then [YM , K] = W ⊕ W ∗ and
then [YM , K] is centralized by a good E. So we may assume that p divides
q + 1. Again C[YM ,K](S ∩K) is centralized by some p–element. Now we may
assume that CM(K) contains no good E. Then we have some p-element,
which induces a field automorphism on K, hence normalizes S, which shows
that C[YM ,K](S) is normalized by some good E, a contradiction to 8.6.

Let next K ∼= SL3(q). Then there are at most two natural modules in-
volved. Suppose first that [K, S] ≤ K. If we have two modules, then
|A| = q2 = |YM : CYM

(A)|. But as A induces transvections to a hyperplane,
we get that A 6≤ O2(CG(Ω1(Z(S)))) a contradiction as in the case of L3(2).
So we have that [YM , K] involves just one natural module. By 3.36 [YM , K]
is the natural module. But then we see that there is 1 6= x ∈ Ω1(Z(S))
centralized by a good E. So we have that [K,S] 6≤ K and then p divides
q − 1. Now there is a conjugate of K which centralizes [YM , K]. So CYM

(S)
contains L2(q)× L2(q), contradicting 8.6.

Let now K ∼= L2(q), then we see that |[YM , K] : C[YM ,K](A)| = |A|. Let
[K, S] ≤ K. If C[YM ,K](K) = 1, we see that any element in [YM , K] is cen-
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tralized by a good E, a contradiction. So let C[YM ,K](K) 6= 1. If p does not
divide q − 1, we get the same contradiction. If p divides q − 1 and there is
some good E in C(K), we see that C[YM ,K](K) is centralized by a good E,
again a contradiction. So we have e(G) = 3 and some p–element induces a
field automorphism on K. Hence it normalizes S. So it normalizes CYM

(S).
As this group is centralized by some p–element in K, we see that it is normal-
ized by some good E, a contradiction. So let [K,S] 6≤ K. Then, as [YM , K]
is irreducible, we see that KS = K1×· · ·×Kn and [YM , KS] = V1⊕· · ·⊕Vn,
where [Vi, Kj] = 1 for i 6= j. Let K = K1, then we see that V2 contains
elements from YM ∩ Y g

M . Hence V2 is not centralized by a good E, which
gives n = 2 in the first place. Now there are two M–orbits of elements in
[YM , K1 ×K2] one of length 2(q2 − 1) and the rest. Let v ∈ Y g

M ∩ V2 and P
be a Sylow p–subgroup of M . Then P = CP (v)(P ∩K2). As mp(P ) ≥ 3 we
get with 2.5 and 5.11 that CP (v) contains a good E, a contradiction.

Let next K ∼= Sp(2n, q). Then we have natural modules involved. Hence
we get n ≤ 3. As CYM

(A) = CYM
(a) for all a ∈ A], we see that just one

module is involved. Let first K ∼= Sp(6, q). Then we see that p cannot divide
q2 − 1. So we have that mp(K) ≤ 1. As e(G) > 3, we have that a good E
centralizes K and so also [YM , K], a contradiction. So we have K ∼= Sp(4, q).
Now |[YM , K] : C[YM ,K](A)| = |A|. If [K,S] 6≤ K, then there is p ∈ σ(M)
with p divides q + 1. But then there is 1 6= x ∈ Z(S), which is centralized
by a good E. So 8.6 shows [K,S] ≤ K. This now shows p divides q − 1 and
e(G) = 3. Further C[YM ,K](K) 6= 1. But C[YM ,K](K) is centralized by a good
E in K and so there is some element in Z(S), which is centralized by a good
E, a contradiction to 8.6.

Let now |A| = 2. Then K ∼= Ln(2), Sp(2n, 2), Ω±(2n, 2) or An. Further
we have that Y g

M centralizes a subgroup of index 4 in YM . As Y g
M 6≤ M , we

see that p = 3 and e(G) = 3. This gives K ∼= Ln(2), n ≤ 7, Sp(2n, 2), n ≤ 3,
Ω+(6, 2), Ω−(2n, 2), n ≤ 4 or An, n ≤ 11. In any case [YM , K]/C[YM ,K](K) is
the natural module. Now by 3.42 any element in this module is centralized by
a good E or we have K ∼= Ω−(6, 2). Let [K,S] ≤ K. Then with 8.6 we have
K ∼= Ω−(6, 2) and [YM , K] is the natural module. Then YM∩Y g

M just contains
singular vectors and so |YM ∩Y g

M | ≤ 4. But we have that |YM : Y g
M ∩YM | = 4,

a contradiction. So we have [K, S] 6≤ K. This shows KS ∼= L3(2)× L3(2) or
A5 × A5. But then in any case some 1 6= x ∈ Ω1(Z(S)) is centralized by an
elementary abelian subgroup of order 9 in KS, contradicting 8.6.

So we may assume that A acts faithfully on some Sylow t–subgroup of
F (M/CM). As we have an F–module, we get t = 3. As CYM

(A) = CYM
(a)

for all a ∈ A], we get that |A| = 2. By 5.9 we have that M is not excep-
tional. Again we see that 3 ∈ σ(M) and e(G) = 3. Let P be a 3-group
of M/O2(M), with S = (S ∩ CM)NS(P ) such that PCM/CM is a Sylow 3–
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subgroup of F (M/CM). Let C1 be a critical subgroup of P and C = Ω1(C1).
We see that a subgroup of index 3 in C centralizes [A, YM ]. Suppose C to be
cyclic. Then [C, YM ] is of order 4 and normal in M , a contradiction with 8.6
again.

So we have that C is not cyclic. Suppose that [A, YM ] is centralized by
S. Then we get that m3(C) ≤ 2. Then C is elementary abelian of order 9 or
extraspecial of order 27. In the first case C is centralized by an elementary
abelian group of order 27. As C contains some element ν with |[ν, YM ]| = 4,
we see again that [YM , A] is centralized by a good E. So we have C ex-
traspecial and Z(C) ≤ CM . If [C, A] is contained in some elementary abelian
subgroup of order 27, we may argue as before. As C ∩ CM = Z(C), we
see that CC(A) 6≤ Z(C). As some element of order three acts nontrivially
on C/Z(C) we see that a preimage of CC(A) is a good E. But this group
centralizes [YM , A], a contradiction.

So we have that [[YM , A], S] 6= 1. Let s ∈ S with [C, A]s 6= [C, A]. Then
we have that |[YM , 〈[C,A], [C,A]s〉]| = 16. We have that |YM : YM ∩Y g

M | ≤ 4.
Suppose first that C is elementary abelian. Then we have that any subgroup
in C is good and so |CYM

(〈[C,A], [C,A]s〉)| ≤ 2 as CY g
M

(〈[C, A], [C, A]s〉) = 1,

which gives |YM | ≤ 25. By 8.6 we get that |YM | = 16 and so M/CM
∼=

O+(4, 2). Let C be extraspecial, then as above we see that there is some
good E in 〈[C,A], [C,A]s〉 and again we have that M/CM

∼= O+(4, 2). As
CM was cyclic, we now see that C is elementary abelian of order 27. In
particular all groups of order 9 are good.

Now we have that |Ω1(Z(S))| = 2. Set H = CG(Ω1(Z(S))). Let L ≤ H. We
have that O2(H) normalizes YM∩O2(L) and then also Y g

M∩O2(L), i.e. O2(H)
normalizes A. So we see that |O2(H)/CM ∩O2(H)| = 4 and is generated by
elements inducing transvections on YM . Hence in contrary we see that YM

is generated by elements inducing transvections on O2(H). Further we see
with 8.6 that m3(H) = 1. This now shows that 〈Y H

M 〉O2(H)/O2(H) ∼= L3(2),
Σ5 or Σ3. Further we know that 3 divides the order of M ∩H. Let U be a
Sylow 3–subgroup of H ∩M , then NH(U) ≤ M . As H ∩M contains a Sylow
2–subgroup of H, we get a contradiction. 2

cent

Proposition 8.12 We have YM ≤ O2(CG(x)) for all 1 6= x ∈ YM .

Proof: By 8.11 we have that the assertion is true for x ∈ Z(S)]. We
may assume that there is some 1 6= x ∈ YM with YM 6≤ O2(CG(x)). Hence
there is some L with CG(O2(L)) ≤ O2(L) and with YM 6≤ O2(L). We may
even assume that CS(YM) ≤ L. Now we choose L with |L ∩ M |2 maximal
and then L minimal. Let T be a Sylow 2-subgroup of L ∩ M . We first
show that T is a Sylow 2–subgroup of L. By 7.2 we have that CS(YM) is
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weakly closed in T with respect to G. Hence NL(T ) ≤ NG(CS(YM)) ≤ M ,
as YM = Ω1(Z(CS(YM))), the assertion.

By the minimal choice of L we have that L/O2(L) is a minimal parabolic with
respect to T . As YM is normal in T , YM acts quadratically on O2(L). Hence
it normalizes any component by 3.24. Let now P be a proper parabolic of L
containing T . The minimal choice of L gives that YM ≤ O2(P ). By 7.1 we
get that A = 〈Y P

M 〉 is abelian. Now [YL, A] ≤ A and so A acts quadratically
on YL.

We next show that YL 6= Ω1(Z(T )). Otherwise NG(Ω1(Z(T ))) ≥ L. By
the maximality of |L∩M |2 we now see that T = S is a Sylow 2–subgroup of
M . But we have that YM ≤ O2(NG(Ω1(Z(S)))) by 8.11, a contradiction.

Let y ∈ YL with |YM : CYM
(y)| = 2. By 5.9 we have that M is not ex-

ceptional. Let K be a component of M/CM with [K, y] 6= 1. Then we may
apply 3.42. Let [K,S] ≤ K and W = [K,YM ]. If any element in W is cen-
tralized by a good E, we also get that some element in CW (S)] is centralized
by a good E, contradicting 8.6. So we have 3.42(4). Then we have that
K ∼= Ω−(6, 2) and p = 3. As no element in Ω1(Z(S))] is centralized by some
good E, we have that YM = [K,YM ] is the natural module. But then we
have two conjugacy classes in YM , one is centralized by Σ6 and the other are
the 2–central ones. So we have that YM ≤ O2(CG(t)) for all t ∈ Y ]

M .

Assume now [K, S] 6≤ K. Set R = S∩K. Then we have that C[YM ,K](R) does
not contain involutions centralized by some p–element in K for p ∈ σ(M).
This shows that there are exactly two conjugates of K and that all Sylow r-
groups, r odd, of K are cyclic or of type r1+2, where in the latter r divides the
order of Z(K), if r divides the order of CK(C[YM ,K](R)). Hence K ∼= L3(2)
or A5, 3A6 or 3A7. In all cases p 6= 3. If 3 divides the order of Z(K), we see
that mp(M) ≥ 4. But then there is a good E which centralizes [YM , 〈KS〉],
a contradiction. So we have one of the first two cases. Finally we have that
YM = [YM , 〈KS〉] is of order 26, 28, respectively. In the first case elements of
YM are either 2-central or centralized by a good E, so we are done. In the
second case we see that also YM induces a transvections on YL. Further some
elements in [YM , YL] are centralized by a good E. As [y,O2(L)] = 1, we have
that there is x ∈ YM with [y, x] 6= 1 and |O2(L) : CO2(L)(x)| ≤ 4. So we have
that

(∗) Let y ∈ YL with |YM : CYM
(y)| = 2. Let K be some component of

M/CM with [y,K] 6= 1, then [K, S] 6≤ K and K ∼= A5.

Assume now that YL acts nontrivially on some Sylow r–subgroup R of
F (M/CM). Then of course r = 3. And then again YM also induces transvec-
tions on YL by 4.5. Let W = [YM , R]. Let 3 6∈ σ(M). Then R is centralized
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by some good E. Let K = [y, R], then |[YM , K]| = 4, so it is centralized
by E. But then also [YM , 〈KS〉] is centralized by E, and so there is some
nontrivial element in Ω1(Z(S)), which is centralized by some good E, a con-
tradiction. Hence we have that 3 ∈ σ(M). Let first R be cyclic, then [YM , R]
is centralized by some good E, a contradiction. Hence m3(R) ≥ 2 and so
CYM

(R) = 1, i.e. YM = [YM , R]. We have [K, S] 6≤ K, so there are two
conjugates of K, which centralize a subgroup of index 16 in YM . Further
[K, YM ] centralizes a subgroup of index two in O2(L).

So we have

(∗∗) Let y ∈ YL with |YM : CYM
(y)| = 2. Then YM also induces transvections

on YL, [y, YM ] is centralized by some good E and there is a subgroup of index
16 in YM which is centralized by some good E.

Let K be a component of L/O2(L), set YM = Ỹ × CYM
(K). Assume

that either |Ỹ | = 2 or we have that L is solvable. In the latter we have
transvections of YL on YM by 4.5 and so vice versa transvections on YL,
which then shows that L/O2(L) is a dihedral {2, 3}–group. If L is nonsov-
able, we get that there is some y ∈ YL, which induces a transvection on YM

and so as by (∗∗) [YM , y] is centralized by a good E, we have that there is
just one component, which is Ln(2), Sp(2n, 2), Ω±(2n, 2), or An. Now as
YMO2(L)/O2(L) ≤ Z(T/O2(L)), we see that K 6∼= Ω±(2n, 2). Further in all
cases we now have that [YM , YL] is of order two and so is centralized by a good
E in M . So we get that CK([YM , YL]) has to centralize YMO2(L)/O2(L)), as
this group is in M . This shows that also Ln(2) is not possible. Further we
have that O2(M)O2(L)/O2(L) is elementary abelian.

Now for x ∈ YM \ O2(L), we may assume that |O2(L) : CO2(L)(x)| ≤ 4. Let
xg ∈ L, with xg 6∈ M . Then we have that |YM ∩ O2(L) : CYM∩O2(L)(x

g)| ≤ 4
and so |YM : CYM

(xg)| ≤ 8. This first shows that we do not have a compo-
nent A5 in M/CM and by (∗∗) there is a subgroup of index 16 in YM which
is centralized by a good E. So we get that |YM | ≤ 26. If we have |YM | > 16,
then the structure of GL(6, 2) yields some element in Ω1(CYM

(S))], which
is centralized by some good E (recall that M is not exceptional). So we
have |YM | = 16. Hence M/CM

∼= O+(4, 2). Further Sylow 3–subgroups
of CM are cyclic. Now as CM 6= O2(M), we see that Φ(O2(M)) 6= 1.
Hence YM ≤ Φ(O2(M)). But in all possible cases for L we have that
Φ(O2(M)) ≤ O2(L), a contradition.

Hence we have shown

L is nonsolvable and |Ỹ | ≥ 4.

151



Let now W ≤ YL minimal with 1 6= [K, W ] ≤ W .

We first treat the case of CW (K) = 1. As K possesses a quadratic fours
group we get with 3.26 that either K is a group of Lie type in characteristic
two, An, U4(3) or some sporadic group.

Let K ∼= An. As Ỹ is in O2(P ) for any proper parabolic, we see that
Ỹ projects onto 〈(12)(34), (13)(24)〉. As this group does not act quadrat-
ically on the natural module, we have that W is the spin module and so
[x,W ] = [Ỹ , W ] for all 1 6= x ∈ Ỹ . Now we have that YM is a strong F -
module with offender W and so we get with 3.17 that we have a component R
of M/CM which is Sp(2n, q), Ln(q), 3A6 or A7. Let first [R, S] ≤ R. Then we
may apply 3.42. As no element in Ω1(Z(S))] is centralized by a good E, we
have 3.42(4). Now R is either Sp(4, q), L2(q) or L4(2). As all commutators
are also equal, we cannot have a nonsplit extensions. Hence we have L4(2) on
the sum of two natural modules. But in that case never all commutators are
equal. So we have that [R,S] 6≤ R. If there are at least 4 conjugates under
S, we see that point stabilizers have to be 2-groups, otherwise there is some
element in Ω1(Z(S)) centralized by a good E. Hence we get R ∼= L2(q). If
there are exactly two, we must have that for all odd r, which divide the order
of the point stabilizer, Sylow r–subgroups are cyclic or of type r1+2 where r
divides the order of Z(R). This now shows R ∼= L2(q), SL(3, 4), 3A6, 3A7,
or L3(2). If Z(R) is nontrivial, it is contained in both conjugates, so it has
to act trivially on the module, which shows that SL(3, 4) is not possible. In
the other two cases we have that mp(M) ≥ 4 and so [YM , 〈RS〉] is centralized
by some good E, a contradiction. So we just have R ∼= L2(q) or L3(2). But
as for a fours group we have equal centralizers and commutators, R ∼= L3(2)
is not possible. So we have that R ∼= L2(q). Further YM = [YM , 〈RS〉] is a
direct sum of natural modules for the particular components. As |Ỹ | = 4,
we get q = 4. Further in all cases there is some good E, which normalizes
[W,YM ]. Suppose that 3 ∈ σ(M). There is always some 3-element ρ in K
which normalizes 〈(12(34), (13)(24)〉, so it also normalizes [W,YM ], hence is
in M . But then also NK(〈ρ〉) is in M , as any 3–element in M centralizes an
elementary abelian group of order 27. But 〈(12)(34), (13)(24)〉 is not normal
in 〈NK(〈ρ〉), 〈(12)(34), (13)(24)〉〉. So we have that 3 6∈ σ(M). In particular
there are just two components L2(4) and p = 5 ∈ σ(M). This shows that
there is a 5–element centralizing YM and so all elements are either 2-central
or centralized by a good E, a contradiction.

Let next K be sporadic. As 〈Ỹ P 〉 acts quadratically on W for all proper
parabolics, we see with 3.26 that just K ∼= 3M22 is possible. Further we get
that |Ỹ | = 4 and W is the 12–dimensional module. Now we see again that we
have a strong F -module with [W,x] = [W, Ỹ ] for all 1 6= x ∈ Ỹ . As above we
see that M/CM just has components L2(4). Again we have some 3-element
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in Z(K) normalizing Ỹ and we can argue as above.

If K ∼= U4(3), then there is always some some parabolic P such that 〈Ỹ P 〉 is
non abelian.

So let finally K be of Lie type in characteristic 2. By 3.28 we have that
Ỹ is in a root subgroup. Hence we can embed it into some L2(q) or Sz(q),
which by 3.50, induces a natural module W1 in W . So as above we see that
we just have components L2(r) in M/CM . As |W1 : CW1(Ỹ | = q, we get
r = q and so also |Ỹ | = q. Hence Ỹ is normalized by some element of order
q − 1 in K, whose normalizer is not in M . This as above shows that for a
uniqueness prime we always have that it has to divided q + 1. In particular
we just have two conjugates L2(q) in M and then again as before elements
in YM either are 2–central or centralized by a good E, a contradiction.

So we have shown
CW (K) 6= 1

Assume that T is a Sylow 2–subgroup of G. Then we have shown that L
centralizes some element of Z(T )]. As T ≤ M , we may assume T = S, but
this contradicts YM ≤ O2(CG(x)) for all 1 6= x ∈ Ω1(Z(S)). Now let X be
either Ω1(Z(T )) or J(T ). Suppose that X is normal in L. As S > T , we have
that NS(X) > T . But this contradicts YM 6≤ O2(NG(X)) and the choice of
L with respect to |M ∩ L|2. So we have that neither of the two groups is
normal in L in particular YL is an F–module for L.

Choose W as before. Then we have that W is a nonsplit extension of
a trivial module by some irreducible module. As now Ỹ cannot act as
〈(12)(34), (13)(24)〉 on the natural module, we see with 3.16 that K has to be
a Lie group in characteristic two. Then as before we have that Ỹ is in some
root group. Application of 3.36 shows that K ∼= L2(q), Sp(2n, q) or G2(q).
Further we still have that Ỹ is in some L1

∼= L2(q) which now induces a
module U such that U/CU(L1) is the natural module. Again we get a strong
F – module, besides now commutators might be different. Hence again we
have components R in M/CM and so we may argue as before besides that
we now may have that R ∼= L3(2), Sp(4, r), L2(r) or R ∼= L4(2) and we have
3.42(4)(vi). Further for R ∼= L2(r) or Sp(4, r) and [R,S] ≤ R, we also may
have the nonsplit extension of the natural module.

Let first R ∼= L3(2), then as q > 2, we get q = 4 and [R, YM ] is a direct
sum of two natural modules. We have that there are exactly two conjugates
of R under S. As q = 4, we see that there is some element ρ of order three in
K, which normalizes projection of Ỹ and so also [Ỹ , U ], which is normalized
by a good E in M . If 3 ∈ σ(M), then NG(〈ρ〉) ≤ M , but NK(〈ρ〉) does not
normalize the projection of Ỹ , so we have that 3 6∈ σ(M). Hence 7 ∈ σ(M)
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and so [U, YM ] is centralized by a good E. But CU(L1) ∩CW (K) 6= 1, which
implies L ≤ M , a contradiction.

Let next R ∼= L2(r) and [R, S] ≤ R. Then C[YM ,R](R) 6= 1. Further we

see that |Ỹ | = q = r. We have that [YM , U ] is normalized by a good E.
Hence as before we see that there are no primes in σ(M) dividing q−1 . But
then we have that C[YM ,R](R) is centralized by some good E, a contradiction
as C[YM ,R](R) contains elements from Z(S)].

Let next R ∼= Sp(4, r). Then [R, S] ≤ R. By 3.42(4)(iii) we have a unique-
ness prime, which divides r−1. But then C[YM ,R](R) is centralized by a good
E, a contradiction as before.

So we are left with R ∼= L2(r), [R,S] 6≤ R. As R just induces the natu-
ral module, we see r = q. Again there are no uniqueness primes dividing
q − 1. Hence we just have two conjugates. Now CYM

(〈RS〉) = 1, so we have
that YM is the direct sum of two natural modules, each for any component.
As in any module we have all elements conjugate, we have that the element
from each module are centralized by a good E. Further all other elements in
YM are 2-central. So YM ≤ O2(CG(x)) for all 1 6= x ∈ YM , a contradiction.
This proves the lemma. 2

b1

Proposition 8.13 We have CG(x) ≤ M for all 1 6= x ∈ Ω1(Z(S)).

Proof: Otherwise we may choose H as before. Then by 8.5 we have
YH = Ω1(Z(S)). Further we have that b > 1 by 8.11. Assume first that
[YM , [O2(H), O2(H)]] = 1. Set VH = 〈Y H

M 〉 and WH = CVH
(O2(H)). Then

WH 6≤ YH . Let CW = CH(WH). Then we have that O2(H/CW ) 6= 1. Let
T1 ≤ S such that T1CW /CW = O2(H/CW ). As W ≤ Z(O2(H)) we see that
H 6= NH(T1). So H = CW S. But then O2(H) ≤ CW and so the P ×Q–lema
shows [V, O2(H)] = 1, which gives [YM , O2(H)] = 1 and then H ≤ M , a
contradiction. Hence we have that [YM , [O2(H), O2(H))] 6= 1.

Now we may apply 3.10 - 3.14 to the pair (M0, H). Recall that by 7.1
3.10(3) does not occur. These provide us with YM being a strong, or strong
dual F–module. Hence by 5.9 we have that M is not exceptional.

Suppose that we do not have 3.11. Assume further that that Vα′ ≤ M .
Suppose now that for any δ ∈ ∆(α′) we have that YM ≤ Mδ. But then there
is also some δ with 1 6= [YM , Yδ] ≤ YM ∩ Yδ, which contradicts 7.1. Hence we
have

(∗) If Vα′ ≤ M , then there is some δ ∈ ∆(α′) with YM 6≤ Mδ.
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Let A be the offender and K be a component of M/CM on which A acts
nontrivially. Suppose first that K is normalized by S, then there is no sub-
module where every element is centralized by a good E, since otherwise this
also applies for some nontrivial element in Z(S) and so H ≤ M . Hence we
are in the situation of 3.42(4). If we have 3.42(4)(iv) or (v) then there are
elements in Z(S) which are centralized by a good E, a contradiction. As
[YM , K] has to be a strong or strong dual F–module, we see with 3.17, 3.22
that K ∼= L2(q), Sp(4, q), Ω−(6, 2), or L4(2).

Let first K ∼= L4(2). Then we have two natural modules and so, as there are
two modules we cannot have 3.11 or 3.14. So we have a strong module with
offender a transvection group to a hyperplane, and we are in the situation of
3.13. Let now W1 one of the two natural modules, then [A,W1] is of order
4 and so normalized by a good E. But then we get Vα′ ≤ M .Hence there is
also some V g

2 ≤ M , where V g
2 ∩ O2(H) induces A. But H = 〈H ∩M, V g

2 〉, a
contradiction.

Let K ∼= Ω−(6, 2) and [YM , K] be the natural module. Now the offender
A is of order two. If we have 3.11, then the offender is normal in S/O2(M0).
Hence we do not have 3.11. So we have 3.13 or 3.14. In both cases we can
assume that Vα′ ≤ M . As no element in Z(S)] is centralized by a good E,
we see that M/CM

∼= O−(6, 2) and Vα′CM/CM is contained in some Z2×Σ6.
Hence any element in [YM , K] centralizes a subgroup of index eight in any
Yδ ≤ Vα′ . But any such subgroup contains some element which is centralized
by a good E, so YM ≤ Mδ, contradicting (∗).

Let finally K ∼= L2(q) or Sp(4, q). Then C[YM ,K](K) 6= 1. Hence this group
is not centralized by a good E. This shows K ∼= L2(q). But also in that case
we get a contradiction with 3.42(4)(i) as either some p–element centralizes
[YM , K] and so C[YM ,K](K) is centralized by some good E, or there is a field
automorphism of order p, which then normalizes S and so also CC[YM ,K](K)(S).

So we have that K is not normalized by S. Then A normalizes K. We first see
that if r is an odd prime which divides the order of the point stabilizer in K,
then Sylow r–subgroups of K are cyclic or of type r1+2, where in the latter r
divides the order of the center of all the conjugates. So if C[YM ,K](K) 6= 1, we
get that all Sylow r–subgroups, r odd, of K are cyclic. So by 3.16 K ∼= L2(q),
L3(2), or A5 on the permutation module. If C[YM ,K](K) = 1 then [V,K] is a
strong F–module or dual F–module and so with 3.17, 3.22 we get the addi-
tional possibilities K ∼= SL(3, 4), 3A6 or 3A7. In the last three cases, we have
3 6∈ σ(M) and so mp(M) ≥ 4 for p ∈ σ(M). Hence [YM , 〈KS〉] is centralized
by a good E, a contradiction.

Let K be one of L3(2) or A5, then we have exactly two conjugates. Fur-
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ther we have that 3 6∈ σ(M). In particular [A, YM ] is centralized by some
good E. If we have 3.11, then A is normalized by S. This shows that we
have K ∼= L3(2), as in the A5-case an offender is a transvection, which is not
normal in S/O2(M). But now A is a dual offender and normal in S/O2(M),
which is not possible, as then A has to intersect K nontrivially and so [A, YM ]
has to be contained in [K,YM ], which is not normalized by S. Hence we have
3.13 or 3.14. As above we get that Vα′ ≤ M . Then YM is generated by
elements centralizing a subgroup of index four in Yδ, with notation as above.
But then again YM ≤ Mδ, contradicting (∗).

So we are left with K ∼= L2(q). Now we have that in [V, K] we just have the
natural module over some trivial module. Now first we see that we do not
have 3.12, as A cannot be normal in S. Assume that we have at least four
conjugates of K, we see that [A, YM ] is centralized by some good E. Now as
before we see that YM centralizes in Yδ a subgroup of index q. As there is a
subgroup of order q2 centralized by a good E in Mδ, we have that YM acts
on Yδ, a contradiction as before. So we have exactly two conjugates of K.
As CYM

(〈KS〉) = 1, we see that YM is a direct sum of two natural modules
one for each component. Let W1 be the module for the first component, then
we may assume that [A, YM ] = [W1, A] and this group is normalized by some
good E by 3.42. So we just can have the situation of 3.13 or 3.14. Now as all
elements in W1 are conjugate under K, we have that every one is centralized
by a good E. Now again YM is generated by elements which centralize a
subgroup of index q in Yδ. But each such subgroup contains elements which
are centralized by a good E in Mδ, which gives the contradiction YM ≤ Mδ,
again.

So we are left with the case that A acts nontrivially on F (M/CM). Then
this is only possible for |A| = 2. Hence A acts on a Sylow 3–subgroup R of
F (M/CM). Let R1 be an preimage of R. Suppose that R1 is cyclic. Then
we have that [R1, YM ] is of order four. But M normalizes [YM , R1] so there
is some element in Z(S), which is centralized by a good E. So we have
m3(R1) ≥ 2. We have M = NM(R1)CM . If 3 6∈ σ(M), then by 2.3 R1 is cen-
tralized by some elememtary abelian p–subgroup E with ΓE,1(G) ≤ M . So
also [R2, YM ] is centralized by E for any subgroup R2 of R with |[YM , R2]| = 4.
Hence as [R,A] is normal in R and of order three, we see that [YM , 〈[R, A]S〉]
is centralized by E. Then some element in Ω1(Z(S))] is centralized by E, a
contradiction. So we have 3 ∈ σ(M). If m3(R1) = 2, we see that we have ei-
ther a characteristic subgroup isomorphic to E9 or extraspecial of type 31+2.
In both cases we see that R1 contains a good E. This shows [YM , R1] = YM .

Let C be either an elementary abelian or extraspecial characteristic sub-
group of R1 of rank at least two. If [A,C] ≤ CM , then [A, YM ] is centralized
by a good E. Suppose now that [A,C] 6≤ CM . If the rank of C is at least
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three we again have that [A, YM ] is centralized by a good E. So assume that
the rank is at most two. Then |[YM , 〈[A,C]〈S,U〉〉]| ≤ 16, where U is a Sylow
3-subgroup with R1 ≤ U . But now U/CU([YM , 〈[A, C]〈S,U〉〉]) is elementary
abelian of order 3 or 9, and so again [A, YM ] is centralized by a good E.

Suppose now that A is normalized by S, then some nontrivial element in
[YM , A] is centralized by S, a contradiction. So we are not in the situation
of 3.12. As [YM , A] ≤ Vα′ , we get Vα′ ≤ M . By quadratic action we have
that YM is generated by elements centralizing a subgroup of index two in
Vα′ . Hence YM ≤ Mδ for all δ ∈ ∆(α′), contradicting (∗). This contradiction
proves the lemma. 2

eventype

Proposition 8.14 Let H be some 2-local which contains S, then F ∗(H) =
O2(H).

Proof: We have O2(H) ∩ Z(S) 6= 1. Set H1 = CH(O2(H))S. Then
by 8.13 we have H1 ≤ M . By 6.17 we have that CH1(O2(M)) ≤ O2(M).
Hence also CH1(O2(H1)) ≤ O2(H1). This shows F ∗(H1) = O2(H1). As
E(H)O2′(H) ≤ F ∗(H1), we get F ∗(H) = O2(H), the assertion. 2
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9 M is unique

In this chapter we just prove one proposition.
Munique

Proposition 9.1 There is just one uniqueness group M which contains S.

Proof: Suppose that H is a second one. By 6.17 we have that F ∗(M) =
O2(M) and F ∗(H) = O2(H). By 8.11 we have that 〈NG(S), CG(x) | x ∈
Ω1(Z(S))]〉 ≤ M ∩H. So we have CMCH ≤ M ∩H, and then O2(H)O2(M)
is normalized by CMCH . This shows O2(H)O2(M) ∩ CM = O2(M) and
O2(H)O2(M) ∩ CH = O2(H). Let now Γ(M,H) be the coset graph for the
amalgam (M,H). By 7.1 we get b = bΓ is odd. So let (α, α′) be a critical
pair. Then we may assume that M is attached to α and YM is an F–module
with offender YH′

α
. In particular by 5.9 we have that M is not exceptional.

Let (α, β, . . . , α′) be a path from α to α′ of length b. We may choose
notation in such a way that H is attached to β. Let b > 1. Then
Yα′ ≤ O2(Hα′)O2(Mα′−1) ∩ CMα′−1

= O2(Mα′−1). Hence by iterating this
we get that Yα′ ≤ O2(H). This is obviously true if b = 1. So in any case
Yα′ ≤ O2(H). In particular YH′

α
≤ O2(CG(x)) for any x ∈ Ω1(Z(S))].

Let first K be a component of M/CM such that YH′
α

induces an F–module
offender on [K, YM ]. Assume further that K is normalized by S. We see with
3.23 that K ∼= Ln(q), Sp(2n, q), G2(q) or An and just one natural module
is involved. Further we have that also YH′

α
is an F–module with offender

W = [YM , K]. Finally CYM
(K) = 1.

Now we have that also neither M nor H is excetional by 5.9. We now apply
3.42. Suppose W satisfies 3.42(1), (2) or (3). Then there is some 1 6= xCW (S),
which is centralized by a good E in M . But then as CG(x) ≤ H, we would
get H ≤ M , a contradiction. Hence we have 3.42(4). But then in all cases
we would get CYM

(K) 6= 1.

So we have that S does not normalize K. Let 1 6= x ∈ CYM
(S). Then

the projection of s onto [YM , K] is centralized by NS(K) and so we may ap-
ply 3.23 to K and [YM , K], which gives us that K ∼= Ln(q), Sp(2n, q), G2(q)
or Σn and [YM , K] is the natural module. Application of 3.42 shows that any
element in W = [YM , K] is centralized by a good E in M .

Let now first L be a component of Hα′/CHα′ on which W induces an F–
module. But now things are symmetric and so in [L, YHα′ ] any element is
centralized by a good E in Hα′ . As [W, [YHα′ ]] 6= 1, this implies Hα′ = M ,
but YM 6≤ O2(Hα′).
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So we have that W induces an F–module on [YHα′ , F (Hα′/CHα′ )]. This gives
that it acts on a 3-group and as W satisfies 3.42(3) we have with 2.1 that
W induces a group of order 2, i.e. YHα′ induces a transvection on W . If
3 6∈ σ(H), then with 2.3we get a good E in Hα′ centralizing [W,F (Hα′/CHα′ )]
and then also [W,YHα′ ]. But this group is also centralized by a good E in M ,
a contradiction. So we have 3 ∈ σ(H). This shows that we have m3(K) = 1
and then we get that K ∼= L3(2). Now 〈KS〉 = L3(2) × L3(2), and then
[YM , 〈KS〉] is of order 26. Now H ∩M contains a Sylow 3–subgroup F of M .
This shows that m3(F ) = 2. Further we have that F contains a 3-central
element of H, otherwise all elements in F are good and then M ≤ H, a con-
tradiction. Hence we have that F ∩CM = 1, otherwise we have the 3-central
element in CM and abain M ≤ H. So F is elementary abelian of order 9.
Now F = Ω1(CP (F )) for some Sylow 3-subgroup P of H with F ≤ P . Now
H ∩M induces a dihedral group of order 8 on F and so H induces GL(2, 3)
on F . But then all elements in F ] are conjugate and so good, which again
gives M ≤ H.

So we have that YHα′ induces an F–module offender on a Sylow 3–subgroup
of F (M/CM). By 4.5 then also YM induces an F–module offender on YHα′
and so by symmetry it also acts nontrivially on F (Hα′/CHα′ ). Again by 5.9
both M and H are not exceptional. We now have x ∈ YHα′ , y ∈ YM such
that [x, y] = [x, YM ] = [y, YHα′ ] is of order 2. Further y acts nontrivially on
F (Hα′/CHα′ ) and x acts nontrivially on F (M/CM). If 3 6∈ σ(H), by 2.3 there
is a good E centralizing the Sylow 3–subgroup of F (H/CH) and so also cen-
tralizing [x, y]. Hence if the same is true for M , we get a contradiction. This
shows that we may assume that 3 ∈ σ(H). Hence CM([x, y]) contains a good
E. Let F be a Sylow 3–subgroup of F (M/CM) and F1 be a preimage. Then
M = CMNM(F1). By 2.5 we have that NM(F1) contains a good E, as CM

cannot contain an elementary abelian subgroup of order p2 for p ∈ σ(M) by
5.11. Let C be a critical group in F1 and C1 = Ω1(C1). We have m3(C1) ≤ 2
and so we get that C1 is of order at most 27. Hence a good E in NM(F1)
centralizes C1 and so also F1. If now m3(F1) = 2, there is some 3-element ρ in
F1 with CG(ρ) ≤ Hg for suitable g. But then Hg contains a good E from M
and so Hg = M . But then we would have 3 ∈ σ(M) as well, a contradiction.
So we have that F1 is cyclic. Then also F is cyclic. Now |[F, YM ]| = 4 and
so [YM , x] is centralized by S. But then CM([x, y]) ≤ H, a contradiction, as
CM([x, y]) contains a good E from M . 2
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10 The 2-locals containing M0

Let M0 = NM(S ∩ CM). In this chapter we are going to prove that there is
some 2-local H with M0 ≤ H but H 6≤ M .

For the remainder we assume that there is some minimal parabolic H con-
taining S, such that O2(〈M0, H〉) = 1. Further we may assume that for any
S ≤ H1 < H, we have that H1 ≤ M . Let Γ = Γ(M0, H) be the coset graph
of the amalgam (M0, H) and b = bΓ. Set QH = O2(H) and Q0 = O2(M0).
Recall that by 8.14 we have that F ∗(M0) = Q0 and F ∗(H) = O2(H).

Hstr

Lemma 10.1 We have O2(H) is a Sylow 2–subgroup of CH . Further let
α ∈ Γ, which belongs to a conjugate of H, then any 2-element which fixes all
neighbours of α is in O2(Gα).

Proof: Let X = CH or G∆(α) and T = S ∩ X. Then H = XNH(T ).
By 8.11 CH ≤ M , so always X ≤ M . So we have H = NH(T ), i.e. O2(H) is
a Sylow 2–subgroup of X. 2

A9

Lemma 10.2 We have H/CH 6∼= A9 and

Proof: Let H/CH
∼= A9 then H ∩ M/CH

∼= A8. Let O2(M0) ≤ CH ,
then YH ≤ YM . Let (α, α′) be a critical pair. Then α belongs to M . By 7.1
α′ belongs to H. Then [Yα, Yα′ ] 6= 1 by 10.1. But then also [Yα, Yα′−1] 6= 1,
contradicting 7.1. Hence we have that O2(M0) 6≤ CH and so (CM ∩H)CH =
M ∩H. Firts of all we now see that 3 6∈ σ(M). So m3(CM) ≤ 3. By 2.3we
now get that a Sylow 3–subgroup P of CM ∩ H is centralized by a good E
in M . With 5.3 we get NG(P ) ≤ M . But then as NH(P ) 6≤ M ∩H, we have
a contradiction. 2

bev

Lemma 10.3 We have b is odd.

Proof: Assume that b is even. By 7.1 we have that b = bH . Let (α, α′)
be a critical pair, where α belongs to H. Further we choose notation such
that M0 belongs to a neighbour β of α with d(β, α′) = d(α, α′) + 1. We have
YH ≤ Hα′ . By 10.1 we have that [YH , YHα ] 6= 1.

Hence we have that YH is an F–module. We are going to apply 4.6 and
4.7. By 8.11 we have that CYH

(H) = 1. By 10.2 we have that H does not
induce A9.

Suppose that H induces Σ5 on a permutation module or Σ5 o Z2 on a di-
rect sum of two permutation modules, Σ3 on 2-dimensional module or Σ3 oZ2
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on the 4–dimensional module. Assume first additionally that |YM | = 2.
Then M0 = NG(S). Let J(S) ≤ O2(H), then we get J(S) is normal
in 〈M0, H〉, a contradiction. So we see that J(S) 6≤ O2(H). By 4.6
we see that J(S)O2(H) is the transvection group. Hence O2(H)B(S) =
O2(H)J(S), where B(S) = CS(Ω1(Z(J(S)))) is the Baumann group. Fur-
ther we see that J(O2(H)) ≤ J(S). So Ω1(Z(J(O2(H)))) ≥ Ω1(Z(J(S))).
We have YH ≤ Ω1(Z(J(O2(H)))) and as offender are exact on YH we see
that [J(S), Ω1(Z(J(O2(H))))] ≤ YH . Hence for X = 〈J(S)H〉 we get
[X, Ω1(Z(O2(H)))] ≤ YH . Hence we even now get that Ω1(Z(J(S)))YH is
normal in H. This shows that R = CO2(H1)(Z(J(S))) is normal in H. Then
we see that [J(S), O2(H)] ≤ R, and so even [X, O2(H)] ≤ R. In all cases we
now have a subgroup H1 in H with O2(H)J(S) a Sylow 2–subgroup of H1 and
H1/O2(H1) ∼= Σ3. Hence we have that H1/R is a direct product of a 2-group
by Σ3. As B(S) 6≤ O2(H), we now see that B(S) is a Sylow 2–subgroup of
H2 = 〈B(S)H1〉. Let C be a nontrival characteristic subgroup of B(S) normal
in H2, then it is normal in 〈H2,M0〉 = 〈H,M0〉, a contradiction. So we have
no such group and then by [Ste, Theorem1] we have that |[ρ,O2(H)]| = 4 for
some element of order three in H1. This shows that [O2(H), O2(H)] = YH .
By 3.35 we see that O2(H) = YH . Suppose first that |S| ≤ 27, then we have
that |O2(M)/Φ(O2(M))| ≤ 24, contradicting mp(M) ≥ 3 for some odd p. So
we have |S| = 215. Let p ∈ σ(M). Suppose p = 3. Then as M ∩ H cannot
contain a good E, we see that e(G) = 3. But then at least M ∩H contains
some 3–element ρ with NG(〈ρ〉) ≤ M . As H = 〈M ∩H,NH(〈ρ〉)〉, we have
a contradiction. Hence 3 6∈ σ(M). This gives that |O2(M)/Φ(O2(M))| ≥ 29.
As YH 6= O2(M), we have |O2(M)YH/YH | = 24 and so |[O2(M), YH ]| = 26

and |[O2(M), YH , O2(M)]|. Hence we have |O2(M)/Φ(O2(M))| = 26 or 28 a
contradiction.

So we have that |YM | ≥ 4. As any subgroup of index two YM contains
an element centralized by a good E, and YHα′ 6≤ M , we get that YHα′ can-
not be generated by elements which centralize a subgroup of index two in
YM . By 7.1 U = 〈Y H

M 〉 is abelian. So [YM , YHα′ , YM ] ≤ [U, YM ] = 1. This
shows that YM acts quadratically on YHα′ . With 4.7 we now see that H is
nonsolvable. Further for |YM | = 4 we have that YM ∩ CHα′ = 1. So assume
|YM | ≥ 8. Now we find elements in YHα′ \ M , which centralize a subgroup
of index four in YM . This now shows σ(M) = {3}. Further as H cannot
contain a good 3–element from M , we get e(G) = 3 and H/O2(H) ∼= Σ5.
Further we have that CM does not contain a good E. As YH centralizes
YMα′−1

we have that YH ≤ O2((Mα′)0). Hence we have that O2(M0) contains
an offender on YH and so O2(M0))O2(H)/O2(H) 6≤ (H/O2(H))′. So we get
that M ∩ H = (CM ∩ H)S. Hence there is some element ρ of order 3 in
CM ∩H. But now as CM does not contain a good E, i.e. a Sylow 3-subgroup
contains no normal elementary abelian subgroup of order 9 in CM , we see
that Sylow 3-subgroups of CM are cyclic. So we have that elements of order
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three in CM are centralized by an elementary abelian subgroup of order 27.
Then we have H = 〈CM ∩H, NH(〈ρ〉)〉 ≤ M , a contradiction.

So we are left with |YM | = 4 and YM ∩O2(Hα′) = 1. Suppose YMO2(Hα′) 6≤
YHO2(Hα′). Then there is x ∈ YHα′ with [x, YH ] = 1 but [x, YM ] 6= 1. So
x ∈ O2(H) ≤ M , [x, YM ] ≤ YM and as YM is centralized by a good E, we
have CG([x, YM ]) ≤ M . But [x, YM ] ≤ YHα′ and then YHα′ ≤ M , a contra-
diction. So we have that [YMYH , YHα′ ] = [YH , YHα′ ]. But YHα′ is generated
by elements which centralize subgroups of index two in YH , so they now cen-
tralize subgroups of index two in YM which gives YHα′ ≤ M , a contradiction.

Now by 4.6 we have E(H/O2(H)) ∼= L2(q) or L2(q) × L2(q) and just nat-
ural modules are involved. Now the action of an offender shows that we
have an element x in YHα′ with x 6∈ M but [YH , x] = [YHY M, x]. So
YHYM is normalized by 〈H ∩ M,x〉 = H. Further [O2(H), YMYH ] ≤ YH .
As YM ∩ YH is a 1-dimensional subspace in each of the 2-dimensional mod-
ules for E(H/O2(H)), we see that Q0 is a Sylow 2–subgroup of E(H/O2(H)).
Now CQH

(YHYM) = Q0 ∩QH . In particular this group is normal in H.

As q > 2, there are elements of order q − 1 which normalize CM ∩H. This
shows that H1 = 〈QH

0 〉 has a Sylow 2–subgroup Q0. Suppose first that
H1/(CH ∩H1) ∼= L2(q). Then we have that no nontrivial characteristic sub-
group of Q0 is normal in H1. Application of [Ste, Theorem 1] shows that
O2(H) acts trivially on O2(H)/YH . This shows YH = O2(H) as Z(H) = 1
by 8.11 and O2(H) is the natural module. Now O2(H) is normalized by
any automorphism of Q0 of odd order, since Q0 just contains two elemen-
tary a abelian subgroups of order q2. But as O2(H) is normalized by S,
it is normal in M0, a contradiction. So we may assume that H1 involves
L2(q)× L2(q). Now there is a subgroup H2 with Sylow 2-subgroup Q0 such
that H2/O2(H2) ∼= L2(q). Again this group by the same argument just in-
duces one module and then again we get that YH is the direct sum of two
natural modules and YH = O2(H). As YM = Ω1(Z(Q0)) by 3.4, we now see
that [O2(M), YH , Q0] = 1 and so [O2(M), YH ] ≤ YM . As YH ≤ CM , we see
that YH ≤ O2(M). In particular O2(M) = Q0. We see that O2(M) contains
exactly four elementary abelian subgroups of order q4. Hence if F is an el-
ementary abelian subgroup of order p3 in M then some good E normalizes
all these groups and so even O2(H), contradicting H 6≤ M . 2

bodd1

Lemma 10.4 We have b = 1.

Proof: By 10.3 we have that b is odd. Let b > 1. Again we fix a
critical pair (α, α′), where α belongs to M0. We choose notation such that
H belongs to a neighbour β of α with d(β, α′) = d(α, α′) − 1. By 10.1 we
have that O2(H) is a Sylow 2–subgroup of CH . Further O2(M0) is a Sylow
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2–subgroup of CM by construction, so we have that [YM , YHα′ ] 6= 1. Suppose
that YM is an offender on YHα′ as an F–module. Then we may apply 4.6, 4.7
which shows that also YM is an F–module with offender YHα′ . Hence in any
case we have that YM is an F–module with offender in YHα′ . Further by 5.9
we have that M is not exceptional.

We first show

(∗) YMYH 6 £H

Suppose false. As b ≥ 3, we have a neighbour δ of β with d(δ, α′) =
d(β, α′) − 1. Hence [YMδ

, YHα′ ] = 1. As YMY H = YHYMδ
, we get

[YM , YHα′ ] = 1, a contradiction. Tis proves (∗).

We now may apply 3.42. Let K be a component of M/CM on which YHα′
induces an F–module offender on [K, YM ]. Suppose there is a quasi irre-
ducible submodule WM of [YM , K] such that for any 1 6= x ∈ WM we have
that M is the unique maximal 2–local of G with CG(x) ≤ M . As b > 1 we
see that [[WM , YHα′ ], YMβ

] = 1 for any neighbour β of α′. Hence we have

that YMβ
≤ M . By 7.1 we have that 〈Y Hα′

Mβ
〉 is abelian. So YHα′YMβ

acts

quadratically on YM and [YHα′ , WM ] 6≤ CWM
(K). This gives with 3.24 that

[YMβ
,WM ] ≤ WM . Now we may choose β such that WM 6≤ Mβ. Hence

WMβ
∩ CM = 1. Moreover there is some x ∈ WM such that CWMβ

(x) = 1.

As 〈xWMβ 〉 ≤ WM this is not possible.

Hence we have one of the cases in 3.42(4). Now set WM = [K, YM ]. If
we are not in case (vi) or (vii) there is always a subspace in [YHα′ ,WM ] which
is normalized by a good E. Now choose β as before. Then YMβ

≤ M . By
(∗) we have that [WM , YMβ

] 6≤ [WM , YHα′ ]. This now shows that we have
3.42(4)(ii) with q = 2, (iii), (vi) or (vii).

Suppose that in one of these cases we have that |YHα′ : CYHα′
(WM)| > |WM :

CWM
(YHα′ )|. then we see that in all that cases [YHα′ ,WM ] contains a sub-

group which normalized by a good E. Hence by the remark above we see
that YHα′/CYHα′

(WM) cannot project on a maximal elementary abelian sub-

group of Aut(K). This shows that we just can have K ∼= Sp(4, q) and
|YHα′ : CYHα′

(WM)| > q2.

So we may assume that also YHα′ is an F–module with offender WM . Let
first K 6∼= Sp(4, q). Then we have σ(M) = {3} and all elementary abelian
subgroups of order 9 are good. So by 5.4 we have that m3(H) ≤ 1. With 4.6
we get that E(H/CH) ∼= L2(q) inducing the natural module or H/CH

∼= Σ5

inducing the permutation module, or H/CH
∼= Σ3 and |YH | = 4. Suppose we
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have the L2(q)–case. Then [x, YHα′ ] = [WM , YHα′ ] for all x ∈ WM\CWM
(YHα′ ).

This is only possible with K ∼= Ω−(6, 2) and YHα′ induces a transvec-
tion on WM . But then WM does the same, a contradiction. If we have
H/CH

∼= Σ5, then we have some 3-element in CM ∩ H, but the centralizer
of such elements is in M , and so we would get H ≤ M , a contradiction.
This shows |YH | = 4. Then YHα′ induces a transvection on WM , so again
K ∼= Ω−(6, 2). Now [YM , YHα′ ] is centralized by some good E in K. This
shows that CHα′ ([YM , YHα′ ]) is in M , so M and Hα′ share a common Sylow
2–subgroup. We have that [YM , YHα′ ] is contained in the center of a Sylow
2–subgroup of Mα′−1. So by 8.11 and 9.1 this gives that M = Mα′−1 But
then YM = YMα′−1

6≤ O2(Hα′), which contradicts b > 1.

So we are left with K ∼= Sp(4, q) and WM is a nontrivial extension of the
trivial module by a natural module. Further by 3.42(4)(iii) we have q > 2.
Now by 3.53 we see that YM induces an F–module offender on YHα′ . Inspec-
tion of the list in 4.6 and 4.7 shows that we have for any quadratic offender
A on YHα′ that [A, Yα′ ] = |A|. But this again contradicts 3.53.

So we see that YHα′ induces an F–module offender on F (M/CM). In particu-
lar [F (M/CM), YHα′ ] is a 3–group. Further YM induces transvections on YHα′
by 4.7. By 4.6 we see that there are elements y in YHα′ which centralize sub-
groups of index 4 in YM . Suppose 3 6∈ σ(M), then by 2.3 [F (M/CM), YHα′ ]
is centralized by a good E [YM , [F (M/CM), x]] is centralized by a good E in
M . But then again YMβ

≤ M and so by quadratic action of YHα′YMβ
on YM

we get that YM is generated by elements centralizing subgroups of index two
in YHα′YMβ

This shows that YHα′YMβ
is normal in Hα′ , a contradiction to (∗).

So we have 3 ∈ σ(M). With 4.6, 4.7 we now get that H/CH
∼= Σ3, Σ3 o Z2,

Σ5 or Σ5 oZ2. In the latter M ∩H contains an elementary abelian subgroup
of order 9 and so this group contains at least one element ρ which is good in
M . But then H = 〈H ∩M,NH(〈ρ〉)〉 ≤ M , a contradiction.

Let H/CH
∼= Σ3. Then we have |YH | = 4. In particular |[YM , YHα′ ]| = 2.

Let H/CH
∼= Σ3 o Z2, or Σ5. By 5.4 we have that e(G) = 3 in the former.

If e(G) > 3, then all 3–elements are good, but 3 divides |H ∩M | and so we
also get e(G) = 3 in the latter. We now have |YH | = 16. in both cases

Let x ∈ YHα′ with |[YM , x]| = 2. We are going to show that [x, YM ] is
centralized by a good E in M . Let now P be a Sylow 3–subgroup of the
preimage of the Sylow 3-subgroup of F (M/CM), which is normalized by
YHα′ . Further let U be a Sylow 3-subgroup of M containing P . Let C be
an abelian characteristic subgroup of P . Suppose first |C| ≥ 27. Then we
see that [YM , x] is centralized by some elementary abelian subgroup of or-
der 9 in C. Assume next that |C| = 9. There is some 3–element ρ ∈ C
with |[YM , ρ]| = 4, with [x, YM ] ≤ [ρ, YM ]. If 〈ρ〉 is normal in U , we see
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that [ρ, YM ] is centralized by a good E. Assume that 〈ρU〉 = C. Now
|[C, YM ]| ≤ 16. Then U = CU([C, YM ])C. As U 6= CU([C, YM ]) × C we see
that |CU([C, YM ]) ∩ C| = 3. Hence |[C, YM ]| = 4 and so again [x, YM ] is cen-
tralized by a good E. So we have that any characteristic abelian subgroup
of P is cylic and so P is extraspecial or cyclic. If P is extraspecial of order
at least 35, then we get for 〈ρ〉 = [P, x], that [ρ, YM ] is centralized by an
extraspecial group of order 27, and so by a good E, a contradiction. So we
have that |P | = 27. Let ρ be as before. If 〈ρU〉 = P , then again we have
|[P, YM ]| ≤ 16 and so U = CU([YM , P ])P , which again shows that [x, YM ]
is centralized by a good E. So we have that 〈Z(P ), ρ〉 is normal in U , but
then it is contained in some elementary abelian subgroup of order 27 and so
[x, YM ] is centralized by a good E again. So we are left with P cyclic. Then
|[P, YM ]| = 4 and normalized by M , so centralized by a good E.

Now in any case we have that [x, YM ] is centralized by a good E in M .
In particular CHα′ ([x, YM ]) ≤ M . This gives that YMβ

≤ M for β ∈ ∆(α′)
with YM 6≤ Mβ. But then again we see that YHα′YMβ

is normal in Hα′ ,
contradicting (∗). 2

M0

Proposition 10.5 There are at least two maximal 2–local subgroups in G
containing M0.

Proof: Assume false. Then we look at the amalgam before and by 10.4
we have that [YH , YM ] 6= 1. Again by 4.6, 4.7 we get that YM is an F–module
and so by 5.9 M is not exceptional. Let L and g be the subgroup of H
given by 4.2 with respect to YM . As L ≤ CL(YM ∩Y g

M), we get with 8.12 that
YM∩Y g

M = 1. Hence (YM∩O2(L))(Y g
M∩O2(L)) = (YM∩O2(L))×(Y g

M∩O2(L)).
Set A = Y g

M ∩ O2(L). Then A induces an F–module offender on YM with
CYM

(a) = CYM
(A) for all a ∈ A]. So YM is a stong module with respect to

A. Further [YM , A] = YM ∩ O2(L). So |[YM , A]| = |A| and [A, y] = [A, YM ]
for all y ∈ YM \ CYM

(A). In particular YM is alos a strong dual F–module
with respect to A. Let now K be some component of M/CM on which A
induces the F–module offender. By 3.22 we get K ∼= Ln(q) or Sp(2n, q) and
WM = [YM , K] is an extention of the trivial module by the natural module
or K ∼= A6 or A7 and WM = [YM , K] is an extention of the trivial module by
the 4-dimensional module. Recall that the third case of 3.22 cannot occur.
Otherwise we would have |A| = 2 and then |YM | = 4, which certainly is not
possible. In particular in all cases we have that WM is normal in M .

Assume first that any element in WM is centralized by a good E in M .

Next we determine the structure of H. Suppose H is nonsolvable and
H/CH has more than one component. By 3.7 we now get that the com-
ponents are L2(r), Sz(r), L3(2), 3A6, SU3(8) or SL(3, 4). In cases of L3(2),
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3A6 and SL(3, 4) there is a diagram automorphism involved. So let first
one of L2(r), Sz(r), SU3(8) or SL3(4). Then we see that WMCH/CH =
Ω1(Z(S ∩ E(H/CH))). As WM acts quadratically on YH , we get a submod-
ule X1×X2, where Xi is a module for one of the components and centralized
by the other one. Now [WM , Xi] 6= 1 for both i, so M covers E(H/CH), a
contradiction.

So we have the L3(2) or 3A6–case. If WM intersects both components non-
trivially, we may argue as before. So we have |YM : YM ∩ O2(H)| = 2. Now
choose a parabolic U in E(H/CH) containing SCH/CH but not be contained
in M ∩ H/CH with YMCH/CH ≤ O2(U). With 7.1 we see that R = 〈Y U

M 〉
acts quadratically on YH and R intersect any component nontrivially. But
then we can argue as before.

We have seen that E(H/CH) is quasisimple or H is solvable. So assume
first that H is nonsolvable. As YH 6≤ O2(M0), we get with 4.2 that YH

is a 2F–module. Now application of 3.29, 3.30, 3.31 and 3.32 shows that
E(H/CH) ∼= L2(r), Sz(r), U3(r), L3(r), Sp(4, r) or 3A6. Further in the
last three cases diagram automorphisms are involved. In the last three cases
we see that there is a natural submodule V in YH . Now [WM , V ] always
contains a nontrivial element whose centralizer picks up a parabolic in the
simple group, but then E(H/CH) is covered by M , a contradiction. So we
have the first three cases. Then, as YM acts quadratically, we see with 3.50
that just natural modules are involved. Now also the 2F–module offender
acts quadratically and so we get with 4.2 that YH even is an F–module.
Hence E(H/CH) ∼= L2(r).

Now we see that LCH/CH = E(H/CH). Hence (YM ∩ O2(L))(Y g
M ∩ O2(L))

is normal in H. Then A contains some element 1 6= a in Z(SCM/CM).
As CYM

(a) = CYM
(A), we see that K = Ln(q) and A is the full group of

transvection to a hyperplane or K = A6, A7 and |A| = 4. In the last two
cases as [v, A] = [YM , A] for all v ∈ YM \ CYM

(A), we see that |YM | = 16.
Now YMCH/CH is a sylow 2-subgroup of E(H/CH) and so YM 6≤ Φ(O2(M)).
This now shows YM = O2(M). As mp(M) ≥ 3 for some odd prime p, this
contradicts YM = F ∗(M).

So we have shown that K ∼= Ln(q). Let CWM
(K) 6= 1, then by 3.36 we

have either n = 2 or n = 3 and q = 2. In the former case we have by 3.52
that |[A, YM ]| > q = |A|, a contradiction. In the latter we have that |A| = 4.
But a transvection group to a hyperplane does not act quadratically on the
nonsplit 4–dimensional module. So we have again that YM is the natural
module and as before we get that O2(M) = YM . Hence we can see that
NM((YM ∩ O2(L))(Y g

M ∩ O2(L))) involves Ln−1(q)× Zq−1. Hence this group
cannot contain a good E since (YM ∩O2(L))(Y g

M ∩O2(L)) is normal in H. As
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|YMCH/CH | = r ≥ 4, we get that q > 2. Hence now we have that n ≤ 4 as
otherwise we have uniqueness primes p dividing q− 1. In case of n = 3 or 4,
we may also assume that we do not have a uniqueness prime dividing q − 1
Then for n = 4 we have e(G) > 3 and so in both cases mp(K) ≤ mp(M)− 2.
In particular there is a good E normalizing (YM∩O2(L))(Y g

M∩O2(L)), a con-
tradiction. So we are left with K ∼= L2(q). But then all Sylow p–subgroups,
p odd, of K are cyclic, and then a Sylow 2–subgroup of K is normalized by
a good E and then also (YM ∩O2(L))(Y g

M ∩O2(L)).

So we may assume that H is solvable. Then by 2.1 we have that the p-
rank of H is at most three and so |YM : YM ∩ O2(H)| ≤ 8. Now we get that
L/O2(L) is dihedral and so A induces the full group of transvections to a
hyperplane on YM . This again shows K ∼= Ln(2) and YM = O2(M). This
gives that K = M(O2(M). In particular 3 ∈ σ(M) and n ≥ 6. But then
NM((YM ∩O2(L))(Y g

M ∩O2(L))) contains L5(2) and so a good E.

Hence we have one of the cases in 3.42(4). This means that we can
have 3.42(4)(i) or (iii), as YM is a strong dual F–module. By 3.52 and
|[YM , A]| = |A| we see that we cannot have (i). So we have K ∼= Sp(4, q). As
we have CYM

(A) = [YM , A] is of order |A| we must have |A| = q3. But then
K = 〈CK(a) | a ∈ A]〉 would act on CYM

(A), a contradiction.

We are left with the case that A induces an offender on F (M/CM). As
this is a strong dual offender we get with 4.5 that |A| = 2. Then |YM | = 4
and so M/CM

∼= Σ3. Now also YM induces transvections on YH and so as
YMO2(H)£S, we get with 4.6, 4.7 that H/CH

∼= Σ3. Then YM 6≤ Φ(O2(M))
and so YM = O2(M). Hence CM = YM and M ∼= Σ4, a contradiction. 2
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11 The group H

For the next three chapters let H be a subgroup of G with M0 ≤ H and the
following properties

(1) H 6≤ M

(2) CH(O2(H)) ≤ O2(H)

(3) YH is maximal with respect to (1) and (2)

(4) M ∩H is maximal with respect to (3)

(5) H is maximal with respect to (1) - (4)

Recall that by 10.5 we have such a group H. By 9.1 we have that H is
not contained in a uniqueness group. In particular mp(H) ≤ 3 for any odd
prime p. This we will use freely in the sequel.

Y Hnormal

Lemma 11.1 We have that H = NG(YH).

Proof: We have H ≤ NG(YH). Hence NG(YH) satisfies (1) and (2) by
8.14. By (3) and 3.4 we have YH = YNG(YH). Now we have NG(YH) ∩M =
H ∩M by maximality. So we get with (5) that H = NG(YH). 2

Hfaith

Lemma 11.2 We have YM ≤ YH and CH ≤ M ∩H.

Proof: By 3.4 we have YM = YM0 ≤ YH . Hence CH ≤ CM , so CH ≤
M ∩H. 2

Hnormal

Lemma 11.3 Let Y ≤ YM with M ∩H < NH(Y ), then Y = 1.

Proof: We have that Y is normalized by M0 and CM . As M = CMM0,
we get that Y is normal in 〈M,NH(Y )〉, so Y = 1. 2

component

Lemma 11.4 Let K be a component of H/CH which is not covered by M∩H
and which induces an F–module on [YH , K] with offender A normalizing K.
If K is not of Lie type in characteristic two, then one of the following holds.
Further assume that for K ∼= A6

∼= Sp(4, 2)′ or K ∼= A5
∼= L2(4) the group

K does not act on the natural module. Then there is a subgroup P of H
containing M0 such that one of the following holds

(i) E(P/CP ) ∼= A5, YP is the Ω−(4, 2)–module.
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(ii) There is a normal subgroup P1 containing CP S such that P1/CP
∼=

Σ3, YP involves natural modules and trivial modules, P = P1M0 and
Z(P1) = 1

(iii) E(P/CP ) = K1 × K2
∼= A5 × A5, YP is a direct sum V1 ⊕ V2 where

[Ki, YP ] = Vi, [K3−i, Vi] = 1, and Vi is the orthogonal Ki–module,
i = 1, 2. Further K1 is not normal in P/CP .

In all cases P is even minimal with respect not to be in M .

Proof: By 3.16 we have that K is alternating. Then [YH , K] is quasi
irreducible. Let first [YH , K]/C[YH ,K](K) be the permutation module. Then
by 1.2 we have n ≤ 11. If n ≥ 8, we have that K is normal. In particular
CYH

(K) is S-invariant and so by 5.14 we have CYH
(K) = 1. If n = 11, then

we have that 〈CK(v) | v ∈ C[YH ,K](S)]〉 = K, contradicting 8.13. Suppose
n = 10, then by 8.13 we have K ∩M ∼= Σ8. Hence there is some parabolic
P ∼= 24Σ5 in K containing S which is not in M . By 5.14 we get |YM | = 2, as
otherwise K = 〈CK(v) | v ∈ Y ]

M〉. Now M0 = NH(S) and YP is the permu-
tation module, so we have (i).

Let n = 9, 7 and O2(M ∩K) = 1. So in case A7 we have the 4–dimensional
module. Suppose first that K is normal. Then again YH = [YH , K]. Now
H = CHK. Then YH ≤ Z(O2(M)). Assume that K is not normal. Then
there are exactly two conjugates. So we replace [YH , K] by [YH , KS], which
shows that YH = [YH , KS] and so again YH ≤ Z(O2(M)). Set VM = Y M

H .
Let C = CM(VM). Then we have that O2(M/C) 6= 1. Let T ≤ S such that
S ∩ C ≤ T and TC/C = O2(M/C). We have that K ∩M 6≤ C and so we
may assume that K ∩ M is in NH(T ). But then [T, YH ] = 1, which shows
that [T, VM ] = 1, a contradiction.

As in case of K ∼= A9 we have that K ∩ M ∼= A8, we just have to handle
n = 7, 5 and the permutation module is in YH or K ∼= 3A6. Suppose n = 7.
Then as in the case of n = 11 we see that K = 〈CK(v) | v ∈ C[YH ,K](S)]〉,
contradicting 5.14 and 8.13.

Let 3A6 on the 6-dimensional module. Let g ∈ H with Kg 6= K. As
m3(H) ≤ 3, we must have Z(K) ≤ K ∪ Kg. But Z(K) acts nontrivially
on [YH , K] and as [YH , K] is an irreducible module Kg has to act trivially.
So we have that K is normal. Let x ∈ Y ]

M ∩ Z(S). Then CK(x) ∼= Σ4.
Hence M ∩K ∼= Σ4 or 3Σ4. Let M ∩K ∼= Σ4. Then obviously |YM | = 2 as
|CYH

(M ∩K)| = 4 and normalized by Z(K). Now M0 = NH(S) and there
is some minimal parabolic P not in M ∩ K with |〈Y P

M 〉| = 4. So we are in
case (ii). If M ∩K ∼= 3Σ4, the |YM | = 4. Now choose again some minimal
parabolic P of K which is not in M ∩K. Then we get that |〈Y P

M 〉| = 16 and
we have two Σ3–modules in YP . Again this is (ii).
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Let K ∼= A5 and we have the permutation module. Suppose that K is
normal in H. Then as before we see that H = CHK and we just may choose
H = P and get (i). So assume that K has exactly two conjugates under S.
Now we have that CYH

(〈KS〉) = 1 by 5.14 and 8.13. This again shows that
H = CH〈KS〉 and again using P = H, we get (iii). 2

For the notations related to 2F–modules compare 3.2.

compLieB

Lemma 11.5 Let K be a component of H/CH which is not covered by
M ∩ H and which induces an F–module or 2F–module with cubic but not
quadratic offender A normalizing K on YH . If A is a 2F–offender assume
|YH : CYH

(A)| < |A|2. Let K be of Lie type in characteristic two and as-
sume that a Borel subgroup B is covered by M ∩H. Assume that all modules
in [YH , K] are of type V (λ) for some weight λ. In case of K ∼= A6 we as-
sume that PΓL2(9) is not induced on K. Then there is a subgroup P of H
containing M0 such that one of the following holds

(i) There is a normal subgroup P1 containing CP S such that P1/CP
∼=

Σ3, or E(P1/CP ) ∼= L2(q) and YP involves natural modules and trivial
modules, P = P1M0 and Z(P1) = 1:

(ii) There is a normal subgroup P1 containing CP S such that P1/CP
∼=

Σ3 oZ2, YP1 is an extension of up to 3 orthogonal modules and |YM | ≤ 8,
P = P1M0.

(iii) E(P/CP ) = K1×K2
∼= ÃL2(q)×L2(q), YP is the tensor product V1⊗V2

where Vi is the natural Ki–module, i = 1, 2. Further K1 is not normal
in P/CP .

In (i) - (iii) P is even minimal with respect not to be in M .

Proof: Let K ∼= G(q), q = 2n, and assume first that K is normal-
ized by S. Then CYH

(K) = 1 by 5.14 and 8.13. Let V be a irreducible
KS–submodule of YH . Then CV (S) 6= 1. As CH(CV (S)) ≤ M , we get that
M ∩ K is a maximal parabolic belonging to λ or we have K ∼= Ln(q) or
Sp4(q) and V = W1 ⊕W2, where W1 is the natural module and W2 its dual.
Assume first that we are not in this case. Let K1 be the preimage of K and
set H1 = K1M0. Then YM ≤ YH1 , so for what follows we may assume that
H = H1. Let P1 be a minimal parabolic in K1 not in M ∩K and P = P1M0.
Then we have that E(P1/CP ) ∼= L2(q) or P1/CP

∼= Σ3. Further we see that
YP just involves natural modules or trivial ones. So we have (i).

Let next K ∼= Ln(q) or Sp4(q) and we have the natural and dual mod-
ule involved, which are interchanged by S. As B ≤ M , we get that
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CWi
(S∩K) ≤ YM if q > 2. But as K = 〈CK(CW1(S∩K)), CK(CW2(S∩K))〉,

we get q = 2. As σ(H) = ∅, we get n ≤ 7. For Ln(2). By 3.16 there are
only natural and dual modules involved. So we see that there are at most
three such pairs. Let n 6= 3. Then there is a parabolic P in H such that
P/CP

∼= Σ3 o Z2. By 3.4 we have that CHO2(M0)/CH covers O2(M ∩ K).
Hence we have that in any nontrivial composition factor of YH that YM is
contained in the centralizer O2(M ∩K). So in any such factor YM is of order
at most two. Now P induces at most three orthogonal modules in YP . Fur-
ther there are no trivial modules in YP . This is (ii).

So we have K ∼= L3(2) or A6 and then [YH , K] is the direct sum of the
natural and dual module. Let first K ∼= L3(2). Then the offender A would
act quadratically. Hence YH/[YH , K] 6= 1. Then we get |YH : CYH

(A)| = |A|2,
a contradiction. So we have that K ∼= A6 and H induces PΓL2(9), a contra-
diction.

Let now K not be normalized by S. Then as σ(H) = ∅ we see with 1.1
and 1.2 that K ∼= L2(q), L3(2), SL3(4), A6. Let K ∼= SL3(4). Then as Z(K)
acts nontrivially on [YH , K] we see that Ks 6= K has to act nontrivially on
[YH , K] too. In particular we have a tensor product module and so it is not
an F–module. But now we see, as A normalizes K, and A does not act
quadratically that CA(K) 6= 1. We now see that YH = [YH , K] and that
|YM | = 4 as Z(K) acts nontrivially on YM . So we get that M ∩KKs is one
of the two minimal parabolic and so take as P the other one, than we get
(iii).

If we have K ∼= A6, we have the Sp(4, 2)–module. Now we easily see that
[YH , K, Ks] = 1 for Ks 6= K. As we do not have quadratic action, we see
that there is exactly one module in [YH , K]. And then we see that |YM | = 2,
as CYH

(〈KS〉) = 1. So we get Σ3 oZ2 on the orthogonal module, which is (ii).

We now have K ∼= L2(q) or L3(2). We see that 〈KS〉 = K × K1. Let
[YH , K, K1] = 1. This shows that YM ∩ [K,YH ] = 1. As the Borel subgroup
is in M , this shows that L2(q) is not possible. So we have L3(2). If S induces
PGL(2, 7) on K, we see as before that A acts quadratically. So we have that
M ∩K ∼= Σ4. Now in any module involved in [YH , K] we have that YM just
induces a group of order 2. Now we have at most three modules involved
and so as we may take the other minimal parabolic in K, we get again (ii).

So assume now that we have [YH , K, Ks] 6= 1 for K 6= Ks. If K ∼= L2(q), we
see that we have exactly two natural modules in [YH , K], which shows that
YH = [YH , K] is the tensor product module for KKs. As B ≤ M , we have
|YM | = q Now with 〈K,S〉 we have (iii).
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Let finally K ∼= L3(2). Then we get exactly three natural modules in [YH , K]
and so again YH is the tensor product of the natural module for K with the
one for Ks. Hence M ∩K ∼= Σ4. So there is some minimal parabolic P in
〈K, s〉, P ∼= Σ4 o Z2, which induces at most three orthogonal modules in YP .
This gives (ii). 2

compLie

Lemma 11.6 Let K be a component of H/CH which is not covered by
M ∩ H and which induces an F–module or 2F–module with cubic but not
quadratic offender A normalizing K on YH . If A is a 2F–offender assume
|YH : CYH

(A)| < |A|2. Let K be of Lie type in characteristic two and assume
that a Borel subgroup B containing S is not covered by M ∩H. Assume that
all modules in [YH , K] are of type V (λ) for some weight λ, then there is a
subgroup P of H containing M0 such that P = P1M0, where P1 is normal in
P , P1/O2(P1) is cyclic of order q − 1 and acts semiregularly on YP . Further
[S, P1] 6≤ O2(P1). Either we have q = 22b and P/P1 induces a subgroup of
Gal(GF (q)) on P1/O2(P1), the subgroup of order 2b − 1 is covered by M , or
q − 1 is prime. In both cases YP = YM × Y g

M for some g ∈ P .

Proof: Let first K be normalized by M0. Replacing H by H1 = K1M0,
where K1 is the preimage of K, we may assume that H = K1M0. As K is
normalized by S, we see that CYH

(K) = 1. Let V be a irreducible KS–
submodule of YH . Then CV (S) 6= 1. As CH(CV (S)) ≤ M , we get that
M ∩K is in a maximal parabolic belonging to λ or we have K ∼= Ln(q) or
Sp4(q) and V = W1 ⊕W2, where W1 is the natural module and W2 its dual,
or Ω+(2n, q) and two half spin modules are involved. Suppose the former.
As B 6≤ M , we see that CV (S ∩ K) 6≤ YM and so there is some subgroup
P1 in that maximal parabolic of K such that P1 is 2-closed and P1/O2(P1)
cyclic of order q−1, acting semi regularly on Ω1(Z(O2(P1))). As NG(S) ≤ M
by 7.3 there are elements in S acting nontrivially on P1/O2(P1). Next we
show that P1 is normalized by M0. As (M ∩ K)P1 is a maximal parabolic
L in K, we see that M0 normalizes this parabolic. Let V1 some irreducible
K–module in V . As O2(M0) is normal in S and C〈V M0

1 〉(O2(M0)) ≤ YM , we

see that O2(L) ≤ O2(M0) ∩K. But then P1 normalizes O2(M0 ∩K). As P1

does not normalize O2(M0), otherwise it normalizes Ω1(Z(O2(M0))) = YM

by 3.4 there are elements in O2(M0) which induce outer automorphisms on
K and do not centralizes P1/O2(P1). We will assume that M0 ∩K 6≤ B. Let
the weight λ for V1 correspond to a connected diagram. Then we have that
M∩K = (CM∩K)(S∩K). But as M0∩K) is a Sylow 2–subgroup of CM∩K,
we now get that M ∩K/O2(M ∩K) ∼= Σ3. As the Borel subgroup is not in
M , we get K ∼= U4(2), and V1 is the natural module. Now |YM ∩V1| = 2 and
so there is a second module in YH . On the unitary module we have for A
that |V1 : CV1(A)| ≥ |A|. In particular we have the situation of a 2F–module
and so as |YH : CYH

(A)| < |A|2, the second one has to be an F–module with
an over offender. In particular this is the orthogonal module. Now we see
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that |A| ≥ 8. If |A| = 8, then A has to centralize in the orthogonal module
a submodule of index 4, while in the unitary it centralizes one of index 16,
which gives |YH : CYH

(A)| = |A|2, a contradiction. So we have that |A| = 16.
In particular A 6≤ K.But then |V1 : CV1(A)| ≥ 26, which would imply that A
has to induce transvections on the orthogonal module, a contradiction. So
we have that M0 ∩K ≤ B, if λ belongs to a connected diagram.

So assume by 3.16 or 3.29 that we have V (λ2) for Ln(q) or Sp(2n, q) or
V (λ3) for L6(q). If M ∩K = (CM ∩K)(S ∩K), then we see as outer auto-
morphisms of K act nontrivially on M ∩K/O2(M ∩K), that M0 ∩K ≤ B.
So one of the two components of M ∩K/O2(M ∩K) is in CM the other in
M0. Now the one in M0 has to be centralized by an outer automorphism.
In particular this is not a field autormorphism. So it is a diagram automor-
phism. But also this is impossible.

So in any case we have that M0 ∩ K ≤ B. Hence also M ∩ K =
(CM ∩K)(S ∩K). In particular all modules involved in 〈Y K

M 〉 belong to the
same weight. Let U = CYH

(S ∩K) and U1 = CU(P1). Then Z(S) ∩ U1 = 1,
so we get that U1 = 1, i.e. P1 acts semiregularly on YP1 . Set P = P1M0, then
P1 is normal in P . Now P induces just field automorphisms on P1/O2(P1).
Let q = 22cr, r odd. Choose b minimal such that the subgroup of order
22br− 1 in P1/O2(P1) is not in M . Then first b ≥ 1, as the subgroup of order
2r − 1 normalizes a Sylow 2–subgroup and so is in M . Replace P1 by that
group and set P = P1M0. Now the subgroup L1 of order 22b−1r − 1 is in
M and acts regularly on YM . Let V1 be some irreducible K–submodule in
V . Then NP (V1) induces on CV1(S ∩K) the group P1/O2(P1) extended by
a group which induces field automorphisms. The same is true for all con-
jugates of V1 under M0. Hence we see that [L1, O2(M0)] ≤ O2(M0) and so
|YP : CYP

(O2(M0))|2 = |YP |. As CYP
(O2(M0)) = YM , we have the assertion.

Suppose now that we have Ln(q) ∼= K and natural and dual modules are in-
volved or Ω+(2n, q) and both half spin modules are involved. Let K 6∼= L3(q).
Then we get a subgroup P2 with P2/O2(P2) ∼= Zq−1 o Z2 and CV (O2(P2))
is a direct sum of modules V1 and V2 , where O2(P2) induces a semi reg-
ular group of order q − 1 on Vi, i = 1, 2 and V1, V2 are both not nor-
mal in P2. Further we see that O2(M0) cannot normalize V1 as otherwise
V1 ∩ YM 6= 1, and so the same is true for V2, but then P2 ≤ M and then
even K ≤ M . If now M0 ∩K 6≤ B, we get as before that O2(M0) centralizes
(M ∩K)/O2(M ∩K). This is only possible if K ∼= Ω+(2n, q). By 3.16 and
the assumption that |YH : CYH

(A)| < |A|2, we get now n = 3, 4. In both
cases we have that [YH , K] = V . But then YM ∩ [YH , K] is centralized by
K ∩ S. Hence (M ∩K)′ = CM ∩K. This shows that S ∩K centralizes YM ,
a contradiction. So in any case we have that M0 ∩ K ≤ B. Now we have
as above that all the modules for KS involved in YH are of the same type.
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Now let x ∈ O2(M0) inducing the diagram automorphism on K, then set
P = ([P2, x]M0)CP2(x). If CP2(x) 6≤ M ∩ K, then we may argue as before.
So assume that CP2(x) ≤ M ∩K. This contains a cyclic group of order q− 1
in P2. On this group S induces field automorphism. As now O2(M0) must
act trivially, we see that |O2(M0) : O2(M0)∩K| = 2. Now set P1 = [P2, x]S.
Then again |YP1 : CYP1

(O2(M0))|2 = |YP−1|. Now choose P1 minimal. This
gives the assertion.

If K ∼= L3(q) or Sp4(q), then we have [YH , K] = V . Now we have M0∩K ≤ B
and so we may argue as before.

Suppose that K is not normalized by M0. As the Borel subgroup is non-
trivial we see that K ∼= L2(q) or SL3(4).

Let K ∼= SL3(4). Then as Z(K) acts nontrivially on [YH , K] we see that
Ks 6= K has to act nontrivially on [YH , K] too. In particular we have a
tensor product module and so it is not an F–module. But now we see, as A
normalizes K, and A does not act quadratically that CA(K) 6= 1. We now
see that YH = [YH , K]. Further |YM | ≤ 4. As Z(K) is not in M , we get |YM |.
Now M ∩K centralizes YM and so M0 ∩K ≤ B.Let P1 be the preimage of
Z(K)S and P = P1M0, then P1 is normal in P and |YP | = 4. So we have
the assertion.

Let K,K1 be two conjugates. Suppose first that [[YH , K], K1] 6= 1. Then
KM0 = KK1, [YH , K] = [YH , K1], which is the tensor product of the natu-
ral module for K with the one for K1. Now again M0 ∩ K ≤ B and so a
Sylow 2-subgroup of KK1 is in O2(M0), which shows that YM ≤ [YH , K] as
CYH

(B) = 1. Again O2(M0) 6≤ KK1. Now B acts on C[YH ,K](S∩K), a group
of order q. As this group contains YM , we see that there is a group of order
q− 1 in B ∩M0. This group is neither in K nor in K1. Hence no element in
O2(M0) can induce a nontrivial field automorphism on K or K1. This gives
that |O2(M0) : O2(M0) ∩K| = 2. Hence now as above we get the situation
of the lemma.

Let now [YH , K, K1] = 1. Then we have that [YH , K] is the natural mod-
ule. Hence [YH , KM0 ] is a direct sum of at most three natural modules.
Again M0 ∩ K ≤ B. Further we have that no component centralizes some
1 6= x ∈ CV (S). This gives that KM0 = KK1. But now some element
in O2(M0) interchanges K and K1. Let s ∈ O2(M0) with Ks = K1. Set
P2 = 〈B, Bs〉. Then W = [W, s]CW (s)(S ∩ KKs). Now either [W, s] or
CW (s) is not in M . So with the same procedure as in the case of Ln(q) with
diagram automorphism we get the assertion. 2

niceP

Definition 11.7 Let P be one of the groups in 11.4, 11.5 or 11.6. Then we
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call P nice.
component1

Lemma 11.8 Let K be a component of H/CH which is not covered by M∩H
and which induces an F–module on [YH , K] with offender A normalizing K.
Then there is a nice P .

Proof: By 3.16 we have that all modules for groups of Lie type are of
type V (λ) for some weight λ. Then the assertion follows from 11.4, 11.5 and
11.6. Recall that PΓL2(9) does not admit an F–module.

fit

Lemma 11.9 Let F = F (H/CH) and assume that there is some 2-group
A = 〈a〉 which induces some transvection on YH such that [A, F ] is not
covered by M . Then there is a subgroup P of H containing M0 such that one
of the following holds

(i) There is a normal subgroup P1 containing CP S such that P1/CP
∼= Σ3,

YP is the natural modules and P = P1M0.

(ii) There is a normal subgroup P1 containing CP S such that P1/CP
∼=

Σ3 o Z2, YP1 is the orthogonal module and |YM | = 2, P = P1M0.

In particular we have a nice P .

Proof: We may assume that F is a 3–group. As F 6≤ M , we have
CYH

(F ) = 1. There is some b ∈ F such that B = 〈a, ab〉 6= A and B 6≤ M .
We have that |YM : CYM

(ab)| ≤ 2. This gives with 5.14 that |YM | = 2. This
shows M0 = NG(S). Further B/B ∩CH

∼= Σ3. Without loss of generality we
may assume a ∈ S. Suppose there is another h ∈ F with ah 6∈ M . Then we
have that |YH : CYH

(〈a, ab, ah〉)| ≤ 8. This shows that 〈a, ab〉CH = 〈a, ah〉CH .
This shows that 〈b〉CH/CH = [F, A]CH/CH . Now set F1 = 〈[F, a]M0〉CH/CH .
Let |F1| = 3n, then F1 is generated by n conjugates of [F, a]. But for any
of them there was some element in S inverting exactly one and centralizing
all the others. Let C be a critical subgroup in the preimage of F1. Then
2.2 shows that n ≤ 4. If n = 4, then C is extraspecial. But a induces a
transvection on C/Z(C), a contradiction. So n ≤ 3. Let n = 3. Then M0

induces on F1 a subgroup of GL(3, 3). As M0 = NG(S), we see that M0

induces Z2 o Z3. But then |CYH
(S)| ≥ 8, contradicting |YM | = 2. So we have

that n ≤ 2.

Let n = 1. Now set P2 = BM0CH . Then we have that |YP2| = 4. Hnece we
find some P1 ≤ P with S ≤ P1 and P1/O2(P1) ∼= Σ3. Set P = P1M0, then
we have (i).

Let n = 2. Set P2 = F1M0CH , then |YP2| = 16. Further P2 induces O+(4, 2)
on YP2 . So we get P1 with P1/CP2 ∩ P1

∼= Σ3 o Z2. With P = M0P1 we have
(ii). 2
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b21

Hypothesis 11.10 There is some g ∈ G such that 1 6= [YH , Y g
H ] ≤ YH ∩Y g

H ,
further YH ≤ O2(M).

Set A = Y g
HCH/CH . Then A induces an F–module offender on YH . By 3.24

A fixes some component K on which it induces an F–module offender, or it
induces an F–module offender on F (H/CH).

KM

Lemma 11.11 Assume 11.10. Let K be a component of H/CH on which
A induces an F–module offender. Then there is also some component K 6≤
(M ∩H)/CH on which A induces some F–module offender.

Proof: Suppose false. Let first K be not normal. Then we get with
1.1, 1.2 and 3.16 that K ∼= L2(q), L3(2), SL(3, 4), 3A6, 3A7, Sp4(2)′ or A7. If
Z(K) 6= 1 we have that Z(K) = Z(Kh), h ∈ H. This with 3.16 shows that we
must have 3A6 on the Sp(4, 2)–module or 3A7 on the 4–dimensional module
or on the permutation module. Hence in any case [K,YH ] is quasi irreducible
and so [K, YH , Kh] = 1 for [K, Kh] = 1. If KKh is normal, both components
are conjugate under S and so both are in M . If [YM , K] 6= 1, then we have
[YH , K] ≤ YM and we get a contradiction with 11.3. So we have [YM , K] = 1.
Let T1 = NS(K). If C[YH ,K](T1) 6≤ C(K) then C[YH ,KKh](S) 6≤ C(K) con-
tradicting CYH

(S) ≤ YM . Now with 3.38 we get K ∼= L3(2). But then
C[YH ,KKh](KKh) is of order at most 4, which shows that this group is cen-
tralized by H again contradicting 11.3. So we must have a third conjugate
and then K ∼= L2(q) or L3(2) and we have exactly three conjugates. Let
〈KH〉 = K ×K1 ×K2, where S normalizes KK1 and K2. So K2 centralizes
[KK1, YH ]. We see that K2 centralizes some element in Z(S)] and so by
8.11 K2 is in M . If K ∼= L2(q) we see again that [YH ,〈 KH〉] ≤ YM , which
contradicts 11.3. Hence K ∼= L3(2). Now H induces Σ3 on 〈KH〉. By 5.16
we may assume that NH(K) and NH(Kh) for some h with K 6= Kh both are
in M . But H is generated by these normalizers, a contradiction.

Let next [K, YM ] = 1. Now let T be a Sylow 2-subgroup of CH/CH
(K)

and set VH = CUH
(T ). Then we get that also this group is an F - module

for K with offender A. Let W be a quasi irreducible submodule W , then
CW (S ∩ N(W )) ≤ CW (K) as K is normal in H and Ω1(Z(S)) ≤ YM . By
3.38 we get that K ∼= L3(2) or An and we just have W/CW (K) is the nat-
ural module. This now shows that W = [YH , K] and so C[YH ,K](K) ≤ YM ,
contradicting 11.3. So we have

(∗) [K, YM ] 6= 1 for all M which share a Sylow 2–subgroup with H

Let UH be the sum of all quasi irreducible submodules of [K, YH ]. Let
[YM ∩ UH , K] = 1. Let U be some submodule in Y/UH for K, which is
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covered by YM . Let U1 be the preimage. Then in U1/CUH
(K) we have

UH(YM ∩ UH)/CUH
(K). But this gives U1 = UH , a contradiction. So

we have YM ≤ UH and then the contradiction [YM , K] = 1. Sü we have
YM ∩UH 6≤ CUH

(K). As K ≤ M then 〈(UH ∩YM)K〉 ≤ YM , we get that some
of these submodules are in YM . Let A = A1×A2 with A1 = CA(K). Let V be
some submodule, which is not normalized by A2, so assume V a 6= V for some
a ∈ A2. Now (V × V a)b contains [V, a] for all b ∈ A2. As [V, a] is not a K–
submodule, we get that A2 normalizes V × V a. In particular [V, a] = [V,A2]
and CV (a) = 1 for all 1 6= a ∈ A2. In particular CCV (S∩K)(a) = 1. This
shows |A2| ≤ |CV (S ∩ K)|. But as A2 is an F–module offender, we have
[V, S∩K] = 1, a contradiction. So we have that A2 normalizes each submod-
ule, we get that A2 normalizes YM ∩ UH . The same does M ∩H. Hence by
11.3 we now get A2 ≤ M and then A ≤ M . Let now a ∈ A1. If YM ∩Y a

M 6= 1,
as A2 normalizes and does not centralizes YM ∩UH and A acts quadratically.
Hence in any case A ≤ M . As K ≤ M and K is normal we even have that
A ≤ M g for all g ∈ H.

Suppose first that UH/CUH
(K) is irreducible. In particular UH = (UH ∩

YM)CUH
(K). Then for h ∈ H we get YM ∩ Y h

M 6= 1. By 5.13 we have that
M = Mh. But this yields H ≤ M , a contradiction. So we have that UH

involves at least two nontrivial irreducible K–modules. Assume first that UH

and so YH induces an F–module offender on YHg as well. Suppose that YH

induces an F–module offender on F (Hg/CHg). Then A induces transvections
on UH by 4.5, which contradicts the fact that UH involves at least two non-
trivial modules. So we have that [UH , F (Hg/CHg)] = 1. Hence it induces an
F–module offender on some component of Hg. We will show that YH ≤ Mx

for all Mx which share a Sylow 2–subgroup with Hg. As seen above this is
true if [YH , Kg] 6= 1. So assume that [YH , Kg] = 1. Then there is a second
component L in H/CH such that [YH , Lg] 6= 1 and L induces an F–module
in YH . Suppose m3(K) = 1. Then by 1.1 K ∼= L2(q) or L3(2). As UH is
not irreducible we get K ∼= L3(2) and we have exactly two modules in UH .
But now [L,UH ] = 1 and so [YH , YMx ] = 1 for all Mx which share a Sylow
2–subgroup with Hg. So assume now thet m3(L) = 1 and [UH , L] 6= 1. Then
again L ∼= L3(2) and there are exactly two L–modules. But then |V | = 4 for
V an irreducible K–submodule of UH , a contradiction. So we are left with
K, L ∈ {SL3(4), Sp(4, 2)′, 3A6, A7}. As UH involves two irreducible modules,
we get that K ∼= SL3(4) and in UH there are exactly two natural modules.
As we may assume [UH , L] = 1 and Z(K) acts fixed point freely on UH , we
get that Z(L) = Z(K). In particular we see that L induces at least three
irreducible m odules, which contradicts the fact that L induces an F–module
on YH . So in all cases we have that YH ≤ Mx for all Mx which share a Sylow
2–subgroup with Hg.

Let Y be the subgroup of YH generated by all the Y x
M where Mx
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and Hg share a Sylow 2–subgroup. Assume [Y, YH ] = 1. Then also
[[F ∗(Hg/CHg), YH ], Y ] = 1. This shows that some component which induces
an F–module has to centralize Y , which contradicts (∗).

Now we have some Y x
M ≤ Y g

H , such that Hg and Mx share a Sylow 2-subgroup
and [Y x

M , YH ] 6= 1. By 7.1 we have that [YM , Y x
M ] = 1 and so [Y x

M , K] ≤ CH

by (∗). By quadratic action we see that 1 6= L = [Y x
M , F ∗(H/CH)] centralizes

[K, YH ]. Hence [L, YH ] is centralized by K. But as YH ≤ Mx, we get that
1 6= [[CYH

(K), L], Y x
M ] ≤ Y x

M . By 5.14 we get that H ∩Mx covers K. By as-
sumption we have that YHg ≤ O2(M

x), which now contradicts [K, YHg ] 6= 1.

So we have that UH does not induce an F–module offender on YHg . By 3.16
and the fact that σ(H) = ∅, we get K ∼= Ln(2), 5 ≤ n ≤ 7, or K = L4(q),
q even. Now in any case K is some component of M0/CM0 as one of the
modules in UH is in YM . Then by 5.17 we get some ρ in K, o(ρ) = 3 or
in case of L4(q) we might have o(ρ) divides q − 1 with NG(〈ρ〉) ≤ M . Let
H0 = NH(S ∩ CH). As σ(H) = ∅, we see that [K,H0 ∩ CH ] ≤ S ∩ CH . So
we have that CH0/S∩CH

(K) is covered by M . If K 6∼= L4(q), we have that
H0/S ∩ CH = SKCH0/S∩K(K)/S ∩ K. As H 6≤ M , this shows K ∼= L4(q)
and we have fieldautomorphisms involved. If o(ρ) divides q − 1, then field
automorphisms do not induce new conjugacy on the groups of order o(ρ). If
o(ρ) = 3 and 3 divides q + 1, then any conjugacy class of elements of roder
3 in L4(q) intersects nontrivially L4(2) which is cntralized by the field auto-
morphisms. Hence also no new fusion happens. This shows that in any case
H0/S ∩K = KNH0/S∩K(〈ρ〉), a contradiction. 2

fitM

Lemma 11.12 Assume 11.10. Then either there is some component K of
H/CH on which A induces an F–module offender and K 6≤ (M ∩H)/CH , or
A induces some F–module offender on a Sylow 3–subgroup F of F (H/CH)
and we have that [A,F ] 6≤ M .

Proof: By 11.11 we just have to treat the case that A induces an F–
module offender on F (H/CH) and it does not induce one on any component.
Now as m3(H) ≤ 3, we get with 2.1 that |A : CA(F (H/CH))| ≤ 8 and there is
a group D = D1×Dr of r dihedral groups of order 6, 2r = |A : CA(F )| induced
on YH , where A is a Sylow 2–subgroup of D. Now |YH : CYH

(D)| ≤ 22r. Let
A = A1 ×A2, A2 = CA(F ). Then A2 does not induce an F–module offender
by assumption. As A1 induces a sharp offender and A is an F–module
offender, we see A2 = 1. This shows that A is generated by transvection.
Suppose [F, A] ≤ M . Let W be an irreducible 〈[F, A],M0〉–submodule of
[F, YH ]. Then we have that W ∩ YM 6= 1 and so W ≤ YM . Let a ∈ A \M ,
then we get CW (a) = 1. As A is generated by transvections we get |W | = 2,
a contradiction. So we have that A ≤ M . We now also have that |YM | ≥ 4.
By 4.5 YH is generated by elements inducing transvections on Y g

H hence
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centralizing some nontrivial element in YMx for any Mx which shares a Sylow
2–subgroup with Hg. This gives that YH ≤ Mx. Suppose that YH centralizes
all these YMx . Then YH is in the normal subgroup of Hg centralizing all Mx.
If there is some component in Hg/CHg on which YH acts nontrivially then
this component is in Mx. This contradicts 11.11. So YH acts on F g. But F g

does not centralize Y x
M . So there is some Mx such that [YH , YMx ] 6= 1. But

[YM , Y x
M ] = 1 by 7.1, so we have that [Y x

M ,W ] = 1, i.e. [[F, A], Y x
M ] = 1. But

CA([F, A]) = 1. So we have that [F,A] 6≤ M . 2
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12 The group H, the amalgam case

We are going to set up some amalgam. We fix the notation of the previous
chapter. In particular H has the same properties as before.

O2 = 1

Lemma 12.1 Let WM ≤ M , such that H ∩ M is maximal in WM . Then
O2(〈WM , H〉) = 1.

Proof: Set H1 = 〈WM , H〉). Let O2(H1) 6= 1. We have that H1 6≤ M
and by 8.14 CH1(O2(H1)) ≤ O2(H1). By 3.4(iii) we have that YH ≤ YH1 .
The maximal choice of YH now gives that YH = YH1 . But then with 11.1 we
get H1 ≤ H, a contradiction. 2

Our aim is to choose some appropriate LM in such a way that YH 6≤
Z(O2(LM)). Suppose there is some WM as in 12.1 with YH ≤ Z(O2(WM)).
Then YH ≤ Z(O2(M)). Set VM = 〈Y M

H 〉. Let S ∩ CM(VM) ≤ T ≤ S
with TCM(VM)/CM(VM) = O2(M/CM(VM)). Then consider UM = NM(T ).
As YM < VM , we have that T 6≤ CM(VM) by 3.4. So we have that
YH 6≤ Z(O2(UM)) since VM = 〈Y UM

H 〉.
O2neu

Lemma 12.2 We have O2(〈UM , H〉 = 1.

Proof: Let P be a Sylow p–subgroup of CH , p ∈ σ(M). By 5.7 we have
that M is not exceptional with respect to p. Now CH ≤ M . If NG(P ) ≤ M
then by Frattini we have the contradiction H = CHNH(P ) ≤ M . So we
may assume that either P is cyclic or p = 3 and a Sylow 3–subgroup of G
is isomorphic to Z3 o Z3. So assume first that P is cyclic. Then the same
is true for a Sylow p–subgroup P1 of CM(VM). Suppose that P1 6= 1, then
Ω1(P1) is normal in a Sylow p-subgroup of M and so NG(Ω1(P1)) ≤ M , re-
call that by 5.2 M is not exceptional. But as CM(VM) ≤ CH , we get that
Ω1(P1) = Ω1(P ) and again H = CHNH(Ω1(P )) ≤ M . So we have seen that
CM(VM) is a p′–group. As M = CM(VM)NM(T ) = CM(VM)UM , we have
that UM contains a good E. In particular O2(〈UM , H〉) = 1.

Let now a Sylow 3-subgroup of M isomorphic to Z3 o Z3. Now P is ele-
mentary abelian of order 9 and contains some element ρ with NG(〈ρ〉) ≤ M .
In particular NH(P ) 6≤ NH(〈ρ〉). This shows that in NG(P ) all subgroups
of order three in P are conjugate. In particular NG(P )/CG(P ) ∼= GL2(3) or
SL2(3). As CHCH(P )S ≤ M , we see that NH(P )/CH(P ) contains SL2(3).
But now in H some E is good in M g for certain g ∈ G, which contradicts
5.4. 2

If YH 6≤ Z(O2(M)), then set LM = WM as in 12.1 otherwise LM = UM

as in 12.2. Hence in both cases we found a subgroup LM in M such that
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O2(〈LM , H〉) = 1 and YH 6≤ Z(O2(LM)). Further in the first case obvi-
ously M0 ≤ LM . In the second case let CM/CM(VM) ∩ O2(M/CM(VM) 6=
O2(M/CM(VM)). Then O2(M/CM) 6= 1, a contradiction. So we have that
T ≤ S ∩CM . Then we get that M0 ≤ NM(T ) and so again M0 ≤ LM . Hence
in any case M0 ≤ LM .

Now we set RH = H0 = NH(S ∩CH(YH)). We have that CH(YH) ≤ CM and
so S ∩CH(YH) = S ∩CM ∩CH(YH), which gives M0 ≤ RH . As H = RHCH ,
we have RH 6≤ M . Further by 3.4 we have YRH

= YH . Hence by the maxi-
mality of YH we have that O2(〈LM , RH〉) = 1. Now choose RM minimal in
LM containing RH ∩ LM such that O2(〈RM , RH〉) = 1. Let U be a maximal
subgroup of RM which contains RH ∩ RM . Set X = 〈U,RH〉. Then we have
O2(X) 6= 1 and by 3.4 we have YH ≤ YX . As X 6≤ M , the maximality of YH

gives us that YX = YH . But then by 11.1 we have X ≤ H. This gives that
H ∩RM is the only maximal subgroup of RM containing RH ∩RM .

As M0 ≤ LM ∩RH , we get that M0 ≤ RM .

As RM ≤ LM , we get O2(LM) ≤ O2(RM) and then Z(O2(RM)) ≤
Z(O2(LM)). So YH 6≤ Z(O2(RM)).

We now consider the amalgam Γ(RM , RH). This has the following properties

(i) YRM
≤ YM ≤ YH = YRH

.

(ii) YH 6≤ Ω1(Z(O2(RM))).

(iii) Any 2–element in RH centralizing YH is contained in O2(RH)

(iv) H ∩RM is the unique maximal subgroup in RM containing RM ∩RH .

(v) H = CHRH

(vi) M0 ≤ RM ∩RH .

Let b = bΓ. We will assume that YH ≤ O2(M).

bH

Lemma 12.3 If b is even, then b = bRH
.

Proof: This follows from YM ≤ YRH
by (i) 2

nontrivial

Lemma 12.4 Let b be even and let (RH , RHα) be a critical pair, then 1 6=
[YH , YHα ].
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Proof: This follows from the property (iii) of the amalgam. 2

Pb2

Lemma 12.5 Assume that YH ≤ O2(M). If b is even, then there is a nice P .

Proof: By 12.4 we have that 11.10 is satisfied. By 11.11, 11.12 and
11.8 we just have to treat the case that A induces an F–module offender on
F (H/CH). We may assume that it does not induce one on any component.
Otherwise we have one of the cases before. Now as m3(H) ≤ 3, we get with
2.1 that |A : CA(F (H/CH))| ≤ 8. Hence we may assume that F = F (H/CH)
is a 3–group. Further by 4.5 we have that YH induces transvections on Y g

H

and so we may assume that A contains some transvections on YH . Then the
assertion follows with 11.9. 2

From now on we assume that bΓ is odd and further we assume that YH ≤
O2(M). Under this assumptions we will show that there is also some nice P .

The first aim of this chapter is to show that we have a nice P or YH ≤
O2(CG(x)) for all x ∈ Y ]

H .

2cent

Lemma 12.6 We have bΓ > 1 and YH ≤ O2(CG(x)) for all 1 6= x ∈
Z(S) ∩ YH .

Proof: This follows from YH ≤ O2(M) and 8.11. 2

Htriv

Lemma 12.7 If 1 6= [YH , YHg ] ≤ YH ∩ YHg , g ∈ G, then there is a nice P .

Proof: This follows from 11.8, 11.9, 11.11 and 11.12. 2

So for the remainder of this chapter we assume that [YH , YHg ] = 1 for
[YH , YHg ] ≤ YH ∩ YHg .

Sylow

Lemma 12.8 Let U be some subgroup containing CS(YH). Let T be a Sylow
2–subgroup of U which contains CS(YH). Then NU(T ) ≤ H.

Proof: Let NU(T ) 6≤ H. Set W = 〈RH , NU(T )〉. Let O2(W ) 6= 1.
As S ≤ W , we have with 8.14 that F ∗(W ) = O2(W ). Then we have by
3.4 that YW ≥ YH . But the maximal choice gives YH = YW and by 11.1 we
have W ≤ H, a contradiction. So we have an amalgam (RH , NU(T )). As
O2(RH) ≤ CS(YH) ≤ T we have that for this amalgam the parameter b is
even, so we have some g with 1 6= [YH , Y g

H ] ≤ YH ∩ Y g
H , a contradiction. 2
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Hconstrain

Hypothesis 12.9 There is a subgroup L of G such that

(i) CG(O2(L)) ≤ O2(L)

(ii) YH 6≤ O2(L)

(iii) CS(YH) ≤ L

Until further notice we will work under 12.9. In fact, if there is some
1 6= x ∈ YH with F ∗(CG(x)) = O2(CG(x)) and YH 6≤ O2(CG(x)), then there
is such a group L. We will show that the existence of such a group L yields
the existence of a nice P .

Assume 12.9. Then there is even some L with

(i) |L ∩H|2 is maximal with respect to 12.9(i)-(iii)

(II) L is minimal with respect to 12.9(iv)

We denote by T a Sylow 2-subgroup of L ∩H. Without loss T = S ∩ L.
Sylow1

Lemma 12.10 We have that T is a Sylow 2–subgroup of L.

Proof: This follows from 12.8. 2
parT

Lemma 12.11 We have that T acts transitively on the components of
L/O2(L), YH normalizes any component of L/O2(L) and acts quadratically
on O2(L).

Proof: The first assertion is related to the minimal choice of L. As
YH is normal in T , we have that it acts quadratically on O2(L) and as
YHO2(L)/O2(L) is an abelian normal subgroup of T/O2(L) we get with 3.24
that it has to normalize any component or 〈KYH 〉 ∼= L2(q)×L2(q), q a power
of 2, where K is a component. Let B be a Borel subgroup of the preimage
of that group. Then YH 6≤ O2(B). But this contradicts the minimal choice
of L. 2

squad

Lemma 12.12 Let T ≤ P < L be a proper parabolic of L. Set 〈Y P
H 〉 = A.

Then A is elementary abelian and acts quadratically on O2(L).

Proof: By the minmal choice we have that YH ≤ O2(P ). Let g ∈ P
with 1 6= [YH , Y g

H ]. As YH is normal in O2(P ), we have a contradiction. So
A is elementary abelian. As [O2(L), A] ≤ A, we have quadratic action. 2
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noncentral

Lemma 12.13 We have that YL 6= Ω1(Z(T )).

Proof: Suppose that L ≤ NG(Ω1(Z(T ))). If S = T , then by 8.11 we
have that L ≤ M . But YH ≤ O2(M) and so YH ≤ O2(L), a contradiction.
So we have that T is not a Sylow 2-subgroup of G. Let T1 = NS(Ω1(Z(T ))).
Then T1 > T . As YH ≤ T , we have that Ω1(Z(S)) ≤ Ω1(Z(T )). In par-
ticular CG(Ω1(Z(T ))) ≤ M by 8.14. Now the A × B–lemma shows that
E(NG(Ω1(Z(T )))) = 1. As YH 6≤ O2(NG(Ω1(Z(T )))) we get a contradiction
to the choice of L as |NG(Ω1(Z(T ))) ∩M |2 > |L ∩M |2. 2

transvec

Lemma 12.14 If there are elements in YL which do induce transvections on
YH , then we have a nice P .

Proof: Let x ∈ YL inducing a transvection on YH and assume that
K is some component of H/CH with [x,K] 6= 1. Then by 3.16 we see that
K/Z(K) ∼= An, Ln(2), Sp(2n, 2) or Ω±(2n, 2). Further we see that [YH , K] is
quasi irreducible. Let first K be covered by M∩H. If YM∩[K, YH ] 6≤ CYH

(K),
we have that [YH , K] ≤ YM . Further we see that E(H/CH) normalizes
[K, YH ], so by 11.3 E(H/CH) is covered by M . Set K̃ = 〈KM0〉. If K̃ is
normalized by H/CH , we get with 11.3 that H ≤ M , as [K̃, YH ] ≤ YM . So
we have that K̃ is not normalized by H/CH . In particular 〈KH〉 has at least
three components. This now shows that K ∼= A5 or L3(2) and [YH , K] is the
natural module. But then we see that C[YH ,〈KH〉](S)〈K

H〉 = [YH , 〈KH〉] and so
by 8.13 we have that [YH , 〈KH〉] ≤ YM . But then again with 11.3 we would
get H ≤ M .

We may assume that YM ≤ CYH
(K). Then by 1.1 we have that K ∼= L3(2)

or An, n ≥ 8. But the former does not admit transvections and in the latter
K is normal and so also 1 6= C[YH ,K](K) ≤ YM is normal in H contradicting
11.3 again. So K is not in M and we can quote 11.8.

So suppose that x acts on a Sylow p–subgroup P of F (H/CH). Then p = 3.
By 5.15 we get that [x, P ] 6≤ M . Then the assertion follows with 11.9. 2

From now on we will assume that no element from YL induces transvections
on YH .

trans

Lemma 12.15 We have that L is nonsolvable. Further let R be a component
of L/O2(L) and Ỹ be a complement in YH to CYH

(R), then |Ỹ | ≥ 4.

Proof: If L is solvable, then by by 4.5 we have that YL induces transvec-
tions on YH a contradiction. The same would be true if |Ỹ | = 2. 2
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notM

Lemma 12.16 Let A be an elementary abelian subgroup of H with [y,A] =
[YH , A] for all y ∈ YH \CYH

(A) and |YH : CYH
(A)| ≤ |A|. Suppose that K is

a component of H/CH with [A,K] 6= 1. Then we have a nice P .

Proof: By 3.20 [K, YH ] is quasi irreducible if [A,K] ≤ K. In that
case we get the assertion with 11.7 if K is not covered by M . So assume
it is covered by M . Assume further that K is normal in H. Then with
11.3 we get that YM ≤ CYH

(K). As CYH
(S) ≤ YM , we see with 3.38 that

K ∼= An or L3(2). In both cases we get YM = C[YH ,K](K) and so by 11.3
H ≤ M . So we may assume that K is not normal in H. If KKh is nor-
mal, both components are conjugate under S and so both are in M . If
[YM , K] 6= 1, then we have [YH , KKh] ≤ YM and we get a contradiction with
11.3. So we have [YM , K] = 1. Let T1 = NS(K). If C[YH ,K](T1) 6≤ C(K) then
C[YH ,KKh](S) 6≤ C(K) contradicting CYH

(S) ≤ YM . Now with 3.38 we get
K ∼= L3(2). But then C[YH ,KKh](KKh) is of order at most 4, which shows
that this group is centralized by H again contradicting 11.3. So we must have
a third conjugate and then K ∼= L2(q) or L3(2) and we have exactly three
conjugates. Let 〈KH〉 = K×K1×K2, where S normalizes KK1 and K2. So
K2 centralizes [KK1, YH ]. We see that K2 centralizes some element in Z(S)]

and so by 8.11 K2 is in M . If K ∼= L2(q) we see again that [YH ,〈 KH〉] ≤ YM ,
which contradicts 11.3. Hence K ∼= L3(2). Now H induces Σ3 on 〈KH〉. By
5.16 we may assume that NH(K) and NH(Kh) for some h with K 6= Kh

both are in M . But H is generated by these normalizers, a contradiction.

So we are left with [K,A] 6≤ K. By 3.24 we then have that K ∼= L2(2
n). But

then also by 3.24 A cannot induce an F–module offender. 2

Wdual

Lemma 12.17 Let A ≤ YL with |ACH/CH | > 2 acting on YH such that
[y,A] = [YH , A] for all y ∈ YH \ CYH

(A) and |YH : CYH
(A)| ≤ |A|. Then we

have a nice P .

Proof: By 3.21 we get that [A, F (H/CH)] = 1. Let K be a component
of H/CH with [A,K] 6= 1. Then the assertion follows with 12.16. 2

Wlemma

Lemma 12.18 Let R be a component of L/O2(L). Let W ≤ YL with W
being minimal such that [R, W ] 6= 1. If CW (R) = 1 then we have a nice P .

Proof: Let Ỹ be as in 12.15. As Ỹ acts quadratically we get that R
is a group of Lie type in characteristic two or by 3.26 that R is alternating,
U4(3) or some sporadic group.

If R/Z(R) ∼= U4(3). Let X be the centralizer of an involution. Then by
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12.12 we have that 〈Y X
H 〉 is abelian, contradicting that it has to contain

O2(X), an extraspecial group.

If R/Z(R) is sporadic, then since 〈Ỹ P 〉 is quadratic for all proper parabolics
P by 12.12, we get with 3.27 that R ∼= 3M22 on the 12–dimensional module
and |Ỹ | = 4. Then 〈CR(y) | 1 6= y ∈ Ỹ 〉 ∼= 243A6. As |CW (y)| = 28, this
shows that CW (y) 6= CW (Ỹ ) for 1 6= y ∈ Ỹ . Now choose x ∈ CW (y) \CW (Ỹ )
for some 1 6= y ∈ Ỹ . Then x induces a transvection on YH , a contradiction.

Let R ∼= An. As Ỹ ≤ O2(P ) for any proper parabolic P , we see that it
is conjugate to 〈(12)(34), (13)(24)〉, which is not quadratic on the permuta-
tion module. So we have the spin module. Now we have [y, W ] = [Ỹ , W ]
and CW (y) = CW (Ỹ ) for all 1 6= y ∈ Ỹ . In particular we have a strong dual
F–module.

Let next R ∼= 3A6 on the 6–dimensional module. Then by 12.12 we must
have outer automorphisms on A6 which do not induce Σ6. Hence we have
both 6–dimensional modules involved. In particular there is one W1 such
that [W1, y] = [W1, Ỹ ] for all 1 6= y ∈ Ỹ .

Let R(Z(R) be a group of Lie type. With 3.28 we see that Ỹ is contained
in some root group and so in some L2(q) = K1, or R ∼= Sz(q). Suppose the
former. Then by 3.50 we have that K1 induces a natural submodule W1 in
W as CW (R) = 1. Hence again we have that W1 is a strong dual offender on
YH . If R ∼= Sz(q), then by 3.50 we have that W is the natural module and
again W is a strong dual offender.

Now we get the assertion with 12.17

2
Y LF

Lemma 12.19 Let the notation be as in 12.18. Assume that CW (R) 6= 1.
Then we have that T is not a Sylow 2–subgroup of G and YL is an F–module.

Proof: Let first T be a Sylow 2–subgroup of G. Then we may assume
that T = S. But then by 12.18 we get some x ∈ Z(S)] with 〈x〉 normal in
L, contradicting 8.11.

Now let Ω1(Z(T )) or J(T ) be normal in L. Let X be one of these groups
with X normal in L. As T < S, we have that NS(X) > T . As X contains
Ω1(Z(S)) the A × B – lemma and 8.14 imply that E(NG(X)) = 1. But as
|NG(X)∩H|2 > |L∩H|2 so YH ≤ O2(NG(X))∩L = O2(L), a contradiction.
Hence YL is an F–module. 2

boddcomp

Lemma 12.20 If 12.9 holds we get a nice P .
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Proof: Let R and Ỹ be as in 12.15. By 12.19 we have that R induces
an F–module. If R is alternating, then as above we see that Ỹ corresponds
to 〈(12)(34), (13)(24)〉, which is not quadratic on the permutation module.
So we have A7 on the four dimensional module, 3A6 on the 6-dimensional
one, or some Lie group in characteristic two. By 3.28, 12.18 and 3.36 we get
R ∼= G2(q) or Sp(2n, q) and W is the natural module. Let R 6∼= L2(q. If Ỹ is
not a transvection group, then it is contained in some L2(q) × L2(q) which
induces an orthogonal module in W/CW (R). By 3.36 this module splits and
so we get a strong dual F–module, which with 12.17 shows that we have a
nice P . So we have that R ∼= Sp(2n, q) and we get a strong F–module with
an offender A of order q, or K ∼= G2(q). In the latter Ỹ ≤ K1

∼= L2(q), which
induces the natural module in the G2(q)–module. Now this module also does
not split, otherwise we get the assertion again with 12.17. This now again
shows that we have have a strong offender A of order q.

As q > 2, we see with 3.21 that A does act trivially on F (H/CH). So
let K be a component on which A induces a strong F–module on [K, YH ]. If
K is not covered by H ∩M , we can quote 11.7. So we may assume that K
is covered by M .

Assume first that K is normal in H. Suppose further that [YH , K]/C[YH ,K](K)
is irreducible. Then we have YM ∩ [YH , K] ≤ C[YH ,K](K) as otherwise
[YH , K] ≤ YM and so we get the contradiction with 11.3 that H ≤ M . But
now we have by 3.38 that K ∼= L3(2) or An. As we have a strong offender of
order at least 4, we just can have L3(2) by 3.17. As A acts quadratically and
we have |[YH , A]| ≤ 4, so |[Ỹ , A]| ≤ 4. But we do know that |[Ỹ , A]| > q, as
we had a nonsplit extension.

So we have that at least two nontrivial irreducible modules are in [YH , K]. Let
U ≤ Ỹ , |U | = 4. As Ỹ projects into some L2(q) in R, which induces a non-
split extension of the natural module, we see with 3.52 that [A,U ] = [A, Ỹ ].
Hence there is no fours group in Ỹ which is contained in one of the nontrivial
irreducible modules in [YH , K]. This shows that we have exactly two modules
and |Ỹ | = 4. Hence on each module we have that A induces transvections to
a hyperplane and so K ∼= Ln(2) and we have two natural modules. Suppose
again that YM∩[YH , K] ≤ C[YH ,K](K). Then by 3.38 we have K ∼= L3(2). But
there are no transvections on the 4-dimensional indecomposable module for
L3(2). So we have that one of the two modules is in YM . Again [YH , K] 6≤ YM .
As H 6≤ M , we get that H/CH([YH , K]) ∼= Ln(2) × Σ3. As m3(H) ≤ 3, so
n ≤ 5. Further we have YH = [YH , K]. We have that CH ≤ CM . So M0

normalizes S ∩ CH . Hence by replacing H by NH(S ∩ CH) we may assume
that O2(H) = S ∩CH . Then we have that |H : M0| = 3. Then there is some
P1 ≤ H, S ≤ P1, P1/O2(P1) ∼= Σ3 and a Sylow 3–subgroup of P1 centralizes
K. This shows that we have one of the cases of 11.8 and so we have a nice
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P .

So we may assume that K is not normal. Then we get with 1.1 that
K ∼= L2(r) or L3(2). Assume that 〈KH〉 6= 〈KS〉. Then we get al least three
conjugates of K on which H induces a Σ3 or Z3. As NG(S) ≤ M by 7.3 we
get that Σ3 is induced. In particular one of the three conjugates, K1 say, is
normalized by S. As K1 induces an F–module we see that CYH

(K1) 6= 1.
Then as CCYH

(K1)(S) 6= 1, we get that K1 ≤ M . As [YH , K1] induces at most

two nontrivial irreducible modules, we see that [〈KS
2 〉, [YH , K1]] = 1. But as

C[YH ,K1](S) 6= 1, we have that 〈KH〉 ≤ M . The same is true if 〈KH〉 = 〈KS〉.
In particular in any case 〈KH〉 is covered by M∩H. In the case of K ∼= L2(r)
we get that [K, YH ]/C[YH ,K](K) is irreducible and C[YH ,K](S ∩K) 6≤ CYH

(K).
This shows that CYH

(S) 6≤ CYH
(K) and then [YH , 〈KH〉] ≤ YM , contradicting

11.3. This gives K ∼= L3(2) and [YH , K] is a sum of two natural modules.
This shows again that one of them is in YM and some Σ3 is induced on them.
In particular we have (L3(2) o Z2) × Σ3 on [YH , KH ]. But now 5.16 gives
H ≤ M , a contradiction. 2

ast

Proposition 12.21 If F ∗(CG(x)) = O2(CG(x)) for all 1 6= x ∈ YH , then
there is a nice P .

Proof: By 12.20 we may assume that YH ≤ O2(CG(x)) for all
1 6= x ∈ YH . As b is odd we now may apply 3.10 to the amalgam (RH , RM).
By 12.7 the case 3.10(3) does not show up. Then we have that one of
3.12, 3.13 or 3.14 holds. Suppose that we are in 3.12 or 3.14. Recall that
YH 6≤ Z(O2(RM)). So we always have a strong dual F–module. By 12.16 we
may assume that this is realized by F (H/CH). Then by 12.17 the offender
A = 〈x〉 has to be of order two and so induces a transvection on YH . Now
x acts on a Sylow p–subgroup P of F (H/CH). Then p = 3. By 5.15 we get
that [x, P ] 6≤ M . Then with 11.9 we get a nice P .

Hence we may assume that we have the situation of 3.13. If A acts on
F (H/CH) nontrivially we get again transvections and so the assertion fol-
lows with 5.15 and 11.9. Hence there is some component K on which the
offender A acts nontrivially. If K is not in M we get the assertion with 11.8.
So assume K is covered by M ∩ H. Let first K be normal in H/CH . If
YM ∩ [YH , K] ≤ C[YH ,K](K). As CYH

(S) ≤ YM , we see with 3.38 that K ∼= An

or L3(2). In both cases we get YM = C[YH ,K](K) and so by 11.3 H ≤ M .
Hence YM ∩ [YH , K] 6≤ C[YH ,K](K). As M ∩H = (M0 ∩H)(CM ∩H), we get
that KCH/CH ≤ M0CH/CH . Then we may assume that K ≤ (Mβ)0 where
d(β, α′) = b− 1. As K is normal in H/CH , we get that the same applies for
RH . Hence K ≤ (Mβ)0 ∩ RH ≤ RMβ

. By 3.13 we have that the offender A
was in O2(RMβ

), a contradiction.

188



So we have that K is not normal. Suppose first that we have exactly two con-
jugates of K, i.e. 〈KH〉 = 〈KS〉. If [YM ∩ [YH , 〈KH〉], 〈KH〉] 6= 1, then again
we get 〈KH〉CH/CH ≤ M0CH/CH . And then we get the same contradiction
as before. So we have that [YM , 〈KH〉] = 1. But then with 3.38 we get again
that YM is normal in H, a contradiction. So we must have three components,
which then are isomorphic to K ∼= L2(r) or L3(2) by 1.1. If all components
are covered by M0 we may argue as before. So we have a component K1,
which is not covered by M0. As [YH , K] is an F–module it involves at most
two nontrivial modules. Hence [[YH , K], K1]] = 1. As K1 is normalized by S,
we then also get that [K1, [YH , 〈KH〉]] = 1. This shows with 11.3 that K1 is
covered by M . As K1 is not covered by M0 we get [YM , K1] = 1. This now
shows that C[YH ,K1](S∩K1) ≤ C(K1). Then we see with 3.36 that K ∼= L3(2)
and |[YH , K]| = 16. Hence we have that |C[YH ,〈KH〉](〈KH〉)| = 8. On 〈KH〉
we have that H induces a group Σ3. But then we have that CYH

(H) 6= 1. As
CYH

(H) ≤ Z(S) we get H ≤ M with 8.11. 2

From now on we work under the following hypothesis

Hnonconstrain

Hypothesis 12.22 There is some 1 6= x ∈ YH such that E(CG(x)) 6= 1.
Further we have no nice P .

By 8.14 we have that the element x from 12.22 is not 2–central in G.

Now let x be as in 12.22 and set U = CG(x). Then obviously CS(YH) ≤ U .
So by 12.8 we may choose x such that S ∩ U is a Sylow 2–subgroup of U .

stroncon

Lemma 12.23 Let L1 be a parabolic in U containing S ∩ U with F ∗(L1) =
O2(L1). Then YH ≤ O2(L1).

Proof: Otherwise L1 satisfies (i) - (iii) of 12.9 and so there is some L
which satisfies 12.9, which contradicts 12.20. 2

stru1

Lemma 12.24 We have YH 6≤ O2(U) and [N, YH ] ≤ N for any component
N of U . Further N × 〈x〉 is not contained in a uniqueness group.

Proof: Let YH ≤ O2(U). Then [E(U), YH ] = 1. So E(U) ≤ CH . As
O2(H) ≤ U , we have that [E(U), O2(H)] ≤ O2(E(U)). This shows that
[O2(H), E(U)] = 1 contradicting 8.14.
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Let NYH 6= N . As YH is normal in S ∩ U , we have that N/Z(N) has
abelian Sylow 2–subgroups. In particular we have N/Z(N) ∼= L2(2

n), as
N ∈ C2. Let X = NN(S ∩ N). Then L1 = 〈X, S〉 is a constraint parabolic
with YH 6≤ O2(L1), contradicting 12.23.

Suppose that N〈x〉 ≤ M1, M1 be a uniqueness group. Then by 8.14 we
have that F ∗(M1) = O2(M1). As [N,CO2(M1)(x)] = 1, the A × B–lemma
gives a contradiction. 2

stru2

Lemma 12.25 We have [N, YH ] = N for any component N of U .

Proof: Suppose [N, YH ] = 1. Then by 11.1 we have N ≤ H. But
then [N,O2(H)] ≤ O2(H) and so, as O2(H) ≤ U , we have [N, O2(H)] = 1,
contradicting 8.14. 2

struM

Lemma 12.26 Let N be a component of U , then N 6≤ M . In particular
E(U) = N and CYM

(N) = 1.

Proof: We have N 6≤ M by 12.24.

Suppose first that YM ∩ N 6= 1. Then by 5.14 we get that N = E(U).
So we may assume that

YM ∩N = 1 and then [YM , S ∩N ] = 1.

By 12.24 we have that mp(U) ≤ 3 for all odd primes p. Hence we may assume
that m3(N) ≤ 1. By 1.1 and N ∈ C2 we now get that

N/Z(N) ∼= L2(q), U3(q), L3(q), Sz(q) or L2(p).

Further we have that there are nontrivial elements in Z(S ∩ U) ∩ YM0 . As
these elements cannot centralize N by 5.14 we have that Z(N ∩ S) 6≤ Z(N).
So by 1.16

N is simple.

Let first N be a group in characteristic two i.e. L2(q), L3(q), U3(q) or Sz(q).
Let q ≥ 4. If N 6∼= Sz(q) or L2(q), then N is normal in U , as otherwise
mp(U) ≥ 4 for some p.

Let R be a root group normal in (S ∩N) and let K be some group of order
q − 1 acting transitively on R] and normalizing S ∩N . Suppose that S ∩ U
normalizes (S ∩N)K then set B = (S ∩ U)K. If S ∩ U does not normalize
(S ∩ N)K, which is the case for N ∼= Sz(q) or L2(q) and N not normal in
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U or N ∼= L3(q) and some graph automorphism is induced by S ∩ U). Then
there is some t ∈ S ∩ U with Kt = K1 and (S ∩ N)(S ∩ N)t(K × Kt) is
normalized by S ∩ U). Then set B = (S ∩ U)(K ×K1).

We first show that B ≤ H. We consider the group

X = 〈RH , B〉.
If O2(X) 6= 1, then we have that YX ≥ YH and by maximality of YH we get
YX = YH and then X ≤ H and so B ≤ H the assertion.

So we may assume that (RH , B) is an amalgam. Let first N 6∼= L2(q). Then
we can use the property that there is no involution in U acting on B and
acting nontrivially on K, further on K × K1 the only such involution in U
acting nontrivially is one interchanging K and K1. This all is true as q = 2n,
n odd.

Let the parameter b for the amalgam (RH , B) be odd. Let (α, α′) be a
critical pair. We may assume that Yα ∼ YH . So let us assume that Yα = YH .
As 1 6= [YH , Yα′ ] ≤ YH∩Yα′ , we get that YH acts nontrivially on Bα′/O2(Bα′).
Hence we have that N ∼= Sz(q) and N is not normal in U or N ∼= L3(q) and
S ∩ U induces a graph automorphism on N . In the latter, as Yα′ is abelian
and normal in Bα′ , we see that Yα′ is centralized by a Sylow 2–subgroup of
Bα′ , contradicting [YH , Yα′ ] 6= 1. So we have N ∼= Sz(q). Now YH inter-
changes two components of Uα′ . Let r ∈ Y ]

M0
with r ∈ O2(Bα′). Then r

centralizes a Sylow 2–subgroup T of 〈NYH
α′ 〉. Hence by 5.14 T ≤ M . Now

also 〈Y T
H 〉 ≤ O2(M). But by 12.7 we have that this group is abelian, while

form Uα′ we see that it contains a Sylow 2–subgroup of Sz(q), a contradic-
tion. Hence we have that |YM0)| = 2 and interchanges two components in
Uα′ . Then in Uα′ we have that YM0 centralizes a group L isomorphic to Sz(q),
which by 5.14 is in M . But we have that [Yα′ , YH ] ∩ L 6= 1 and so we get a
contradiction to YH ≤ O2(M) as before.

So we have shown that b is even. Now by 12.7 we get that [YB, Yα′ ] 6= 1,
where Yα′ is conjugated to YB. But then YB must be an F–module, which is
not the case.

So we have shown that

If N is a group of Lie type in characteristic two different from L2(q) then

B ≤ H.

Let now N ∼= L2(q). Further if N ∼= A5 we will assume that U does not in-
duce a Σ5. Let b be odd. So again we may assume YH = Yα and [YH , Yα′ ] 6= 1.
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Set Y1 = 〈Y g
M0

| g ∈ H〉. Asumme that Y1 induces just inner automor-
phism on Nα′ . Let Tα′ be a Sylow 2–subgroup of Nα′ . Then we have that
[Y1, Tα] = 1. Hence Tα′ ≤ M g for all g ∈ RH .

Suppose there is some t ∈ YH which induces a field automorphism on
Nα′ . Let Wα′ = CNα′ (t), then we have that Tα′ ∩ Wα′ = [Tα′ , t]. Hence
NWα(Tα ∩ Wα) ≤ NG(YH) ≤ H by 11.1. If q > 4, then we have that
Y1 ∩Wα′ = Tα′ ∩Wα′ , as there is no element in YM0 which centralizes Nα′ ,
and so [Tα′ , YH ] ≤ Y1. But now elements of odd order in 〈TH

α′ 〉 centralize YH

and so Tα′CH/CH ≤ O2(H/CH) = 1, a contradiction. So we have N ∼= A5.
But then t induces Σ5 on Nα′ , a contradiction.

So we may assume that YH does not normalize Nα′ . Let t ∈ YH \ NG(Nα′).
Then Wα′ = CNα′×Nt

α′
(t) ∼= Nα′ and a Sylow 2-subgroup of this group is in

YH . Hence again NWα′ (CTα′ (t)) ≤ H and so it normalizes Y1. This shows
that Y1 ∩Wα′ = [Tα′ , YH ]. But then as before elements of odd order in 〈TH

α′ 〉
centralize YH and so Tα′CH/CH ≤ O2(H/CH) = 1, a contradiction.

So we may assume that some r ∈ YM0 does not induce an inner automor-
phism on Nα′ . Then Xα′ = C〈Nα′ ,Nr

α′ 〉(r)
∼= L2(t), where t = q if r does

not normalize Nα′ and t2 = q otherwise. In any case by 5.14 we have that
Xα′ ≤ M . Now we get that [Yα′ , YM0 ] contains a Sylow 2–subgroup of Xα′ ,
which contradicts O2(Xα′) = 1.

So we have that b is even and then by 5.14 we have that [YB, Yα] 6= 1.
So YB is an F–module, which gives q = 4 and N ∼= A5 and Σ5 is induced.

So we have shown that

If N is a group of Lie type in characteristic two and S ∩ U does not

induce Σ5 on N, if N ∼= A5, then B ≤ H.

In case of L3(q) and no graph automorphism is involved we have that the
full Borel subgroup is in H, as we have two choices for K. In all cases
[YM0 , B] ≤ YH . We have that [YM0 , S ∩ N ] = 1, so YM0 induces an inner
automorphism from R. In particular there is some r ∈ R and r1 ∈ CU(N)
with 1 6= rr1 ∈ YH . Now 〈(rr1)

K〉 ≥ R. This gives that R ≤ YH .

Now set W = 〈Y g
H | g ∈ M〉. By the assumption following 12.7 we have

that W is abelian and so W ≤ U . Then we have that R ≤ W . Suppose that
W = CW (N)R, then we have that B ≤ NG(W ) = M . But then with the
same argument as above we have that R ≤ YM0 contradicting YM0 ∩N = 1.
So we have that the projection of W onto N is greater than R and then
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N ∼= L3(q). As this projection is normal W ∩ N in S ∩ U and elementary
abelian, we see that no graph automorphism can be induced. This then gives
that the full Borel subgroup of N is in H. Now in B there is a subgroup K1

of order q − 1, which centralizes R and acts transitively on the projection
of W onto N modulo R. Hence we see that W ∩ N is elementary abelian
of order q2. Let L1 = NN(W ∩ N). Then L1 acts transitively on (W ∩ N)]

and as L1 normalizes W , we have that L1 ≤ M . But then we have that
YM0 ∩N 6= 1, a contradiction.

So we have shown

E(U) = N or N ∼= L2(p) where in case of p = 5

the group S ∩ U induces Σ5 on N.

Let now N ∼= L2(p), p odd. In case of p = 5 we assume that S ∩ U induces
Σ5 on N . We next show

(∗) If E(U) ∼= A5 × A5 then 3 6∈ σ(M).

Assume 3 ∈ σ(M) We have that S induces on both components a group Σ5.
Let T be a Sylow 3–subgroup of E(U) and M1 be a conjugate of M with
T ≤ M1. By 12.24 we have that U 6≤ M1. Hence T contains some element
t 6= 1 such that CG(t) 6≤ M1. Suppose first that M1 is exceptional with
respect to p = 3. Then there is some t1 ∈ T such that CG(t1) ≤ M1. Hence
x ∈ M1. This now shows with 5.6 that CCO2(M1)(x)(t) = 1. Now as N 6≤ M1

by 12.24 we have that t1 6∈ CE(U)(N). In particular for t ∈ CE(U)(N), we
have that CG(t) 6≤ M1. Hence O2(M1)∩U ≤ CE(U)(N). But the same applies
for the other component N1 of E(U), a contradiction. So we have that M is
not exceptional. In particular T is not centralized by an elementary abelian
subgroup of order 27 in M1. As T contains a 3-central element from M1, we
get that no SL(2, 3) is induced on T . The structure of NU(T ) shows that
NM1(T )/CM1(T ) ∼= Z2 × Σ3. In particular there is τ ∈ T , τ 3-central in M1

such that 〈τ〉 is normal in NM1(T ). This now shows that we may assume
that τ ∈ N and so 〈x〉N1 ≤ M1, contradicting 12.24. This proves (∗).

Set again W = 〈Y g
H | g ∈ M〉. As YH ≤ O2(M) we have with 12.7 that

W is elementary abelian, so W ≤ U .

Let first [W,N ] 6≤ N . As W is elementary abelian and normal in S ∩ U ,
we get that N has an abelian Sylow 2–subgroup and so N ∼= A5. Then there
is some τ of order three in N ×Nw, w ∈ W \NW (N) such that τ normalizes
W . Hence τ ∈ M . It τ centralizes YM0 , then we have that YM0 centralizes
E(U), contradicting 5.14 and 12.26. So we have that 1 6= [YM0 , τ ] ≤ N×Nw.
By (∗) we have 3 6∈ σ(M). Assume that |W | ≤ 8. Then as YH normalizes
N by 12.25, we have that YH ≤ N × Nw, which contradicts x ∈ YH . So we
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have that |W | ≥ 16. So N centralizes a nontrivial subgroup of index 8 in W
and then σ(M) = {7}. Further e(G) = 3. We have L1 = CN×Nw(w) ∼= A5.
Now L1 centralizes a subgroup of index 4 in W and so L1 ≤ M . But W is
normal in M and [S ∩N, w] is a Sylow 2–subgroup of L1, a contradiction.

Let [W,N ] ≤ N . Then we have that |W : CW (N)| ≤ 4. Assume that
|W | ≤ 4. As YH 6= YM0 , then W = YH is normal in M , a contradiction.
So we have that |W | ≥ 8 and so CW (N) 6= 1. As N 6≤ M , we have that
no element in CW (N) is centralized by a good E. Thus σ(M) = {3}. Fur-
ther |W : CW (N)| = 4. As W is normal in a Sylow 2–subgroup of S ∩ U
we have that N ∼= L2(7) or A5. Now m3(U) ≤ 2 and so E(U) = N × N1,
where N1

∼= L2(7) or A5 too. By (∗) we have E(U) 6∼= A5 × A5 before, we
may assume N ∼= L2(7). Then in NCU(N) there is a subgroup L1 such that
L1/CL1(N) ∼= Σ4 and W ≤ O2(L1). But now L1 is generated by involutions
in L1 \ O2(L1), which centralize a subgroup of index two in W , which then
gives that L1 ≤ M . Hence in N there is a subgroup L2

∼= Σ4, such that
L2 ≤ M . As YM0 does not centralize N it projects nontrivially on O2(L2)
and so YM0 ∩N = YM0 ∩ L2 6= 1, a contradiction.

So we have N = E(U) and CYM
(N) = 1 follows with 5.14. 2

We now choose U such that N is maximal.
stru3

Lemma 12.27 Let V0 = CYH
(E(U)), and g ∈ H with V0 ∩ V g

0 6= 1, then
V0 = V g

0 .

Proof: Let v, w ∈ V0 with vg = w. Then by maximality N and N g

both are components of CG(w). But then by 12.26 we get N = N g and so
V0 = V g

0 . 2

Nocon

Lemma 12.28 We have that F ∗(CG(x)) = O2(CG(x)) for all x ∈ Y ]
H . In

particular 12.22 is not satisfied, i.e. there is a nice P .

Proof: Suppose false. By 12.26 and 5.13 we get that the central-
izer L1 = CU(y) for some involution y ∈ YM0 , which centralizes a Sy-
low 2–subgroup of N , is contained in M . As YH ≤ O2(M), we see that
YH ≤ O2(L1). By 12.7 we have that 〈Y L1

H 〉 is abelian.

Let first

N/Z(N) 6∼= Sp(2n, q) or F4(q).
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Recall that N ∈ C2. Further by 12.24 we have that m3(N) ≤ 3. So with 1.1
we get that N is group of Lie type in characteristic two, including A6, L2(p),
L3(3), Mn, Jn, HS or Ru.

If |YH : V0| = 2, and |YH | > 4 then by 12.27 that H normalizes V0 and
so H normalizes N by 12.26 but then YH ≤ C(U), a contradiction. So we
have that |YH | = 4. But then H induces Σ3 on YH and so by 11.9 we have a
nice P . So we have that

|YH : V0| > 2.

Assume YH ≤ O2(U)Z(L1 ∩ N). This now shows that we have that N is
a group of Lie type G(q) and |YH : V0| ≤ q > 2. Further by 12.23 we
have that YH does not induce outer automorphisms on L. Let R be the
root subgroup corresponding to L1. We have that L1 ∩ N ≤ CH and so
O2(L1) ≤ O2(CH) ≤ O2(H).

Suppose O2(H) ≤ O2(U)O2(L1), so O2(H) = O2(L1)(O2(H)∩O2(U)). Then
the Cartan C subgroup corresponding to R of N normalizes O2(H) and so
is in H. This shows that |YH : V0| = q. Let O2(H) 6≤ O2(U)O2(L1). Then
[O2(H), L1] ≤ O2(L1), which shows that N ∼= Ln(q), n ≤ 4. If n = 4, then
O2(H) just induces graph automorphism. But then there is some element ρ
of order q − 1 acting transitively on R and centralizes O2(H)/O2(L1). This
gives again C ≤ H and then |YH : V0| = q. Let n = 3, then we have ρ with
o(ρ) = q − 1/gcd(3, q − 1) and we get the same result, or q = 4. But as
|YH : V0| > 2, we get |YH : V0| = 4 = q. So we are left with N ∼= L2(q) and
O2(H) induces field automorphisms. As |YH : V0| > 2, and YH is centralized
by O2(H), we have that q > 4. Hence we have that J(O2(CH)) ≤ O2(U)N
and J(O2(CH))∩N is a Sylow 2–subgroup of N . Now NN(J(O2(CH))) ≤ H
and so again C ≤ H and so YH∩N is a Sylow 2–subgroup of N , contradicting
O2(H) 6≤ NO2(U). Hence in any case we have that |YH : V0| = q.

We have that V0 is not normal in H, then with O’Nan’s Lemma [GoLyS2,
(14.2)], we get that either |YH | = 8 and H/CH is a Frobenius group of order
21, but then H = CHNH(S) ≤ M , a contradiction, or [YH , C] ∼= V0 and
|H : NH(V0)| = 2 = |H : NH([YH , C])|, or even [YH , C] is normal in H.

Assume first that C ≤ M . We have that N ≥ [YH , C]. But then as
YM0 ∩ V0 = 1 by 5.14 and 12.26 and YH = V0 × [YH , C] we have that
YM0 ≤ [YH , C] ≤ N . As S normalizes YM0 , we have that [YH , C] is nor-
mal in H. Then H = (M ∩ H)NN([YH , C]). As C ≤ M and L1 ≤ M , we
have that NN([YH , C]) ≤ M . But then H ≤ M . So we have shown that

C 6≤ M, if YH ≤ O2(U)Z(L1 ∩N).
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We consider W = 〈Y g
H | g ∈ M〉. By 12.7 we may assume that W is abelian.

Further W ≤ O2(M). So the projection of W onto N is an elementary abelian
normal subgroup in L1. As N is a group of Lie type, we get either that
W ∩L1 = YH ∩L1 and this is also the projection onto N or N/Z(N) ∼= Ln(q)
or 2F4(q). Suppose the former. Let W 6= (W ∩ L1)(W ∩ CU(N)). Then
there is some outer automorphism 1 6= t ∈ W of N such that [t, S ∩N ] ≤ R,
a contradiction. So we have that NN(YH ∩ L1) ≤ M . This now gives that
C ≤ M , a contradiction. So we have that

N/Z(N) ∼= Ln(q), n ≥ 3, or 2F4(q), if YH ≤ O2(U)Z(L1 ∩N).

If N/Z(N) ∼= 2F4(q), then the projection is normalized by Sz(q) and so the
projection is equal to W ∩ N . But then W ∩ N = O2(L1 ∩ N) and so it is
normalized by C, which then normalizes W too, and so is in M , a contradic-
tion.

So let N/Z(N) ∼= Ln(q). If the projection is normalized by SLn−1(q),
then we get the same contradiction as in the 2F4(q)–case. Hence we have
N/Z(N) ∼= L3(q) or L4(q). In the latter some t ∈ W invert some element ρ
of order q− 1, which centralizes YH ∩N and so also YM0 , which then contra-
dicts W ≤ O2(M). So we have N/Z(N) ∼= L3(q). If q > 4 we may argue as
before with some ρ, o(ρ) = q − 1/gcd(3, q − 1).

So we have N/Z(N) ∼= L3(4). Let first 3 ∈ σ(M). Let T be a Sylow
3–subgroup of N . Then there is some conjugate M g of M with T ≤ M g

and some 1 6= ρ ∈ T with CG(ρ) ≤ M g. As T centralizes any 2–group in
U , which is normalized by T , we see that [CO2(Mg)(x), T ] = 1. With the
A × B–lemma we get the contradiction [T, O2(M

g)] = 1. Hence 3 6∈ σ(M).
Let now P1 be the parabolic in N such that W projects onto O2(P1). We
have that |O2(P1)/Z(N)| = 16. Then P1 is generated by involutions i such
that |W : CW (i)| ≤ 4. In particular any such involution centralizes some
j ∈ W with CG(j) ≤ M by 5.8. Hence P1 ≤ M . As P1 acts transitively
on O2(P1)/Z(N), we get that YM0 ≥ O2(P1). This gives Z(N) = 1 and
YM0 = O2(P1). But then we have that YH 6≤ O2(U)Z(L1 ∩ N). So we have
that

YH 6≤ O2(U)Z(L1 ∩N).

In that case we must have a normal abelian subgroup in L1 ∩ N , which is
not in Z(L1 ∩N). This shows that

N/Z(N) ∼= Ln(q), 2F4(q),Mn, or Ru.

Further let Y be the projection of YH onto N . As S ∩ CH centralizes YH it
also centralizes Y . Hence by 3.4 we have that Y = YH ∩N .
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We show
N/Z(N) 6∼= Ln(q).

If we have N/Z(N) ∼= Ln(q), there are two parabolics Li
∼= qn−1SLn−1(q),

i = 2, 3 in N such that O2(L2)O2(L3) = O2(L1∩N) and O2(L2)∩O2(L3) = R.
Both are interchanged by the graph automorphism. As YH is normal in S∩U ,
we have that there is no graph automorphism. But then YH 6≤ O2(Li) for at
least one i = 2, 3, contradicting 12.23.

Assume now that N is sporadic or 2F4(2). Let again W = 〈Y M
H 〉. Then

by 5.8 there is a fours group V in W such that CG(v) ≤ M for all v ∈ V ].
Set L = 〈L1 ∩ N, CN(v) | v ∈ V ]〉 ≤ M . If L1 ∩ N is maximal in N ,
then we have that L = N , a contradiction. Hence we have that N 6∼= Ru,
M12 or 2F4(2). If N/Z(N) ∼= Mn, n = 22, 23, or 24, then we have that
L/O2(L) ∼= A6, A7 or A8. In all cases we now have that 〈Y L

M0
〉 contains

O2(L). Hence O2(L) ≤ YM0 ≤ YH , contradicting 12.23 with the 2-local
24Σ5,in M22 and M23 and 263Σ6 in M24. We now have

N/Z(N) ∼= 2F4(q), q > 2.

Let X = 〈Y CN (R)
H 〉. Then X is elementary abelian of order q5. Let P be the

other parabolic of N containing S ∩N . Then we have that X ≤ O2(P ) and
〈XP 〉 is nonabelian. We have that the intersection XP of all conjugates of X
in P is of order q3. As 〈Y P

H 〉 is abelian by 12.7, we see that YH is contained in
that intersection XP . If YH projects into Z(O2(P )), then O2(H)∩N central-
izes YH and so O2(P ) ≤ O2(H0) and then Z(O2(P )) = YH∩N . Hence P ≤ H.
If it does not project into Z(O2(P )), then as [YH , O2(P )] = Z(O2(P )), we
have Z(O2(P )) ≤ YH . Now we have that CP (XP /Z(O2(P )))/O2(P ) ∼= L2(q).
So NP (YH) involves L2(q). Hence in both cases H induces an F–module on
YH . As q > 2 this is affected by some component K which is not in M . So
by 11.8 we have a nice P .

Hence we finally have to handle the cases

N/Z(N) ∼= Sp(2n, q) or F4(q).

By 12.24 and 1.2 we get N/Z(N) ∼= Sp(4, q)′ or Sp(6, q).

Let first q = 2. Set as before W = 〈Y M
H 〉. As no Sylow 3–subgroup of

N normalizes a nontrivial 2–group in N , we get as above that 3 6∈ σ(M).
Hence we have a subgroup V in W of order 8 such that CG(v) ≤ M for
all v ∈ V ]. Let first N ∼= A6, Then W projects onto one of the two el-
ementary abelian groups of order 8 in Σ6 and so the same applies for V .
But then the projection contains (1, 2) and (1, 2)(3, 4)(5, 6) as well and so
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N = 〈CN(v) | v ∈ V ]〉 ≤ M , a contradiction. So we have that N ∼= Sp(6, 2).
As the projection of YM0 onto N contains some element in Z(S ∩N), we see
that in any case CN(Z(S ∩N)) ≤ M . If M ∩N > CN(S ∩N), then M ∩N
is the centralizer of some root element. As W is normalized by M ∩ N , we
see that W projects onto Z(O2(M ∩N)). But then in both cases there is no
elementary abelian subgroup of order 8 in Z(O2(M∩N)) all of whose central-
izers are in M∩N . This shows that M∩N = CN(Z(S∩N)). Let ρ ∈ M∩N ,
with o(ρ) = 3. Then we have that |CO2(M∩N)(ρ) : Z(O2(M ∩ N))| = 2. As
any involution in Sp(6, 2) is centralized by some element of order 3, we see
that V must be contained in CN(ρ) and so |V ∩ Z(O2(N ∩M))| ≥ 4. As V
does not contain root elements, we see that |V ∩ Z(O2(N ∩M))| = 4. But
then CCO2(M∩N)

(V ∩ Z(O2(N ∩M))) = Z(O2(N ∩M)), a contradiction. So
we now have

q > 2.

Assume first that some element of Y ]
M0

projects nontrivially in some root
group R. Then CN(R) ≤ M . Let W be as before. Suppose that W projects
into R. Then we have that CN(R) normalizes YH and so CN(R) ≤ H. Hence
we see that O2(H)∩N ≤ O2(CN(R)). But then we see that the Cartan sub-
group related to S ∩N is contained in H, as it normalizes O2(H). Hence we
get that R = YH ∩N , is the projection of YH onto N . Now also W ∩N = R
and so C is even contained in M . Now as above we get applying O’Nan’s
lemma that |H : NH(R)| ≤ 2. But R = YM0 , which is normalized by S and
so YM0 would be normal in H, a contradiction.

So W does not project into R. As W is an elementary abelian normal sub-
group in M , we get that W ∩N = Z(O2(CN(R))). But now again C ≤ M .
Further again YM0 = R. Further we have that YH 6= V0R, as we otherwise
may argue as before.

Hence in any case we may assume that the projection of YH onto N is not
contained in a root group. Assume first that the projection of YH onto N
is contained in Z(S ∩ N). Then there is some r ∈ YH which projects on
neither of the two root groups in Z(S ∩N). Now Z(S ∩N) = Z(O2(CN(r))
and so Z(S ∩ N) = Z(O2(CN(YH))). Now we have that O2(CH) ∩ N =
O2(CN(YH))) = O2(NN(Z(S ∩ N))). The latter group is normalized by the
Cartan subgroup C and so C ≤ H. Then YH ∩N = Z(S ∩N).

Suppose that YH does not project into Z(S ∩N). As YH is normal in S ∩ U
and by 12.7 the projection of YH is in O2(L) for any parabolic L of N , we
see that we must have N ∼= Sp(6, q). Let X be the intersection of O2(L)
for the three maximal parabolics L of N . Then we see that |X| = q3. Let
L2 = NN(X). Then O2(L2) = CL2(X). As the projection of YH is in X,
we get that CN(YH) = O2(L2). But now NN(X) normalizes O2(CH) and
so NN(X) ≤ H. This gives that a Cartan subgroup C of N is in H and
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so YH ∩ N = X is equal to the projection. Let E be the unique elemen-
tary abelian subgroup of order q6 in S ∩ N . Then E ≤ O2(CN). Hence
we have that E = Z(J(O2(CH))) ∩ N . This shows that NN(E) normalizes
Z(J(O2(CH))), so NN(E) ≤ H. But as X is not normal in NN(E), we get
that YH ∩N = E, a contradiction. So we have shown

YH ∩N = Z(S ∩N).

Let now N ∼= Sp(6, q). We have that S ∩ CH = (CH ∩ CU(N) ∩ S)(S ∩N).
Let again E be the unique elementary abelian subgroup of order q6 in S∩N .
Then we see that E ≤ Z(J(S∩CH)). Hence NN(E) normalizes Z(J(S∩CH)).
So Z(J(S ∩ CH)) is normal in 〈H0, NN(E)〉 = D. By maximality of YH we
have that YD = YH and so NN(E) ≤ H. But then NN(E) must normalize
Z(S ∩N) = YH ∩N , a contradiction. So we have shown that

N ∼= Sp(4, q).

Let W be as before. If W ∩ N = YH ∩ N , then C normalizes W and so
C ≤ M . This now implies that R = YM0 for some root group R. In partic-
ular CN(R) ≤ M . But Z(S ∩ N) is not normal in CN(R), a contradiction.
So we have that YH ∩ N < W ∩ N . Let E ≤ S ∩ N be elementary abelian
of order q3 such that W ∩ N ≤ E. Then we have that [E,W ] = 1. As
CO2(M)(W ) ≤ U , we see that [E,CO2(M)(W )] = 1. Hence the A× B–lemma
yields that E ≤ O2(M). In particular NN(E) normalizes CO2(M)(W ). This
shows that NN(E) ≤ M . Hence E = W ∩ N , C ≤ M and M = R, where
NN(E) = NN(R).

Let T = CH∩S. We have that T ∩N = EF , where E = T ∩N∩O2(M). Fur-
ther we have that T = (T ∩N)(T ∩CU(N)). Let first T ∩CU(N)) be abelian.
Then as Ω1(Z(T )) = YH by 3.4 we have that V0 = Ω1(T ∩ CU(N)) and so
J(T ) = EFV0. As F 6≤ O2(M), we have that S normalizes V0E. As there
are exactly two elementary abelian subgroups of order |EV0| in J(T ), we get
that H0 normalizes EV0. Hence V0E is normalized by D = 〈H0, NN(E)〉.
But then by maximality of YH we get that YH = YD and so NN(E) ≤ H,
which gives E ≤ YH , a contradiction. So we have shown that T ∩ CU(N)
is nonabelian. As (T ∩ N)′ = YH ∩ N and Z(S) ∩ V0 = 1, we get that
(T ∩CU(N))′ ≤ V0. In particular [T, T ∩CU(N)] ≤ V0. Further we have that
V0 is not normal in H0 and so there is g ∈ H0 such that V0 ∩ V g

0 = 1.
Then [T, (T ∩ CU(N)) ∩ (T ∩ CU(N))g] ≤ V0 ∩ V g

0 = 1. In particular
(T ∩CU(N))∩(T ∩CU(N))g ≤ Z(T )∩CU(N)∩CU(N)g. By 3.4 we have that
Ω1(Z(T )∩CU(N)) = V0. Hence we have that (T∩CU(N))∩(T∩CU(N))g = 1.
In particular T ∩ CU(N) is isomorphic to a nonabelian subgroup of T ∩ N .
This first shows that V0 = (T ∩ CU(N))′ and T ∩ CU(N) contains at most
two elementary abelian subgroups of maximal order. Let J be an elemen-
tary abelian subgroup of maximal order in T , then we have that J = EX
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or FX, where X is an elementary abelian subgroup of maximal order in
CU(N). In particular there are either two or four such groups. Let A = EX
or A = FX be normal in H0 for some X, then we have that A is normalized
by D = 〈H0, NN(A)〉, which again by maximality of YH is contained in H.
But then YH ∩N would be E or F , a contradiction.

Suppose next that S normalizes some EX, then EX has exactly 3 conjugates
under H0 and so some FX1 is normal, a contradiction. So we have that EX
either has two or 4 conjugates under S. We have that E ≤ W = 〈Y M

H 〉,
where W is normalized by S. Hence we have that EX must have exactly
two conjugates under S and the same applies for FX. Finally FX is not
conjugate to EX. Let X1, X2 be the two maximal elementary abelian sub-
groups in CU(N)∩T . Then we have that 1 6= [EX1, EX2] ≤ [X1, X2] ≤ V0 is
a normal subgroup in S. But then V0 ∩ Z(S) 6= 1. As Ω1(Z(S)) ≤ YM0 this
shows YM0 ∩ V0 6= 1, which with 5.14 gives N ≤ M , contradicting 12.26.

This final contradiction proves that F ∗(CG(x)) = O2(CG(x)) for all 1 6=
x ∈ YH . With 12.21 we now get the assertion. 2
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13 The group H for YH 6≤ O2(M)

In this section we assume that YH 6≤ O2(M). Then we may apply 4.2. There
are two cases to handle.

(1) There is g ∈ M with 1 6= [YH , Y g
H ] ≤ YH ∩ Y g

H

(2) There is the group L given by 4.2. We have that A = Y g
H∩O2(L) acts as

2F–module offender on YH with [YH , A, A] = 1. If A acts quadratically,
then it induces a strong F–module on YH .

If we have case (1) we will denote by A the group Y g
H .

nottrivial

Lemma 13.1 Assume case (2) above. Then A ∩O2(M) 6≤ A ∩ CH .

Proof: We have that [A∩CH , YH ] = 1. Hence we have that A∩CH ≤
YH∩A. So A∩O2(M) ≤ YH∩Y g

H . We have that [A,O2(M)] ≤ [Y g
H , O2(M)] =

[YH , O2(M)] ≤ O2(M) ∩ A ∩ YH ≤ YH ∩ Y g
H . Let x ∈ L, o(x) be odd. Then

[O2(M), x] ≤ YH ∩ Y g
H and [YH ∩ Y g

H , x] = 1. Hence x ∈ CM(O2(M)), so
x = 1. But then L is a 2–group, a contradiction. 2

Again the aim of this section is to prove that we have a nice P .

notM1

Lemma 13.2 Let K be a component or a Sylow subgroup of F (H/CH) which
is in M , if A does induce an F–module offender on K, then there is a nice
P . In case of a Sylow subgroup of F (H/CH) the same holds for a 2F–module
offender.

Proof: Assume that we do not have a nice P . Let W = [K, YH ] and
assume first that K is normal in H. If YM ∩ W 6≤ CW (K) we get some
submodule of W which is in YM . But as YM ≤ Y g

H as g ∈ M , we have that
[A, YM ] = 1, so [A,K] = 1. So we have that YM ∩W ≤ CW (K), in particular
K is a component and not a Sylow group. Now by 3.16, 3.36 and 3.38 we get
that |YM ∩W | = 2 and so YM ∩W is normal in H, which contradicts 11.1.

So we have that K is not normal, and so again K is a component. If 〈KS〉
is normal in H, we may argue as before and get a contradiction. So we have
that K has three conjugates on which H induces Σ3. By 1.1 we see that
K ∼= L2(r) or L3(2). In particular [YH , K, K1] = 1 for a conjugate K1 6= K
of K. Again YM ∩W ≤ CW (K). So assume that K is normalized by S, we
get that K ∼= L3(2) and |YM ∩W | = 2. If K is not normalized by S then
CW S(S) ≤ YM and so again it has to be in C(〈KS〉), which shows K ∼= L3(2)
and |CW (K)| = 2.
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As 〈KH〉 centralizes CW (K) we get that 〈KH〉 is covered by M . Now
by 5.16 we get that H/CoreH(M ∩ H) ∼= Σ3. As H 6≤ M , we see that
for ρ ∈ H \ M with ρ3 ∈ M , that C[YH ,〈KH〉](〈KH〉) ∩ C(ρ) = 1. As
|C[YH ,〈KH〉](〈KH〉) ≤ 8, we now get |C[YH ,〈KH〉](〈KH〉) = 4. Let H1 be the
preimage of F ∗(H/O2/H). We have that [H1, CYH

(〈KH〉)] ≤ YM . If this
commutator is nontrivial, we get with 5.14 that H ≤ M , a contradiction.
Hence we have that [H1, CYH

(〈KH〉)] = 1. Now CYH
(〈KH〉) is a direct sum

of Σ3–modules. Now we he have that a Sylow 2–subgroup of CoreH(M ∩H)
centralizes YM In particular there is some P1 ≤ H, P1/O2(P1) ∼= Σ3 and P1

commutes with M0 such that YP1 is a direct sum of nontrivial Σ3–modules.
Hence we have one of the situations of 11.4, a contradiction. 2

Fmodule1

Lemma 13.3 Let case (1) above, then we have a nice P .

Proof: Let K be some component of H/CH such that A = Y g
H induces

some F–module offender on K. By 13.2 we may assume that K is not cov-
ered by M . So we may apply 11.8.

So we may assume that A induces an F – module offender on a Sylow p–
subgroup P of F (H/CH). By 13.2 we have that P 6≤ M . Then CYH

(P ) = 1.
Set P̄ = P/Φ(P ). As we have transvections on YH there is some a ∈ A with
|[P̄ , a]| = 3 and a induces a transvection on YH . So there is some preimage
B of [P̄ , a] with |[YH , B]| = 4. We may assume that B 6≤ M . Then the
assertion follows with 11.9. 2

From now on we assume without further notice that we are in case (2).

Fquad

Lemma 13.4 If A does act quadratically we have a nice P .

Proof: Now A induces an F–module offender. If this happens on
some component, we get the assertion with 13.2 and 11.8. So it happens on
F (H/CH). But YH is a strong F -module and so we get that |A| = 2 and A
induces transvections on YH . Then we get the assertion with 13.2 and 11.9.
2

2Ffaith

Lemma 13.5 Suppose A induces a cubic, not quadratic, 2F–module of-
fender, which acts faithfully on some component K of H/CH . Then we have
a nice P .

Proof: Suppose first K be covered by M . As ACH/CH ∩
O2(M)CH/CH 6= 1 by 13.1, we see that CACH/CH

(K) 6= 1, contradicting
the faithful action. so we have that K 6≤ (M ∩H/CH).
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The possible groups for K are given by 3.29 - 3.32. As H 6≤ M we get
by 9.1 that m3(K) ≤ 3. Hence K ∼= 3U4(3) is not possible.

Assume first that K is normal in H. Then we have that CYH
(K) = 1 by

8.11.

Let K be alternating, K 6∼= A5, A6 or A8. These groups will be handled
as Lie type groups lateron. If we have the permutation module and [YH , K]
involves just one module, we have an F–module and so the result follows with
11.8. So we may assume that we have exactly two permutation modules. As
in 11.4 we see that then K 6∼= A11 or A7 as in that cases K is generated by
centralizers of elements in C[YH ,K](S)]. If K ∼= A9, we have K ∩ M ∼= A8.
Then [YH , K] ≤ Z(O2(M)). Set VM = 〈[YH , K]M〉. Let C = CM(VM).
Then we have that O2(M/C) 6= 1. Let T ≤ S such that S ∩ C ≤ T and
TC/C = O2(M/C). We have that K ∩M 6≤ C and so we may assume that
K∩M is in NH(T ). But then [T, [K, YH ]] = 1, which shows that [T, VM ] = 1,
a contradiction.

Assume next that we have K ∼= A9 on the 8–dimensional spin module. Then
we have that M ∩ K ∼= 23L3(2), otherwise we may argue as before. Hence
we have that |YM | = 2 and we have the subgroup R ∼= A8 which induces a
4-dimensional module on 〈Y R

M〉. In particular we get some parabolic P , with
P/O2(P ) ∼= Σ3, inducing the 2-dimensional module, which is a nice P .

Assume next that we have K ∼= A7 and [YH , K] involves both 4-dimensional
modules. Then |YM | = 2 and M ∩K ∼= Σ4. Now take any other parabolic,
we get that we have Σ3 on a natural module, which is a nice P .

Let K ∼= 3A6 on two 6-dimensional modules, then we have that offender
act quadratically, a contradiction.

Assume next that we have a sporadic group. Then by 3.34 we just have
one of the Mathieu groups M2i on one of its natural modules.

If K ∼= M24, then M ∩ H/CH ∩ K = K1
∼= 24A8 or 263Σ6 depending

on the module. If K ∼= M23. Then K1 = M ∩ H/CH ∩ K ∼= 24A7.
If YM ∩ W > CW (K1), then YM ∩ W = CW/CW (K1)(O2(K1)). But then
CK1(YM) = 1, which contradicts [A, YM ] = 1. This gives |YM | = 2.

If K ∼= M22 then K1 = M ∩ H/CH ∩ K ∼= 24A6 or 24Σ5. In the first
case we argue as before for |YM | = 2. In the latter we have that CW (O2(K1))
is of order 4. But this group contains some x such that CK(x) ∼= L3(4),
which shows that we have x 6∈ YM by 5.14. So again we have |YM | = 2.
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In any case we have that |YM | = 2. So in case of M24 we get Σ3 on a 2-
dimensional module, while in case of M22 or M23 we also might get Σ5 on
the orthogonal module. Hence we have groups as in 11.4, so a nice P .

Let next K be a group of Lie type. Let first be the Borel subgroup in
M . Suppose that [K, YH ] involves just modules V (λ). By 11.5 we get that
K ∼= A6 and PΓL2(9) is induced on K. In particular we have two modules
V1, V2 in [YH , K] and |ACH/CH | = 8. As A does not act quadratically we
have that [YH , K] cannot be in O2(L). Let V1 6≤ O2(L). Then by 4.2 we have
that |[V1, A]| ≥ |A|. But this is not true for either of the two natural modules
for Σ6.

So assume that we have Ln(q2) or Sp(4, q2) on a tensor product module. Then
in both cases we get |YM | = q as it has to be in the center of the correspond-
ing parabolic. Further there is some parabolic P with E(P/CP ) ∼= L2(q

2)
and YP is the orthogonal module.

So we have that the Borel subgroup is not in M . If all modules are of
type V (λ), we get the assertion with 11.6. So we have to handle the cases
Ln(q2) and Sp(4, q2) on the tensor product module. Then we get a sub-
group U ∼= Ln−1(q

2)Zq+1 in M ∩H/CH ∩K/O2(H ∩H/CH ∩K) centralizing
YM , where n = 3 in case of Sp(4, q2). We have that |CYH

(U)| = q and
there is a subgroup of order q − 1 acting on CYH

(U). Further we have that
CYH

(U) ≥ YM . As B is not covered by M , we get that YM 6= CYH
(U). Hence

there is some group P1 containing S and the group of order q− 1, which acts
semi regularly on CYH

(U). Obviously 〈P1,M0〉 = P1M0.

Let q = 22cr, r odd. Choose b minimal such that the subgroup of order 22br−1
in P1/O2(P1) is not in M . Then first b ≥ 1, as the subgroup of order 2r − 1
normalizes a Sylow 2–subgroup and so is in M . Replace P1 by that group
and set P = P1M0. Now the subgroup L1 of order 22b−1r−1 is in M and acts
regularly on YM . As [L1, O2(M0)] ≤ O2(M0) so |YP : CYP

(O2(M0))|2 = |YP |.
As CYP

(O2(M0)) = YM , we have a nice P .

So we may assume that K is not normal. Then we have that K ∼= Sz(q),
L2(q), SL3(4), L3(2), SU3(8), 3A6, 3A7, 3M22. By 3.34 the last case cannot
occur. If we have SU3(8) then just natural modules are involved and so an
offender acts quadratically, a contradiction. The same applies for SL(3, 4)
and Sz(q). If we have L3(2) we see as above that offender either act quadrat-
ically or exact, both is a contradiction. In the cases of 3A6 and 3A7 there
are at most two modules in [K, YH ] so a conjugate has to centralize these
modules, which shows that Z(K) acts trivially. Now [YH , K] involves at
most two modules. Hence conjugates of K have to centralize [K, YH ]. Now
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CYH
(〈KS〉) = 1 and so we have exactly two conjugates. So we see that we

get Σ3 o Z2 on the orthogonal module, which gives a nice P .

So what is left is K ∼= L2(q). As A does not act quadratically, we have
that [YH , K] involves the orthogonal module just once and q = r2 or q = 4
and |A| = 2, where we might have two such modules. In any case any com-
ponent of H/CH different from K has to centralize [YH , K]. Let the Borel
subgroup be in M . Set 〈KS〉 = K ×K1. Then YH = [K,YH ]× [K1, YH ]. Let
1 6= x ∈ CYM

(S). Then x 6∈ [K, YH ] ∪ [K1, YH ]. Now 〈xB〉 ∩ [K1, YH ] 6= 1.
In particular YM ∩ [YH , K1] 6= 1, which with 5.14 gives K is covered by M ,
a contradiction. So we have that the Borel subgroup is not in M . Then we
find a subgroup P1 with O2(P1/O2(P1)) ∼= Zr−1 × Zr−1 which is not in M .
Now as in 11.6 looking for a minimal such group we get a nice P . 2

KA

Lemma 13.6 Suppose A is a cubic, not quadratic, 2F–module offender and
K is some component of H/CH with [K, A] 6= 1, and [K,A] 6≤ K then we
have a nice P .

Proof: Let KK1 = KA. By 4.3 we have that |A| > 4, |Y g
H : A| = 2,

and K ∼= Ln(2). Hence we have K ∼= L3(2). Further as we have transvections
we see with 3.38 that [YH , KK1] is the direct sum of two natural modules.
We have KK1 = 〈KS〉. If K ≤ M , then we have that [YH , KK1] ≤ YM ,
but his contradicts [A, YM ] = 1. So K 6≤ M and then CYH

(KK1) = 1 and
|YM∩[YH , KK1]| = 2. As there are no transvections on the nonsplit extension
of the natural module by a trivial module, we have YH = [YH , KK1] and so
|YM | = 2. Now M0 = NG(S) and there is some P with P/O2(P ) ∼= Σ3 o Z2

inducing an orthogonal module in YP , which the yields a nice P . 2

KnonA

Lemma 13.7 Suppose A is a cubic, not quadratic, 2F–module offender and
K is some component of H/CH with 1 6= [K, A], then we have a nice P .

Proof: By 13.6 we may assume that [K,A] ≤ K. By 13.5 we may
assume that B = CA(K) 6= 1. Then there is some further component (or
a Sylow subgroup of F (H/CH)), K1 with [B, K1] 6= 1. Choose K1 with
|B : CB(K1)| maximal. Let C = CA(K1). If [C, K] = 1, then C ≤ B. Now
choose K2 with [C, K2] 6= 1. Then we have |B : CB(K2)| ≤ |B : CB(K1)|
by maximality. Hence there is some b ∈ B with [K1, b] 6= 1 but [K2, b] = 1
as CB(K1) 6= CB(K2). So we may choose two components K1, K2 (or Sylow
subgroups of F (H/CH)) with Ai = CA(Ki) 6= 1 and [Ai, K3−i] 6= 1, i = 1, 2.

Let A = Ã1 × CA(K1) and V1 be a quasi irreducible K1Ã1–submodule in
YH . Suppose first that V1 6≤ O2(L). Let V1 ∩ Y g

H 6≤ CV1(K1). Then for all
a ∈ A] we have V1∩V a

1 6≤ CV1(K1). In particular V A
1 = V1. Then [V1, A1] = 1,

which contradicts V1 6≤ O2(L). So we have that V1 ∩ Y g
H ≤ CV1(K1). Let
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v ∈ V1 \ O2(L), then we have that [v, Ã1] ∼= Ã1. No element in A]
1 cen-

tralizes V1. Let v1 ∈ V1 ∩ O2(L1) \ CV1(K1)[v, Ã1]. Then there is some
a1 ∈ A]

1 and v ∈ V1 \ O2(L) such that v1 = [a1, v]. In particular [a1, v1] = 1.
As V1 is quasi irreducible for K1Ã1 which is centralized by a1, we see that
[a1, V1] = 1, a contradiction. So we get that [v, Ã1]CV1(K1) = V1 ∩ O2(L)
and |V1 ∩ O2(L)/CV1(K1)| = |Ã1|. Now let 1 6= a ∈ A1. Set V2 = V a

1 . Then
also V2 is a quasi irreducible K1Ã1–module. Further [V1, a] is also such an
module. As [V1, a] ≤ O2(L), we see that [[V1, a], Ã1] ≤ YH ∩ Y g

H . So we have
shown

(1) For a ∈ A1 we have [V1, a, Ã1] ≤ YH ∩ Y g
H .

We collect some facts about the action on V1. We have that Ã1 acts quadrat-
ically on V1/CV1(K1) and by (1) also on [V1, a]. Further V1/CV1(K1) is an
F–module with offender Ã1. We have that CV1/CV1

(K1)(a1) = CV1/CV1
(K1)(Ã1)

for all 1 6= a1 ∈ Ã1. Application of 3.17 now gives that K1 is solvable or
K1/Z(K1) ∼= Ln(r), Sp(2n, r), r even, or A7 or 3A6, or |Ã1| = 2. Suppose
the latter, then we have that |V1/CV1(K1)| = 4 as |V1∩O2(L1)/CV1(K1)| = 2.
Then K1 is solvable. If K1 is solvable it is a 3–group as it induces an F–
module. As we can look at 〈V K2

1 〉, we see that there is also some module not
in O2(L) and so K2 also has the structure above. As one of both K1, K2

must be nonsolvable, we may assume that K1 is nonsolvable.

Let first K1
∼= 3A6 acting faithfully. But then in the 6–dimensional module

we see that there is no element v with [v, Ã1] = CV1(Ã1).

Let next K1/Z(K1) ∼= A7. Then V1 is the four dimensional module and
|Ã1| = 4. Now as m3(H) ≤ 3, we see that K2/Z(K2) ∼= L2(r), L3(r), A6 A7,
or K2 is a 3–group of rank at most two. As 〈V K2

1 〉 contains an irreducible
module W for K1K2 with W ∩ Y g

H 6= 1 and W 6≤ O2(L), we see that A acts
faithfully on K1K2. If we have K2/Z(K2) ∼= L3(r), then W is a tensor prod-
uct of the natural SL3(r)– module with V1 and so |A|2 > |W : CW (A)| ≥ r8,
by 4.2 as A does not act quadratically. As |A| ≤ 4r2, we get a contradic-
tion. If K2

∼= L2(r), we see that |W : CW (A)| ≥ r6, which shows r = 2,
which is also the case for K2 to be solvable. But now |A| ≤ 23 which shows
|W : CW (A)| = |A|2, contradicting 4.2 again. If K2/Z(K2) ∼= A6 or A7, we
get |W : CW (A)| ≥ 28 and again |W : CW (A)| = |A|2, a contradiction.

Let next K1/Z(K1) ∼= Sp(2n, r) and V1/CV1(K1) be the natural module.
Then n ≤ 3. Let first K1

∼= Sp(6, r), then m3(K2) = 0, a contradic-
tion. So we have K1/Z(K1) ∼= Sp(4, r). Further we have that |Ã1| = r2

as |[V1, Ã1]CV1(K1)/CV1(K1)| = |Ã1|. We may assume that K2
∼= L2(t),

L3(t) or solvable, as the cases K2/Z(K2) ∼= A6 or A7 have been handled
before. In the case of L3(t), we have that |W : CW (A)| ≥ s8, s = max(r, t).
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Now |A| ≤ r2t2. Let K2
∼= L2(t), then |W : CW (A)| ≥ s6, and |A| ≤ r2t. If

K2 is solvable we get that |W : CW (A)| ≤ r6, and |A| ≤ 2r2. In all cases we
get |W : CW (A)| = |A|2, a contradiction.

Let now K1/Z(K1) ∼= Ln(r). Then we have that K2/Z(K2) ∼= Lm(t) or
K2 is solvable, as all the other cases have been handled before. Suppose first
r > 2, then we see that n ≤ 4.

Let K1
∼= L4(r). Then V1/CV1(K1) is the natural module or the orthogo-

nal module. In both cases by 3.36 we have CV1(K1) = 1. Now K2
∼= L2(t),

L3(t) or solvable. Let GF (`) be the largest common subfield of GF (r) and
GF (t). Let r = `x, t = `y. Then W = V1⊗V2, V2 be the natural K2–module
and U = [V1, NA(V1)] ⊗ [V2, NA(V2)] = CV1(NA(V1)) ⊗ CV2(NA(V2)) is con-
tained in a complement of YH ∩Y g

H in YH ∩O2(L) and so of size at most |A|.
We have that |A| ≤ `3x+2y, `3x+y, 2r3, respectively. Further |U | ≥ `5xy, `4xy,
or K2 is solvable. Let first K2 be nonsolvable. Then we have that t = ` and
K2

∼= L2(t) and K1
∼= L4(t

x). Now t > 2 and then for p dividing t − 1, we
get mp(H) ≥ 4, a contradiction to 9.1. So K2 is solvable. Now |U | = r3.
We have that |V1 : CV1(Ã1| = r. So |V1 : V1 ∩ O2(L)| = r. Now we get
|W ∩O2(L) : CW (A)| = r4 > 2r3, as r > 2, a contracition.

Let next K1/Z(K1) ∼= L3(r). We have that K2/Z(K2) ∼= L2(t), L3(t) or
K2 is solvable. Let K2

∼= L2(t) and define ` as before. Then we have that
|A| ≤ `2x+y and again y = 1. Further we have that |W ∩ O2(L) : CW (A)| =
r3 ≤ r2t, which shows r = t. As Y g

H ∩W 6= 1 we have that A acts faithfully
on K1K2. Now W = [YH , K1K2]. As S normalizes both groups and both are
not in M , we see that YM ≤ W , and CYH

(K1) = CYH
(K2) = 1. Now if the

Borel subgroup is in M , we get a subgroup P with E(P/CP ) ∼= L2(r), YP

is the natural module and M0 ≤ P . This is 11.4(ii). If the Borel subgroup
is not in M we get P1 with P1/O2(P1) ∼= Zr−1 acting on a group of order r
containing YM . Then we choose P1 minimal and get a nice P .

Let now K2
∼= SL3(t). Then with the same notation as before we get

|A| ≤ `2x+2y and |U | ≥ `4xy. This shows x = y and then r = t. Let now p be
a prime divisor of r − 1, then we must have mp(H) ≤ 3 as otherwise by 9.1
we get H ≤ M . This now implies r = 4, hence K2

∼= SL3(4) ∼= K1. If both
components are normalized by S, we may argue as before. So assume that
〈KS

1 〉 = K1K2. Again as K1 6≤ M , we see that W = YH and YM is contained
in a subgroup of order 4. If Z(K1) 6≤ M , we just choose P1 = Z(K1)S and
P = M0P1, which gives us a nice P . So we may assume that Z(K1) ≤ M . In
that case |YM | = 4. Now also a Borel subgroup of K1K2 is in M and we get a
minimal parabolic P1 in 〈KS

1 〉 with E(P1/O2(P1)) ∼= L2(4)× L2(4) inducing
the orthogonal module on YP , a nice P again.
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Let now K2 be solvable. Then we get |A| ≤ 2r2. But as |W : CW (A)| ≥ r3,
we have a contradiction to r > 2.

Let next K1
∼= K2

∼= L2(r), then W = [K1K2, YH ] is the tensor product
of two natural modules. Again A acts faithfully and CYH

(K1K2) = 1, as
both components are not in M . Hence if the Borel subgroup is in M we
just set P = K1K2M0, if S does not normalize K1, and P = K1M0 other-
wise. If the Borel subgroup is not in M , then we have a subgroup P1 with
P1/O2(P1) ∼= Zr−1 × Zr−1 acting on a group of order r containing YM . But
then again there is just one group Zr−1 which acts, and H just induces Galois
automorphisms on this group, which then gives a nice P again.

Let now r = 2, then n ≤ 7. As the order of K2 is divisible by three, we
even get n ≤ 5. Let n = 4 or n = 5, then K2

∼= L3(2) or a cyclic 3–group.
Then both groups are normal in H and also both are not in M . This shows
that CYH

(K1) = CYH
(K2) = 1. As YH ∩W 6= 1, we see that A acts faithfully

on K1K2. Further there is no second tensor product involved. As A has to
induce an F -module on YH/W , we get that W = [YH , K1K2]. In particular
we have that |YM | = 2 and so we may take a minimal parabolic in K1 not
centralizing YM and so we have a nice P . Let finally n = 3, then either
K2

∼= L3(2) or K2 is solvable. If S normalizes K1, then we may argue as
before. So we may assume that K1

∼= K2
∼= L3(2). Further 〈KS

1 〉 = K1K2.
Again K1 6≤ M and so CYH

(K1K2) = 1, W = [YH , K1K2] and |YM | = 2. Now
there is some parabolic Σ4 oZ2 in 〈KS

1 〉, which induces an orthogonal module,
so we get a nice P .

So we now may assume that any quasi irreducible submodule for K1 is con-
tained in O2(L) and the same applies for K2. Let W1 be the submodule
generated by all these submodules for K1Ã1 and correspondingly W2 the one
for KÃ2. As for any V1, we have that V1 ∩ Y g

H 6≤ CV1(K1), we see that
[V1, A1] = 1, so we have that [W1, K2] = 1 and also [W2, K1] = 1. Let now
B = CA(K1K2) 6= 1. Then we have K3 with [K1K2, K3] = 1 and [B, K3] =
K3. We have [W1, B] ≤ Y g

H . Then we see that [W1, B] ≤ CW1(K1) and so we
have that [K3,W1] = 1. By the same argument we have that [K3,W2] = 1.
So we see that [K3, YH ] ≤ CYH

(K1K2). Assume [K3, YH ] 6≤ O2(L). Then
there is some v ∈ [K3, YH ] such that [v,A](YH ∩ Y g

H) = Y g
H ∩ O2(L). As

[v,A] ≤ [K3, YH ], we see that W1W2 ≤ [K3, YH ](YH ∩ Y g
H). But A cen-

tralizes [K3, YH ](YH ∩ Y g
H)/[K3, YH ] and so also W1W2/[K3, YH ]. Hence as

K1K2 = [K1K2, A], we have that W1W2[K3, YH ]/[K3, YH ] is centralized by
K1K2 and so W1,W2 ≤ [K3, YH ], which shows [W1W2, K1K2] = 1, a contra-
diction. So we have that [K3, YH ] ≤ O2(L).

In particular there are K1 · K2 · · ·Ks, such that A acts faithfully on
K1K2 · · ·Ks and there is a faithful module W for K1 · · ·KsA, which is in
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O2(L). Further W = W1⊕W2⊕· · ·⊕Ws with [Wi, Ki] = Wi and [Wj, Ki] = 1
for i, j = 1, . . . , s and i 6= j. Hence A acts quadratically and as an F–module
offender on W .

We may assume that K1 induces an F -module on W1 with offender Ã1.
As s > 1 and F–module offender for solvable groups are exact by 3.15 we
even may assume that K1 is nonsolvable.

Let Ki be some Sylow subgroup of F (H/CH). Then [S, Wi] ≤ Wi and so
1 6= YM ∩ Wi. By 5.14 we have that K1 is covered by M , which now with
13.2 yields a nice P . So we may assume that all Ki are nonsolvable. Further
we get that

(2) W2 ⊕ · · · ⊕Ws ∩ YM = 1.

By (2) we have that KS
2 6= K2. Let KS

1 = K1. Then we have that 〈W S
2 〉

is centralized by K1. But 1 6= YM ∩ 〈W S
2 〉 and so by 5.14 we have K1 is

covered by M , which with 13.2 gives a nice P . So we have that KS
1 6= K1.

Further we see that K1 cannot centralize 〈KS
2 〉, which gives that for t ∈ S

with Kt
2 6= K2, we must have Kt

1 ∈ {K2, K
t
2}. So we may assume K2 = Kt

1

for some t ∈ S. But the same applies for any Ki, i = 2, . . . , s, which gives
s = 2. As KS

1 6= K1 we have that all Sylow r–subgroups, r odd, of K1 are
cyclic or r divides |Z(K1)|. As K1 induces an F–module, we get with 3.16
that K1 is L2(q), L3(2), SL(3, 4), 3A6 or 3A7. Further W1 contains at most
two nontrivial irreducible modules. Now K1K

t
1 = 〈KS

1 〉, as we cannot have
four conjugates of K1.

If A is an exact offender on W1W2, then by 4.2 we see that |YH/W :
CYH/W (A)|2 ≤ |A|. Hence if K1 6∼= L3(2) or SL(3, 4), we see that W1W2 =
[YH , K1K2]. But then A acts quadratically on YH , a contradiction. So we
have K1

∼= L3(2) or SL(3, 4). As the element of order 3 in Z(K1) is the same
as in Z(K2), we get that SL(3, 4) ∼= K1 is not possible.

Suppose first again W1 = [YH , K1], then YH has to contain a nonsplit ex-
tension of the natural module, on which A does not act quadratically. As
|A| = 16, we now get that W1 is irreducible. We see that |YH | ≤ 28 and so
|YM | = 2 and again using the Σ4 o z2 in 〈KS

1 〉 we get a nice P .

So we may assume that W1W2 6= [YH , K1K2]. We get that YM ∩ W1W2 =
CW1W2(S), which is of order at most 4. If YM ≤ W1W2, we can choose
the minimal parabolic not in M and so we get one or two orthogonal mod-
ules, which is the situation of 11.5(ii), so we have a nice P .. So assume
YM 6≤ W1W2. If YMW1W2/W1W2 is centralized by K1 ∩M , we may proceed
as before getting at most three orthogonal modules, which still is the situa-
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tion of 11.5(ii). So we may assume that M ∩ K1 acts on YMW1W2/W1W2.
Then W1 is the natural module for K1 and in YH/W1 we have the dual mod-
ule. Now we have that there is some U ≤ YM , |U : W1W2 ∩ U | = 4 and
[U,K2] ≤ W1W2. As |UW1W2 : CUW1W2(K2)| ≤ 16, as UW1W2/CUW1W2(K2)
involves exactly one nontrivial module. As YM ∩C(K2) = 1 by 5.14 and 13.2,
we see that |UW1W2/CUW1W2(K2) : YMCUW1W2(K2)/CUW1W2(K2)| ≤ 2. As A
centralizes YM , we see that A induces transvections on UW1W2/CUW1W2(K2)
and so this is the natural modules, i.e. |UW1W2/CUW1W2(K2)| = 8 and then
UW1W2 = YMCUW1W2(K2). But now A would even act trivially, a contra-
diction. 2

b1amalgam

Lemma 13.8 Let YH 6≤ O2(M), then there is a nice P .

Proof: By 13.3, 13.4, 13.5, 13.6 and 13.7 we just have to handle the
case that we have (2) and A acts faithfully on F (H/CH), induces a cubic,
not quadratic, 2F–module offender and centralizes any component of H/CH .
This first shows |A| > 2. By 2.1 we also have |A| ≤ 8, as otherwise mp(H) ≥ 4
for some odd p, which with 9.1 contradicts H 6≤ M . Hence 4.2 now shows
that |YH : CYH

(A)| ≤ 2|A|. This in particular gives us that A acts faithfully
on a Sylow 3–subgroup P of F (H/CH). If we have a transvection in A, then
we get the assertion with 11.9 and 13.2.

So there is no transvection in A. Let |A| = 8 and D1×D2×D3 the subgroup
of H/CH given by 2.1. Then we may assume that D1 ×D2 has to induce a
4-dimensional orthogonal module W . But then |W : CW (A)| ≥ |A|, which
says that A has to induce transvections on [O3(D3), YH ], which gives that we
have transvections on YH .

Thus we have that |A| = 4. Now U = D1×D2
∼= Σ3×Σ3 and [U, YH ] is the or-

thogonal module. Hence we have that [P, A]A induces an orthogonal module
on YH and so |[P, A]| = 9. Let T = NS([P, A]) and s ∈ NS(T ) with s2 ∈ T and
[P, A]s 6= [P, A]. We have that [P,A] is normal in P . Set R = [P, A][P,A]s,
then |R| ≤ 34. Let |R| = 34. Then [P,A] ∩ [P, As] = 1. As As ∈ T ,
we see that [P, A,As] = 1. Hence we have [R, [A,As]] = 1. But then also
[P, [A,As]] = 1. This now gives [[A,As], F ∗(H/CH)] = 1 and so [A,As] ≤ CH .
Now we have that R〈A,As, s〉 acts on [[P, A], YH ][[P,As], YH ] = V , which is
of dimension 8. In X = GL(8, 2) we have that R is uniquely determined
and NX(R)/R ∼= Z2 × Z2 × Σ4. As AAs now is elementary abelian of order
16, there are just two possibilities. But in both cases we have that AAs

contains the center of a Sylow 2–subgroup of NX(R). Hence AAs contains
transvections on V . As [P, A,As] = 1, we see that these are in A ∪ As, a
contradiction.

So we have that |R| = 33. Let V be as before. Now R〈A,As〉 ≤ X ∼=
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GL(6, 2), since now [[P,A], YH ] ∩ [[P,A]s, YH ] 6= 1. If R is not elementary
abelian, then R is extraspecial and so Z(R) acts fixed point freely on V .
But Z(R) ≤ [P,A] ∩ [P,As] and |[Y, [P, A]]| = 16. Hence R is elementary
abelian and so again R is uniquely determined. Now NX(R)/R ∼= Z2 × Σ4.
Further also s ∈ NX(R) and so we see that AAs is elementary abelian.
Again AAs contains a transvection i. We have |CR(A)| = |CR(As)| = 3. As
|[R, i]| = 3, we may assume that [CR(A), i] = 1. But As does not centralizes
CR(A). Hence |CAs(CR(A))| = 2 and so CAs(CR(A)) = A∩As. In particular
CAAs(CR(A)) = A, which gives the contradiction i ∈ A.

So we have T = S and then [P, A] is normalized by S. Let CYH
([P, A]) 6= 1,

then YM ∩CYH
([P,A]) 6= 1. By 5.14 we get that [P,A] is covered by M . This

now contradicts 13.1 and CA([P,A]) = 1. So we have that CYH
([P,A]) = 1

and then |YH | = 16 and then H/CH is contained in Σ3 o Z2 inducing the
orthogonal module, which is the situation of 11.5(ii), hence we have a nice
P . 2
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14 The amalgam (M,P ), b 6= 2

In this chapter we will study the amalgam set up in the last three chapters.
We just collect

niceamal

Proposition 14.1 There is a subgroup P containing M0, such that one of
the following holds

(1) E(P/CP ) ∼= L2(q
2) and YP is the orthogonal module.

(2) E(P/CP ) ∼= L2(q)× L2(q) and YP is the Ω+(4, q)–module. Further the
components of E(P/CP ) are not normal in P .

(3) There is a normal subgroup P1 such that P = P1M0 and E(P1/CP ) ∼=
L2(q) or P1/CP

∼= Σ3 and YP is a sum of natural modules.

4) E(P/CP ) = K1×K2, K1
∼= K2

∼= A5, YP = V1×V2, where [Ki, YP ] = Vi

and [K3−i, Vi] = 1. Further Vi is the orthogonal Ki–module and K1 is
not normal in P/CP .

(5) There is a normal subgroup P1 such that P = P1M0 and P1/O2(P1) ∼=
Σ3 oZ2 or Σ3×Σ3 and YP involves just orthogonal modules and at most
three of them. Further |YM | ≤ 8.

(6) P/CP is an extension of a cyclic group of order q2 − 1 by Galois auto-
morphisms and YP = YM ×Y t

M for some t ∈ P and P semiregularly on
YP , where a group of order q − 1 normalizes YM .

7) P/CP is an extension of a cyclic group of prime order greater than
three, which acts semiregularly on YP , Further YP = YM ×Y t

M for some
t ∈ P .

In (1) - (5) the group P is minimal with respect not to be in M .

From 14.1 we get the following important lemma.

goodS

Lemma 14.2 Let u ∈ M be a p–element with p ∈ σ(M) and CG(u) ≤ M .
Then u 6∈ CG(YP ). If u ∈ NG(S) then p = 3 and Sylow 3–subgroups of M are
isomorphic to Z3 oZ3 and NG(S) contains an elementary abelian subgroup of
order 9.

Proof: Let first u ∈ CG(YP ). Set W = CG(YP )P . As YM ≤ YP , we
have that CG(YP ) ≤ M . Now let R be a Sylow p–subgroup of CG(YP ) with
u ∈ R. If R is noncyclic then NG(R) ≤ M , or Sylow 3–subgroups of M
are Z3 o Z3 and R is elementary abelian of order 9. Suppose the latter. If

212



W = (M ∩ W )C(R), we get again W ≤ M , as u ∈ R. Hence 3 divides
|NW (R)/CW (R)|. Now a Sylow 3–subgroup P̃ of W is extraspecial of order
27 and so P̃ ≤ M g for some g ∈ G. But in M g this group contains some
good E and so W ≤ M g. As S ≤ W , we get with 9.1 that M = M g ≥ P , a
contradiction.

So we have that NG(R) ≤ M if R is noncyclic. If R is cyclic then 〈u〉 = Ω1(R)
and so again NG(R) ≤ M . Hence in any case NG(R) ≤ M . But then
W = CG(YP )NG(R) ≤ M , contradicting P 6≤ M .

Now let u ∈ NG(S) then in particular u ∈ M0 and so u ∈ P . We have
u 6∈ CP (YP ). Let R be a Sylow p–subgroup of CP (YP )〈u〉. By assumption
we have that NP (R) ≤ M . But in none of 14.1(4), (6) or (7) the normalizer
of an element of odd order in P/CP is in M ∩ P/CP .

So assume that we have 14.1(1) or (2). If u induce a field automorphism,
this shows that u centralizes in P/CP a group isomorphic to L2(r). Hence
by Frattini we have that NP (R) involves L2(r) and so P = 〈NP (R),M0〉,
a contradiction. If u induces an inner automorphism, then u is inverted by
some element, which is not in M , a contradiction again. So we are left with
[u,E(P/CP )] = 1 and then by Frattini NP (R) 6≤ M .

So assume now that we have 14.1(3) or (5). If L2(q), q > 2 is involved, we can
argue as above. So assume that P1/CP is solvable. If [u, P1] ≤ CP , then again
NP (R) covers P1/CP , a contradiction. So we must have P1/CP

∼= Z3 oZ3 and
p = 3. But u /∈ NG(S) and so u has to centralize P1/CP again, as a Sylow
2–subgroup of P1 is dihedral. 2

goodp

Lemma 14.3 Suppose that P is one of the groups in 14.1. There is no good
p–element in P ∩M , or p = 3 and a Sylow 3–subgroup of M is isomorphic
to Z3 o Z3.

Proof: Let u ∈ P ∩ M be a good p–element. By 14.2 we have that
u 6≤ CP . Set T = S ∩ CP and P1 = NP (T ). Then P = CP P1. We have that
M ∩ P = CP (M ∩ P1).

We first show that u 6≤ M ∩P1. Suppose false. Let R be a Sylow p–subgroup
of M ∩ P1 with u ∈ R. Then NG(R) 6≤ M . This shows p = 3 and Sylow
3–subgroups of M are isomorphic to Z3 o Z3.

Now we have that p divides |CP | and so mp(P ) ≥ 2. Let now again R
be a Sylow p–subgroup of P , then we have that NG(R) ≤ M , a contradiction
again. 2
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SL3SU3

Lemma 14.4 Let 3 ∈ σ(M). Assume that there is some component K
of M/O3′(M), K = SLε

3(q), SL−1
3 (q) = SU3(q), SL+1

3 (q) = SL3(q). As-
sume that there is some M–module V on which K induces a 2F–module with
quadratic offender. Then all 3–elements are good if one of the following holds

(i) 3 divides the order of |P ∩M |, P as in 14.1.

(ii) V is irreducible.

Proof: By 3.29 and 3.56 we have that V just involves natural modules
for K. If e(G) ≥ 4, we are done, so we may assume that e(G) = 3. Let first
m3(K) = 1. Then we see that CM(K) cannot be a 3′–group. But now any
3–element centralizes an elementary abelian group of order 27, and we are
done again. So we may assume that m3(K) = 2 and 3 divides q−ε. Let U be
a Sylow 3–subgroup of M . We first show that we may assume U 6∼= Z3 o Z3.
By 5.11 all 3–elements in K now are good and so all other 3–elements in U
are in the elementary abelian subgroup of order 27, so all are good. Hence
we may assume that U 6∼= Z3 o Z3. In particular NG(H) = NM(H) for any
subgroup H of U with m3(H) ≥ 2.

Assume first that 3 divides |P ∩ M |. We may assume that U ∩ P is a
Sylow 3–subgroup of P ∩M . As we can see NP (U ∩ P ) 6≤ M . So we have
that m3(U ∩P ) = 1. Let ω be the element of order three in U ∩M , then we
have that NG(〈ω〉) 6≤ M . By [GoLy, (29.1)] we have that ω induces a non
inner but inner diagonal automorphism on K. Let now M1 be the normal
subgroup of M generated by KCM(K) and the possible field automorphism
of odd order. Then we have that M1/M is isomorphic to a subgroup of the
outer automorphism group of K, which is a {2, 3}–group. Hence we have
that M = M1(P ∩ M). By 5.18 we have that ωM1 is inverted in M/M1.
Hence there is some x ∈ P ∩M with (ωM1)

x = ω−1M1. But then ωx = ω−1.

Let K ∼= SL3(q). Suppose there is some field automorphism, which in-
verts ω. As P contains a Sylow 2–subgroup S of M , we have that P ∩K is
contained in a parabolic subgroup. As ω 6∈ K, this is a 3′–group and so it is
contained in a Borel subgroup. But ω and x act on a Cartan subgroup C.
As 3 divides q − 1, we have that there is some elementary abelian subgroup
of order 9 in C on which 〈x, ω〉 acts. Now x either centralizes this group or
inverts this group. In both cases ω centralizes this group, which gives that
NG(〈ω〉) ≤ M , a contradiction. So we have that ω is inverted by a graph
or graph-field automorphism. We have now have that [VM , K] is a direct
sum of the natural and the dual module. If K ∼= SU(q). Then we have that
[VM , K] is the natural module by 3.29. Hence in both cases (i) and (ii) we
have that [V, K] is either the natural module or we have K ∼= SL3(q) and
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[V, K] is a direct sum of the natural and the dual module. In any case by 5.12
we see that CM([VM , K]) is a 3-prime group. As CM(K) has to act on the
natural module by field multiplication, we get that CM(K) has cyclic Sylow
3–subgroup Y , where |Y | divides q − ε. So we see that L = 〈K,Y, ω〉 is a
subgroup of ΓGLε

3(q). Suppose that 9 divides q−ε. Then GLε
3(q)/Z(SLε

3(q))
is a direct product of a cyclic group of order greater than three with a sim-
ple group. Hence only field automorphisms correspond to elements of order
three. As there are elements of order three in L which are not in SLε

3(q) and
which do not induce field automorphisms, we therefore get that 9 does not
divide q − ε. So Y = Z(K). But then m3(K〈ω〉) = 3 and so any 3-element
in M is good, a contradiction. 2

We will change our group P a little bit. For what follows it is not important
that M0 ≤ P it is just important that YM ≤ YP . Hence we may replace P
by NP (S ∩ CP ). By 3.4 YP does not change. So we get

niceamal1

Proposition 14.5 There is a subgroup P containing S but P 6≤ M , such
that one of the following holds

(1) E(P/CP ) ∼= L2(q
2) and YP is the orthogonal module.

(2) E(P/CP ) ∼= L2(q)× L2(q) and YP is the Ω+(4, q)–module.

(3) E(P/CP ) ∼= L2(q) or P/CP
∼= Σ3 and YP is a sum of natural modules.

(4) E(P/CP ) = K1×K2, K1
∼= K2

∼= A5, YP = V1×V2, where [Ki, YP ] = Vi

and [K3−i, Vi] = 1. Further Vi is the orthogonal Ki–module and K1 is
not normal in P/CP .

(5) P/O2(P ) ∼= Σ3 oZ2 or Σ3×Σ3 and YP involves just orthogonal modules
and at most three of them.

(6) P/CP is an extension of a cyclic group of order q2 − 1 by Galois auto-
morphisms and P acts semiregularly on YP , with an element of order
q − 1 in M .

(7) P/CP is an extension of a cyclic group of prime order greater than
three, which acts semiregularly on YP , Further YP = YM ×Y t

M for some
t ∈ P .

In (1) - (5),(7) the group P is minimal with respect not to be in M .

cen

Lemma 14.6 If x is a 2-element of P with [x, YP ] = 1, then x ∈ O2(P ).

Proof: This follows as by construction S ∩ CP is normal in P . 2
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We will define a group ỸP . In the cases 14.5(3),(6) and (7) we just
set ỸP = YP . If we are in (1) or (2) then let ỸP be the preimage of
CYP /YM

(S ∩ E(P/CP )). In case (5) let ỸP the group generated by the com-

mutators of the transvections in S. In case (4) let ỸP = CYP
(S ∩E(P/CP )).

Now set
VM = 〈ỸP

M〉.
Suppose that CM(VM) contains a good E. As NG(YP ) 6≤ M , we get that P
is not as in (3), (6) or (7). Set P̃ = 〈CP (x) | 1 6= x ∈ ỸP 〉. In case of (4)
or (5) we have P = P̃S, a contradiction. In case (1) and (2) we have always
some element y ∈ ỸP \ YM whose centralizer in P/CP involves L2(q). Hence
〈P̃ , S〉 = P by minimality. So by 5.11 we have mp(CM(VM)) ≤ 1. Let T ≤ S
such that S ∩CM(VM) ≤ T and TCM(VM)/CM(VM) = O2(M/CM(VM)). Set
M̂ = NM(T ). Then we have with 2.5 that M̂ contains some good E. So

O2(〈M̂, P 〉) = 1.

We have CM(VM)T ≤ CM . Hence we get that YM = YM̂ .

In this chapter we study the amalgam Γ(M̂, P ). Let b = bΓ.

In fact there might be several groups P satisfying 14.5 in one of its cases. So
we will assume that we choose P as in 14.5(3) whenever this is possible.

Y alpha

Lemma 14.7 Let x ∈ O2(M̂)∩C(YM) with [VM , x] 6= 1, then [VM , x] = YM .

Proof: First of all we have that [VM , x] ≤ [VM , O2(M̂)] ≤ YM . All
we have to show is equality. Hence we may assume that [ỸP , x] 6= 1. If
we are in 14.5(3)(6) or (7), we have that YP = ỸP . In (6) or (7) we have
YP = YM × Y t

M and so we have the assertion. In case (3) for any natural
module V we have that [V, x] = CV (x), again the assertion. In 14.5(1) and
(2) we have that ỸP = CYP /YM

(S ∩ E(P/CP )). As xCP ∈ S ∩ E(P/CP ) and

YP is a module over GF (q), we have [ỸP , x] = YM . In case 14.5(4) we have
that ỸP = CYP

(S ∩ E(P/CP )). Now this group is of order 4 and |YM | = 2,
the assertion. Assume 14.5(5). Then in each module W we have that ỸP ∩W
is of order 4 and W ∩YM is of order 2. As x acts on each module nontrivially,
we get the assertion again. 2

nogoodE

Lemma 14.8 There is no good E in M centralizing VM/YM .

Proof: Let E be a good E with [VM , E] ≤ YM . Then E normalizes
ỸP . We have that some x ∈ ỸP \ YM is centralized by some good E. Hence
CP (x) ≤ M ∩ P . This shows that we do not have 14.5(1)-(3),(5)-(7). So
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we have (4) with more than one module.Further we have that E normalizes
O2(M/CM(VM)). But if we take x ∈ ỸP \YM , then |[x,O2(M/CM(VM))]| = 2,
so [E, YM ] = 1. Hence [E, VM ] = 1, a contradiction. 2

For the remainder of this chapter set RM = CM(VM/YM). With 5.11 we
have that mp(RM) ≤ 1 for any p ∈ σ(M).

RM

Lemma 14.9 Let ρ ∈ RM be a p–element with p ∈ σ(M), then ρ ∈ CM .
and Sylow p–subgroups of RM are cyclic.

Proof: Assume that [YM , ρ] 6= 1. First of all we have that 〈ρ〉 is the
only subgroup of order p in a Sylow p–subgroup of RM , as otherwise by 5.11
some good E centralizes VM/YM a contradiction to 14.8. Let T be a Sylow
2–subgroup of CM . Then we may assume that ρ normalizes T ∩RM . Set N =
NRM

(T ∩ RM)T . Then by Frattini we get that N = NRM
(T ∩ RM)NN(〈ρ〉).

As T ≤ CM , but ρ 6∈ CM , we get that N = NRM
(T ∩RM)CN(ρ). This shows

that ρ ∈ NM(T ) = M0. Now by 14.3 we get that p = 3 and U ∼= Z3 o Z3

is a Sylow 3–subgroup of M . In particular we have that Z(U) = RM ∩ U .
Hence we get that CM ∩ U = 1. But then we may assume that U ≤ M0,
contradicting P 6≤ M . 2

3insigma

Lemma 14.10 Suppose that we have 14.5(4) or (5). If 3 ∈ σ(M), then a
Sylow 3–subgroup of M is isomorphic to Z3 o Z3 and not all 3–elements are
good. In particular M/O2(M) does not involve U4(2), Sp6(2), Ω−(8, 2) or
A9.

Proof: Let R be a Sylow 3–subgroup of P . If all 3–elements are good
then P ≤ M g for some g ∈ G. By 9.1 then M = M g and so P ≤ M , a
contradiction. So we have that not all 3–elements are good. Let now M g

with R ≤ M g. Let R1 be a Sylow 3–subgroup of M g containing R. Then we
have that R = Ω1(CR1(R)). We first have that NR1(R) 6≤ CR1(R). Assume
that NG(R) ≤ M g. In P we see that there is some D8 induced on R. But
then NMg(R)/CMg(R) ∼= GL2(3) and so all 3–elements in R are conjugate
and then they all are good, a contradiction.

So we have that NG(R) 6≤ M g and then R1
∼= Z3 o Z3, the assertion. The

second assertion follows from the fact that in these groups any element of
order 3 is centralized by an elementary abelian group of order 27. 2

bsmall2

Lemma 14.11 If b is even, then one of the following holds

i) b = 2 and E(P/CP ) ∼= L2(q) or P/CP
∼= Σ3 and YP is the natural

module.
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ii) P/CP
∼= Σ3 o Z2 and YP is the natural module.

Proof: As YM̂ ≤ YM ≤ YP , we have that b = bP . Let (γ, α) be a criti-
cal pair. We may choose notation such that Pγ = P . By 14.6 we have that
1 6= [YP , YPα ] ≤ YP ∩ YPα . Hence we may assume that YP is an F–module
with YPα as offender. This now shows that we have E(P/CP ) ∼= L2(q) or
P/CP

∼= Σ3 and YP is the natural module, or P/CP
∼= Σ5 or Σ3 o Z2 and YP

is the orthogonal module, or E(P/CP ) ∼= A5 × A5 and YP is the sum of two
orthogonal modules.

Choose β such that β ∈ ∆(γ) and d(β, α) = d(γ, α)− 1.

Let first P/CP an automorpism group of L2(q) and YP be the natural mod-
ule. Then we have that [YP , YPα ] = YMβ

= YMα−1 . Now we have by 9.1 that
Mβ = Mα−1. But then d(P, Pα) = 2 and so b = 2. This is (i).

If P/CP
∼= Σ5 or E(P/CP ) ∼= A5 × A5. We have that (CM(VM) ∩ P ) ≤ CP .

Let T be the preimage of O2(M/CM(VM)), then we see that TCP /CP is con-
tained in a Sylow 2–subgroup of E(P/CP ). Hence we see that 〈TM∩P 〉 is a
2–group by 14.6 and the minimal choice of P . Hence T is normal in M ∩ P ,
i.e. M ∩ P = M̂ ∩ P . Now we have that YPα induces a transvection on YP .
Hence YPα 6≤ O2(G∆β

). Let now δ ∈ ∆(β) with d(δ, α) = d(β, α) − 1. Then
[YPα , YPδ

] = 1. Let ρ ∈ G∆β be of order three inverted by some element in
YPα . Then [ρ, YPδ

] = 1. But by 8.12 we have that CPδ
(YPδ

) is a 2–closed, a
contradiction.

So we are left with P/CP
∼= Σ3 o Z2, which is (ii). 2

In what follows we have always b even and P/CP
∼= Σ3 oZ2 until we reach

the contradiction. We fix the following notation as in the proof of 14.11. Let
(γ, α) be a critical pair. We choose notation such that Pγ = P . Choose β
such that β ∈ ∆(γ) and d(β, α) = d(γ, α) − 1. Further let δ1 ∈ ∆(γ) with
d(δ1, α) = d(γ, α). We may assume that M = Mδ1 .

bg2

Lemma 14.12 We have [VM , YP ] = 1.

Proof: Assume that [VM , YP ] 6= 1. Then in particular b = 2. Hence
and there [ỸP , YPα ] 6= 1. But then YPα cannot act quadratically on YP . 2

noV M

Lemma 14.13 Let 1 6= x ∈ VMα−1, then x is not centralized by a good E in
M .

Proof: By 14.12 we have [x, YPα ] = 1. Then we get that YPα ≤ M .
But then P = 〈P ∩M, YPα〉 ≤ M , a contradiction. 2
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noY M

Lemma 14.14 We have that YM 6≤ VMα−1.

Proof: This follows from that fact that |YM | = 2. 2

FmoduleV M

Lemma 14.15 Either VMα−1/YMα−1 is an F–module with offender VM or
VM is a proper 2F–module with offender VMα−1.

Proof: As [YP , VMα−1 ] = 1 by 14.12, we see that [VM , VMα−1 ] ≤ VM ∩
VMα−1 . Let x ∈ YPα \M . Then by 5.8 |VM : CVM

(x)| ≥ 4. If VM ≤ Pα then
by quadratic action we would get that YPα is generated by elements, which
centralize a hyperplane in VM , a contradiction. So we have that VM 6≤ Pα.
This shows that VM 6≤ O2(M̂α−1). We have that [VM ∩ O2(M̂α−1), VMα−1 ∩
O2(M̂)] ≤ YM ∩ YMα−1 . By 14.14 this shows that [VM ∩ O2(M̂α−1), VMα−1 ∩
O2(M̂)] = 1. Moreover as [VMα−1 ∩ O2(M̂), VM ] ≤ YM we get with 14.14

that [VMα−1 ∩ O2(M̂), VM ] = 1. We now have that |VMα−1 : CVMα−1
(VM ∩

O2(M̂α−1))| = |VM ∩ O2(M̂α−1) : CVM
(VMα−1)|. So if VMα−1/YMα−1 is not an

F–module with offender VM , we get that |VMα−1 : VMα−1 ∩ O2(M̂)| < |VM :
CVM

(VMα−1)|2, the assertion. 2

noF

Lemma 14.16 There is no A ≤ VM such that A induces an F–module of-
fender on VMα−1/YMα−1.

Proof: Let first K be some component of M/RM such that A nor-
malizes K and induces an F–module offender on V = [VMα−1/YMα−1 , K].
So we have that the assumptions of 3.42 are satisfied. By 14.13 we have
that V is not centralized by a good E in Mα−1. Suppose that we are
in 3.42(2) or (3). Let W be the submodule in V and W1 be the corre-
sponding submodule in VM/YM . Then by 14.13 we have that [W,W1] = 1.
Hence [K,W1] ≤ RMα−1 . If [W1, VMα−1 ] 6= 1, we get by quadratic action
that [K, [W1, VMα−1 ]] = 1. Hence M ∩ Mα−1 covers K, which contradicts
[K, A] 6= 1. So we have that [W1, VMα−1 ] = 1. Then W1 ≤ Pα. Now we get
that YPα = 〈x | |W1 : CW1(x)| ≤ 4〉. Hence any such x is in M , which shows
that YPα ≤ M , a contradiction.

So we have one of the cases in 3.42(4). By 14.10 we do not have (v), (vi), (vii).
Let V1 be the module corresponding to V in VM and K1 be the component
corresponding to K. Suppose that we do not have 3.42(i). Then mp(K) ≥ 2
for some p ∈ σ(M), recall that mp(RM) ≤ 1 and so K centralizes a Sylow
p–subgroup of RMα−1 . Let [V1, V ] = 1. Then [V, VMα−1 ] is centralized by K1

and so by a good E in M , contradicting 14.13. So we have that [V, V1] 6= 1.
As now all p–elements are good, we see that no p–element from M can be in
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Mα−1 by 5.5. As any element in V1 is centralized by a p–element in M , we
see that YMα−1 is not in V1 and so we get that V or V1 induces an F–module
offender on V1, V , respectively. Further no element in [V, V1]

] is centralized
by a good E. By 3.52, 3.53 and 3.54 [V, V1] always contains the centralizer
K and so we do not have (iii) or (iv). Hence K ∼= Ω−(6, q) and V is the
orthogonal or unitary module. In the unitary case the commutator always
contains some element which is centralized by some L2(q)×Zq+1. As there is
some p ∈ σ(M) with p divides q +1, we are done. So we have the orthogonal
module and all elements in [V, V1] are singular. But then |[V, V1] = q2 and all
elements in V1 have the same commutator. But this shows that V1 induces a
group of order at most q, which cannot be an offender.

So we are left with K ∼= L2(q). Now V is a nonsplit extension of the triv-
ial module by the natural module. Suppose first that as before [V, V1] 6= 1.
We see that both V1 and V induces F–offenders on each other. This in fact
shows that [V1, V ] is normalized by an elementary abelian group of order p3

in M . Hence V contains elements which are centralized by a good E in M
contradicting 14.13. So we have that [V, V1] = 1. Again in [V, VM ] we have
elements which are centralized by a good E in Mα. This shows that we have
that the corresponding component to K in M is covered by M ∩Mα−1. In
particular K is centralized by some component K̃ ∼= L2(q). But now any
element in V1 is centralized by a good p–element in M . Hence [VMα−1 , V1] is
centralized by a good p–element in M . As K is not covered by M ∩Mα−1,
we get that [V1, VMα−1 ] = 1. But then as above we get that YPα ≤ M , a
contradiction.

So we may assume that A induces an F–module offender on F (Mα−1/RMα−1).
Then we get that A acts faithfully on the Sylow 3–subgroup of
F (Mα−1/RMα−1). Let U be a Sylow 3–subgroup of the preimage of this
group, which is normalized by A. If 3 6∈ σ(M), then by 2.3 there is a good
E such that [E, U ] ≤ RMα−1 . Set S1 = [U,A] and V = [VMα−1 , S1]. Then we
see that V is centralized by a good E in Mα−1. Let V1 be the corresponding
group in VM . By quadratic action we have that [V1, V ] ≤ V . If [V1, V ] = 1,
we get that [VMα−1 , V1] is centralized by S1 and as S1 6≤ M , we have that
[V1, VMα−1 ] = 1. As |V1| ≥ 4, we now get that YPα ≤ M , a contradiction.
So we have that [V, V1] 6= 1. By 14.13 we see that [V, V1] 6≤ V1. Let x ∈ V
with |V1 : CV1(x)| ≤ 4. There is ρ ∈ F (M/RM), such that |[VM , ρ]| = 4 and
[VM , ρ] ≤ V1. Now |[VM , 〈ρx〉]| ≤ 16. But also this group is centralized by a
good E, as the same good E centralizes 〈ρ, ρx〉, As V1 is generated by sub-
groups [V1, ρ] for elements ρ of that type, there is one such that [x, [V1, ρ]] 6= 1,
Hence there is some element in VMα−1 which is centralized by a good E in
M , contradicting 14.13.

Hence 3 ∈ σ(M) and Z3 o Z3 is a Sylow 3–subgroup of M . Again there
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is some ρ ∈ U with |[VMα−1 , ρ]| = 4 Set V = [VMα−1 , ρ] and X = 〈ρMα−1〉 ∩U .
Then we have that |[VMα−1 , X]| ≤ 64. Let ρ1, V1 and X1 be the corresponding
elements in M .

Suppose first that |X1| > 3. Then any element in CVM
(X1) is centralized

by a good E. In particular [CVM
(X1), VMα−1 ] = 1 by 14.13. This now shows

that CVM
(X1) = YM , as YPα 6≤ M . Hence we have that |VM | ≤ 27 further

[V, V1] 6= 1. If V1 induces a group of order 8 on V , the same applies for V on
V1. But then there is some x in V such that [V1, x] is centralized by a good
E in M and Mα−1 as well. Assume now that V1 induces a fours group. Then
by quadratic action still there is some u ∈ V such that [V1, u] is of order two.
So we may choose x again such that [V, x] is centralized by a good E in M
and |[V, x]| = 2. But then also [V, x] is centralized by a good E in M . Hence
we have that |V1 : V1 ∩ RMα−1| = 2. Then [V1, V ] is centralized by a good E
in Mα−1. If there is some x ∈ V with |[V1, x]| = 2, we get that [V1, x] is cen-
tralized by a good E in M , a contradiction. So we have that [V1, x] > YMα−1 .
In particular |V : V ∩ RM | = 2. Now in V1 we have a fours group W1 such
that |V : CV (W1)| = 2 and CV (W1) = CV (w) for w ∈ W ]

1 . Further we see
that [V1, V ] is centralized by an 3–element µ with CG(µ) ≤ M . This first
gives µ ∈ Mα−1 and further that µ acts on [U, V1]. Hence [U, V1] is not of
order 3. As |[V, V1]| = 2, this gives that [U, V1] is not abelian and we see that
[U, V1] ∩ C(V ) 6= 1. Hence some 3-central element τ ∈ Mα−1 centralizes V .
In fact this element τ also centralizes µ. Then τ ∈ M and so V1 centralizes
τ . As [U, V1] is not abelian, we have that µ ∈ U . Further U is not a Sylow
3–subgroup of Mα−1. Hence U is extraspecial and V1 centralizes a group of
order 9, which is not possible.

So we are left with |X| = 3. As [V, X] is of order 4, we have that [V,X] is
centralized by a good E. Let X1 the group corresponding to X in M . Again
X1 cannot centralize VMα−1 but has to centralize CVMα−1

(X). So 1 6= [X, X1].

But X1RM/RM is normal in M/RM , and then X contains some element
centralized by a good E in M , contradicting 14.13. 2

V Mover

Lemma 14.17 Let K be a component of M/RM on which VMα−1 induces a
2F–module offender, then it does not induce an F–module with over offender.

Proof: Assume false. Then we may apply 3.42. Let V = [VM , K].
By 14.13 we have that we are in 3.42(4). By 14.10 we have (i), (ii), (iii),
(iv) or (viii). As we have an over offender, we have that we are in (iii).
Further VMα−1 induces a group of order at least 2q2. By 3.53(ii), we get
that [VMα−1 , V ] contains nontrivial elements centralized by K, contradicting
14.13. 2

good5
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Lemma 14.18 Let K be a component of M/RM such that VMα−1 normalizes
K and VMα−1 induces a quadratic proper 2F–module offender on VM/YM as
K–module. Then we have one of the situations of 3.43(5).

Proof: Let first M be exceptional. Then we may apply 3.41. By
14.13 we have that VM is not centralized by a good E. So 3.41 implies that
3 ∈ σ(M) which contradicts 14.10. Hence M is not exceptional. So we can
apply 3.43. Again by 14.13 we do not have 3.43(1). As ỸP ≤ CVM/YM

(S), we
see that 3.43(2) is not possible. Suppose that we are in 3.43(3)(4) and let
WM be the corresponding module. By 14.13 we have that not any element
in WM is centralized by a good E. We still have that in W any element is
centralized by some good p–element and K (K as in 3.43) contains a good E.
This shows that [VMα−1 , CVM

(K)] = 1. Hence [VMα−1 , VM∩O2(M̂α−1)] ≤ WM .
If YMα−1 ≤ WM , then there is a good p–element ρ ∈ M which is contained in
Mα−1. This shows that p = 3 and a Sylow 3–subgroup U of M is isomorphic
to Z3 oZ3. But as K contains a good E this is not possible. So we have that
[VMα−1 , VM ∩ O2(M̂α−1)] = 1. No with 14.16 we get that K even induces an
F–module. Then 3.42 applies.

So we have one of the cases in 3.42(4). By 14.10 we have not (v), (vi)
or (vii). In (iii) and (iv) we get with 3.53 or 3.54 some element in
C[VM ,K](K) ∩ VMα−1 , which contradicts 14.13. So we have (ii) or (viii). Re-
call that (i) is not possible as K contains a good E. In (ii) [VM , VMα−1 ]
always contains a non singular vector, but such vectors are centralized
by a good E. So we have (viii). Let Kα−1 the corresponding compo-
nent in Mα−1 then we see that [[VMα−1 , Kα−1], CVM

(K)] = 1 by 14.13
and so [VMα−1 , Kα−1] induces an F–module offender on [VM , K]. But
then in [VMα−1 , Kα−1] there are elements which centralize in [VM , K] just
C[VM ,K]([VMα−1 , Kα−1]). As NK(C[VM ,K]([VMα−1 , Kα−1])) acts transitively on
[VM , K]/C[VM ,K]([VMα−1 , Kα−1]) , this would imply that K acts transitively
on [VM , K], a contradiction. 2

Knotnormal

Lemma 14.19 Let VMα−1 induces a quadratic proper 2F–module offender
on VM/YM as E(M/RM)–module, then there is no component K which is
normalized by VMα−1 such that VMα−1 induces a proper 2F–module offender
as a K–module.

Proof: Assume false and let K be the corresponding component. Let
x ∈ VMα−1 with [K,x] ∈ RM . Then by quadratic action we have that
[[VM , K], x] = 1. So we have that [[VM , K], CVMα−1

(K)] = 1. Let BMα−1

be a complement to CVMα−1
(K) in VMα−1 . Then BMα−1 is a quadratic 2F–

module offender on [VM , K]. Let XM be a complement to C[VM ,K](BMα−1) in
[VM , K]. Set ZM = XM∩RMα−1 . By 14.16 we have that |XM/ZM | < |BMα−1|.
As by 14.17 we have that [VM , K] is not an F–module with over offender, we
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get that ZM 6= 1. Further for y ∈ Z]
M , we have that |BMα−1 : CBMα−1

(y)| = 2.

Further YMα−1 ≤ [VM , K].

By 14.18 we have one of the cases of 3.43(5). If we have 3.43(5)(i), then
|[y,BMα−1 ]| = |BMα−1|, hence |BMα−1| = 2 and so q = 4. But now
5 = p ∈ σ(M) and so there is a good E centralizing [VM , K], contradict-
ing 14.13.

Let 3.43(5)(ii). Then p divides q + 1 and any element in [VM , K] is cen-
tralized by a good p–element ρ. As YMα−1 ≤ [VM , K], we get ρ ∈ Mα−1. But
then with 5.5 and 1.17 we have a contradiction.

Let next 3.43(5)(iii) or (iv). Then p divides q − 1. As all elements in
[VM , K]/C[VM ,K](K) is centralized by L2(q), we again see that any element
in [VM , K] is centralized by a good p–element ρ, a contradiction again.

By 14.10 we do not have 3.43(5)(v),(vi),(vii), (ix), (xii) or (xxiii).

Let now 3.43(5)(viii). Then any element in [VM , K] is centralized by L2(q)
or U3(q). Hence any element is centralized by a good p–element ρ, a contra-
diction.

Let now 3.43(5)(x). Then K/Z(K) ∼= An, n ≤ 7. As we have at most
two nontrivial modules in [V, K] we see that 3 ∈ σ(M), which by 14.10 im-
plies n = 5. But then [VM , K] involves just one nontrivial module and so is
centralized by a good E, a contradiction.

Let 3.43(5)(xi). Then by 14.10 we have K ∼= J2 and 5 = p ∈ σ(M). Hence
there is some p–element ρ with [K, ρ] ∈ RM and so [VM , K, ρ] = 1, a contra-
diction.

Let 3.43(5)(xiii), then K ∼= SU3(q) and [VM , K] is the natural module. Now
|BM | = q and |XM | = q2. This further shows that CXM

(t) = 1 for all
t ∈ B]

Mα−1
. As |BMα−1 : CBMα−1

(y)| = 2, we get q = 2, a contradiction.

In 3.43(5)(xv) or (xvi) we do not have quadratic offenders by 3.56.

From now on we have more than one nontrivial irreducible module in [VM , K].
Now let 1 ≤ V1 ≤ · · · ≤ Vr be such a series. Then we may assume that XM

contains a complement Xi to CVi/Vi−1
(BMα−1) for all i. Hence there is ex-

actly one i such that Xi ∩ RMα−1 6= 1. Then for all other j we have that
|Xj| < |BMα−1|. This shows that up to one nontrivial module involved in
[VM , K] all other nontrivial irreducible modules are F–modules with over of-
fender BMα−1 .
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Let 3.43(5)(xvii) or (xxii), then just natural modules are involved, but by
3.18 these do not have over offender.

Let 3.43(5)(xviii). Now K ∼= Sp(6, q) and we have natural modules and
spin modules in [VM , K]. Let WM be a spin submodule. Then any element
in WM is centralized by a good p–element and so YMα−1 ∩WM = 1. Hence
[WM ∩ RMα−1 , VMα−1 ] = 1. Now BMα−1 has to induce an over offender on
WM and so |WM : CWM

(BMα−1)| = q4. Let now Kα−1 the component in
Mα−1/RMα−1 . Let 1 6= x ∈ WM ∩ C(Kα−1), then [x,CVMα−1

(Kα−1)] 6= 1.

But Kα−1 contains a good E. So some 1 6= t ∈ [x,CVMα−1
(Kα−1)] is cen-

tralized by a good p–element in M and a good E in Mα−1. This contradicts
5.5, recall that all 3–elements of Sp(6, q) are good by 1.17. So we have
that WM induces a group of order q4 on Kα−1. But then we have that
|VMα−1 : CVMα−1

(WM)| ≥ q7, as WM has to act nontrivially on a spin module
and a natural module in VMα−1 as well. But this contradicts the fact that
Sp(6, q) has no elementary abelian subgroups of order q7.

Let now 3.43(5)(xix). Then K ∼= Sp4(q) and [VM , K] involves two nat-
ural modules. We have that p divides q2 − 1 and so K contains a good
E. Let WM be a natural submodule. Then as before we have that
[WM ∩RMα−1 , VMα−1 ] = 1 and the as before WM induces a group of order q2

on Kα−1. This gives |[VMα−1 , Kα−1] : C[VMα−1
,Kα−1](WM)| ≥ q4, a contradic-

tion as before.

Let now 3.43(5)(xxi). Let first K ∼= L4(q). Then we have two 4–dimensional
modules and an orthogonal module involved. As we have quadratic of-
fender, we have to induce transvections on the natural modules., otherwise
|[V, BMα−1 ]| = q2 for the natural module V , so BMα−1 is in the stabilizer U of a
2–space. The largest group here which also acts quadratically on the orthog-
onal module is of order q2. But then BMα−1 cannot be a 2F–module offender.
So we have that BMα−1 is a transvection group. Hence for the orthogonal
module i is not an over offender. By 14.10 we have that 3 6∈ sigma(M), so
q > 2. As no p–element can centralize [VM , K], we see that p has to divided
q − 1. In the orthogonal module now any element is centralized by a good
p–element, which shows that there is no such submodule, as otherwise since
there is no over offender on the orthogonal module we must have YMα−1 in this
submodule. So we have a submodule WM which is the natural module. Again
any element is centralized by a good p–element and so WM/CWM

(BMα−1 acts
faithfully on Kα−1. But then we have that |VMα−1 : CVMα−1

(WM)| ≥ q4, con-

tradicting |BMα−1| ≤ q3.

Let now K ∼= SL3(q). Now we have two 3–dimensional modules in [VM , K].
As on one of then BMα−1 has to induce an over offender, we have that
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|BMα−1| > q. As the index of the centralizer of BMα−1 in the natural module
is at least q and |BMα−1| ≤ q2 we see with 14.16 that we have exactly two nat-
ural modules involved. Let WM be a natural submodule. then any element
in WM is centralized by a good p–element, so YMα 6≤ WM . Suppose now
that BMα−1 induces transvections to a hyperplane on [VM , K]/WM . Then
for any y ∈ [VM , K] \ WM with y ∈ RMα−1 we have that CBMα−1

(y) = 1,
contradicting ZM 6= 1. So BMα−1 induces transvections to a point on
[VM , K]/WM . Let now R be the 1-space containing y ∈ ZM as before.
Then |BMα−1 : CBMα−1

(R)| = 2. This shows that |BMα−1| = 2q. As

|VM : CVM
(BMα−1)| ≥ q3, we get q = 2 or 4. In both cases we get that

3 ∈ σ(M). But then by 14.10 we get K ∼= L3(2) and Z3 o Z3 is a Sylow
3–subgroup of M . But then a good E centralizes [VM , K], a contradiction.

Let now 3.43(5)(xxiv). Then K ∼= L6(2), 7 ∈ σ(M) and at least 6 natu-
ral modules are involved in [VM , K]. Let WM be a natural submodule. As
K contains a good E and any element in WM is centralized by a good p–
element, we see that some element w ∈ WM acts nontrivially on Kα−1. Hence
|VMα−1 : CVMα−1

(w)| ≥ 26. So |BMα−1| ≥ 26. Hence we have that for any nat-

ural module V involved in [VM , K] we have that |V : CV (BMα−1)| ≥ 22. This
shows that |XM/ZM | ≥ 210. As |BMα−1| ≤ 29 this contradicts 14.16

Let now 3.43(5)(xxv). Then mp(K) = 1. As YMα−1 ≤ [VM , K] no good
p–element can centralize [VM , K], in particular p does not divide the or-
der of RM . As some E ∼= Ep2 centralizes K, we get that there are at
least 6 modules involved. Hence n ≥ 4. Now by 14.10 3 6∈ σ(M). Let
ρ ∈ CM/RM

(K), o(ρ) = p ∈ σ(M), such that WM = C[VM ,K](ρ) 6= 1. Then
we have YMα−1 6≤ WM . So BMα−1 has to induce an over offender on WM . As
WM is a sum of at least three natural modules, we get n = 5 and p = 7.
Further WM is the sum of exactly three natural modules and |BMα−1| = 16.
Now we choose a natural submodule LM of WM . Then all elements in LM

are centralized by a good E. Further CVMα−1
(Kα−1) is centralized by a good

p–element. So with 5.5 we get that x ∈ LM \RMα−1 acts faithfully on Kα−1.
This gives that |VMα−1 : CVMα−1

(x)| ≥ 26, contradicting |BMα−1| = 24.

So we are left with K ∼= Sz(q), i.e. 3.43(5)(xxvi). But there are no proper
2F–module offender on the natural module. 2

EM

Lemma 14.20 We have that VMα−1 does not induce a proper 2F–module
offender on [E(M/RM), VM ].

Proof: By 14.19 we have that there is some component K such that
L = 〈K, VMα−1〉 6= K and VMα−1 induces a 2F–module offender on [E(L), VM ].
By quadratic action and 3.24 we either have that VMα−1 induces a group of
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order 2 or E(L) ∼= Ω+(4, q) and [VM , E(L)] is the natural module. As-
sume that VMα−1 induces at least a fours group. So we have the latter.
Then we have that L contains a good E. Hence as in 14.19 we see that
[[VM , L]∩RMα−1 , VMα−1 ] = 1. In particular YMα−1 ≤ [VM , E(L)]. Now no good
p–element centralizes YMα−1 , which shows that p divides q − 1 if p ∈ σ(M).
Now there is some x ∈ VMα−1 such that CE(L)(x) ∼= L2(q). As we have that
VMα−1 induces at least a fours group, we see that [x, [VM , E(L)]] is central-
ized by CE(L)(x), in particular YMα−1 6≤ [x, [E(L), VM ]]. This shows that
|[E(L), VM ] : [E(L), VM ]∩RMα−1| ≥ q. By 14.16 we even get equality and so
VMα−1 induces a group of order 2q. Now [VM∩RMα−1 , VMα−1∩E(L)] = YMα−1 .
Hence for t ∈ VMα−1 ∩ E(L) we have that |[VM , E(L)] : C[VM ,E(L)](t)| ≤ 2q.
As q > 2 and |[VM , E(L)] : C[E(L),VM ](t)| = q2, we have a contradiction.

So we have that VMα−1 induces a group 〈t〉 of order 2. But as VMα−1 has
to induce a proper 2F–module offender, we have that it has to induce an F–
module offender, and so it induces a transvection. But it does not normalize
the component K, so t inverts an element of odd order r > 3 in E(L), a
contradiction. 2

b = 2

Lemma 14.21 If b is even, then b = 2 and 14.11(i) holds.

Proof: By 14.11 we may assume that P/CP
∼= Z3 o Z2 and YP is

the orthogonal module. Then by 14.15 and 14.16 we have that VMα−1 in-
duces a proper 2F–module offender on VM . By 14.20 it even induces a
proper 2F–module offender on [VM , UM ] for some Sylow r–subgroup UM of
F (M/RM). Let BMα−1 be a complement to CVMα−1

(UM) in VMα−1 . Then

BMα−1 induces a proper 2F–ofender on [VM , UM ]. By 2.1 we have a subgroup
DM

∼= D1×· · ·×Dt of M , Di dihedral groups of order 2r, with BMα−1 as a Sy-
low 2–subgroup. By quadratic action we now get with 4.5 that [VM , Or(DM)]
is generated by elements which centralize a subgroup of index two in BMα−1

modulo YM . As YM 6≤ VMα−1 by 14.14, we get that these elements even
centralize a subgroup of index two in VMα−1 . By 14.16 we get that all these
elements are in RMα and so we get that [[VM , Or(DM)], BMα−1 ] = YMα−1 .
This shows t = 1 and r = 3. In particular BMα−1 = 〈x〉 and x induces a
transvection on [VM , UM ]. Let first 3 6∈ σ(M). We have that there is no good
E in M such that [UM , E] ≤ RM as otherwise E acts on [D, VM ] and would
centralize this group and then also YMα−1 , a contradiction. Let p ∈ σ(M)
and XM be a Sylow p–subgroup of M . Then XM normalizes UM . Let U be a
Sylow 3–subgroup of the preimage of UM . Then by 2.3 U just admits cyclic
p–groups. Hence we have that XM/CXM

(UM) is cyclic. Hence CXM
(UM)

contains a good E, a contradiction.

So we have 3 ∈ σ(M) and so by 14.10 a Sylow 3–subgroup of M is iso-
morphic to Z3 o Z3. Let ρ ∈ U \ RM with ρx = ρ−1. Then we have that
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[VM , ρ] is of order 4 and contains YMα−1 In particular ρ is not centralized by
an elementary abelian group of order 27. Now as xRM ∈ UM , we get that
U ∼= 31+2 or Z3 o Z3. Now in both case we have that Z(U) ≤ RM . But now
we get a good E which centralizes xRM and so centralizes also [x, VM ], a
contradiction. 2

Until further notice we will assume that b > 1 is odd. Let (M̂, Pα) be a critical
pair. Then in particular M 6= Mα−1. We see that [VM , VMα−1 ] ≤ VM ∩VMα−1 .

2FV M

Lemma 14.22 We have that [VM , VMα−1 ] 6= 1.

Proof: Suppose that [VM , VMα−1 ] = 1. Then as YPα does not centralize

VM , we get that YP 6= ỸP . Hence we have 14.5(1)(2),(4) or (5). In cases
(1) and (2) we have that CP (ỸP ) = CP (YP ). So we have (4) or (5). As VM

acts quadratically on YPα , we have that YPα contains elements, which induce
transvections on VM . By 3.41 M is not exceptional. Now we may apply 3.42.
Let x ∈ YPα inducing a transvection on VM . Let first K be a component of
M/RM on which x acts nontrivially. Then by 3.33 we have that K ∼= Ln(2),
Sp(2n, 2), Ω±(2n, 2) or An. Then we get with 3.42 that in all case [x, VM ]
is centralized by a good E in M or we have 3.42(4). With 14.10 we now
see that 3 6∈ σ(M), but then (4) is not possible. Recall that |YM | = 2, so
M = CM .

Let now x act nontrivially on F (M/RM), so it acts on a Sylow 3–subgroup U
of F (M/RM) and |[U, x] = 3. Let X1 be a Sylow p–subgroup with p ∈ σ(M)
and assume that 3 6∈ σ(M). Then we see with 2.3 that there is a good E in
X1 which centralizes U and so it centralizes [[U, x], VM ] and then [VM , x]. So
we have that 3 ∈ σ(M). By 14.10 a Sylow 3–subgroup U1 of M is isomorphic
to Z3 oZ3. Let U2 ≤ U1 such that U2 is a Sylow 3–subgroup of URM . We also
may assume that x normalizes U2. Let ρ ∈ U2 \RM with ρx = ρ−1. Suppose
that |CU1(ρ)| = 9. Then U2 contains an extraspecial group U3 of order 27.
Further there is g ∈ U1 with Z(U3) ≤ 〈ρ, ρg〉. Hence |[U3, VM ]| ≤ 16 and U1

acts on [VM , U3]. As L4(2) does not contain 3–groups of order 27, we see that
|CU1([U3, VM ])| ≥ 9 and so there is a good E centralizing [U3, VM ] and then
also [VM , x].
So in any case we have [x, VM ] is centralized by a good E in CM . We have
that [VM , x] is centralized by a 2–group T in Pα such that |T | = |S|/2. Now
T ≤ M ∩ Pα. We may assume that T ≤ S. Now we have that NG(T ) 6≤ M ,
as Pα and M cannot share a Sylow 2–subgroup. Further NG(T ) induces Σ3

on T . But this contradicts the choice of P , as in that case we could have
chosen P of type (3). 2

As [O2(M̂), VM ] ≤ YM and YM ∩ YMα−1 = 1, we may by symmetry assume

227



that VMα−1 6≤ O2(M̂).

2FV M1

Lemma 14.23 We have that VMα−1 induces a quadratic 2F–module offender
on VM/YM .

Proof: Let U be a hyperplane in YM , then we see that
CO2(M̂)(VM/U) = CO2(M̂)(VM). Let |VM : VM ∩ O2(M̂α−1)| = 2u, |VM ∩
O2(M̂α−1) : CVM

(VMα−1)| = 2t. Let |VMα−1 : VMα−1 ∩ O2(M̂)| = 2v and

|VMα−1 ∩ O2(M̂) : CVMα−1
(VM)| = 2s. Suppose that v ≥ u. Let t > v. We

have that |VMα−1 : CMα−1(VM)| ≥ 2t. So there is x ∈ VMα−1 ∩ O2(M̂) and

y ∈ VM ∩ O2(M̂α−1) with [x, y] 6= 1. But [x, y] ∈ YM ∩ YMα−1 = 1, so we see
that v ≥ t. Hence 2v ≥ u + t. In particular VMα−1 induces a 2F–module
offender on VM/YM , which is quadratic. 2

ecM

Lemma 14.24 Let K be a component of M/RM such that K ≤ CMRM/RM

and K induces an 2F–module in VM/YM with quadratic offender. Let P be
the set of primes p ∈ σ(M) with p divides |K|. If P 6= ∅, then there is some
p ∈ P with mp(CM) ≥ 3.

Proof: Suppose false. Then we have that mp(CM) ≤ 2 for all p ∈ P .
We have that M = CM(P ∩M), where we assume for the moment that we
have P as in 14.1. Hence |P ∩ M | is divisible by p. Suppose first that all
p-elements are good. Then for P1 a Sylow p–subgroup of P ∩ M we have
that NP (P1) ≤ M , but P = (P ∩ M)NP (P1). So we have with 5.12 that
mp(AutM(K)) ≥ 3 or p divides |Z(K1)|, where K1 is an image of K in
CM/Op′(RM). Suppose that M/CM has a noncyclic Sylow p–subgroup, then
we have that also M0 has such a Sylow p–subgroup. Now we may argue as
before with 14.3, besides that M has a Sylow 3–subgroup R isomorphic to
Z3 o Z3. But in that case we must have that M0 has an elementary abelian
subgroup of order 9, which complements a Sylow 3–subgroup of CM . But
this is not possible, as Z(R) has to be in M0 ∩ CM .

So we have that M/CM has cyclic Sylow p–subgroups. This now shows
that we have e(G) = 3. We have m3(K) ≤ 2. Assume that mp(K) = 1. Now
application of 1.2 and mp(AutM(K)) ≥ 3, shows that this is not possible.
So we have mp(K) = 2. By 1.1 and 3.29, 3.30, 3.31, 3.32 and either K
has to admit an outer automorphism of order p or p divides |Z(K1)|, we get
that K/Z(K)L3(q), U3(q), PSp(4, q), G2(q), L4(q), U4(q), L5(q) or U5(q), q
a power of 2. If p divides |Z(K1)| we see that K1

∼= SL3(q) or SU3(q) and
p = 3, as in the cases of L5(q) and U5(q), p = 5, we would have mp(K) > 2.
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Suppose first that we have an field automorphism of order p. Let R be a
Sylow p–subgroup of K. Let p > 3, then we see that R is abelian and so all
p–elements are good, but p divides P ∩M . With 14.3 we have that p = 3.
Let K2 ≤ K, the corresponding Lie group over GF (2), then all 3–elements
are good, a contradiction again.

Hence we are left with K/Z(K) ∼= L3(q) or U3(q), p = 3. But then with
14.4 we get a contradiction. 2

epC

Lemma 14.25 Let K be a component of M/RM such that K ≤ CMRM/RM

and K induces an 2F–module on some composition factor in O2(M) with
quadratic offender. Let P be the set of primes p ∈ σ(M) with p divides |K|.
Let P 6= ∅, and e(G) ≥ 4, then we have that there is p ∈ P with mp(CM) ≥ 4.

Proof: By 14.24 there is some p with mp(CM) ≥ 3. Assume that
mp(CM) = 3. Then p divides |M ∩ P |, where we assume P to be as in 14.1.
Hence by 14.3 not all p–elements can be good, which shows that p > 3, as
e(G) ≥ 4. Further by 5.12 either mp(CM(K)) = 0 or p divides |Z(K1)|, where
K1 again is the preimage of K in CM/Op′(CM). Finally mt(K) ≤ 3 for all
odd primes t. By 1.2 and 3.29, 3.30, 3.31, 3.32 we get that K/Z(K) ∼= L2(q),
Sz(q), L3(q), U3(q). PSp4(q), G2(q), L4(q), U4(q), Sp6(q) or Ω−(8, q). As
p > 3, we see that Z(K1) = 1 and just field automorphism are possible.
Hence mp(K) = 3. This shows that K/Z(K) ∼= L4(q), U4(q), Sp6(q) or
Ω−(8, q), q = rp. In all cases a Sylow p–subgroup R of K is abelian. But we
have that p divides r− 1 or in the case of U4(q), p divides r + 1. This shows
that R is abelian. Hence all p–elements are good, a contradiction. 2

pnotK

Lemma 14.26 Let t = min(e(G), 4). Suppose that for some component K
in CMRM/RM we have 3.43(1) with V is not centralized by a good E. Then
there is a good E in CM which centralizes [V, K] or e(CM) ≥ t.

Proof: Suppose first that a Sylow p–subgroup of M , p ∈ σ(M) nor-
malizes K. Let mp(C(K)) ≥ 3. Let F be elementary abelian of order p
centralizing K. Suppose that [F, [V,K]] 6= 1. If [V, K] is irreducible, then
some element in F has to induce field multiplication. But then with 3.29,
3.30, 3.31, 3.32 we see that p divides |K|, a contradiction. So we have that
some ρ ∈ F acts nontrivially on the set of irreducible submodules in [V,K],
which then have to be F–modules. But then we see that p divides |Ln(q)|,
where n ≤ m for K ∼= SLm(q) and n = 2, else. Recall that m3(K) ≤ 3 and
so we have at most two such modules for K 6∼= SLm(q). But in all cases we
get p divides |K|. Hence we have that [F, [K,V ]] = 1. As M/CM has cyclic
Sylow p–subgroups we have that F contains a good E in CM .

So we have that mp(C(K)) ≤ 2. Assume that there is no good E in CM ,
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which centralizes [V,K]. As mp(Aut(K)) ≤ 1, we get that e(G) = 3 and
there are field automorphisms of order p of K in M . In particular K is of Lie
type in characteristic two and m3(K) ≤ 2. Let F be an elementary abelian
subgroup of order p2 in C(K). As before we see that [F, [V,K]] = 1. Let
R be a Sylow p–subgroup of M and R1 = Ω1(R). If Z(R1) is not cyclic, all
p–elements are good. But as we may assume that p divides the order on M0,
this contradicts 14.3. So we have that Z(R1) is cyclic. Now we have that
Φ(R1) ≤ C(K) ∩ CM . Hence we may assume that Φ(R1) is cyclic. then we
get that R1 is extraspecial. As mp(R1) = 3, we have that |R1| = p5. Now we
have that |R1 : R1 ∩ C(K) ∩ CM | ≤ p2. But then R1 ∩ C(K) ∩ CM contains
a good E which centralize [V,K], a contradiction.

So we have that a Sylow p–subgroup does not normalize K. Then we get
p = 3 and we have just three conjugates of K. In particular e(G) > 3. Now
all 3–elements are good and so by 14.3 we have that M0 is a 3′–group. Hence
any good E is contained in CM , the assertion. 2

Assume first that VMα−1 induces some 2F–module offender on some com-
ponent K of M/RM with [K, VMα−1 ] ≤ K. By 3.41 we have that M is not
exceptional. We will now apply 3.43 .

If p divides |K| for some p ∈ σ(M), then by 14.25 and 14.24 we may even
apply 3.43 to CM .

nogood11

Lemma 14.27 We do not have K as in 3.43(1).

Proof: Assume that we are in 3.43(1). By 14.8 and 14.26 we may
apply 3.43 to CM again or there is a good E in CM centralizing [VM , K].
Hence in any case we have a good E in CM centralizing [VM , K]. Now let
Kα−1 be the corresponding component in Mα−1/RMα−1 . Then we have that
[[VMα−1 , K], [VM , K]] = 1. Hence we get that [K, [VMα−1 , Kα−1]] = 1. As-
sume that [VM , [VMα−1 , Kα−1]] = 1. Hence [VM , K] centralizes Kα−1 and so
Kα centralizes [VMα−1 , [VM , K]], so Kα−1 is covered by M . Let L ≤ M such
that L is minimal such that it covers Kα−1. As σ(M) ∩ π(K) = ∅, we see
that K has at most three conjugates under L and so as L is perfect we get
[L,K] ≤ RM . Let K̃ be the preimage of K. If K ∼= Sz(q) set π = π(K)′

otherwise set π = 3′. Let U = Oπ(RM). If K is a component of K̃/U . Then
we have that any π′–element x in K is centralized by a good E in M . This
with 5.3 shows that CG(x) ≤ M , as CO2(M)(x) 6= 1. Hence the same is true
for Kα−1. But we have that L centralizes K modulo U . Hence there is a
π′–element in Kα−1 which centralizes K. So we have that K is covered by
Mα−1, which contradicts VMα−1 ≤ O2(Mα−1) and [K, VMα−1 ] involves K. This
implies that that K is not a component. Then it acts on a Sylow r–subgroup
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U1 of F (K̃/U) nontrivially. As mr(U1) ≤ 3, we see that K 6∼= Sz(q). Hence
we have r = 3. By 2.4 we get that m3(U1) = 3 and so U1 = F ∗(K̃/U). Let U2

be a critical subgroup of U1, then with 2.4 we get that Ω1(U2) is elementary
abelian of order 27 or extraspecial of order 35. In both cases we see that K
is the only simple composition factor in K̃/U , which acts nontrivially on U1.
So in KL there is a subgroup L1, which is nonsolvable and centralizes U1.
But then m3(U1CL(U1)) ≥ 4, a contradiction.

So we have that [VM , [VMα−1 , Kα−1]] 6= 1. Then we get that K is covered
by Mα−1, which again conradicts VMα−1 ≤ O2(Mα−1). 2

comp5

Lemma 14.28 Let VMα normalize some component K of M/RM and in-
duces a 2F–module offender on [VM , K], then K is as in 3.43(5).

Proof: Suppose false then by 3.43 and 14.27 we have that K is as in
3.43(2),(3) or (4).

Suppose 3.43(2). Then ỸP contains elements centralized by some good E
which are not in YM . But then we easily see that P ≤ M , a contradiction.

Suppose that we are in 3.43(3)(4). Suppose first that we have WM that
any element in WM is centralized by a good E. Let WMα−1 be the corre-
sponding module in Mα−1. Then [WM ,WMα−1 ] = 1. Hence any element x in
[WM , VMα−1 ]

] is centralized by some good p–element in Mα−1. As M 6= Mα−1,
we get with 5.5 that p = 3 and Z3 o Z3 is a Sylow 3–subgroup of M . Further
not all 3–elements are good. We have that K cannot contain a good E, so
32 does not divide |K|. But as the center of a Sylow 3–subgroup of M is of
order three, we get that K ∼= Sz(q) and [VM , K] is the natural module. But
this would be the situation of 3.43(1), a contradiction.

So we may assume that in 3.43(3) or (4) we always have the second pos-
sibility. Which means that K contains a good E and any element in WM is
centralized by a good p–element. If M ∩ Mα−1 contains a good p–element
in M . Then by 5.5 we get p = 3 and Z3 o Z3 is a Sylow 3–subgroup of M .
Further 3 does not divide |RM | as otherwise M ∩Mα−1 would contain a good
E.

Suppose first m3(K) = 3. Then by 1.1, 3.29, 3.30, 3.31, 3.32 we get K ∼= A9,
A10, A11, Sp6(q), Ω−(8, q), Ln(q), 4 ≤ n ≤ 7, Un(q), 4 ≤ n ≤ 7. But in A9

any 3–element is good. Hence the same applies for A10 and A11. By 1.17 all
3–elements in U4(q), Sp6(q) and Ω−(8, q) are good. Hence we are left with
L4(q), L6(2) and L7(2). Also in L6(2) all 3–elements are good, so we are left
with K ∼= L4(q), 3 | q − 1. But then all 3–elements can be diagonalized and
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so they are good.

So we have that m3(K) = 2, as K contains a good E. Then with 1.1,
3.31 and 3.32 we get that K ∼= 3A6, 3A7, 3M22, A6, A7 or a group of Lie
type over a field of characteristic two. As mp(K) ≤ 3 for all odd p, we get in
the latter that K ∼= SL3(q), SU3(q), PSp4(q), G2(q), L4(q) or U4(q). As the
center of a Sylow 3–subgroup is cyclic, we have that 3 does not divide the
order of CM/RM

(K)/Z(K). So in all cases we have an outer automorphism
of order 3. Hence K is a group of Lietype. Suppose that K/Z(K) has a non
abelian Sylow 3–subgroup. Then K ∼= G2(q). But then a field automorphism
centralizes G2(2) and so an extraspecial group of order 27, which contradicts
the structure of a Sylow 3–subgroup. Now if Z(K) = 1, we have that K ad-
mits an outer automorphismgroup of order 9, so we have K/Z(K) ∼= L3(q) or
U3(q). If 3 divides the order of Z(K), then K ∼= SU3(q) or SL3(q). But now
all 3–elements in K \Z(K) are conjugate and so we have that all 3–elements
are good, a contradiction. So we have that K ∼= L3(q) or U3(q). Now with
3.29 we have that K ∼= L3(q) and [VM , K] is a tensor product module. But
this module has not a quadratic offender by 3.56.

So we may assume that M ∩Mα−1 does not contain some good p–element.
Hence [WM , CVMα−1

(Kα−1)] = 1 and so [WM ,WMα−1 ] 6= 1. Further [WM ∩
O2(M̂α−1), VMα−1 ] = 1 and [WMα−1 ∩O2(M̂), VM ] = 1. Now by symmetry we
may assume that WMα−1 induces an F–module offender on WM . So we may
apply 3.42. In particular we have 3.42(4). Further as elements in CVM/YM

(S)
are centralized by good p-elements, we get that we have 14.5(1)(2),(4) or
(5). Suppose that 3 ∈ σ(M). Then we cannot have 14.5(5), as here M ∩ P
contains a good 3–element. If all 3–elements are good, we must have 14.5(1)
or (2). But as 3 divides q2 − 1, we also get some 3–element in M ∩ P , a
contradiction. Hence in case of 3 ∈ σ(M), we have that not all 3–elements
are good. So we cannot have cases 3.42(4)(v), (vi) or (vii). In (ii) and (iii)
we have nonsplit extensions and so [VM , VMα−1 ] contains elements centralized
by a good E, a contradiction. So we are left with (ii) or (viii), recall that (i)
is not possible, as K contains a good E. In (ii) [VM , VMα−1 ] always contains
a non singular vector, but such vectors are centralized by a good E. So we
have (viii). But then in [VMα−1 , Kα−1] there are elements which centralize
in [VM , K] just C[VM ,K]([VMα−1 , Kα−1]). As NK(C[VM ,K]([VMα−1 , Kα−1])) acts
transitively on [VM , K]/C[VM ,K]([VMα−1 , Kα−1]) , this would imply that K acts
transitively on [VM , K], a contradiction. 2

noEM

Lemma 14.29 There is no component K of E(M/RM) which is normalized
by VMα−1 such that VMα−1 induces a 2F–module offender on [VM , K].
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Proof: Assume false. Then by 14.28 we have to treat 3.43(5). If we
have 3.43(5)(v), (vi), (vii), (ix), (xii), (xx), (xxiii), then 3 ∈ σ(M) and all
3–elements are good. So we get P is as in 14.5(3)(5) or (6). In particular
C[VM ,K](S ∩K) is not centralized by some 3–element. But this is always the
case.

Let us assume that we do not have 3.43(5)(i). Suppose further that any
element in [VM , K] is centralized by a good p-element from K and K con-
tains a good E. Then we have the situation of (3) or (4). Hence we may
argue as before. So we do not have 3.43(5)(ii), (iii), (iv), (viii),(xiv). As we
have quadratic action we see with 3.26 that we do not have (xi). Further we
do not have (xv) or (xvi).

Let now 3.43(5)(x). Then K/Z(K) ∼= An, n ≤ 7. As we have at most
two nontrivial modules in [V, K] we see that 3 ∈ σ(M) and all 3-elements
are good. Hence we see that YP = ỸP . As C[VM ,K](S ∩K) is centralized by
a good 3–element, we see that the same is true for CVM

(S). Hence there is
some 1 6= x ∈ YMg ∩ YP , which is centralized by a good 3–element in M ,
where M g 6= M . But then M g contains agood 3–element from M . As all
3–elements are good we get with 5.5 that M = M g, a contradiction.

Assume now 3.43(5)(xiii) or (xxvi). In case of U3(q) any element in [VM , K] is
centralized by some good p–element and we have some good E in K, a contra-
diction. So we have (xxvi). As no good p–element can be in NG(S), otherwise
it would also be in M0 and so by construction via H we would get P ≤ M ,
we get that p does not divide q − 1. But then we see that there is a good p-
element centralizing [VM , K] = WM and it is not centralized by a good E. So
we have an outer automorphism of order p. As p does not divide the order of
NG(S), we have that K is not normalized by S. Hence there is a conjugate L
of K. Let x ∈ WM , then |[VMα−1 , x] : [VMα−1 , x]∩YM | = q. Let [Kα−1, x] 6= 1.
Then as [x,WMα−1 ] is of order q2, we have that YM ∩WMα−1 6= 1. But now
we get M = Mα−1 by 5.5, as p 6= 3. So we have that [WM , Kα−1] = 1. But
the same also applies for Lα−1, the group corresponding L. Hence we have
that [WM , VMα−1 ] is centralized by a good E in Mα−1. But then M ∩Mα−1

contains a good p–element from M , which contradicts 5.5.

Suppose now that we have 3.43(5)(xvii), (xviii), (xix) or (xxi) with K ∼=
L4(q). We first assume the mp(K) ≥ 2. Let WM be a submodule of [VM , K].
We first show

(1) If x ∈ WM , then CK(x) contains a good p–element

If K ∼= G2(q), we have p | q2 − 1 and any element in WM is centralized
by L2(q). If K ∼= U4(q), then any element in WM is centralized by L2(q) or
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Sp4(q) and p | q2 − 1. If K ∼= Sp6(q) and WM is an extension of the trivial
module by the natural module, then any element in WM is centralized by
Sp4(q). If WM is the spin module, then elements are centralized by L3(q)
or Ω−(6, q), and in all cases p | q2 − 1. If K ∼= Sp4(q), then any element
is centralized by L2(q) and p | q2 − 1. If finally K ∼= L4(q) and WM is the
natural module, then any element in WM is centralized by L3(q), if WM is the
orthogonal module, then elements are centralized by L2(q) or Sp4(q), further
p | q2 − 1. hence in all case (1) holds.

Let first mp(K) = 1. If K ∼= G2(q), then a good E centralize [VM , K] and
we would be in 3.43(3) or (4). If K ∼= U4(q), then p does not divide q2 − 1,
so p | q2 + 1 or q2 + q + 1. In the latter we may argue as in the G2(q)–case.
So assume that p | q2 + 1 and we have [VM , K] = WM ⊕W g

M , g a p–element.
Now we have still some p–element ρ centralizing [VM , K]. In particular any
element in WM is centralized by some good E and we may argue as above.
Let K ∼= Sp6(q), then we must have e(G) ≥ 4 and then by 14.25 we also
have mp(CM) ≥ 4. But then WM is centralized by a good E. So let next
K ∼= L4(q). then p | q2 + 1 or q2 + q + 1. The same applies for K ∼= Sp4(q).
If there is some field automorphism ρ of order p. Then as there is some
p–element centralizing WM , we get that any element in WM is centralized by
a good E for K 6∼= Sp4(q). If K ∼= Sp4(q), we must have a conjugate of K as
otherwise NG(S) contains a good p–element, which contradicts 14.2. So we
have that K is centralized by a good E, then WM is centralized by a good
E. Hence we have

(2) Either CVM
(K) is centralized by a good E or any element in WM is

centralized by a good E. If mp(K) = 1 the latter holds.

Let now [CVMα−1
(Kα−1),WM ] 6= 1. Then we have elements in WM which

are centralized by a good E in Mα−1. By (1) they are also centralized by
some good p–element in M . Hence we would get with 5.5 that p = 3 and
Z3 o Z3 is a Sylow 3–subgroup of M . But in all these case we are now con-
sidering, all 3–elements are good. So we have that

[CVMα−1
(Kα−1),WM ] = 1.

In particular we have that WM acts nontrivially on WMα−1 and so

(3) [VM , K] acts nontrivially on [VMα−1 , Kα−1].

Let first K ∼= G2(q). Then WM is the natural module. Further by 3.18
VMα−1 induces an offender of order q3. Hence in both modules W in [VM , K]
we have that |W : CW (VMα−1)| ≥ q3. This shows that we have a subgroup

R ≤ [VM , K], |R| = q3, R ≤ O2(M̂α−1) but CR(VMα−1) = 1. We have
that [[VMα−1 , Kα−1], R] ≤ YMα−1 . By (2) any element in WM is centralized
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by a good p–element. Hence with 5.5 we get that YMα−1 ∩ WM = 1 and
so R ∩ WM = 1. Hence in [VM , K]/WM we have that R corresponds to
a complement of C[VM ,K]/WM

(VMα−1). By 14.7 we see that for r ∈ R] we
get [VMα−1 , r] = YMα−1 . But obviously there are elements r ∈ R such that
|[VMα−1 , r]WM/WM | = q2 while YMα−1 covers C[VM ,K]/WM

(VMα−1).

Let next K ∼= U4(q). Then we get that |VMα−1 : VMα−1 ∩ O2(M̂α−1)| = q4 by
3.18. As above we get some R with |R| = q4. Again there is r ∈ R such that
|[VMα−1 , r]WM/WM | 6= q4, a contradiction.

Let next K ∼= Sp6(q). As we have symmetry, we may assume that |VMα−1 :

VMα−1 ∩O2(M̂)| ≥ |VM : VM ∩O2(M̂α−1)|. So let |VMα−1 : VMα−1 ∩O2(M̂)| =
q3. Then by 3.44 we get again a group R of order q3 as above. And so
again R ∩WM = 1. Let R come from a natural module. As we must have
that CVMα−1

/O2(M̂)∩VMα−1
(r) = 1 for all 1 6= r ∈ R, this gives that VMα−1 just

consists of elements t with |[V, t]| = q3 for the natural module V . But this is
not possible.

So we have that R comes from the spin module. Now we have that VMα−1

just has elements t with |[V, t]| = q4, where V is now the spin module. But
then VMα−1 cannot induce an F–module offender.

So we have that |VMα−1 : VMα−1 ∩ O2(M̂)| ≥ q4. Now with 3.44 we
get R as above with |R| = q4 and then again that |[V, t]| = q4 for all
t ∈ VMα−1/VMα−1 ∩ O2(M̂). This now implies that VMα−1 is in O2(X),
where X is the point stabilizer of K on the natural module. But O2(X)
contains a subgroup X1 of order q2 with |[V, x]| = q2 for all x ∈ X]

1. As
|VMα−1/VMα−1 ∩O2(M̂)| ≥ q2 and |O2(X)| = q5, this is not possible.

Let next K ∼= L4(q). As VMα−1 acts quadratically on the orthogonal mod-

ule, we have that |VMα−1/VMα−1 ∩ O2(M̂)| ≤ q3. Suppose equality. Then on
both natural modules it induces a group of transvections to a hyperplane.
So we get as above a group R with |R| = q2. Let now first WM be the
orthogonal module. As there are elements in WM which are not centralized
by a good E by (3), we get that p does not divide q2 − 1. In particular
mp(K) = 1. By (2) any element in WM is centralized by a good E, a con-
tradiction again. So we just have natural modules. Further we cannot have
a submodule which is invariant under some elementary abelian subgroup of
order p3. This shows WM = V1 ⊕ V2, both Vi natural modules and V2 = V g

1

for some p–element g. Let now R be as before. Assume that R ∩WM = 1.
Then for t ∈ VMα−1/VMα−1 ∩O2(M̂) we either have [R, t] = [V, t], where V is
the natural module or [R, t] = 1. We have that |[V, VMα−1 ]| = q3, so VMα−1 is
uniquely determined. But then CR(t) 6= R for all t ∈ VMα−1 and CR(t) 6= 1
for at least one t ∈ VMα−1 , a contradiction. So we have that R∩WM 6= 1. As
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then YMα−1 ≤ WM , we even have R ≤ WM . But then [VMα−1 , R] ∩ V1 6= 1, a
contradiction.

Let now |VMα−1/VMα−1 ∩ O2(M̂)| ≤ q2. Then VMα−1 just consists of c2–
elements on the orthogonal module. But then group generated of the cen-
tralizes of such elements is q4(L2(q) × L2(q)), the point stabilizer in the
natural module, which obviously does not act on CV (VMα−1), V the orthog-
onal module.

So let finally K ∼= Sp4(q). Assume first q > 2 We have that [VM , K] involves
two natural modules. Let first |VMα−1/VMα−1 ∩O2(M̂)| = q. Let further WM

be a nonsplit extension of a trivial module by the natural one. Then by 3.53
and (2) we have some 1 6= x ∈ WM ∩WMα−1 which is centralized by a good
E in M and Mα−1 as well, a contradiction. So we have that |WM | = q4.
Now the argument as in the L4(q)–case shows that [VM , K] = WM ⊕ W g

M ,
for some p–element g ∈ M . In particular p | q2− 1. But now any element in
[WM , VMα−1 ] is centralized by a good p–element in K, a contradiction.

So we have that |VMα−1/VMα−1∩O2(M̂)| ≥ q2. Assume equality. Then we get
R with |R| = q2. Now by 14.7 we have that VMα−1 does not contain transvec-
tions on [VM , K]/WM . Hence also there are no a2–elements in VMα−1 . Hence

we now have that X = 〈CK(t) | t ∈ (VMα−1/VMα−1 ∩ O2(M̂))]〉 ∼= q3L2(q). If
CVM

(K) 6= 1, then as O2(X) contains transvections, we see with 3.53 that
[VM , VMα−1 ] ∩ CVM

(K) 6= 1. But this is not possible. Hence we get again
[VM , K] = WM ⊕ W g

M , g ∈ M a p–element and WM the natural module.
Further we have that p | q2 − 1. Now in [VM , K] we have exactly q + 1
irreducible K–submodules. On [VMα−1 ,WM ] acts the group L2(q) × Zq−1.
Hence all nontrivial elements in this commutator are conjugate. Therefore
they all are centralized by some p–element. The remaining elements are
(q4− 1)− (q + 1)(q2− 1) = (q2− 1)(q2− q) = (q2− 1)q(q− 1). On these acts
(L2(q) × Zq−1)Zp. In this group the centralizer is of order p. Hence we see
that all elements in [VM , K] are centralized by a good E, a contradiction.

So we have now |VMα−1 : VMα−1 ∩O2(M̂)| > q2, i.e. there are transvections in
VMα−1 . Further there is R with |R| = q as before. Again R ∩WM = 1. So as

|[VM , K] : C[VM ,K](VMα−1)| ≥ q4, we must have |VMα−1/VMα−1 ∩O2(M̂)| = q3.
Now [VMα−1 ,WM ] contains CWM

(K) and so we have that WM is the natural
module and [VM , K] = WM ⊕W g

M as before. But then we get the same con-
tradiction that any element in [VM , K] is centralized by a good p–element.

Now we are left with q = 2. Then p = 3. Further any 3–element is
good, e(G) = 3 and [VM , K] = WM ⊕ W g

M , WM the natural module. If
|VMα−1/VMα−1 ∩ O2(M̂)| = 2, then [VMα−1 , [VM , K]] is centralized by a good

3–element, a contradiction. So we have that |VMα−1/VMα−1 ∩ O2(M̂)| ≥ 4
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and then R 6= 1. Now [R, VMα−1 ] ≤ [WM , VMα−1 ]. If CWM
(K) = 1, then

again all elements in [[VM , K], VMα−1 ] are centralized by a good 3–element, a
contradiction. So we have CWM

(K) 6= 1. Now [WM ,WMα−1 ] ∩ CWM
(K) = 1.

This shows that WMα induces an outer automorphism on K ′ ∼= A6. Now
a quadratic fours group of this type always contains some transvection t.
So [R, t] is centralized by a 3–element, if [R, t] 6= 1. Hence we must have
[R, t] = 1, i.e. R ≤ CVM

(t). As [R, VMα−1 ] cannot contain some element,

which is centralized by a 3–element, we get that |VMα−1/VMα−1 ∩O2(M̂)| = 4
and VMα corresponds to 〈(1, 2), (3, 4)〉. Now R projects as a fours group onto
WM and W g

M . Hence we have that |YMα| = 4. As 3 ∈ σ(M) and all 3–
elements are good, we have that P is of type 14.5(3) or (7). In both cases we
have that S/CS(YP ) is cyclic. Now for any r ∈ R] we have that |[VMα , r]| = 4.
Then [R, VMα−1 ] ∩WM 6= 1, as (3, 4) acts as a transvection. But this contra-
dicts YMα−1 ∩WM = 1.

Let now 3.43(5)(xxi) with K ∼= SL3(q). Suppose first mp(K) = 2. Then
p | q − 1 and so any element in WM is centralized by a good p–element.
Hence WM acts nontrivially on Kα−1. So we have that [WM , WMα−1 ] 6= 1. In
particular there must be some p–element ρ. which does not normalize WM .
This shows W

〈ρ〉
M = W1 ⊕ · · · ⊕Wr, r ≤ 4. But as o(ρ) | q − 1 there is some

module, which is normalized by ρ, a contradiction.

So we have that mp(K) = 1. Let [CVMα−1
(Kα−1), [VM , K]] 6= 1.

As YM ∩ CVMα−1
(Kα−1) = 1 by 5.5, we get that |CVMα−1

(Kα−1) :

CCVMα−1
(Kα−1)([VM , K])| ≤ q2. Now if WM is a natural module, then

|WM : CWM
(CVMα−1

(Kα−1)| ≥ q, i.e. WM induces a 2F–module offender.

Let now K̂ be a component of Mα−1/RMα−1 on which WM induces such an

offender. Then by symmetry we may assume that K̂ is one of the compo-
nents in 3.43, which we not have handled so far. This means 3.43(i) or (xxi)
- (xxv).

In cases (xxiii) or (xxiv) we have that mp(K̂) = 2. Then we have by (2),

(3) and 5.5 that [K̂, [VMα−1 , Kα−1]] 6= 1. So we have that [VM , K] acts non-

trivially on Kα−1 and K̂ as well. Hence we get that we have an F–module,
which is not the case in (xxiii) and (xxiv). Let (xxv). Then mp(K̂) = 1 and

e(G) = 3. As 3 | |K|, we get that K̂ ∼= L3(2) and m3(K) = 1. As WM acts
on K̂, we have q ≤ 4 and so K ∼= L3(2) as well. As no element in WM can be
centralized by a good E, we now get p = 7 and there are exactly three nat-
ural modules in [VM , K]. We further see that [[VMα−1 , Kα], K̂] = 1. Let now
x ∈ [VM , K] and assume that YMα−1 ∩ VMα−1 6= 1. Then there are elements
in YMα−1 which are centralized by a good 7–element in M , contradicting 5.5.
So we have that |[VMα−1 , x]| ≤ 4, which contradicts the fact that there are at

least three natural K̂–modules in VMα−1 .
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So we have that K̂ ∼= L3(r) or L2(r). Let first K̂ ∼= L3(r). We may as-
sume that r ≥ q. Suppose r = q. As mp(K) = 1, we get that q = 2 or

4. Let q = 4, then as K̂ acts nontrivially on CVMα−1
(Kα−1), we get that

Kα−1K̂ = Kα−1 × K̂, a contradiction. So we have K ∼= L3(2) ∼= K̂. Now
there is some p–element centralizing WM . Hence we have that |[VMα−1 , x]| ≤ 4

for x ∈ WM . This shows that K̂ induces exactly two modules and so
[[VMα−1 , Kα−1], K̂] = 1. But then p = 3 and [VM , K] = WM ⊕ W g

M for
sone 3–element g. But in this group now any element is centralized by a
3–element and so in M it is centralized by a good E, a contradiction. So we
may assume that r > q. Hence we have that [[VMα−1 , Kα−1], K̂] = 1. Again
if x ∈ WM , we have that |[WM , VMα−1 ]| = q, or q2. On the other hand it is

a power of r. As q < r, we see that we have r = q2. But then m3(K̂) = 2.
This shows 3 6∈ σ(M) and then e(G) > 3. But then any element in WM is
centralized by a good Ea contradiction.

So let now K̂ ∼= L2(r). Then in any case [VMα−1 , Kα−1, K̂] = 1. Now again

m3(K) = 1 and as above we get that r = q or r = q2. But then q − 1 | |K̂|.
As e(G) = 3, we than have mp(K) = 2, a contradiction.

So we have that WM acts on some r–group and induces there a 2F–module
offender. There is R ≤ WM , |R| = q such that CVMα−1

(R) = CVMα−1
(r) for

all r ∈ R]. This shows q = 2 and K ∼= L3(2). How we have that in the
natural module any element is centralized by a 3–element. As K is cen-
tralized by an elementary abelian p–group of order p2, we get that p 6= 3,
hence p = 7 ∈ σ(M). Hence [VM , K] is centralized by a 7–element and

[V, K] = WM ⊕W g
M ⊕W g2

M for a 7–element g ∈ M . We now have that Vα−1

induces a group of order 4 and so there is a group R ≤ [VM , K], R of order
8 and all elements in R have the same centralizer, a contradiction.

So we have that [CVMα−1(Kα−1),WM ] = 1. Hence [WM ,WMα−1 ] 6= 1. Let

[[VM , K] ∩ O2(M̂Mα−1 , VMα−1 ] = 1. Then we even have an F–module and

|VMα−1 : VMα−1 ∩ O2(M̂)| = q2. So we have exactly two natural modules. As
no element in the natural module can be centralized by a good E, we have
that [VM , K] = WM ⊕W g

M , g a p–element and so o(g) | q + 1. But as also
q + 1 divides the order of L2(q) in fact all elements in WM are centralized by
a good E.

So we must have [[VM , K] ∩ O2(M̂Mα−1 , VMα−1 ] 6= 1. Further there are more
than two modules in [VM , K] and p divides q2 + q + 1. Now there are ex-
actly three such modules and there is a group R ≤ [VM , K], |R| = q and
1 6= [VMα−1 , R] ≤ YMα−1 . Further we get |[R, VMα−1 ]| = q2. We also have that
there is no p–element centralizing [VM , K]. This shows that we must have
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an outer automorphism of order p on K and so q ≥ 8 and e(G) = 3. This
shows that 14.5(4),(5) (6) and (7) are not possible. Now in the other cases
we get that |YM | = q2 and there is a cyclic group U of order q2 − 1 acting
transitively on YM . Let x ∈ U , o(x) = r, r a prime dividing q − 1, r > 3.
Then x normalizes K. Let K〈x〉 ∼= K × Zr. Then rinσ(M) and x is a good
r–element. But P = 〈P ∩ M, NP (〈x〉)〉, a contradiction. So x induces an
outer automorphism. As o(x) > 3, this is a field automorphism. This now
shows that q = tr and r | t− 1. But then mr(CK(x)) = 2. Hence again there
is some elementary abelian group of order r3, a contradiction.

Let next 3.43(5)(xxii). Suppose first that S normalizes K. As by 14.2 N(S)
does not contain a good p–element, we get that a good E centralizes K or
p = 3 and a Sylow 3–subgroup is isomorphic to Z3 o Z3. In the former either
some p–element just centralizes [VM , K] or p divides q− 1 and [VM , K] is the
sum of two modules each centralized by some p-element.

In the latter we have that K has at least three conjugates under the ac-
tion of a Sylow 3–subgroup. Hence if K is not normal, then we get that
we have L2(q)×L2(q) and either some p–element just centralizes [VM , K] or
[VM , 〈KS〉] = [VM , K] is the O+(4, q)–module. Then any element in [VM , K]
is centralized by some good p–element.

Let first [[VM , K] ∩RMα−1 , VMα−1 ] 6= 1. Then we have that YMα−1 ≤ [VM , K].
Hence we have that no element in YMα−1 is centralized by a good p–element

in M . This shows that p divides q−1 and [VM , K] = WM ⊕ W̃M , where both
WM and W̃M are centralized by some good p–element. Now we can calculate
the orbit lengths on [VM , K], which are q2− 1, (q2− 1)p and q(q2− 1)(q− 1).
Hence again any element is centralized by some good p–element. So we may
assume that [[VM , K] ∩ RMα−1 , VMα−1 ] = 1. Hence there is a subgroup R in
[VM , K], |R|0q, which induces an F–module offender on VMα−1 . This shows
that we have the situation of 3.42. But then by symmetry we may assume
that R acts faithfully on F (Mα−1/RMα−1). But all elements in R have the
same centralizer in VMα−1 , which shows q = 2, a contradiction.

Let next 3.43(5)(xxiv). Then we see that a Sylow 3–subgroup of M is cen-
tralized by a good E. Hence all 3–elements are good. This shows that 3 does
not divide the order of P∩M . Assume that we have the orthogonal O+(4, q)–
module. Then we get that also a Sylow 3–subgroup of P is centralized by
a good E in some conjugate M g of M . As P = 〈NP (〈ρ〉) | 1 6= ρ ∈ P̃ 〉,
where P̃ is a Sylow 3–subgroup of P , we get P ≤ M g. But then with 5.4
we get M = M g, a contradiction. So we have that YP is generated by two
conjugates of YM , in particular no element in YP \ YM is centralized by a
good p–element in M . But we have that CVM

(S ∩K) is centralized by some
7–element from K, a contradiction.
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So we are left with 3.43(5)(xxv). Let first n > 3. Then as in the case of
L6(2), we get that P has the restricted structure. Further we have that
C[VM ,K](S ∩ K) is centralized by a 3 -element ρ. Hence this ρ is in some
M g. As e(G) = 3 and 3 6∈ σ(M) by 3.43(5)(xxv), we have that ρ ∈ Kg and
so it centralizes a good E in M g. But then M ∩M g contains a good E, a
contradiction.

Let K ∼= L3(2). Then we have at most four modules involved. If 3 ∈ σ(M),
we get a contradiction as above, as C[VM ,K](S ∩K) is centralized by a good
3–element. Hence p = 7 ∈ σ(M). Further there is a good p-element
centralizing [VM , K]. This gives that [VMα−1 , VM ∩ O2(M̂α−1)] = 1. So

|[VM , K] : [VM , K]∩O2(M̂α−1)| = 8. Suppose that [VM , K] centralizes KMα−1 .
If [KMα−1 , [t, VMα−1 ]] 6= 1 for some t ∈ [VM , K], then YM ∩ [t, VMα−1 ] 6= 1.
But [KMα−1 , [t, VMα−1 ]] ≤ [KMα−1 , VMα−1 ] which is centralized by a good
p–element in Mα−1, a contradiction. So we have that KMα−1 acts triv-
ially on [[VM , K], VMα−1 ]. In particular that group intersect YM trivially.
But then we have that |VMα−1 : CVMα−1

([VM , K])| = 4. Hence we get

that [VM , K] induces a strong F–module offender on VMα−1 . Now we get

first that it centralizes F (M̂α−1/O2(M̂α−1)) by 3.21 and then 3.42 applies.
But as we have an overoffender none of the groups is possible. So we get
that [VM , K] acts nontrivially on KMα−1 . Let WM be a natural module in
[VM , K]. Then we have that for t ∈ WM with [t,KMα−1 ] 6= 1, we have that
|[VMα−1 , t]| = 4, as YM ∩ [VMα−1 , t] = 1 and [VMα−1 , t] ≤ WM by quadratic
action. But as there are at least three natural modules in [VMα−1 , KMα−1 ], we
get |[t, [VMα−1 , KMα−1 ]]| ≥ 8, a contradiction.

So we are left with 3.43(5)(i). Hence [VM , K] is a nonsplit extension of a
trivial module by the natural module for K ∼= L2(q). If there is a good p–
element, which induces a field automorphism on K, then S cannot normalize
K. Hence some conjugate has to centralize [VM , K]. If some good E cen-
tralizes K, there is some p–element centralizing [VM , K]. Hence in any case
there is some good p–element centralizing [VM , K]. Now we argue as above.
Let first [KMα−1 , [[VK , K], VMα−1 ]] = 1. As by 3.52 [[VM , K], VMα−1 ]

] contains
elements which are centralized by a good E in M , we get that KMα−1 is cov-
ered by M . But as KMα−1 contains a good p–element, we now would get that
M ∩Mα−1 involves a subgroup isomorphic to L2(q)× L2(q) and so contains
a good E, a contradiction. Hence [VM , K] acts nontrivially on Kα−1. But
then again by 3.52 in [[VM , K], VMα−1 ]

] there is also some element which is
centralized by a good E in M and a good p–element in Mα−1, a contradic-
tion. 2

fitting
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Lemma 14.30 We have that VMα−1 does not induce a 2F–module offender
on E(M/RM) acting on [VM , E(M/RM)].

Proof: Suppose false. Then by 14.29 we have some component
K of M/RM such that [K, VMα−1 ] 6≤ K. Then with 3.24 we get that
〈KVMα−1 〉 = Ω+(4, q) and just orthogonal modules are involved in [VM , K].
With 3.36 we now get that [VM , K] is the orthogonal module. In partic-
ular any element is centralized by some good p–element. This shows that
[VM , K]/[VM , K] ∩ RMα−1 has to act faithfully on [VMα−1 , KMα−1 ]. Further
YMα−1 ∩ [VM , K] = 1 = YM ∩ [VMα−1 , KMα−1 ]. But then the centralizer of
[VM , K] in that group would have index at most 2q, a contradiction as q > 2.
2

By symmetry we now may also assume that VM does not induce a 2F–module
offender on some component of Mα−1/RMα−1 . By 14.30 and 14.23 we have
that VMα−1 induces an 2F–module offender on F (M/RM). Then there is a
Sylow r–subgroup of F (M/RM) on which VMα−1 induces a 2F–module of-

fender ṼMα−1 . Let Fr be a Sylow r–subgroup of the preimage on which ṼMα−1

acts. Let Fα−1 be the corresponding subgroup in Mα−1. Set F = [Fr, ṼMα−1 ],
let F1 be the corresponding group in Mα−1. Recall that F1 ≤ CM . If also
VM induces a 2F–module offender on VMα−1/YMα−1 , we will assume that al-
ways VMα−1 is at least as good as VM . In particular VM cannot induce an
F–module offender if VMα−1 does not.

rinsigma

Lemma 14.31 We have that r ∈ σ(M).

Proof: Assume that r 6∈ σ(M). Then by 2.1 we have that |ṼMα−1| ≤ 8.

If there is some elementary abelian p–subgroup E1 of order at least p3,
p ∈ σ(M) such that [E1, Fr] ≤ RM , then there is also a good E in CM

with [Fr, E] ≤ RM . So let first assume that there is no such good E. Then
as r = 3 or 5, we see with 2.3 that mr(Fr) = 2 and p = 3. Further for a crit-
ical subgroup C of Fr we have that Ω1(C) ∼= E52 or an extraspecial group of
order 53. We have that NM(Ω1(C))/CM(Ω1(C)) is isomorphic to a subgroup
of GL2(5). As ṼMα−1 acts on C, we get some 5–element ω ∈ Ω1(C)\Φ(Ω1(C))
such that |[VM/YM , ω]| ≤ 4. As an element ρ of order 3 acts nontrivially,
we see that |[VM/YM , Ω1(C)]| ≤ 28. But in GL(8, 2) there is no element of
order three acting nontrivially on a Sylow 5–subgroup. Hence we have that
[VM/YM , Ω1(C)] = 1. Now we have that 〈ρ, ṼMα−1〉 acts. If there is some in-
volution which inverts Ω1(C)/Phi(Ω1(C)), then in the first case we get that
Fr is abelian, and so we get the contradiction [Fr, VM ] = 1. In the second
case we get that Fr = CU , where U = Z(Fr) is cyclic. Further we have that
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[ρ, U ] = 1. Hence [Fr, ρ] ≤ RM , a contradiction. So we have that there is
no such element. This shows that |ṼMα−1| = 2 and inverts ρ. This now gives
that |[ρ, VM/YM ]| ≤ 24. But then for some g ∈ Fr we have that U = 〈ρ, ρg〉
involves an elementary abelian group of order 52 and |[VM/YM , U ]| ≤ 28,
which as above implies that [U ∩ Fr, VM/YM ] = 1. Hence [Fr, ρ] ≤ RM , a
contradiction.

So in any case there is a good E in CM such that [E, Fr] ≤ RM . Sup-
pose that [E, [F, VM ]] = 1. Let x ∈ [F, VM ]]. Suppose [x, F1] ≤ RMα−1 and
[x, VMα−1 ] 6= 1. If [CVMα−1

(F1), x] = 1, then we have that [[VMα−1 , F1], x] 6= 1.
But this group is centralized by a good E in M and Mα−1 as well, a contradic-
tion. So we have [CVMα−1

(F1), x] 6= 1. Then we get F1 ≤ M as commutators
are centralized by a good E in M .

There is some good elementary abelian p–subgroup W in CMα−1 with
Fα−1 = (Fα−1 ∩ RMα−1)CFα−1(W ). As we are free in choosing Fr, we may
assume that CF1(W )∩RM ≤ Fr. Hence we may even assume that FrCF1(W )
is an r–group normalized by ṼMα−1 . Now CF1(W ) acts on F . Let C be a

characteristic subgroup on which ṼMα−1 acts nontrivially. We have that F1

acts on ṼMα−1 . As this group is of order at most 8 and acts quadratically,

we see that [F1, ṼMα−1 ] ≤ RM . Let y ∈ ṼMα−1 and 1 6= u ∈ [Ω1(C), y] which
is inverted by y which is centralized by CF1(W ). We see that there is some
1 6= f ∈ CMα−1 ∩ CF1(W ) which centralizes u. But with 5.3 we have that
CG(f) ≤ Mα−1 and so u ≤ Mα−1. But u is inverted by some element in VMα−1

contradicting VMα−1 ≤ O2(Mα−1). So we have that C is not abelian and then
we have that [Ω1(C), y] is extraspecial. But then we get that Z([Ω1(C), y])
is centralized by y and there is a group of order r2 in [Ω1(C), y], which is
normalized by CF1(W ). Hence CF1 again centralizes some element u, which
is inverted by y, a contradiction.

So we have [x, F1] 6≤ RMα−1 and then also [x, Fα−1] 6≤ RMα−1 . If there is
a fours group V ≤ [F, VM ], which acts on Fα−1 nontrivially, we see with
2.1 that there are r–elements in CMα−1 ∩ Falpha−1, which are in M but are
inverted by elements in VM , a contradiction. So we have that [VM , F ] is of
order 4. Then set F̃1 = 〈F1, F

x
1 〉. We get that |[VMα−1 , F̃1]| ≤ 16. As F̃1

is centralized by a good E in CMα−1 , we get the same for [VMα−1 , F̃1], but
then some element in [VM , F ] is centralized by a good E in CM and CMα−1 ,
a contradiction.

So we have that [F, VM ] is not centralized by a good E in CM . This gives
r = 5 and p = 3 ∈ σ(M). In particular this is now an exact 2F–module
offender and so we may assume that VMα−1 centralizes all components and
all further Sylow subgroups of the Fitting subgroup. As we do not have an
F–module offender [VM , F ] on VMα−1 we see that for x ∈ [VM , F ] \RMα−1 we
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get [x, VMα−1 ]∩ YM 6= 1. Suppose first that [x, Fα−1] ≤ RMα−1 . We have that
F is generated by elements ρ with |[VM , ρ]| = 16. Let ρα−1 the corresponding
element in Fα−1, then we have that [[VMα−1 , ρα−1], x] = 1. This shows that
[VMα−1 , x] = [x,CVMα−1

(Fα−1)]. As [x, VMα−1 ] ∩ YM 6= 1, we see again that
F1 ≤ M . As above we get a contradiction.

So we have that [x, Fα−1] 6≤ RMα−1 . In particular we have a fours group
X which acts faithfully on Fα−1RMα−1/RMα−1 . Hence by 2.1 there is
U ∼= D10 ×D10 in Fα−1RMα−1/RMα−1 containing X as a Sylow 2–subgroup.
We have that [VMα−1 , O5(U)] = V1 ⊕ V2 with CO5(U)(Vi) 6= 1, i = 1, 2. Let
X = 〈x, y〉. then we may assume that [V1, x] 6= 1 6= [V2, y]. Now we have
that Vi ∩ YM 6= 1, i = 1, 2, which gives O5(U) ≤ M , a contradiction. 2

bsmall1

Lemma 14.32 If b is odd then b = 1.

Proof: Suppose b > 1. Then by 14.23, 14.30 and 14.31 we get that
VMα induces a 2F–module offender on a Sylow r–subgroup of F (M/RM),
where r ∈ σ(M). Let 1 6= t ∈ [F, VM ] such that [[t, F ], E] = 1 for some good
E in CM . Then in particular [t, VMα−1 ]∩YMα−1 = 1. If [t, CVMα−1

(Fα−1)] 6= 1,
then we have that F1 ≤ M . In particular F1 contains no good E, which
shows mr(F1) ≤ 2. If F1 is cyclic, then also F is cyclic. Again we may
assume that FF1 is a r–group. As F1 contains a good r–element, we get
that Ω1(F ) ≤ Mα−1. But Ω1(F ) is inverted by some element in VMα−1 , a
contradiction. Hence mr(F1) = 2. Let C be a critical subgroup of F . If C
is cyclic, we get as before that Ω1(C) ≤ Mα−1) and so VMα−1 centralizes C,
a contradiction. Hence mr(C) = 2 and so Ω1(C) is elementary abelian of
order r2 or extraspecial of order r3. As above we get again some r–element
in Ω1(C) which is centralized by F1 and inverted by some element in ṼMα−1 ,
a contradiction.

So we have that [t, CVMα−1
(Fα−1)] = 1. Hence [t, [Fα−1, VMα−1 ]] 6= 1. Let now

[F, VM ] be generated by such elements t. Suppose that [t, Fα−1] ≤ RMα−1 ,
then there is some tα−1 ∈ VMα−1 such that [t, tα−1] 6= 1 and [tα−1, F1] is cen-
tralized by a good E. But then [t, tα−1] is centralized by a good E in CM and
CMα−1 as well. Hence for each such element we have that [t, Fα−1] 6≤ RMα−1 .
If there is a foursgroup X of this type in VM , then we get in Fα−1X by 2.1
a subgroup U ∼= D2r ×D2r. Hence we have an elementary abelian subgroup
of order r2 in M ∩ Mα−1, which gives that r = 3 and a Sylow 3–subgroup
is isomorphic to Z3 o Z3. Then we get that O3(U) is not contained in an
elementary abelian subgroup of order 27. In particular we get that Fα−1 is
extraspecial of order 27 and so Fα−1 = [X, Fα−1]. But then there is a group
U in Fα−1X, where U is as above and O3(U) is good, a contradiction.
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Let us collect :

(∗) If [VM , F ] is generated by elements t such that [t, F ] is centralized by
a good E, then any such t centralizes CVMα−1

(Fα−1) and [t, Fα−1] 6= 1. Fur-
ther there is no fours group of this type.

Let first |ṼMα−1| ≥ 8. Then by 2.1, quadratic action and 4.5 we get that
in [VM , F ] we have V1 ⊕ V2 ⊕ · · · ⊕ Vs and each Vi is centralized by a good E
in CM . If r = 5 we get that [VM , F ] is generated by fours groups X such that
[X, F ] is centralized by a good E, contradicting (∗). So r = 3 and |Vi| = 4,
i = 1, 2, . . . , s. Hence we have that |[VM , F ]| = 4s. By (∗) we have that
s ≤ 3. Hence |F/CF (VM)| ≤ 33. Let tα−1 ∈ Vα−1 corresponding V1. Then

[〈tFα−1

α−1 〉, t]| = 4 for t ∈ Vi, i suitable. Now this group is centralized by a good
E in M and Mα−1 as well, a contradiction.

So we may assume that |ṼMα−1| ≤ 4. Let first r = 5. Let |ṼMα−1| = 4. As-

sume that there is U ∼= D10×D10 with ṼMα−1 as a Sylow 2–subgroup and for
O5(U) = 〈ω1, ω2〉 we have that |[VM , ωi]| = 16 and [Vi, ωi, ω3−i] = 1, i = 1, 2.
Let U1 be a Sylow 5–subgroup of CM containing U . If m5(CU1(ω1)) ≥ 3,
then there is a good E in CM with [[VM , ω1], E] = 1, which contradicts (∗)
again. So we have that m5(CU1(ω1)) = 2. Then U = Ω1(CU1(U)). By the
action of U on VM , we see that NU1(U) ≤ C(ω1) ∩ C(ω2). Hence we have
that U1 = CU1(U). As M/CM has cyclic Sylow 5–subgroups, we have that
for a Sylow 5–subgroup U2 of M containing U1 that U ≤ Z(Ω1(U2)). Hence
all 5–elements are good. Now with 14.3 we get that |M0| is not divisible by
5, which shows that U2 = U1. But we have that mr(U2) ≥ 3 as r ∈ σ(M).

Hence there is no such U . In particular RM has a nontrivial Sylow 5–
subgroup. Now |[O5(U), VM ]| = 16. Now we may apply 2.1 to Fr/Fr ∩ RM ,
which shows that we get some good E in CM which centralizes [VM , U ], a
contradiction to (∗).

Let now |ṼMα−1| = 2. Let ω be some element of order 5, which is inverted

by some element in ṼMα−1 and |[VM , ω]| = 16. Then by (∗) we have that
m5(CU1(ω)) = 2, where again U1 is a Sylow 5–subgroup of CM containing ω.
Now we have that CU1(ω) = 〈ω〉×U2, with cyclic U2. If [VM , Ω1(U2)] 6= 1, we
see that NU1(〈ω〉×U2) = CU1(ω). Hence U1 = 〈ω〉×U2. As above we get that
all 5–elements are good and then with 14.3 that U1 is a Sylow 5–subgroup of
M contradicting m5(U1) ≥ 3. Hence we have that [VM , Ω1(U2)] = 1. Now let
τ ∈ NU1(〈ω, Ω1(U2)〉)\CU1(ω). Now as [VM , 〈ω, Ω1(U2)〉] = [VM , 〈ω〉], we have
that τ normalizes [VM , ω] and so we may assume that τ centralizes [VM , ω].
We have that CU1(VM) is cyclic. If C(VM)∩〈ω, U2, τ〉 ≤ U2, then we see that
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ωU1 ∩ 〈ω, τ, U2〉 ≤ Ω1(〈U2, ω〉). But then 〈ω, Ω1(U2)〉 is normal in U1. Let
now [VM , τ ] = 1. Now let x ∈ U1 \ 〈τ, ω, U2〉 with ωx = ωt, t ∈ Ω1(C(VM)).
Hence ωx ∈ 〈ω, Ω1(U2)〉, as C(VM) does not contain a good E. This again
shows that 〈ω, Ω1(U2)〉 is normal in U1. This shows that U1 = 〈ω, U2, τ〉. As

5(M) ≥ 3, we see that there is some µ of order 5 which is not in CM but
normalizes U1. Hence we may assume that µ centralizes τ and Ω1(U2). Fur-
ther we have that U1 is a central product of U2 with an extraspecial group of
order 53. Then in particular τ ∈ Fr. We now have that |[Ω1(Fr), VM ]| ≤ 28.
But on this group also µ acts, which contradicts the structure of GL(8, 2).

So we have that all elements of order 5 inverted by some element in VMα−1

are contained in RM . Let t ∈ VM and assume that [VMα−1 , t]∩YM 6= 1. Then
we have a good 5–element from Mα−1 in M , a contradiction. Hence we get
that all elements in VM induce transvections to a hyperplane. But then VM

induces an F–module offender, a contradiction.

So we have r = 3. Assume first that 3 divides |RM |. Let t ∈ VM . If
[VMα−1 , t] ∩ YM 6= 1, we get a good 3–element ρ from Mα−1 in M . Hence
we have that U2

∼= Z3 o Z3 is a Sylow 3–subgroup of M and Z(U2) ≤ RM .
Now we have that [ṼMα−1 , µ] = 1. This shows that µ acts on [Fr, ṼMα−1 ].

Hence we have that |ṼMα−1| = 2. Hence we get that U2 acts on [VM , F ]. We
get that µ centralizes this group and so U ′

2〈µ〉 centralizes this group. But
we have that F ∩ U ′

2 6≤ RM , a contradiction. Hence we get that VM is gen-
erated by elements inducing transvections. If |[VM , F ]| > 16, then we get
that we have an F–module offender VM , a contradiction. So we have that
|[VM , F ]| = |ṼMα−1|2 and both groups induce F–module offender. Now there
is some ρ ∈ F with |[VM , ρ]| = 4. Then this group is centralized by a good
E in M . Suppose that this E is not in CM . Then in particular |YM | ≥ 4.
If all elements in the cosets of YM are conjugate, we have some commutator
with some element in [VM , ρ], which in fact is centralized by a good E, and
then we get the same contradiction above. So we have 14.5(6) or (7). Then
ỸP = YP . So let d(β, α) = b−2, then [VMα−1 , YMβ

] = 1. Hence ρ centralizes a
subgroup of index two in YMβ

. Then ρ ∈ Mβ and so we have that Z3 oZ3
∼= U2

again. Further Z(U2) ≤ RM . But then we see that 〈ρ, Z(U2)〉 is a good E in
Mβ, a contradiction.

So we have shown that RM is a 3′–group. Let now first |ṼMα−1| = 4.
Then we have a subgroup U ∼= Σ3 × Σ3. By quadratic action we get
that [VM , O3(U)] = V1 ⊕ V2 and O3(U) = 〈ρ1, ρ2〉, where Vi = [VM , ρi] and
[Vi, ρ3−i] = 1, i = 1, 2. This shows that NU1(O3(U)) = CU1(O3(U)) and so
all elements in O3(U) are good. Let O3(Uα−1) be the corresponding group.
Let t ∈ V1 and assume that [t, CVMα−1

(Fα−1)] 6= 1. Then there is a good 3–
element from M in Mα−1. This shows that Z3oZ3 is a Sylow 3–subgroup of M .
Now we have that |[t, VMα−1 ] : [t, VMα−1 ]∩YM | ≤ 2. As YM ∩CVMα

(Fα−1) = 1,
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we have that t induces a transvection. But then t inverts a 3–element,
which centralizes [VMα−1 , Fα−1]. But then also [t, VMα−1 ] is centralized by
a good E, which gives the contradiction M = Mα−1. So we have that
[t, CVMα−1

(Fα−1))] = 1. Let next [t, Fα−1] ≤ RMα−1 . Let O3(Uα−1) = 〈µ1, µ2〉,
where µi ∼ ρi, i = 1, 2. We may assume that [t, [VMα−1 , µ1]] 6= 1. Then we
have that |[t, [VMα−1 , µ1]]| ≥ 4. Hence we have that YM ∩ [t, [VMα−1 , µ1]] 6= 1.
Hence again there is a good 3–element µ2 from Mα−1 which is contained in
M . This again shows that we have Z3 o Z3 as a Sylow 3–subgroup. We have
that µ2 is not good in M . As CU1(O3(U)) = U2 is elementary abelian of
order 9, we see that ṼMα acts on U2 and centralizes µ2, where U1 = U2〈µ2〉.
But there is no such subgroup in GL(3, 3).

So we have that [t, Fα−1] 6= 1. Let first |[VM , ρi]| = 4, i = 1, 2. Let ρα−1

be the corresponding element in Fα−1. Again we see that there is some good
E in CM centralizing [VM , ρ]. Set Uα−1 = 〈ρα−1, ρ

t
α−1〉. Then we have that

|[Uα−1, VMα ] ≤ 16. As RMα−1 is a 3′–group, we see that Uα−1 is elementary
abelian. If the order is 3, we get even that M ∩ Mα−1 contains a good E.
Hence the order is 9. In that case we have that the commutator is of order 16
and as before we get that CCMα−1

(Uα−1) contains a good E and then there is

a good 3–element centralizing [VMα−1 , Uα−1], which implies that this element
is in M . Now we get that we have Z3 o Z3 as a Sylow 3–subgroup. But then
a fours group direct a group of order three acts on Fr, which contradicts the
structure of GL(3, 3).

So we have that |[VM , ρ1]| = 16. Now we have a fours group V ≤ V1,
which acts faithfully on Fα−1. Then we get some Ũ ∼= Σ3 × Σ3 with V as a
Sylow 3–subgroup and all elements are good. As [VMα−1 , t] ∩ YM 6= 1, since
|[VMα−1 , t]| ≥ 4, otherwise VM would induce an F–module offender, we see

again that M contains O3(Ũ), a contradiction.

So we have that |ṼMα−1| = 2. Let ρ ∈ Fr, ρ be inverted by ṼMα−1 . Let
m3(CU1(ρ)) = 2, where U1 is a Sylow 3–subgroup of CM . Then we have that
CU1(ρ) = 〈ρ〉 × U2, with cyclic U2. If [[VM , ρ], Ω1(U2)] = 1, then we get that
under NU1(CU1)(ρ) 〈ρ〉 is normal. Hence U1 = CU1(ρ). But then we see that
also ρ is in the center of U2, a Sylow 3–subgroup of M containing U1. In
particular all 3–elements are good. But then by 14.3 we have that U1 = U2,
a contradiction. Hence we have that [Ω1(U2), [VM , ρ]] 6= 1. Now we have that
〈ρ, Ω1(U2)〉 acts faithfully on [VM , ρ]. But then NU1(〈Ω1(U2), ρ〉) has to cen-
tralize ρ, the same contradiction. So we have in any case that CG(ρ) ≤ M
and contains a good E in CM . Hence if |[VM , ρ]| = 4, then this group is
centralized by a good E in CM .

Let t ∈ [VM , ρ] \ RMα−1 . Let ρα−1 be the corresponding element in

Mα−1. Let [CVMα−1
(Fα−1), t] 6= 1. Then we may assume that ṼMα−1 ≤
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CMα−1(Fα−1). Now [t, VMα−1 ] = [t, CVMα−1
(Fα−1)](YM ∩ [t, VMα−1 ]). Suppose

that [t, CVMα−1
(Fα−1)] ∩ YM 6= 1, then ρα−1 ∈ M . This again implies that

Z3 o Z3 is a Sylow 3–subgroup of M . Now ρα−1 has to centralize [ṼMα−1 , Fr]

and so this group is of order 3. Hence [Fr, ṼMα−1 ] = Z(U1). But then U1 acts
on [VM , ρ], which is of order at most 16, a contradiction. So we have that
[t, CVMα−1

(Fα−1)]∩ YM = 1. Then t induces a transvection on CVMα−1
(Fα−1).

If t centralizes Fα−1, then 3 divides the order of CMα−1(Fα−1)
∞ and so all 3–

elements are good. We have in CMα−1(Fα−1) some Ln(2), Sp(2n, 2), Ω±(2n, 2)
or An on which t acts. Hence in any case we have that [CVMα−1

(Fα−1), t] is

centralized by some elementary abelian group of order 9. As [VM , ρ] is cen-
tralized by a 3–element we have a 3-element in M ∩Mα−1, a contradiction
as all 3–elements are good. So we have that [t, Fα−1] 6= 1. If |[VM , ρ]| = 16,
we even have a fours group V which acts faithfully on Fα−1. But then we
have some Ũ ∼= Σ3 × Σ3 with V as a Sylow 3–subgroup. As no 3–element
from Ũ can be in M , we get that |[VMα−1 , t]| = 2. But then as before we see
that there is a good 3–element from M which is in Mα−1. Again we have
that this centralizes V and acts on Fα−1, a contradiction to the structure of
GL(3, 3). So we are left with |[VM , ρ]| = 4. Then [VM , ρ] is centralized by a
good E in CM . Set Ũ = 〈ρα−1, ρ

t
α−1〉. Then we have that |[VMα−1 , Ũ ]| ≤ 16

and so it is centralized by some 3–element µ, which then is in M . Hence
we get that Z3 o Z3 is a Sylow 3–subgroup of M . Again µ has to centralize
[Fr, ṼMα−1 ], which then has to be Z(U1). But then [VM , Z(U1)] is of order 4
and normalized by U1, a contradiction.

So we have that [t, CVMα−1
(Fα−1)] = 1. Suppose that [Fα−1, t] ≤ RMα−1 . Now

on CVMα−1
(ρα−1) we have that t has to induce at most transvections, otherwise

ρα−1 ∈ M and we get a contradiction as before. As YM ∩ YMα−1 = 1, we see
that |[t, VMα−1 ]| ≤ 8. We have that L = 〈tMα−1〉 ≤ CMα−1(Fα−1RMα−1/RMα−1)
Further L acts on [ρα−1, VMα−1 ]. Suppose this action is nontrivial. Then L in-
duces a subgroup of A5 = L2(4). Suppose 3 divides |L|. Then all 3–elements
are good. Further we have that L centralizes CVMα−1

(ρα−1). This shows that

we have a 3–element which centralizes [t, [VMα−1 , ρα−1]]. This then is in M .
As all 3–elements are good, this is a contradiction. Hence we have that L in-
duces F10. We now have that |[VM , ρ]| = 16. Hence there is a second element
t1, which now has to act nontrivially on Fα−1. Then we get some subgroup
Ũ ∼= F10 × Σ3, with 〈t, t1〉 as a Sylow 2–subgroup. But then we get that the
Σ3 is contained in M , a contradiction. So we have that [t, [VMα−1 , ρα−1]] = 1.
Then we have that t induces transvections on VMα−1 . Hence L ∼= Ln(2),
Sp(2n, 2), O±(2n, 2) or Σn. Now all 3–elements are good and [VMα−1 , t] is
centralized by a good E in Mα−1. As [VM , ρ] is centralized by a 3–element in
M , we get a contradiction as before.

Hence we have that [Fα−1, t] 6= 1. If we have a fours group V acting faith-
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fully on Fα−1, then there is Ũ ∼= Σ3 × Σ3 with V as a Sylow 2–subgroup. If
|[O3(Ũ), VMα−1 ]| > 16, we get some µ ∈ O3(Ũ) with |C[VMα−1

,O3(Ũ)](µ)| ≥ 16

and this group contains some element from YM . Hence we get µ ∈ M , a
contradiction. So we have that |[O3(Ũ), VMα−1 ]| = 16. Now O3(Ũ) = 〈µ1, µ2〉
such that |[VMα−1 , µi]| = 4. As |ṼMα−1| = 2, there is some x ∈ [VMα−1 , O3(Ũ)]
such that [V, x] ≤ YM . But then YM ∩ [VMα−1 , µi] 6= 1 for at least one i. Then
µ3−i ∈ M , a contradiction.

So we have that |[VM , ρ]| = 4. Now [VM , ρ] is centralized by a good E in
CM . Again set Ũ = 〈ρα−1, ρ

t
α−1〉. Then we have that |[VMα−1 , Ũ ]| ≤ 16 and

so it is centralized by some 3–element µ, which then is in M . Hence we
get that Z3 o Z3 is a Sylow 3–subgroup of M . Again µ has to centralize
[Fr, ṼMα−1 ], which then has to be Z(U1). But then [VM , Z(U1)] is of order 4
and normalized by U1, a contradiction.
2

b2q

Lemma 14.33 If b = 1, then we have 14.5(1) or (2) with q > 2.

Proof: Assume false. By 14.11 and 14.32 we may assume that b = 1.
Then in particular YP 6≤ O2(M). Further YP ≤ CM . This gives that
[O2(M), YP ] 6≤ YM . So we have that P is as in 14.5(1), (2), (4) or (5).

Assume 14.5(4). Then |ỸP | = 4. Further VM 6≤ O2(P ) and VMCP /CP is
a Sylow 2–subgroup of E(P/CP ). But then [VM , ỸP ] = 1 and so VM is
elementary abelian, which shows that VM acts quadratically on YP , a con-
tradiction.

Suppose now that in 14.5(1) and (2) we have q = 2. In that case (2)
is just a special case of (5). So assume (5). Then |ỸP | = 4. Further
we have P/O2(P ) ∼= Σ3 o Z2, otherwise we could have chosen P of type
(3). If VMO2(M)/O2(M) is contained in the transvection group, there is
some element x ∈ YP \ O2(M) such that |[x, VM ]| = 2. In particular
VM is elementary abelian. If VMO2(M)/O2(M) is not in the transvection
group, we get |YP ∩ O2(M)| = 8 and |[x, VM ]| = 4. If we are in (1), then
|ỸP | = 8 and |[YP , VM ]YM/YM | = 4. In all cases there is some element
x ∈ YP \ O2(M) with |[VM , x]YM/YM ≤ 4 and xO2(M) ∈ Z(S/O2(M)). In
the case of VM being abelian, we get that x has to be nontrivial on VM and
O2(M)/VM as well, as [VM , O2(M)] = YM . Hence in any case we have that
[x,CO2(M)(VM)VM ] = [x, VM ].

We are going to show that [x, VM ] is centralized by a good E. Then we
get P ≤ M , a contradiction. For the rest of this proof we will assume that
there is no such E. As |YM | = 2, we also have that M = CM . Let first ρ ∈ M ,
o(ρ) odd, [ρ, VM ] = 1 and ρx = ρ−1. As [CO2(M)(VM)VM , x] = [VM , x], we
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get that [ρ, CO2(M)(VM)] = 1 and so by the A × B–lemma, qe have that
[ρ,O2(M)] = 1, a contradiction. So we have that x ∈ O2(〈CM(VM), x〉).

Let first P be a Sylow p–subgroup of F (M/O2(M)) with [P, x] 6= 1. Then we
have p ≤ 5. Assume p = 5 and p ∈ σ(M). Then |[P, x]| = 5. If [P, x] ≤ E,
E elementary abelian of order p3, then mp(CE([VM , x])) ≥ 2, a contradic-
tion. Let now R be a Sylow 5–subgroup of M containing P , then we have
that CR([P, x]) ∼= [P, x] × Z, where Z is cyclic with [Z, [[P, x], VM ]] = 1.
Now as [P, x] 6≤ Z(R), we have that [Ω1(Z), VM ] = 1. But we have that
[[P, x], CO2(M)(VM)VM/VM ] = 1 and so also [Ω1(Z), CO2(M)(VM)] = 1, yield-
ing [Ω1(Z), O2(M)] = 1, a contradiction. So we have that 5 6∈ σ(M). Let C
be a critical subgroup of P . We have that [P, x] ≤ C and so [C, x] = [P, x]. In
particular we must have that C is elementary abelian. Let r ∈ σ(M). Then
we have that mr(NM(C)/CM(C)) ≤ 1 by 2.3. If m5(C) = 3, we have that
there is some elementary abelian group of order r3, centralizing C, and then
also some good elementary abelian group of order r2 centralizing [VM , x]. So
we have that M − 5(C) = 2. Further we may assume that there is no ele-
mentary abelian group of order r3 centralizing C. But in any case there is
some good E centralizing C. Then we may assume that r = 3, otherwise E
would centralize [[P, x], VM ]. But now we get that some 3–element acts on C
nontrivially and so |[C, VM ]| = 28. But there is no (Z5 × Z5)Z3 in GL(8, 2).

So we now have that p = 3. Let first 3 ∈ σ(M). Then by 5.4 not all 3–
elements can be good, so we have that m3(M) = 3. Suppose that x acts non-
trivially on an extraspecial group C. Then Z(C) ≤ [x, C]. Hence C acts on a
4–space, which gives thet [[VM , x], Z(C)] = 1. But then also [VM , Z(C)] = 1.
As |[C, x]| > 3 and [CO2(M)(VM)VM , x] = [VM , x], that [Z(C), O2(M)] = 1,
a contradiction. Let next C ∼= Z3 × 31+2 and assume that x acts on C.
Then we get that 〈ρ〉 = [C, x] ≤ Z(C). If |[ρ, VM ]| = 16, then there is some
elementary abelian subgroup of order 9 in C which centralizes [VM , ρ] and
then also [VM , x] a contradiction. So we have that |[ρ, VM ]| = 4. As [ρ, VM ]
is centralized by an extraspecial group in C, we have that [VM , x] 6≤ [ρ, VM ].
But some element u ∈ [VM , x] \YM is centralized by some good E. This now
implies that we have 14.5(5). Then 〈u〉 = YMg for some g ∈ P . Hence we
have that Z3 o Z3 is a Sylow 3–subgroup of M , a contradiction.

Let now C a critical subgroup as above. Then we have that C is elementary
abelian. Suppose first that |[C, x]| = 3. Then we get that x 6∈ Φ(S), in
particular we have that YP 6≤ Φ(O2(P )). If YP is irreducible, this implies
O2(P ) = YP and so |S| ≤ 27, a contradiction. So we have 14.5(5) with at
least two modules involved. So let U ≤ YP be a P–module, which is con-
tained in Φ(O2(P )). Then we may assume that [U,C] = 1. As U is not
in O2(M), we see that U has to act nontrivially on some component K of
M/O2(M). If 3 divides |K|, then all 3–elements are good, a contradiction,
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so K ∼= Sz(q). But |[VM , y]| ≤ 4 for y ∈ X, contradicting 3.50. This shows
that YP = O2(P ) and so |O2(P )| ≤ 212 and then |S| ≤ 215. But in any case
we see that YP ∩ VM is a characteristic elementary abelian subgroup of VM ,
which gives VM ≤ YP , a contradiction.

So we have that |[C, x]| = 9. Then [C, x] = 〈ρ1, ρ2〉 with |[VM , ρi]| = 4,
i = 1, 2. Hence m3(CM(ρi)) = 2, i = 1, 2. In particular C = [C.x]. As all
other elements in C have a commutator of order 16 with VM , we get that
C = Ω1(CR(C)), C a Sylow 3–subgroup of M . But m3(R) = 3, a contradic-
tion.

Hence we have that 3 6∈ σ(M). Let C be a critical subgroup of P . By
2.3 there is a good E centralizing C. Choose ρ ∈ C with ρx = ρ−1. Then
we have no good E centralizing [ρ, VM ]. This shows that |[ρ, VM ]| = 16 and
p = 5 ∈ σ(M). But now we must have a 5–element acting nontrivially
on C, which shows with 2.2 that C is extraspecial of order 35. But then
m3(M) = 3 and so m5(M) ≥ 4, which gives an elementary abelian group
of order 53, which centralizes C and then a good E centralizing [VM , x], a
contradiction. So we have shown

(∗) [YP , F (M/O2(M))] = 1.

Let now K be a component with [K,x] 6= 1. As xO2(M) ∈ Z(S/O2(M)), we
get Kx = K. As |[VM , x]| ≤ 4, we get with 3.33 that K ∼= Ln(2), Sp(2n, 2),
Ω±(2n, 2), An, SU(n, 2), G2(2)′, SLn(4), Sp(2n, 4), 3A6, or 3U4(3). In any
case we have that 3 divides |K|. Further we know that not all 3–elements
can be good if 3 ∈ σ(M). Let first 3 ∈ σ(M). Then we have that 3 does not
divide |CM(K)| and so m3(K) = 3. This shows K ∼= L6(2), L7(2), Sp6(2),
Ω−(8, 2), U4(2), A9, A10, A11, SL4(4) or Sp6(4). But by 1.17 in that group
all 3–elements are good. So we have that 3 6∈ σ(M). Now we have that there
is no good E in CM(K), as K can induce at most two nontrivial irreducible
modules, which then have to be centralized by E. So for p ∈ σ(M) we have
that mp(K) ≥ max(2, m3(K)). But we easily check that none of the groups
above satisfies this condition. 2

According to 14.33 we now assume for the remainder of this chapter that
we have 14.5(1) or (2) both with q > 2.

goop

Lemma 14.34 Let p ∈ σ(M) and assume that all p–elements are good, then
p does not divided q2 − 1.

Proof: Suppose false. If we are in 14.5(1), then there is some p–element
ω ∈ P ∩M . But P = 〈M ∩ P, NP (〈ω〉)〉 ≤ M , a contradiction. So we have
(2). Then P contains an elementary abelian p–subgroup R of order p2. We
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have that P = 〈NP (〈ω〉) | ω ∈ R]〉. Hence P ≤ M g for some g ∈ G. As
S ≤ M ∩M g, we get M = M g with 9.1, a contradiction. 2

centgood

Lemma 14.35 There is no YM 6= xYM ∈ [YP , VM ]YM/YM , which is central-
ized by a good E in M .

Proof: Suppose false. Then we may assume that x is centralized by a
good E in M . As CP (x) ≤ M ∩ P , we see that P is as in 14.5(2). Further
we have that x is conjugate to some element in YM . Hence CG(x) ≤ M g

for some g ∈ P . This shows that M and M g share a good E, which gives
M = M g and so x ∈ YM , a contradiction. 2

b2

Lemma 14.36 We have b = 2.

Proof: We have that |YP /YP ∩O2(M)| = q and there is some group of
order q − 1 in P ∩M acting on this group. In fact this group is not in CM .
Next we see that |[O2(M)/YM , YP ]| = q2, [O2(M)/YM , x] = [O2(M)/YM , YP ]
for all x ∈ YP \ O2(M) and finally CO2(M)/YM

(x) = CO2(M)/YM
(YP ) for all

x ∈ YP \O2(M). Finally [YP , O2(M)] ≤ VM .

Let ρ ∈ CM(VM/YM) with ρx = ρ−1 for some x ∈ YP . Then we have
that [ρ,O2(M)] ≤ VM and so [ρ,O2(M)] = 1. Hence we have that
YP ≤ O2(〈CM(VM/YM), YP 〉). Now we see with 5.3 that YP centralizes
F (M/O2(M)).

Hence there is some component K with [K,YP O2(M)/O2(M)] 6= 1. As-
sume that M is not exceptional with respect to some p. Let first
[K, YP O2(M)/O2(M)] 6≤ K. Then because of the strong action, we get a
contradiction with 3.24. So we have that K is normalized by YP . Further

(i) YP acts faithfully on K.

Let us first assume that K is not a group of Lie type in characteristic two.
As YP induces a quadratic group of order at least 4 we get K ∼= An, 3U4(3)
or some sporadic group by 3.30, 3.31 and 3.32. In any case, as otherwise all
3-elements are good and P either contains some 3-element from M or an el-
ementary abelian 3-subgroup of order 9, we have 3 6∈ σ(M). Hence K ∼= An,
n ≤ 11, Mn or J2. Further [K, VM ] is not centralized by a good E. This with
3.43 now shows that we have An or J2, where in the cases of J2 and A10,
A11 we have 5 ∈ σ(M). But then in case of the alternating groups we have
e(G) > 3 and again [VM , K] is centralized by a good E. So we have J2 . Now
YP induces a foursgroup. But then K = 〈CK(i) | 1 6= i ∈ YP O2(M)/O2(M)〉
acts on [YP , VM ] a contradiction. So we are left with An, n ≤ 7. As q > 2,
then [VM , K] always is irreducible, so it is centralized by a good E.
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So we have that K = G(r) is a group of Lie type in characteristic two.
Let U be the projection of YP O2(M)/O2(M) onto K.

(ii) ρ normalizes K.

Suppose false. Then we have at least three conjugates K1, K2, K3 under
〈ρ〉. Suppose first that m3(K) ≥ 2. Then we get that 3 ∈ σ(M) and all 3–
elements are good. But this contradicts 14.34. So we have that m3(K) ≤ 1.
Further K/Z(K) ∼= Sz(r), L2(r), U3(r) or L3(r) by 1.1. Suppose that U is
not contained in a root group of K, then we have that K ∼= L3(r). Further we
now have a strong quadratic module for K, i.e. VM just involves natural mod-
ules. As r2 ≥ q, we get at most 4 of them. Suppose that U is in a root group.
Then by (i) we have that q ≤ r. Now as |[VM , YP ]| = q2, we get that q = r
for K ∼= Sz(r) or U3(r) by 3.50 and r ≤ q2 in the remaining cases. Hence in
the first two cases there is just one nontrivial irreducible module in VM , while
in the last two cases there wight be two of them. In particular in all cases
we may assume that [K3, [VM , K1]] = 1. Suppose that [[VM , K1], K2] 6= 1,
then we have that [[VM , K2], K3] = 1 and so [K1 × K2, [VM , K3]] = 1. So
we may assume that in all cases [[VM , K1], K2 ×K3] = 1. By 14.35 we have
that K2×K3 contains no good E. This in the first place shows that we have
exactly three conjugates under 〈ρ〉. Further all Sylow p–subgroups, p odd, of
K are cyclic, which shows that K ∼= L2(r), Sz(q) or L3(2). Further we must
have e(G) > 3. Let now E be some elementary abelian p–group of order p4

in M . Then we have that |CE(K)| ≥ p3. As p does not divide the order of
K, we see that CE(K) also centralizes [VM , K], and so we get a contradiction
with 14.35. This proves (ii).

(iii) U is contained in a root group R of K.

Let R be some root group in Z(S∩K) with R∩U 6= 1. Then U = U 〈ρ〉 ≤ R.
So we may assume that U ∩ R = 1. In particular K ∼= Sp(2n, r) or F4(r).
In both cases we have that U ≤ Z(S ∩ K) and so q = |U | ≤ r. Hence U
contains some element x 6= 1, which is contained in some Ω−(4, r) and hence
inverts some element of order r2 +1. In particular |[VM , x]| ≥ r2. This shows
q = r. Let now p be a Zsigmondy prime dividing q − 1 or p = 7 in case of
q = 64. Let ω ∈ M ∩ P , o(ω) = p and CYM

(ω) = 1. By 1.15 we get that ω
induces an inner automorphism on K. This shows that p divides |CM(K)|.
If p ∈ σ(M), then all p–elements are good, a contradiction to 14.34. So
p 6∈ σ(M), in particular mp(K) ≤ 2, which gives K ∼= Sp(4, q). Further we
have e(G) ≥ 4.

Suppose first that YP 6≤ ΦO2(P ). Then by 3.36 we have that O2(P ) = YP

and so |O2(M)/YM | = q4 and then this is the natural module for K. If
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YP ≤ Φ(O2(P )), then we get that O2(P )O2(M)/O2(M) ∩ K is not abelian
and so intersect with a root element nontrivially. But as [YP , VM , O2(P )] = 1,
we get a quadratic fours group which intersects a root group in a group of
order 2. By 3.25 we get that there are just natural modules in VM . As
|[VM , YP ]| = q2, we again get just one.

Now in any case we have shown that VM/YM involves exactly one nontriv-
ial irreducible module, the natural one. Suppose there is some good E, for
some s ∈ σ(M), centralizing K. As s cannot divide q − 1, we get that
[E, [VM , K]] = 1. But then also [VM , YP ]YM/YM is centralized by E, contra-
dicting 14.35. As e(G) ≥ 4, we get that ms(K) = 2 and so s divides q + 1.
Now in K any element in [VM , K] is centralized by a good s–element. As
there is some good s–element centralizing K and s does not divide q− 1, we
get that in [VM , K]YM/YM any element is centralized by a good E contra-
dicting 14.35. This proves (iii).

Let K be not of rank one or Ln(r). Let PR be the parabolic correspond-
ing to R. Assume that [PR, [VM , YP ]] = 1. Then we have the corresponding
V (λ) in [VM , K]. As by 14.35 [VM , YP ] cannot be centralized by a good E and
r > 2 by (i) and (iii), we now get with 3.29 K ∼= Sp(6, r), Sp4(r), U4(r). We
have that M ∩ P acts on [VM , YP ] and also on [VM , K]. This shows that for
any irreducible module V in [VM , K], we get that |[V, YP ]| = q or q2. Hence
r = q or q2

Assume now that PR acts nontrivially on [VM , YP ]. Then as q ≤ r, we get
that q = r and we have that SL2(r) is induced. This gives K ∼= Ω±(2n, q),
Sp(2n, q) or G2(q). Hence we have

(iv) K ∼= Ln(r), Sp(6, r), Sp(4, r), U4(r), U3(r) or Sz(r), or [PR, [VM , YP ]] 6= 1
and K ∼= Ω±(2n, q), Sp(2n, q) or G2(q).

(v) Suppose that (q − 1)2 divides the order of K and K 6∼= Ln(r), then
e(G) ≥ 4.

We choose a Zsigmondy prime dividing q − 1 or 7 in case of q = 64. As
there is some group of order q−1 acting transitively on YM , we get with 1.15
that p divides |CM(K)|, or p = 3 and K ∼= Ω+(8, q). Suppose the former.
Hence p 6∈ σ(M) by 14.34. As mp(KCM(K)) = 3, we get that e(G) ≥ 4. In
case of Ω+(8, q), we get that 3 ∈ σ(M) and all 3–elements are good, which
contradicts 14.34.

Let K ∼= U4(r), then we have the natural module V and so |[V, YP ]| = r2

which gives r = q. By (v) we have e(G) ≥ 4 and by 14.34 there is no good
prime which divides q−1. Now by 14.35 there is no good E which centralize
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K. So we get mp(K) ≥ 2 for p ∈ σ(M) and so p has to divide q2 − 1. Now
all p–elements are good. But this contradicts 14.34.

Let K ∼= Sp(6, r), then either the natural module or the exterior square
is involved. In both cases we see that mp(K) = 1 for any p ∈ σ(M) and
e(G) ≥ 4. and so K is centralized by some good E. As p cannot divide r−1,
we get that a good E centralizes [VM , K]YM/YM contradicting 14.35.

So let next K ∼= Sp(4, r). Then in [VM , K] just natural modules are in-
volved. So we get r = q or r = q2. If r = q, we get with (v) that a
e(G) ≥ 4 and with 14.34 there is no p ∈ σ(M) with p divides q − 1. Hence
mp(CM(K)) 6= 0 for p ∈ sigma(M). In particular all p–elements are good.
This again shows that p does not divide q2 − 1 and so mp(K) = 1. Hence
there is a good E, which centralizes K and also [VM , K], contradicting 14.35.
So we have that r = q2. Then just one nontrivial irreducible K–module is in
VM . Now again e(G) ≥ 4. Let p ∈ σ(M). Then p does not divide r − 1. In
particular any p–element in CM(K) has to centralize [VM , K] and so there is
no good E centralizing K. Hence we must have some p–element ω inducing
a field automorphism on K. Now as K is normal in M/O2(M), we see that
p divides |NM(S)|. As all p also divides |CM(K)|, we see that all p–lements
are good, which now contradicts 14.2.

Assume now that [PR, [VM , YP ]] 6= 1. By (v) we get e(G) ≥ 4 and no
p ∈ σ(M) divides q − 1. Further (q − 1)3 does not divide |K|, which
gives K ∼= Ω±(6, q), Sp(4, q) or G2(q). We see that the modules are strong
quadratic and so there is just one, which is the natural one and so defined
over GF (r). Hence by 14.35 no good E centralizes K, which gives that
mp(AutM(K)) = 3. Hence mp(K) ≥ 2 for p ∈ σ(M). This shows that p
divides q2 − 1 and all p–elements are good, contradicting 14.34.

So let now K ∼= Ln(r). Let just natural modules be involved. Then some
element in [VM , YP ]YM/YM is centralized by SLn−1(r). Hence the SLn−1(r)
cannot contain a good E by 14.35. So we have that n ≤ 4. If n = 4 no
p ∈ σ(M) divides r − 1. In particular e(G) > 3. Now mp(CM(K)) 6= 1. So
all p–elements are good. If r = q, we have that p does not divide q2 − 1 by
14.34 and so mp(K) = 1. But then there is a good E which centralizes K
and [VM , K]YM/YM as well, contradicting 14.35. So we have r = q2 and just
one natural module is involved. Hence any p–element centralizing K will
centralize [VM , K]YM/YM . So we get with 14.35 that there is a p–element
which has to induce some field automorphism on K, contradicting 14.2. So
we have n ≤ 3.

Let K ∼= SL3(r). Let first mp(K) ≤ 1. Now we have that p divides the
order of CM(K) and so all p–elements are good. If we have two modules
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involved, we get q = r and so by 14.34 p cannot divided r2 − 1. This shows
that any p–element, which centralizes K must centralize [VM , K]YM/YM .
The same is true if there is just one natural module involved, as p does not
divided r − 1. By 14.35 there is no good E centralizing K. In particular
we have some p–element, which induces a field automorphism. and so again
there is some xYM ∈ [VM , YP ]YM/YM , which is centralized by a good E, con-
tradicting 14.35.

Let now p ∈ σ(M) such that p divides r − 1. Suppose there is some sub-
group K × 〈ω〉 , o(ω) = p. Then we have an elementary abelian p – group
of order p3 which acts on [VM , YP ]YM/YM which contradicts 14.35. So there
is some p–element which induces an outer automorphism on K. If this is a
field automorphism, then we get again some good E which centralizes some
xYM ∈ [VM , YP ]YM/YM . So we have that p = 3. By 14.34 we have that
e(G) = 3 and not all 3–elements are good. Suppose that [V, K] is not irre-
ducible. Then we get that r = q. Hence 3 divides |P ∩M |. So we have the
assertion of 14.4 that either 3 divides |P ∩M | or [VM , K] is irreducible. Now
14.4 provides us with a contradiction.

Let n = 2. Then [VM , K] involves at most two natural modules. Hence
by 14.35 there is p ∈ σ(M), which divides |K|. We also get that p divides
|CM(K)|. If p 6= 3 or K has at most two conjugates in M , we get that all
p–elements are good. By 14.34 we have that p does not divide q2−1. In par-
ticular we have just one natural module V involved. But now an elementary
abelian subgroup of order p3 acts on [V, YP ]. If there is a natural submodule
we get that this group acts on [VM , YP ]. If the extension is nonsplit we get
the same conclusion with 3.52 as |U | > 2. But then we get a contradiction
to 14.35.

So we are left with p = 3 and we have exactly three conjugates of K,
K1,K2,K3. If [[VM , K1], K2 × K3] = 1, a good E centralizes some element
xYM ∈ [VM , YP ]YM/YM , contradicting 14.35. Hence [VM , K1] = [VM , K2].
But then [K3, [VM , K1 ×K2]] = 1, a contradiction.

So assume now that V (λ2) is in [VM , K]. Then n ≥ 4 and as in the case
of n = 4 this is the orthogonal module, a case we handled before, we get
n ≥ 5. Now there is p ∈ σ(M) which divides r− 1. But then there is a good
E centralizing C[VM ,K](S ∩K), a contradiction. The same argument applies
for V (λ3) and K ∼= L6(r). So by 3.29 we are left with the case that the tensor-
product module is involved. Now for x ∈ R] we have that |[VM , x]| ≥ rn−1.
As root groups do not act quadratically, we also see that q < r and so
|[VM , YP ]| < r2, which now shows n = 2. Further now r = q2. Suppose that
there is a good E centralizing K. By 14.35 we have that [E, [VM , K]] 6= 1,
so p divides q − 1. As p divides CM(K) all p–elements are good. But this
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contradicts 14.34. Hence there is no such E and then e(G) = 3. Further
there is some field automorphism of K of order p. By 14.2 there are no
good p–elements in NG(S) so there must be a conjugate of K under S. But
ρ 6∈ KS, so there are good p–elements in M ∩ P , a contradiction to 14.34.

Assume now that K ∼= Sz(r). Then q = r. As O2(P ) centralizes [YM , YP ],
we see that |S ∩K : O2(P ) ∩K| = q. But in P we see that S/O2(P )O2(M)
does not contain an elementary abelian subgroup of order 8.

So we are left with K ∼= SU3(q). Again r = q. Let K not be normal. Then
some conjugate of K centralizes [VM , K], as VM involves just one nontrivial
irreducible module by 3.50. But then some good E centralizes [VM , K], con-
tradicting 14.35. So K is normal in M/O2(M). Suppose next that some good
p–group E centralizes K. Again by 14.35 we must have that p divides q2−1.
But as p divides the order of of CM(K), and K is normal in M/O2(M), all
p–elements are good, which contradicts 14.34. Hence there is no such good
E. Assume first that mp(K) = 1 for p ∈ σ(M). Then p also divides CM(K)
and so all p–elements are good. Now we must have an outer p–automorphism
on K. By 14.34 p 6= 3, so it is a field automorphism. As K is normal in
M/O2(M), we get that NG(S) contains a good p–element, contradicting 14.2.
So we have that mp(K) = 2 and then p divides q + 1. By 14.34 we have that
p cannot divide |CM(K)|. If there is a field automorphism of order p, we
argue as before. So we have p = 3 and a diagonal automorphism of order
three is induced. By 3.29 we know that VM/YM is the natural K–module.
Now we get a contradiction with 14.4.

If P involves Ω+(4, q), we get some subgroup of order (q−1)2 in P ∩M , which
has to centralize Z(K). But as Z(K) acts fixed point freely on [VM , YP ]/YM

and 3 does not divide q − 1, this is not possible.

So we have that E(P/CP
∼= L2(q

2). So we have a group Z in P ∩M , which
acts transitively on [VM , YP ]YM/YM . This shows that either Z(K) ≤ P or
Z(K)Z contains a 3–element τ centralizing (YP∩O2(M))/YM . Hence we have
that τ induces an automorphism on K which centralizes YP O2(M)/O2(M).
Then τ also centralizes (VM/YM)/CVM/YM

(YP ). As V ′
M = YM , we get that

[YM , τ ] = 1. Hence we have that τ centralizes YP ∩ O2(M). Let T be the
maximal subgroup of S normalized by τ . Then we have that |S : T | = 2.
as τ normalizes S ∩ K. As no outer 2–automorphism of K can centralize
[VM , YP ], we get that O2(P )O2(M)/O2(M) ≤ KCM(K). Hence we get that
τ normalizes O2(P ) = CT (YP ). Then τ normalizes Ω1(Z(O2(P ))) = YP

and so centralizes YP . Set now L = CG(YP )P . As Z(K)Z = 〈τ〉Z, we
get that in both cases Z(K) ≤ L. As L2(q) is generated by the Sylow
2–normalizer and the normalizer of an element of order 3 in this Sylow 2–
normalizer, and NG(Z(K)) ≤ M , we get that 3 divides the order of CG(YP ).
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As Z(K) 6≤ CG(YP ), we get that a Sylow 3–subgroup W of L is not cyclic.
Further L is generated by M ∩ L and NL(W ). This gives that NG(L) 6≤ M .
Hence M has a Sylow 3-subgroup isomorphic to Z3 oZ3. Now all 3–elements
in K are in a subgroup K1

∼= SU3(2) and so all non central 3–elements of K
are conjugate in K. But then all 3–elements in M are good, which contra-
dicts 14.34.

So we now have that M is exceptional with respect to p. By 3.41 we have that
K ∼= L2(r), r = 22m and |Y | = 9, or K ∼= L3(r), r = 22m+1 and |Y | = 32. Let
first K ∼= L2(r). Again by 3.41 we have two natural modules in VM . Hence
|[VM , YP ]YM/YM | = r2 and so r = q. But now in P there are 3–elements,
which does not centralize YM , as 3 divides q − 1. But in M both, Y and K
centralize YM and so a Sylow 3–subgroup centralizes YM .

So we have K ∼= SL3(r) and we have a direct sum of four natural mod-
ules. In particular |[VM , YP ]YM/YM | ≥ r4. We have that q = |YP | ≤ r2. As
|[VM , YP ]YM/YM | = q2, we get that q = r2. Now again 3 divides q−1 and we
get a 3–element in P which acts nontrivially on YM , the same contradiction
as before. 2
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15 The amalgam (M,P ), b = 2

In this chapter we will assume that b = 2. By 14.11 we have that P induces
L2(q) on the natural module YP . So YP ≤ O2(M). Set VM = 〈Y M

P 〉 as
before. Let R be a Sylow p–subgroup of CM(VM). Then R ≤ CG(YP ).
Let P1 be a Sylow p–subgroup of CG(YP ) with R ≤ P1. As NG(YP ) =
CG(YP )NNG(YP )(P1) and P ≤ NG(YP ), we have NG(P1) 6≤ M . So assume
mp(P1) ≥ 2, then by 5.1 we have that p = 3, P1 is elementary abelian of
order 9 and a Sylow 3–subgroup of G is isomorphic to Z3 o Z3. As 3 divides
the order of L2(q), we now get that NG(P ) contains a subgroup of order 27
from M . But then it contains also a good E and so P ≤ M , a contradiction.
So we have mp(P1) = 1. Now Ω1(P1) = Ω1(R) and so NG(P1) ≤ M . So we
have shown

CV M

Lemma 15.1 CM(VM) is a p′–group for any p ∈ σ(M).

The following important lemma will be used without saying all over the places
in this chapter.

Pstruk

Lemma 15.2 Set P̂ = 〈VM , V g
M〉. Then P̂O2(P ) contains a Sylow 2–

subgroup of CG(YM). Further P = P̂S.

Proof: Set R/O2(P ) = O2′(P/O2(P )). Then R acts on YM and so
R ≤ M . Hence we have that [R, VM ] ≤ R ∩ VM ≤ O2(P ). Set P1 = 〈V P

M 〉.
Then we have that [R, P1] ≤ O2(P ). By minimality of P we have that
P = P1RS. Hence again the minimality of P and the fact that L2(q) has
no odd Schur extensions gives that R = O2(P ). Hence P1 = P̂ as there are
exactly q + 1 conjugates of VM in P since there are exactly q + 1 conjugates
of YM in YP . So we have that P = P̂S and O2(P )P̂ contains a Sylow 2–
subgroup of CP (YM). 2

As [YP , VM ] = YM , we see that V ′
M = YM . Set Y = (VM ∩

O2(〈VM , V g
M〉))(V g

M ∩ O2(〈VM , V g
M〉)) = (VM ∩ O2(P ))(V g

M ∩ O2(P )). Hence
Y £ P . Set U = VM ∩ V g

M . If U = Y then VM ∩ O2(P ) £ P and so
[VM ∩ O2(P ), P ] = YP and [O2(P ), O2(P )] = YP . This now implies with
3.36 that |O2(P ) : YP | ≤ q. Then VM = YP Y h

P , for a certain h ∈ M . In par-
ticular there are exactly two maximal elementary abelian subgroups YP and
Y h

P in VM . Now O2(M) normalizes YP and so YP £ 〈M,P 〉, a contradiction.

So we have U 6= Y and by 3.50 Y/U is a direct sum of natural modules.

exep

Lemma 15.3 If M is exceptional with respect to p, then q > 2 and p divides
q − 1.
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Proof: Suppose that M is exceptional with respect to p. As p–elements
in the component of M/O2(M) are fixed point freely on O2(M), there is some
p-element which acts fixed point freely on YM . But |YM | = q and there is
a transitive cyclic group of order q − 1 on YM . Hence p divides q − 1. In
particular M is not exceptional for q = 2. 2

Uabelian

Lemma 15.4 U ′ = 1.

Proof: We have U ′ ≤ V ′
M ∩ (V g

M)′ = YM ∩ Y g
M = 1. 2

centU

Lemma 15.5 If x ∈ U with CG(x) ≤ M , then x ∈ YM .

Proof: By way of contradiction we may assume x 6∈ YP . We have
[U, P̂ ] = YP . Hence [x, P̂ ] ≤ YP . We have CP̂ (x) ≤ M ∩ P̂ . Hence xP̂ is
divisible by q + 1. In particular [x, Y ] = 1. If 〈YP , x〉 would be an indecom-
posable module, we would get that x has exactly q/2(q + 1) conjugates. But
then C(x) 6≤ M . Hence we have that the extension splits and this implies
that Z(P̂ ) ∩ 〈x, YP 〉 6= 1. But P̂ £ P and P = P̂S. Now Z(P ) 6= 1, a
contradiction. 2

From now on we fix the following notation : Set M̃ = NM(S∩CM(VM/YM)).
As seen above CM(VM/YM) has p′–order. Hence we have that mp(M̃) =
mp(M). So replacing M by M̃ in what follows does not change arguments. As

M = M̃CM(VM/YM), we have that VM = 〈Y M̃
M 〉. Further we will need the ele-

ments of order q−1 in P which normalize a Sylow 2-subgroup of E(P/O2(P )).
These are in M . But they also normalize S ∩ CM(VM/YM) as CS(YP /YM)
also centralizes YM by 15.2 and so CS(VM/YM) = CO2(P )(VM/YM) by 15.2.

Hence these elements are in M̃ . The advantage of M̃ over M is that O2(M̃)
is a Sylow 2–subgroup of CM̃(VM/YM).

For what follows, we now define an important subgroup X. We have
that Y/U is a direct sum of natural modules. Hence the group X to
be defined is one with X ≤ V g

M , X ∩ O2(M) ≤ U , |XU/U | = q and
XO2(M)/O2(M) £ S/O2(M). Let ν ∈ M ∩ P , some element of order q − 1.
We will choose the pair X, ν such that [XU/U, ω] = XU/U . Now we choose
X such that X = [X, ν]. Further ω is some power of ν such that the order
of ω is a Zsigmondy prime or for q = 64 it is 9. In any case we have that
NG(〈ω〉) 6≤ M .

Furthermore let K be some component of M̃/CM̃(VM/YM) or a Sylow r–
subgroup of F (M̃/CM̃(VM/YM)) with [X,K] 6= 1.

So in what follows we denote by X any subgroup of Y/U of order q, which
is invariant under S〈ν〉.
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V Mstructure

Lemma 15.6 We have that Z(VM) = V ′
M = Φ(VM) = YM . Further if H is

a hyperplane of YM , then VM/H is extraspecial.

Proof: As [VM , YP ] = YM and VM = 〈Y M
P 〉 we get that YM = V ′

M =
Φ(VM). Let H be a hyperplane in YM . Set V̄M = VM/H. Then V̄ ′

M =
Φ(V̄M) = ȲM . Let ZM be the preimage of Z(V̄M). Then for h ∈ M we have
that [ZM , Y h

P ] ≤ H. Suppose that t ∈ ZM \ O2(P
h). Then we have that

CY h
P
(t) = YM and so [Y h

P , t] = YM . Hence we have shown that [ZM , Y h
P ] = 1

for all h ∈ M and so ZM ≤ Z(VM), i.e YM = Z(VM) and Z(V̄M) = ȲM . In
particular VM/H is extraspecial. 2

centY

Lemma 15.7 CVM/YM
(Y ) = YP /YM .

Proof: Suppose false. Let first s ∈ CU(Y ) \ YP . We have that P̂ acts
on 〈YP , s〉. If this modules splits we may assume s ∈ Z(P̂ ) and so Z(P ) 6= 1,
a contradiction. So we have a nonsplit extension. Then we may assume that
|sP̂ | = 2(q + 1). In particular [VM , s] 6= 1. This gives some Y h

P , h ∈ M̃ ,
such that s ∈ P h \ CY h

P
. Then we have that |Y h

P : CY h
P
(s)| = q, in particular

|VM : CVM
(s)| = q and the same is true for any conjugate of VM in P . But

then all 2–elements in P , which centralize s are in O2(P ), a contradiction.
Thus we have that CU(Y ) = YP . Let now s ∈ U \ YP , with [Y, s] ≤ YM . As
[s, V g

M ] ≤ Y g
M , we get that [〈YP , s〉, V g

M ∩Y ] = 1. But then the action of P̂ on
Y implies that [Y, s] = 1, a contradiction. So we have

CU/YM
(Y ) = YP /YM .(1)

Let UM ≤ VM , [UM , Y ] ≤ YM , UM ∩ U ≤ YM , [ω, UM ] = UM , |UM/UM ∩
YM | = q. We may choose X in such a way that XUMU/U is the natural P̂–
module. Now [Y, XUM ] ≤ YP . As VM normalizes CVM

(Y ), we get for t ∈ X
that [t, VM ] ≤ YP UM . In particular [X, [t, VM ]] ≤ [X, YP UM ] ≤ [Y, YP UM ] ≤
YM . So we have that

X acts quadratically on VM/YM , for t ∈ X, |[VM/YM , t]| ≤ q2.(2)
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Z(Y ) = YP .(3)

By 15.6 we have that VM ∩O2(P ) = CVM
(YP ) and YP = Z(VM ∩O2(P )).

Hence Z(Y )∩VM = (Z(Y )∩Z(VM))YP and Z(Y )∩V g
M = (Z(Y )∩Z(V g

M))YP .
As Z(VM) ∩ Z(V g

M) ≤ Z(P̂ ) = 1, we see that

Z(Y ) = (Z(Y ) ∩ Z(VM))× (Z(Y ) ∩ Z(V g
M)).

Now by 3.50(iii) Z(Y ) is a direct sum of natural modules and so [Z(Y ), VM ] =
Z(Y ) ∩ Z(VM). In particular Z(Y ) ≤ O2(M̃), as O2(M̃) contains all 2–
elements which centralize VM/YM . This shows [Z(Y ), VM ] = YM . Hence
Z(Y ) ∩ Z(VM) = YM , and so Z(Y ) = YP .

This now implies

[t, VM/YM ] ∩ YP /YM 6= 1 and q < |[t, VM/YM ]| ≤ q2, for t ∈ X.(4)

Suppose that [t, VM/YM ] ∩ YP /YM = 1. Then we have with (2) that
[t, VM/YM ] = 1, but this contradicts the choice of X.

q > 2.(5)

Suppose q = 2. Set 〈t〉 = X. We first show [K, Y ] ≤ K. Recall that
[t,K] 6= 1. As t ∈ Z(S/O2(M)), we see that [K, t] ≤ K. We assume that
there is some y ∈ Y with Ky 6= K. In particular t 6= y. Now CK×Ky(y) = K1

acts on V̂M = [VM , y] ≤ O2(P ). Furthermore [t, V̂M ] ≤ YP /YM . By (3) we
have that t induces a transvection on some nontrivial irreducible K1 - module
W in VM . Now 3.16 implies K1

∼= Ln(2), Sp2n(2), Ω±
2n(2), or An, and W is

the natural module. In any case a 3 - element in K1 centralizes YP /YM . Let
3 ∈ σ(M). Now by 1.17 all 3–elements are good. So we get a contradiction
with 5.5. So 3 6∈ σ(M). But as K1

∼= K, we see m3(K) = 1, or Sylow
3–subgroups are extraspecial of width two. Whence K ∼= K1

∼= L3(2), A5,
3A6 or 3A7. But K1 just induces one nontrivial module and so a good E cen-
tralizes YP /YM , again a contradiction. So we have shown that [K,Y ] ≤ K.

Now by 3.33 and (3) we have K/Z(K) ∼= An, Ln(s), Sp2n(s), Ω±
2n(s), s ≤ 4,

Un(2), G2(2)′, U4(3), or K is solvable.

Suppose first that K is solvable. Let K1 be in M̃ such that K1CM̃(VM/YM) =
K and K1 ∩ CM̃(VM/YM) is a Sylow r–subgroup of CM̃(VM/YM). Then we
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have that M̃ = NM̃(K1)CM̃(VM/YM). Set M̂ = NM̃(K1). Then we have

that mp(M̂) = mp(M) for all p ∈ σ(M) by 15.1. Further we may assume
that M ∩ P ≤ NM(K1O2(M̃)/O2(M̃)). Let C be a critical subgroup of K1.
As t ∈ O2(M

g), we see that [CC(VM/YM), t] = 1. Assume r = 5. Then we
get that |[C, t]| = 5. Further |[VM/YM , [C, t]]| = 16. As [C, t] is normal in C,
we have that [C, t] is centralized by a good E, if 5 ∈ σ(M). If 5 6∈ σ(M) the
same is true by 2.3. Hence some good p–element centralizes YP , a contradic-
tion to 14.2.

So we may assume that r = 3. Let C be as before, then we get that [C, t] is of
order three, elementary abelian of order 9 or extraspecial of order 27. Further
we have that C = CC(t)[C, t]. Suppose |[C, t]| = 3 and YP /YM 6≤ [VM , [C, t]].
Then we have that |[VM , [C, t]]| = 4. Further VM = [VM , [C, t]](VM ∩O2(P )).
We have that Y normalizes [C, t] and so Y = CY ([C, t])X. But then we have
that X = Y and then |VM | ≤ 25, which gives that some good E even central-
izes VM , contradicting 14.2. So we have in any case that YP /YM ≤ [VM , [C, t]].
Let first 3 6∈ σ(M). Then we get with 2.3 that a good E must centralize C
and so [C, t]. Hence a good p–element centralizes [VM , [C, t]], which contra-
dicts 14.2.

So we have that 3 ∈ σ(M). In particular by 15.1 we have that K1 = K
intersects CM̃(VM/YM) trivially. If [C, t] is elementary abelian, we have that
|C| ≤ 9, as C acts on [VM/YM , [C, t]] and this group is of order at most 16,
but no good 3–element can centralize this group. By 5.11 all elements in C
are good, which means that there is some elementary abelian group of order
27 centralizing [C, t]. This gives that [VM , [C, t]] is centralized by a good
p–element, contradicting 14.2. So we are left with [C, t] extraspecial of order
27. Then |[VM/YM , [C, t]]| = 64. As C is of class two, we now have that
C = [C, t]. So we have that NM̃(C)/CM̃(C)C is isomorphic to a subgroup
of GL2(3). We have that Y ∩ CM̃(C) acts trivially on [VM/YM , C]. But
[VM , C] 6≤ O2(P ), so we have that Y ∩ CM̃(C) = 1. So we have that |Y | ≤ 4
and so VM = [VM , C]. We further have that Y O2(M) is normal in S, so we
have that Y acts on a Sylow 3–subgroup and then t acts on a characteristic
elementary abelian subgroup of order 27. Now as above we see that some
good 3–element centralizes YP /YM , a contradiction.

So we have that K is not solvable. Suppose first that 3 ∈ σ(M). Then
if 3 divides |CM̃/CM̃ (VM/YM )(K)|, then all 3–elements are good. In the other
cases we get with 5.11 and 1.17 that all 3–elements in K are good. But there
is no good 3–element which centralizes CVM/YM

(S ∩ K) by 14.2. Hence we
get K ∼= L2(4). Then |[VM/YM , K]| = 16 as in this case we have the natural
module. Now [VM , K] is normalized by NM̃/CM̃ (VM/YM )(K), and so by some

elementary abelian group of order 27. As |[[VM , K], t]| = 4, we have that
YP /YM ≤ [VM , K]/YM and so we get a contradiction with 14.2 again.
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Hence we may assume p > 3 for p ∈ σ(M). Now K/Z(K) ∼= An, n ≤ 11,
Ln(4), n ≤ 4, Ln(2), n ≤ 7, Sp2n(s), n ≤ 3, s ≤ 4, Ω−

8 (s), s ≤ 4, U4(2), G2(2)′.

Suppose first mp(K) = 1. Then there is good E centralizing K. But as

[VM , K] involves at most two nontrivial irreducible modules and p 6
∣∣∣ 4 − 1,

we get [E, [VM , K]] = 1, a contradiction to YP ≤ [VM , K].

So we have mp(K) > 1. This implies K ∼= A10, A11, L4(4), Sp4(4), Sp6(4),
p = 5 in this cases, or K ∼= L6(2), L7(2), p = 7.

As mp(K) = 2, then there is some ν ∈ CM̃/O2(M̃)(K), o(ν) = p. Again
[ν, [VM , K]] = 1, a contradiction. This proves (4).

As q > 2 by (4), we have a quadratic fours group X on VM/YM . This
implies that K ∼= G(r), r even, 3 · U4(3), sporadic, alternating or solvable
by 3.26. If K is solvable, so [K,ω] ≤ K. We will prove the same for K a
component.

Suppose [ω, K] 6≤ K. Let K1 × . . . × Ks = K〈ω〉. Suppose s > 3. Then
as ω centralizes a diagonal, we get with 5.3 that all Sylow subgroups for odd
primes in K are cyclic, so have K1

∼= L2(r), Sz(r), r even, J1 or L3(2). Fur-
thermore let 〈ν〉 ≤ P ∩M , o(ν) = q−1. Let µ ∈ 〈ν〉, with [K1, µ] ≤ K1, µ of
prime order. Then, as also NG(〈µ〉) is not in M , we get that o(µ) is coprime
to |K1|. Hence µ has to induce a field automorphism on K1, so K ∼= L2(r) or

Sz(r). As CK1(µ) is not a 2 - group, and for every odd prime u, u
∣∣∣ |K1|, we

get u ∈ σ(M). This again contradicts 5.3, recall that ω is in some odd frobe-
nius group and so CO2(M)(ω) 6= 1. Hence we have K〈ν〉 = K1 × . . . ×Kq−1.
Now t ∈ X acts on E ∼= Epq−1 . But then some F ∼= Ep2 centralizes some
x ∈ YP \ YM , a contradiction.

So we have s = 3, and then q = 4 or q = 64. Let first q = 64. As
[ω3, YM ] 6= 1, we get ω3 6∈ K1 ×K2 ×K3. We have [ω3, K1] ≤ K1. Further
we have that NG(〈ω3〉) 6≤ M . Suppose that 3 divides the order of K1. If
[ω3, K1] = K1, we get that ω3 centralizes some 3–element in K1. The same
is true if [K1, ω

3] = 1. Hence in any case ω3 would centralize an elementary
abelian group of order 34, a contradiction. So we get that K1 is a 3′ - group.
This shows K1

∼= Sz(r). As [t,K1] 6= 1, we get with 3.50 and (3) r ≤ q.
Let now µ ∈ M ∩ P with o(µ) = 7. Then [µ,K1] ≤ K1, otherwise we would
get that NG(〈ω3〉) ≤ M by 5.3. As r ≤ 64, we see that ν cannot induce an
outer automorphism on K1, so we get 〈µ,K1〉 ∼= Z7×K1, as [µ, YM ] 6= 1 and
[K1, YM ] = 1. But then m7(〈µ,K1, K2, K3〉) = 4, which shows 7 ∈ σ(M),
and NG(〈µ〉) ≤ M , a contradiction.
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So we are left with q = 4. Now m3(K) ≤ 1 and so K ∼= L2(r), L3(r), U3(r), or
Sz(r), r even. We have |[V1, t]| ≤ 16. Now 3.50 implies r ≤ 16 for K ∼= L2(r)
or L3(r), r ≤ 4 for K ∼= U3(r) or Sz(r). This shows K ∼= L2(r), r ≤ 16,
L3(2) or U3(4). But as C〈K〈ω〉

1 〉(ω) ∼= K, we get with 5.3 that K ∼= L2(r),

r ≤ 16, or L3(2). As [ω, S]O2(M)/O2(M) = Y O2(M)/O2(M) is elementary
abelian, K ∼= L3(2) is not possible.

As [K1, t] 6= 1 and t ∈ Z(S/CS(VM/YM)), we see that there are at
most two irreducible K1–modules in [VM , K1]. Hence we may assume that
[VM , K1, K3] = 1. The action of ω then also shows [VM , K1, K2] = 1 too. We
have [Ki, t] ≤ Ki, i = 1, 2, 3. We now have that |[[VM/YM , K1], t]| ≥ 4. As
|[VM/YM , t]| ≤ 16 by (3), we may assume that [[VM , K3], t] = 1. In particular
[t,K3] = 1, and [VM , t,K3] = 1. As YP /YM ∩ [VM , t] 6= 1, we get K3 ≤ M g

and so we have [X,K3] ≤ O2(M
g), which shows [K3, X] = 1. But then also

[X, K1] = 1, a contradiction.

So we have [K, ω] ≤ K and then also [Y, K] ≤ K, as [Y O2(M)/O2(M), ω] =
Y O2(M)/O2(M). Now as [X,K] 6= 1 and [X, ω] = X, we get [ω, K] 6= 1.
As [ω, YM ] 6= 1, it either induces an outer automorphism, or an inner au-
tomorphism normalizing a Sylow 2–subgroup of K. Hence we see that K
is solvable or K ∼= G(r) or by 3.26 ω is a 3–element and K ∼= An, 3U4(3)
or a sporadic group and all 3–elements are good. Hence we have that K is
solvable or K ∼= G(r).

Let first K ∼= G(r). As t ∈ Z(S/O2(M)), we have that t is in some root
subgroup R or we have K ∼= Sp(2n, r) or F4(r). The action of ω now implies
that even X ≤ R or we have one of the two exceptional cases. Hence we have
r ≥ q or in the exceptional cases we have r2 ≥ q. But as we may assume
that no element is in a root group, we also get r ≥ q in that cases.

Let U = CK(t). Let K not be of rank 1 and not be L3(r). Assume first
that [U, [VM , t]] = 1. Then U ≤ M g. Hence U contains no good E. This
first shows that K ∼= L4(r), Sp(2n, r), n ≤ 3, Ω−(8, r), U4(r), G2(r),

2F4(r),
3D4(r). Then besides in the case of Sp(2n, r) we have that VM is a strong
quadratic module, so we get with 3.25 that K 6∼= G2(r),

2F4(r), Ω−(8, r) or
3D4(r).

Assume that K induces at most two nontrivial irreducible modules in VM .
Let g ∈ M̃ with Kg 6= K. Then we have that [VM , K,Kg] = 1. We see that
there are p–elements in K which are good and [VM , K] is centralized by such
elements. Hence we have that YP 6≤ [VM , K]. But then YP ∩ CVM

(K) 6= 1,
a contradiction. So we have that K is normalized by M̃ . Then by 5.18 no
good p–element inducing a field automorphism on K or p = 3 and Z3 o Z3

is a Sylow 3–subgroup of M If now mp(K) ≤ 1, then we have that no outer
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automorphisms are induced by good p–elements. So K is centralized by a
good E. As YP /YM is not centralized by a good p–element, we see that K
has to induce two nontrivial modules. So we have

(∗) If mp(K) ≤ 1, then K induces at least two nontrivial irreducible modules
in VM .

Let first K ∼= U4(r). Then [VM , K] involves just the natural module. In
particular we get |[VM , t]| = q2 = r2. If mp(K) ≥ 2 then by 5.11 and 1.17 all
p–elements in K are good. But [VM , t] is centralized by some L2(q) and so
by some p–element. Hence mp(K) ≤ 1, contradicting (∗).

Let K ∼= Sp(6, r). Then we see that for p ∈ σ(M) we have that p does
not divide r2 − 1 as L2(r) centralizes [VM , t]. In particular mp(K) ≤ 1 and
e(G) ≥ 4. But as we have at most two nontrivial modules in [VM , K] we see
that some good p–element centralizes [VM , K], a contradiction.

Let now K ∼= Sp(4, r). Suppose that t is in some root group. Then as
before we see that p does not divide r2 − 1, as otherwise p–elements in K
are good by 5.11. Now mp(K) ≤ 1. Then there is a good E centralizing
K and as p does not divide r2 − 1, we get that E centralizing [VM , K]. So
we have that t is not in a root group. Then we get r = q. As there is no
field automorphism acting fixed point freely on X, we get that ω induces
an inner automorphism on K. Hence there is an abelian subgroup of order
o(ω)3 containing ω. As NG(〈ω〉) 6≤ M , this gives e(G) > 3 and so there
is a good p–element ρ centralizing K. As p does not divide r − 1, we see
that [ρ, [VM , K]] = 1, since [VM , K] involves just one nontrivial irreducible
module, the natural one, a contradiction.

So let finally K ∼= L4(r). By 3.29 we have that just natural and dual modules
are involved. If there are two of them, then we have that r = q and ω is
inner. So P ∩ M contains a good p–element, a contradiction. So we have
that [VM , K] involves exactly one nontrivial irreducible module. This shows
that K is not centralized by a good E, and so mp(K) ≥ 2 for p ∈ σ(M).
Hence p divides r2 − 1. Now any p-element is good and [VM , t] is centralized
by a good p–element, a contradiction.

So assume now that O2(U) acts nontrivially on [VM , t]. As |[VM/YM , t]| ≤
r2, this shows r = q and L2(q) is induced on [VM/YM , t]. Then
[O2(CK(t)), [VM/YM , t]] = 1 and so VM is strong quadratic. We have
K ∼= Sp(2n, q), G2(q) or Ω±(2n, q) by 3.25.

Let first K ∼= Sp(2n, r) and t not in a root group. Then we see that
n ≤ 3. The case Sp(4, r) was handled before. So let n = 3. As VM is
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strong quadratic, we get that VM involves the natural module just once. But
now there are elements in YP \ YM which are centralized by some Sp(4, r).
This shows that mp(K) = 1 for p ∈ σ(M), contradicting (∗).

From now on we have t ∈ R, R a root group.

Let again first K ∼= Sp(2n, r). Then as we have a strong quadratic mod-
ule, we have that VM involves exactly one nontrivial irreducible K–module,
some V (λ). If n > 2, then YP /YM ∩ CVM

(S ∩ K) is centralized by some
L3(r), Sp(4, r) or L2(r) × L2(r). As r > 2, we have that there are no good
p–elements whose order divides r− 1. So we have n = 2 and just the natural
module is involved. Again any element is centralized by some L2(r) and so
mp(K) ≤ 1, as otherwise all p–elements would be good. But this contra-
dicts (∗).

Let K ∼= Ω±(2n, r). Then just the natural module is involved as in the
half spin module V we have that |[V, t] > q2. Now we have that some
1 6= x ∈ YP /YM is centralized by some Ω±(2n − 2, r). Hence this group
cannot contain a good p–element. As r > 2, we are left with K ∼= Ω−(8, r),
Ω−(6, r) or Ω+(6, r).

Let first K ∼= Ω−(8, r). Then some Ω−(6, r) centralizes some element in
YP \ YM . So p cannot divide r2 − 1. Now mp(K) ≤ 1 and we get a con-
tradiction with (∗). Let next K ∼= Ω−(6, r). If p does not divide r2 − 1 we
may argue as before using (∗). So p has to divide r2 − 1. Now elements in
YP \ YM are centralized by some L2(r

2) and so by some good p–element by
5.11 and 1.17, a contradiction. Let finally K ∼= Ω+(6, r). Now some element
in YP \ YM is centralized by L2(r) × L2(r). Hence we get that p does not
divide r2 − 1 by 5.11 and 1.17. This shows mp(K) ≤ 1, a contradiction to
(∗).

So let finally K ∼= G2(r), then VM just involves the 6–dimensional mod-
ule. Further some element in YP \ YM is centralized by L2(r) and so we have
that p does not divide r2 − 1 for p ∈ σ(M). Otherwise by 5.11 there is a
good E in K. As not any p–element in K can be good, we have that there is
no p–element centralizing K. Hence we must have an outer automorphism,
which is of order p. By 5.18 we now get that Z3 o Z3 is a Sylow 3–subgroup
of M and so a Sylow 3–subgroup of K is extraspecial of order 27. But then
this is also a Sylow 3–subgroup of G2(2) and in G2(2) all subgroups of order
9 are conjugate, which gives that all 3–elements are good, a contradiction.
This in turn implies mp(K) ≤ 1, a contradiction to (∗).

Let now K ∼= L3(r). Let K1 be some subgroup L2(r) in K with X ≤
K1. Suppose first that there is exactly one nontrivial irreducible K1–
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module involved. But then for one of the parabolics P1 in K we have
[C[VM ,K](O2(P1)), O

2(P1)] 6= 1. Now we have that [O2(P1), [VM , K]] =
C[VM ,K](O2(P1)). Now we get that [C[VM ,K](O2(P1)), O

2(P1)] ∼= O2(P1) and
then |[VM/YM , K]| ≤ q3. So [VM , K] is the natural K–module. But then we
get that no p ∈ σ(M) divides r2 − 1, which shows that we have mp(K) ≤ 1,
contradicting (∗). If now q < r, then by 3.50 and |[VM/YM , X]| ≤ q2 we
get that there is just one nontrivial irreducible K1–module in VM , a con-
tradiction. So we have r = q. Now X is a root group and then ω cannot
induce a field automorphism. This shows that K〈ω〉 ∼= K × Zu, u = o(ω),
or o(ω) = 3 and ω induces a diagonal automorphism. Suppose the former.
As NG(〈ω〉) 6≤ M , and o(ω) divides r − 1, we get that e(G) > 3. As p
does not divide r − 1 and p divides |CM(K)|, we see that all p–elements are
good. As mp(K) ≤ 1, we see that K is centralized by some good E and
so some good p–element, a contradiction. So we have o(ω) = 3 and ω in-
duces a diagonal automorphism on K. Let p ∈ σ(M), p > 3. Then there
is a good E centralizing K and then some good p–element also centralizes
[VM , K]. So we have that σ(M) = {3}. As now not all 3–elements can be
good, we have e(G) = 3. As K is normal in M̃/CM̃(VM/YM), we get with
5.11 that all 3–elements in K are good. Now C[VM/YM ,K](S∩K) = YP /YM or
of order 16. In the latter we have that K ∼= SL(3, 4) and we have two nat-
ural modules involved. As all 3–elements in SL(3, 4) are good, we have that
K〈ω〉 6∼= GL(3, 4), as there all 3–elements are centralized by some elementary
abelian group of order 27. But then both 3–dimension modules are the same
and so [VM , t] is centralized by some 3–element in K, a contradiction. So
we have that C[VM/YM ,K](S ∩ K) = YP /YM . If K ∼= L3(4), then there are
3–elements centralizing K and so all 3–elements would be good. Hence we
have K ∼= SL(3, 4) and then a good E normalizes YP /YM and then a good
3–element centralizes YP , a contradiction.

Assume now K ∼= U3(r) or Sz(r). Then VM involves just the natural module
and r = q. As there is no good E which centralizes [VM , K], we see that K is
normal in M . If there is some good p–element τ centralizing K, τ 6∈ Z(K),
then [[VM , K], τ ] 6= 1, so p = o(τ) divides r2−1. If p divides r−1, we get that
all p–elements are good, as a Sylow p subgroup of M has some element from
K and some from C(K) in its center. and so as p divides |P ∩M | we have
a contradiction. So we now get K ∼= U3(r) and p divides r + 1. Now choose
1 6= y ∈ CY O2(M)/O2(M)(K). Then [y, [VM , K]] = 1. We get some w ∈ CM(K),
o(w) odd, which is inverted by y and also centralizes [VM , K]. Hence we have
that w ∈ M g, but we may choose y ≤ O2(M

g), a contradiction. So we have
that CY O2(M)/O2(M)(K) = 1 and so Y O2(M)/O2(M) = X. But then Y/U is
the natural module and by (2) we get |VM | ≤ r5, a contradiction.

Let now K ∼= L2(r). If [VM , K] is irreducible, then as there is no good
p–element in NG(S) by 14.2, we always get some good p–element centraliz-
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ing [VM , K], a contradiction to 5.5 or p = 3 and Z3 oZ3 is a Sylow 3–subgroup
of M . But then we must have three conjugates of K, K1 and K2. As [VM , K]
is irreducible they centralize all [VM , K]. But now the 3–elements in K are
good and [VM , K] is centralized by K1×K2, a contradiction. So we have two
nontrivial modules in VM . With 3.50 we get that these are natural modules,
so r = q. Let first p ∈ σ(M) such that p does not divide r2− 1. Then we see
that there is a good E, which centralizes [VM , K]. So we always may assume
that p divides the order of L2(r), in particular M is not exceptional with
respect to p. Then all p–elements are good. Now p has to divide r + 1 as
otherwise p divides |P ∩M |. Further again there is no good E in CM(K) as
otherwise some good p–element centralizes [VM , K]. Hence some p–element
induces a field automorphism and so we have a conjugate K1 of K such
that [VM , K × K1] is the orthogonal Ω+(4, r)–module. We further see that
e(G) = 3. But as ω 6∈ K ×K1, and there is no elementary abelian subgroup
of order |o(ω)|3, we get a contradiction.

So we are left with K to be solvable. But X acts quadratically and |X| > 2,
so by 2.1 we get some dihedral group D = D1 × · · ·Ds with X a Sylow
2–subgroup of D. We may assume that t ∈ D1. Then by (3) we have that
YP /YM ∩ [VM/YM , t] 6= 1. Hence this is centralized by D2 × · · · ×Ds. So we
may assume that O2(D2) ≤ M g with X ≤ O2(M

g), a contradiction. 2

omegap

Lemma 15.8 Let 1 6= µ ∈ M ∩ P̃ , o(µ) odd, such that NG(〈µ〉) 6≤ M . If µ
centralizes an elementary abelian group of order p3 in M for p ∈ σ(M), then
CM(µ) is solvable and VM ∩V g

M = YP , i.e. [O2(M)O2(P ), µ] = VM(V g
M ∩M).

Proof: Assume false. Then we may apply 5.3. This first yields that
CM(µ) is solvable. Further we get that CO2(M)(µ) = 1. As [µ, VM∩V g

M ] = YP ,
we get YP = VM ∩ V g

M . As [O2(P ), µ] ≤ Y , the rest follows.

Xquadratic

Lemma 15.9 Let W be some K-module in VM ∩ O2(P )/YM , then X acts
quadratically on W .

Proof: Let x ∈ X and y ∈ W . Then we have that [x, y] ∈ U . As
[x2,W ] = 1, we have that x commutes with [x, y]. Let ν ∈ P , which acts
irreducibly on X/X ∩ U . Write [x, y] = uv, where u ∈ YP and [v, ν] = 1.
Then [x, v] = 1 and we get that [X, v] = 1 and then also [X, [x, y]] = 1 and
so we get that [W,X, X] = 1. 2

goodaction

Lemma 15.10 Let q > 2. Then [K, ω] ≤ K.

Proof: Suppose K1× . . .×Ky = K〈ω〉, y ≥ 3. Let first y > 3. Then for
any odd prime p which divides the order of K, we have p ∈ σ(M). Assume
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that mp(K) > 1 for some odd prime. As CK〈ω〉(ω) ∼= K, we get with 5.3 that
we are in case (v), as NG(〈ω〉) 6≤ M . In particular we get that K ∼= Ap. But
then m3(K) > 1, but 3 6= p, a contradiction. So we have that mp(K1) = 1
for every odd prime p and so K1

∼= L2(r), Sz(r), L3(2) or J1. Now let
〈ν〉 ≤ M ∩ P , ω ∈ 〈ν〉, o(ν) = q − 1. Let µ 6= 1, µ ∈ 〈ν〉, [K1, µ] ≤ K1,
µ of prime order. Then [Ki, µ] ≤ Ki, i = 1, . . . , y. As NG(〈µ〉) 6≤ M , we
may apply 15.8. As ν acts fixed point freely on Y/YP , we now see that
CS(ω) = CS(ν). Hence µ centralizes a Sylow 2–subgroup of CK〈ω〉(ω)K̃. As
µ induces an automorphism on this group, centralizing a Sylow 2–subgroup,
we now see that [µ, K̃] = 1. But then [µ,Ki] = 1 for all i, contradicting 15.8

as NG(〈µ〉) 6≤ M . So we have K
〈ν〉
1 = K1 × . . .×Kq−1.

Suppose next y = 3 and q = 64, so o(ω) = 9. As [YM , ω3] 6= 1, we have
ω3 6∈ K1 × . . . × Ky. Suppose that 3 divides the order of K. Then ω3 is
contained in an elementary abelian subgroup of order 34, a contradiction.
Hence 3 6

∣∣∣ |K1|. This implies K1
∼= Sz(r). As [K, X] 6= 1 and [X, ω3] = X,

we have that [ω3, K1] 6= 1. Then ω3 induces a field automorphism and so

r = r3
1. Hence 7

∣∣∣ |K1|. Let now µ ∈ 〈ν〉, o(µ) = 7. Suppose [µ,K1] ≤ K1.

Then 7
∣∣∣ |CK1(µ)| and so there is E ∼= E74 , µ ∈ E, E ≤ M , a contradiction

to NG(〈µ〉) 6≤ M . Hence K
〈ν〉
1 = K1× . . .×K21. But then µ has three orbits

on K
〈ν〉
1 and again is contained in an elementary abelian group of order 74, a

contradiction. Hence in any case

(1) K〈ν〉 = K1 × . . . × Kq−1, 〈ν〉 ≤ M ∩ P, o(ν) = q − 1, K1
∼=

L2(r), Sz(r), L3(2) or J1.

We have [ν, S ∩ K〈ν〉] = [(S ∩ P̂ )O2(P ), ν] = VMY Y ∩ K〈ν〉 = Y ∩ K〈ν〉.
As this is abelian, we have with (1) that K ∼= L2(r) or J1.

q = 4.(2)

Suppose q > 4. Now chose some 2–element a ∈ K1 and some p–element
w1 ∈ K1 inverted by a. As q > 4, we have p ∈ σ(M). Set W = 〈w〈ν〉

1 〉 and
A = 〈a〈ν〉〉. Then A acts on W . If x ∈ A with [a, ν] = 1, then a has to
invert W . So |CA(ν)| = 2 and B = [ν, A] is of order 2q−2. Further as seen
before B ≤ Y . By 2.1 we have that BW contains a direct product of q − 2
dihedral groups with B as a Sylow 2–subgroup. Hence there is t ∈ Y ∩K〈ν〉

such that C〈K〈ν〉〉(t) ≥ F ∼= Epq−3 . Further we may assume that p > 3. Now
F acts on [t, VM ]. We have |[t, VM ] : [t, VM ] ∩ V g

M | = q. Furthermore by 15.7
[t, VM ] ∩ V g

M 6≤ YM .
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Suppose that there is no E ≤ F , E ∼= Ep2 with [E, [t, VM ]] = 1. Then
there is some E with |C[t,VM ](E)| ≥ 8q−5, as [[t, VM ], x] ≥ 8 for any p–element
x in C(t) not centralizing [t, VM ]. As q ≥ 8, we have 8q−5 > q and so in any
case there is E ∼= Ep2 , E ≤ F with C[t,VM ](E) ∩ V g

M 6≤ YM by 15.7. Choose
y ∈ CV g

M
(E) \ YM . As p ∈ σ(M), we have that CG(y) ≤ M contradicting

15.5.

σ(M) ∩ π(K) 6= ∅(3)

Otherwise there is some F ∼= Ep4 in M̃ centralizing K1 ×K2 ×K3. Let
1 6= t ∈ Y ∩ K〈ν〉. Then we have that |[VM , t] : [VM , t] ∩ V g

M | = 4 and
[VM , t]∩V g

M 6≤ YM . Now there is F1 ≤ F , |F1| = p3 such that C[VM ,t](F1) 6= 1.
As before we see that C[VM ,t](F1) ≤ YM , which shows that p = 3. But 3
divides the order of K1.

CY (K1 ×K2 ×K3) = 1.(4)

Let y ∈ CY (K〈ν〉), y 6= 1. Set Y1 = 〈y〈ν〉〉. Then K〈ν〉 acts on [Y1, VM ] and
|[Y1, VM ] : C[Y1,VM ](t)| ≤ 16, for t ∈ Y ∩K〈ν〉. Let [[Y1, VM ], K1×K2×K3] = 1.
By 15.7 we have that [Y1, VM ]∩V g

M 6≤ YM . But a good E centralizes [VM , Y1],
a contradiction as above. So [K1, [Y1, VM ]] 6= 1. As involutions in J1 in-
vert elements of order 11, we see that K1 6∼= J1. Now (1) and 3.50 im-
ply K1

∼= L2(r), r ≤ 16. But we may assume that [t,K1] 6= 1 6= [t,K2]
and so t inverts an elementary abelian group of order 172, 72 for r = 16,
r = 8, respectively. As |[Y1, VM ] : C[Y1,VM ](t)| ≤ 16, this is impossible.
Hence K ∼= L2(4). Now we see that in [Y1, VM ] there are at most two irre-
ducible K1–modules involved. Hence we may assume [[VM , Y1], K1, K3] = 1.
Then also [[VM , Y1], K3, K1] = 1. As ω acts on {K1, K2, K3} we get
[[[VM , Y1], K1], K2 × K3] = 1. As [t, [K1, [VM , Y1]]] ≤ VM ∩ V g

M , we get a
contradiction.

Now by (1), (2) and (4) |Y : Y ∩ O2(M)| ≤ r2, for K ∼= L2(r) and 64
for K ∼= J1. Let x ∈ VM \ YM . By 15.6 we have that [x, VM ] = YM .
We have that V g

M ∩ O2(M) = V g
M ∩ VM is elementary abelian and so again

by 15.6 |VM/YM | ≤ q2|Y : Y ∩ O2(M)|2 ≤ 16r4 for K ∼= L2(r) and 216

for K ∼= J1. Let r = 2m. Then (M̃/CM̃(VM/YM))(∞) . O±(4m + 4, 2)
for K ∼= L2(r), and O±(16, 2) for K ∼= J1. If L2(r) × L2(r) × L2(r) acts
on VM/YM , then |VM/YM | ≥ r6, and so 4m + 4 ≥ 6m. This implies
m = 2 and we have L2(4) ∼= K1. So we have |VM/YM | = 212. Further
VM/YM = [VM/YM , K1] ⊕ [VM/YM , K2] ⊕ [VM/YM , K3]. Now we have that
Y is a Sylow 2–subgroup of K〈ν〉. Hence there is some 1 6= t ∈ Y with
[t,K3] = 1 and so [[t, VM ], K3] = 1. As C[t,VM ]/YM

(Y ) 6= 1, we get with
15.7 that [t, VM ] ∩ YP 6≤ YM . But then K3 is also in M g, contradicting
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Y ≤ O2(M ∩M g).

So we are left with K1
∼= J1. Then K1 × K2 × K3 . Ω±(16, 2). But 73

divides the order of K1 ×K2 ×K3 but not of Ω±(16, 2). 2

KY normal

Lemma 15.11 We have [K, Y ] ≤ K.

Proof: If q > 2, then by 15.10 we have that [K, ω] ≤ K, so [K,Y ] ≤ K,
as [Y, ω] = Y . So let q = 2. Then in particular we have that K is nonsolv-
able. By 15.3 M is not exceptional.

Let y ∈ Y with Ky 6= K. As Y £ S, we see that K possesses abelian
Sylow 2 - subgroups. Hence K ∼= L2(r),

2G2(q) or J1. Now CKy×K(y) ∼= K
acts on [y, VM ]. If 1 6= t ∈ CKy×K(y) ∩ Y , then |[[y, VM ], t]| ≤ 4. By 15.7
YP /YM ≤ [y, VM ] and so CKy×K(y) acts faithfully on [y, VM ]. Application of
3.33 shows K ∼= L2(4).

Let first CY (K) 6= 1. We have [CY (K), Ky] = 1. Let ỹ ∈ CY (K)],
W = [VM , ỹ]. Let W1 be some quasi irreducible KKy–module in W , which we
may assume to be centralized by S∩CM(KKy). We have |W1 : V g

M ∩W1| = 2
and |[V g

M ∩ W1, y]| ≤ 2. Hence |[W1, y]| ≤ 4. Set K1 = CKKy(y). Then
[K1, [W1, y]] = 1. But Y ∩ K1 6= 1. This shows that CYP /YM

(K1) = 1. In
particular y induces a transvection on W1, which is not possible. So we get
that [y, W1] = 1, and then [W1, K] = 1, contradicting 15.7.

So assume now CY (K) = 1. Then we see |Y : Y ∩ O2(M)| ≤ 8 and
so |VM/YM | ≤ 28. Now M/CM(VM/YM) . O±

8 (2). Furthermore p =

3 ∈ σ(M). But then 3
∣∣∣ |CM/O2(M)(K

y × K)|. As 52
∣∣∣ |M/O2(M)|, we have

M/CM(VM/YM) . O+
8 (2). As 53 does not divide the order of O+(8, 2), we

have that KyK is normal in M̃/CM̃(VM/YM). In particular all 3–elements are
good. As no 3 - element centralizes YP we have that 27 divides |(YP /YM)M |.
As in Ω+(8, 2) no Sylow 5–subgroup centralizes a vector in the natural mod-
ule, we see that |(YP /YM)M | = 135. But as E ∼= E27 is contained in M , we
get some 3 - element ρ with |CVM

(ρ)| ≥ 25. Now ρ centralizes some involution
i ∈ VM \ YM . As all involutions in VM \ YM are conjugate under M (there
are exactly 270 such involutions), we get i ∼ j ∈ YP \ YM , a contradiction.

So in all cases we have that [K,Y ] ≤ K. 2

goodK

Lemma 15.12 Let q > 2, then there is some K with [K,X] 6= 1 and
CY (K) = 1.

Proof: Choose any K and assume that always CY (K) 6= 1. By 15.10
we have [K, ω] ≤ K. As [Y, ω] = Y , we see that [K, Y ] ≤ K. There is
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y ∈ CY (K), y 6= 1. Then we may even choose Y1 ≤ CY (K) which is nor-
malized by ω, |Y1| = q as ω acts fixed point freely on Y/Y ∩ O2(M). Set
W = [VM , Y1]. Assume [[VM , Y1], K] = 1. Then by 5.14 also [YP /YM , K] = 1.
Hence there is some t ∈ YP \ YM such that CM(t) covers K. But then K
is covered by M ∩ M g and X ≤ O2(M

g), which contradicts K = [K,X].
Let now W1 be some nontrivial quasi irreducible K–module in W , which
we may assume to be centralized by S ∩ CM̃(K). We have that |[VM , Y1] :
VM ∩ V g

M ∩ [VM , Y1]| = q. We further have |VM ∩ V g
M : CVM∩V g

M/YM
(X)| ≤ q

and so |[VM , Y1]/YM : C[VM ,Y1]/YM
(X)| ≤ q2 = |X|2. Now we have that X

induces a 2F–module offender on W and so also on W1. Further by 15.9 we
have that X acts quadratically on W .

Let first K be some r–group. By 2.1 we have a subgroup D in KX, which
is a direct product of dihedral groups Di of order 2r with X as a Sylow
2–subgroup. Set Xi = X ∩ Di. We have that [X1,W1] ≤ VM ∩ V g

M . As
[X1,W1] ≤ CVM∩V g

M
(X) so YP ∩ [X1,W1]YM > YM by 15.7. Now D2×· · ·×Dn

centralizes some element in YP \ YM and so is in M g, but X ≤ O2(M
g). As

q > 2 we have n ≥ 2, a contradiction.

As |X| > 2, we get with 3.31, 3.32 that K is alternating, Mi, J2 Co1 or
Co2 or 3U4(3), or a group of Lie type in characteristic two. We have that ω
acts nontrivially on K as it acts that way on X. So if K is not of Lie type
in characteristic two, ω has to induce an inner automorphism. As ω is non-
trivial on YM , it is an automorphism, which normalizes a Sylow 2-subgroup.
So we get K ∼= J2. But then ω does not act nontrivially on a foursgroup in
Z(S ∩K).

So we have that K is a group of Lie type in characteristic two. Suppose
that X ∩ R 6= 1 for some root group R in Z(S ∩ K). Now ω induces an
automorphism, which has to act nontrivially on this root subgroup R. Hence
we have q ≤ r. Further we have that |W1 : CW1(Y )| ≤ q|Y : CY (K)| and
|CW1(Y )| = |YP /YM | = q, so |W1| ≤ q2|Y : CY (K)|.

Now there is some 1 6= t ∈ R, R a root subgroup of K. Hence |[W, t]| ≤
q2 ≤ r2. Now with 3.29 we get that K ∼= Ln(r), Sp(2n, r), Ω±(2n, r), G2(r),
Sz(q) or Un(q). Further the corresponding modules are given by 3.29.

Let U1 be the parabolic in K with [U1, YP ] = 1. Then U1 ≤ M ∩ M g

and so Y ∩K ≤ O2(U1) and Y is normalized by U1.

Suppose first that K ∼= G2(r). Then W1 involves the natural module and so
|W1| ≥ r6. Now |Y : CY (K)| ≤ r3 and so we get that |W1| ≤ q2r3 ≤ r5, a
contradiction.
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Let K ∼= Ω±(2n, r), then the natural module is involved. We will handle
Ω+(6, r) as L4(r), so we may assume that n ≥ 4 in case of Ω+(2n, r). But
now we have that YP is centralized by Ω±(2n − 2, r). If K 6∼= Ω−(8, r) or
Ω−(6, r) there is some p ∈ σ(M) which divides r − 1. So we get some good
E centralizing YP , a contradiction. Let now K ∼= Ω−(8, r) or Ω−(6, r). Let
K ∼= Ω−(8, r). Then we have |W1| ≤ q2r6. This shows q ≥ r. Hence we get
r = q and so mx(〈K, ν〉) = 4 for some prime x dividing q−1, a contradiction.

Let next K ∼= Ω−(6, r), then |W1| ≤ q2r4 ≤ r6 and so just the natu-
ral module is involved, in which case r = q. Let U1 be as before. Then
as Y ∩ K is normalized by U1, we get that |Y ∩ K| = q4. We have that
[Y ∩K,VM , Y ∩K] ≤ VM ∩ V g

M . We also have [Y ∩K, W1, Y ∩K] = YP /YM .
As σ(M) ∩ π(U1) = ∅, we see that e(G) > 3 and mp(K) ≤ 1 for p ∈ σ(M).
This shows that K is normal in M̃/CM̃(VM/YM). So by 5.18 no p–element
induces a field automorphism on K and so there is some E ∼= Ep3 , p ∈ σ(M)
with [K, E] = 1. In particular there is some F ≤ E of order p2 centralizing
[Y ∩K, W1, Y ∩K] = YP /YM , a contradiction.

Let K ∼= Sp(2n, r). If n ≥ 4 then we see that there is p ∈ σ(M) dividing
r− 1 and so as YP is centralized by Sp(2n− 2, r), Ln(r) or L2(r)× Ln−1(r),
depending on the particular module, we get a good E centralizing YP , a con-
tradiction.

Let K ∼= Sp(6, r). We have that |W1| ≤ q2r6 ≤ r8. Hence either the
natural or the spin module is involved. If we have the spin module, then we
have r = q. But then we see that for ν ∈ P ∩M , o(ν) = q − 1, we have that
mx(K〈ν〉) = 4 for some prime x dividing r − 1, which is a contradiction. So
we just have the natural module involved. Further q < r. This now gives
|Y : CY (K)| > r4. As Y is normal in the point stabilizer P1, we see that
|Y : CY (K)| = r5 and |Y ∩K| = r5. But ω acts fixed point freely on Y and
so on O2(P1), which gives that it acts fixed point freely on R and so r is a
power of q. Hence we get that r = q2 and |W1| is the natural module. But
now again mx(K〈ν〉) = 4 for some x dividing q − 1.

Let K ∼= Sp(4, r), then we get |W1| ≤ q2r3 and so again just the natural
module is involved. Further |Y : CY (K)| > r. As Y/CY (K) is normal in
the point stabilizer, we get |Y : CY (K)| = r3 and |K ∩ Y | = r3. Now again
r is a power of q and so r = q or q2. We have that mx(K〈ν〉) = 3 for
some prime x dividing q − 1. So we get that e(G) ≥ 4. Further we have
that σ(M) ∩ π(L2(r)) = ∅. Hence we get that mp(K) ≤ 1 for p ∈ σ(M).
As NG(S) does not contain a good p–element by 14.2, we have some good
F ∼= Ep3 centralizing K. We have that YM > [Y ∩K, VM , Y ∩K] ≤ VM ∩V g

M

and so we get a good E centralizing some element in VM ∩ V g
M \ YM , which

contradicts 15.5.

273



Let next K ∼= Ln(r). If n ≥ 5, then there are primes p ∈ σ(M) divid-
ing r− 1. There is always some L2(r) centralizing YP , contradicting 14.2. So
we have n ≤ 4.

Let K ∼= L4(r). Then we get |W1| ≤ q2r4. If we have the orthogonal module,
we get r = q, a contradiction as then mx(K〈ν〉) = 4 for some prime p which
divides q − 1. So we have the natural module and then |Y : CY (K)| ≤ r3 as
Y ∩ K is normal in U1. Further r > q and so |Y : CY (K)| = r3 and then
r = q2. But then again the same contradiction as above arises.

Let next K ∼= Un(r), n 6= 4. Then we have the natural module. Now a
subgroup isomorphic to Un−2(r) centralizes Yp and so |Y ∩ K| ≤ r. This
gives |W1| ≤ rq2 ≤ r3, a contradiction.

So let next K ∼= Sz(r), then again |Y ∩K| ≤ r and so |W1| ≤ rq2 ≤ r3, a
contradiction.

Let K ∼= L3(r). Then we get |W1| ≤ q2r2. So just the natural module
is involved and so we see q2 = r or q = r as before. Now the elements of
Y induce transvections on W1. We have that CW1(Y ) ≤ YP /YM , which is of
order r, so r = q, K ∼= SL3(q) and |Y ∩K| = q2.

Let now K ∼= L2(r). Then |W1| ≤ q2r. This gives that just the natural
or the orthogonal module is involved. Let first the orthogonal module be
involved. Then r = u2 and as X acts quadratically we have that |X| ≤ u.
Now u4 ≤ |W1| ≤ q2u ≤ u3, a contradiction. Hence we have the natural
module involved. Now again we have that CW1(Y ) ≤ YP /YM . This gives
r ≤ q and then r = q again.

So we have shown that K ∼= SL3(q) or L2(q). Suppose first that K is normal-
ized by S. Then there is some X1 ≤ CY (K), X1 normal in S/S∩C(VM/YM),
|X1| = q and ω acts on X1. Hence X1 plays the same role as X and so we
have that there is a second component K1

∼= SL3(q) or L2(q).

Let first K ∼= SL3(q) and assume that K1
∼= SL3(q) too. If q 6= 4, then

mp(KK1) ≥ 4 and so for some p which divides q− 1/gcd(3, q− 1) we have a
good p–element in M ∩ P , a contradiction. So we have K ∼= K1

∼= SL3(4).
Further we may assume that m3(KK1) = 3, as otherwise we may argue as
before. As o(ω) = 3 and ω centralizes an elementary abelian group of order
9 in KK1, we have that 3 6∈ σ(M). If CY (KK1) 6= 1, we may repeat the
argument above and get a third component SL3(q) or L2(q), contradicting
3 6∈ σ(M). So we have that |Y | ≤ q4, which gives that |VM/YM | ≤ q10.
Now some F ∼= Ep4 acts on VM faithfully, which gives that p = 5. But in
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K we have that YP /YM is centralized by some L2(4) and so by some good
5–element, which contradicts 14.2. So we have that K1

∼= L2(q). The same
argument as before shows that CY (KK1) = 1 and q = 4. So |Y | ≤ q3 and
then |VM/YM | ≤ q8. As before 3 6∈ σ(M). As there is some F ∼= Ep4 acting
faithfully on VM , we get again p = 5 and a contradiction as L2(4) centralizes
YP .

Hence we have K ∼= K1
∼= L2(q). If CY (KK1) 6= 1, we would get a third com-

ponent K2
∼= L2(q) and then mx(〈ν, K, K1, K2〉) = 4, a contradiction again.

Thus CY (KK1) = 1 and so |Y | = q2. This now implies |VM/YM | ≤ q6. As
mx(〈ν, K, K1〉) = 3, we get e(G) > 3. As K and K1 are normalized by S,
there is no p–element, p ∈ σ(M), which induces a field automorphism on K or
K1, see 5.18. Hence there is a good E centralizing KK1. If [[VM , K], K1] = 1,
we get a good p–element from K1 which centralizes [VM , K] ∩ YP > YM , a
contradiction. So we have that KK1 induces Ω+(4, q) on VM . But even then
there is a good p–element in C(KK1), which centralizes [VM , KK1]/YM . Re-
call that as KK1 is normal in M̃/CM̃(VM/YM) all p-elements are good. But
now we have a contradiction with 14.2.

So we are left with KS 6= K. As X is normalized by S, we have that X
acts nontrivially on each component in KS and so by 15.10 ω normalizes
each component. Let K ∼= SL3(q). This shows that KS = KK1 and then as
before we get that q = 4. If we have K ∼= L2(q), we also have KS = KK1.
In both cases we now get e(G) ≥ 4. If there is a good E centralizing KS, we
may argue as before. Hence there must be some p–element, p ∈ σ(M), which
induces a field automorphism on K and is inverted by some element in S,
not normalizing K. This shows K ∼= L2(q), q = rp. Still |VM/YM | ≤ q6. As
again all p–elements are good, we get that there is no p–element which cen-
tralizes some element in YP \ YM . In particular KK1 has to induce Ω+(4, q)
on VM . But there is some p–element τ centralizing KK1. This now has to
act nontrivially on [VM , KK1], which gives that p divides q − 1. But then
some F ∼= Ep4 act on YP /YM , a contradiction. This proves the lemma. 2

From now on in case of q > 2 if we speak about K we always mean some
K with CY (K) = 1.

Knonsolvable

Lemma 15.13 If q > 2, we have that K is nonsolvable.

Proof: We assume that K is a normal r–subgroup in M̃/CM̃(VM/YM).
Let M be exceptional. As [ω, Y ] = Y , we see that [Y, Op(M/O2(M))] = 1.
Hence by 15.7 we have that Op(M/O2(M) acts on YP and there are p–
elements which are in M g, a contradiction with 5.5. So we have that M
is not exceptional.

Let t ∈ X]. Then |[VM , t] : [VM , t] ∩ V g
M | = q. As CVM/YM

(Y ) = YP /YM
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by 15.7, we see YP ∩ [VM , t] 6= 1. Let |Y : Y ∩ O2(M)| ≥ 25. By 2.1 we have
mr(K) ≥ 5 and so r ∈ σ(M). Then as [t, VM , s] ≤ VM ∩ V g

M for s ∈ Y , we
see that there is some 1 6= u ∈ VM ∩V g

M \YM , u is centralized by E ∼= Er2 by
2.1. But this contradicts 15.5. So we have |Y | ≤ 24. Now |VM/YM | ≤ 216.
Then q ≤ 16. If |Y | = 16, we have r 6= 3, as otherwise m3(K) ≥ 4 and
so all 3–elements are good, but 3 divides |M ∩ P |. So let |Y | = 16. Then
we must have that mr(O

±
16(2)) ≥ 4. This shows r = 5 and by 2.1 we have

that Y K contains D = D1 × D2 × D3 × D4, all Di dihedral groups of or-
der 10. Assume X = Y . We have that |[VM/YM , x]| = |[VM/YM , y]| for all
x, y ∈ X]. Now there is some x inverting Or(D), so |[VM/YM , x]| = 28. Let
1 6= y ∈ X ∩D1, then D2×D3×D4 acts on [VM/YM , y] and so some Or(Di)
centralizes [VM/YM , y] and so also some nontrivial element in YP /YM , a con-
tradiction. Then we have q = 4. Then we may assume that ω centralizes
one of the Di But as [Y, ω] = Y , this is not possible. Assume next q = 8,
then X = Y . We now have that |VM/YM | ≤ 212. In particular we have that
M̃/CM̃(VM/YM) is a subgroup of Ω+(12, 2). Now Y 〈ω〉 is a group of order
56, which should normalize K. In particular we get K must be a 3–group
of order 36. But the action of such a group is uniquely determined. and so
there are exactly 6 subgroups in K whose commutator with VM/YM is of
order 4. In particular there is no element of order 7 in Ω+(12, 2) acting on
K. So we are left with q = 4 = |Y |. In this case |VM/YM | ≤ 28. Suppose
first r = 5. Then we have that K/CK(VM) is elementary abelian of order 25
and A4 acts on this group, a contradiction to the structure of GL2(5). So we
have r = 3. Further L = M̃/CM̃(VM/YM) ∼= 33A4 or 33S4 and M̃ induces
orbits of length 3,4,6 on the hyperplanes of O3(L). We consider the action
of ω on Y . We had that either X is elementary abelian or X is a nonabelian
group of order q2 with a fixed point free automorphism of order q − 1. But
now q = 3 and so X is abelian in particular we have that YP X is abelian of
order 26.

Let first |VM/YM | = 26. Let H be a hyperplane in YM . Then by 15.6 VM/H
is an extraspecial group of order 27, which now contains an abelian subgroup
of order 25, a contradiction. So we have |VM/YM | = 28. Let CVM/YM

(K) 6= 1.
As Y 〈ω〉 act on this group we have that CVM/YM

(K) = YP /YM . But
then M ∩ M g contains an elementary abelian subgroup of order 27, where
3 ∈ σ(M), a contradiction. So CVM/YM

(K) = 1. Now there are exactly
four hyperplanes in K which have nontrivial centralizer on VM/YM . One of
these K1 say, is normalized by ω. As |CVM/YM

(K1)| = 4 and ω acts transi-
tively on YM we see that the preimage is abelian. Now take VM/H, H some
hyperplane in YM . Then VM/H is extraspecial, but here the centralizer C
of K1 cannot be abelian, as otherwise the K1 also has to act trivially on
(VM/H)/CVM/H(C). This proves the lemma. 2

Knonsolv2

Lemma 15.14 Let q = 2. Then there is a nonsolvable K with [K, Y ] ≤ K
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and some 1 6= y ∈ Y with [S ∩K, y] = 1 and [K, y] 6= 1.

Proof: By 15.3 we have that M is not exceptional. Let now K be
solvable. Choose Y1 ≤ Y with Y1 being maximal such that CY1(K) = 1.
By 2.1 we get a subgroup D ∼= D1 × · · · × Dx, a direct product of dihedral
groups, with Y1 as a Sylow 2–subgroup. Let 〈ti〉 = Y1 ∩Di, i = 1, . . . , x. Let
first x ≥ 4. We have that [VM , t1, t2, t3]YM = YP . But then D4 centralizes YP

and so is in M g. But there we have Y ≤ O2(M
g), a contradiction.

So we have shown that |Y1| ≤ 8. If |Y1| = 8, then we get that D3 has
to act nontrivially on [VM , t1, t2], where t3 induces transvections. Hence we
get r = 3. Let y ∈ CY (O3(D)). Then we have that 〈t2, t3〉 induces transvec-
tions to YP on [VM , y, t1], a contradiction, as this implies that some 3-element
in O3(D) centralizes YP . So we have CY (K) = 1 and then Y1 = Y . This now
shows |VM/YM | ≤ 28 and so 3 ∈ σ(M). As 33 divides the order of M , we
have |VM/YM | ≥ 26.

Let first |VM | = 27. Then M/CM(VM/YM) . O−
6 (2). As VM ∩ V g

M is el-
ementary abelian we get |VM ∩ V g

M | ≤ 8. For y ∈ Y \ O2(M), we have
|[VM , y]YM/YM | ≤ 8. But then some good 3 - element in D centralizes
[VM , Y ] which by 15.7 contains YP , a contradiction to 14.2.

Hence we have |VM | = 29 and as VM ∩ V g
M is elementary abelian we get

M/CM(VM/YM) . O+(8, 2). Let Q = CO2(M̃)(VM). Then Q ∩ VM = YM ,
Q ≤ O2(P ). We have [V g

M ∩ M,Q] ≤ Q ∩ V g
M ≤ YM . Then [D, Q] ≤ YM

and so [O3(D), Q] = 1. Hence M is unique with CG(x) ≤ M for every
x ∈ Q]. Let u ∈ Q, u 6∈ Qg . Then u acts on an elementary abelian group
of order 33 in O3(M

g/CMg(VMg/YMg)). Suppose [V g
M ∩M, u] = YM . Then

we have |[V g
M , u]| ≤ 4. But then there is some good 3 - element ν in M g

with [ν, YM ] = 1. By 5.5 we may assume that M has a Sylow 3–subgroup
isomorphic to Z3 o Z3. We have that CK(ν) 6= 1. In particular K ∩M g 6= 1.
But there is some y ∈ Y , which inverts K and so also inverts K ∩M g, con-
tradicting Y ≤ O2(M

g).

So we have [V g
M ∩M, Q] = 1. As [Q, VM ∩M g] = 1, we see that VM ∩M g

acts on [V g
M , Q]. By 15.7 we get [V g

M , Q] ≤ Y g
M . Now as [V g

M ∩ M,Q] = 1,
we get |Q : Q ∩ Qg| ≤ 2. As M 6= M g, we have |Q| = 2 and so Q = YM .
This implies O2(M) = VM . Now choose x ∈ V g

M ∩M , such that x centralizes
E ∼= E9 in O3(M/O2(M)). We have |[x, VM ]YM | = 16 and E normalizes
[x, VM ]YM . Let ρ ∈ E] with [[x, VM ], ρ] = 1. Then ρ ∈ M g. But there is
some y ∈ Y with ρy = ρ−1, a contradiction. So we have that E acts faithfully
and then [x, VM ] is elementary abelian. Then 〈x, [x, VM ], YM〉 = F is abelian
of order 64. Furthermore F is the only elementary abelian group of order 64
in 〈VM , x〉. This shows that E ≤ NG(F ) and so NG(F ) ≤ M .
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Now let ρ ∈ P with o(ρ) = 3. Set F1 = 〈VM ∩ V g
M , x, xρ〉. Then |F1| = 27.

Hence F ≤ F1. As |VM ∩ V g
M : CVM∩V g

M
(x)| = 2 and [ρ, VM ∩ V g

M ] = YP , we

see that |Z(F1)| = 24. We have |[ρ, F1]| = 16 and so [ρ, F1] also is abelian.
Then [ρ, F1]Z(F1) is abelian of order 64. Further for t ∈ F1 \ [ρ, F1]Z(F1) we
have that [[ρ, F1]Z(F1), t] = YP . We then have that F = [ρ, F1]Z(F1). This
implies ρ ∈ NG(F ) ≤ M , a contradiction.

Let now |Y1| ≤ 4. Let CY (K) 6= 1. Then choose y ∈ CY (K)]. Set
W = [VM , y] and let W1 be an irreducible D–submodule of W . We may
assume that [W1, CY (D)] = 1. So W1 ∩ YP 6≤ YM by 15.7. Then we have
that |[t1,W ]| = 4. So if |Y1| = 4, we get r = 3 and then |W1| = 16. Now
[W1, t1] = [W, t1] and so W = W1 ⊕ CW (O3(D)). As CW (O3(D)) is Y –
invariant we get with 15.7 that CW (O3(D)) = 1. This gives |W | = 4. Now
[W,CY (K)] = 1 and so |CY (K)| = 2. This shows |Y | = 8. Now we get
|VM/YM | = 28. We see that in O+(8, 2) the centralizer of O3(D) is a {2, 3}–
group and so we have that Y acts nontrivially on K, a contradiction. So we
have that |Y | = 4 and then |VM/YM | = 26. As now 3 ∈ σ(M), we see that
this group is of minus type. But as VM ∩ V g

M is elementary abelian, we get
|Y | = 8, a contradiction.

So let now |Y1| = 2. Let first CY (K) = 1. Then we get that |VM | ≤ 25.
But then VM is centralized by some good p–element, contradicting 15.1. So
we have CY (K) 6= 1. Let y ∈ CY (K) and W and W1 as before. Then we
have that |[W, t1]| = 4, which gives that r = 3 or 5. Let r = 5, then W is
an irreducible module for D and so we see again that |CY (K)| = 2, which
gives |Y | = 4 and so |VM | ≤ 27. Then we we have that VM is of −–type and
3 ∈ σ(M). But in O−(6, 2) there is no 5-element centralizing an elementary
abelian 3-group of order 33, a contradiction.

So we have r = 3. Hence we have that in any case K is a 3–group. Further
we have that CY (K) 6= 1. In particular CY (K) contains some 1 6= y which
is centralized by S. But now we have that y has to act nontrivially on some
component K1 of CM̃/CM̃ (VM/YM )(K). By 15.11 we have that [K1, Y ] ≤ K1.
2

From now on we always will assume that K is a component of
M̃/CM̃(VM/YM).

comlie

Lemma 15.15 We have that K is a group of Lie type. But K 6∼= L4(2).

Proof: We may assume that K is alternating or sporadic. In this con-
text we will consider A5 as L2(4) and A6 as Sp(4, 2)′. But we include 3A6

and A8 in the proof.
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Let first q > 2. Then by 15.12 we have CY (K) = 1. As [ω,K] 6= 1 and
K has no outer automorphism of odd order, we see that ω induces an inner
automorphism, which normalizes a Sylow 2–subgroup of K and acts non-
trivially on the center of a Sylow 2–subgroup of K. Hence by 1.12 we get
K ∼= A5 or J1. The case of A5 will be treated as L2(4). So let K ∼= J1,
then q ≤ 8 and |VM/YM | ≤ 212. As K 6≤ GL(6, 2), we see that K induces
exactly one nontrivial irreducible module W in VM/YM . Hence by 15.7 we
have that YP /YM is in W . As K is centralized by a good E, we get a good
p–element centralizing YP /YM . By 5.5 this shows that p = 3 and Z3 o Z3 is
a Sylow 3–subgroup of M . But then we must have three conjugates of K.
Now we get a contradiction as J1 × J1 × J1 is not isomorphic to a subgroup
of GL(12, 2).

So we have that q = 2. According to 15.14 choose t ∈ Y , with [t,K] 6= 1
and [t, Z(S ∩ K)] = 1 and assume that CY (K) 6= 1. Choose y ∈ CY (K)].
Set W = [VM , y] and let W1 ≤ [W,K] be a quasi irreducible submodule. We
have that |[[W,K], t]| ≤ 4 and so by 3.32 we see that K is alternating and
by 3.33 we have that W1 either involves the permutation module, or n = 7
or 8 and it is a 4–dimensional module, or we have 3A6 on a 6–dimensional
module. Further there are at most two such modules involved in W . Let
first 3 ∈ σ(M). Suppose n ≥ 13. Then m3(K) ≥ 4 and so all 3–elements
are good. Now any involution in K is centralized by an elementary abelian
subgroup of order 9 in K and so YP /YM ≤ [W, t] is centralized by some
good element of order three, contradicting 14.2. So we have that n ≤ 12.
If n = 11 or 12. Then by 1.17 again all 3–elements are good. Now t is
centralized by an elementary abelian group of order 9 or by A5. In both
cases YP is centralized by a 3–element, a contradiction as before. So we have
n ≤ 10. Suppose that W is the permutation module. Then we have n ≥ 7.
Let v ∈ CW (S ∩K). If n = 7, then CK(v) ∼= A6, Σ5, or Σ3 × Σ4. If n = 8,
then CK(v) ∼= E16(Σ3 × Σ3). If n = 9, then CK(v) ∼= A8 and if n = 10,
then CK(v) ∼= Σ8. In any case YP is centralized by a good 3–element. So we
have K ∼= 3A6 on the 6-dimensional module or A8, A7 on the 4-dimensional
module. Now the corresponding centralizers are Σ4, E8L3(2) and L3(2). But
also here we have 3-elements centralizing CV (S ∩K).

So assume now that 3 6∈ σ(M). Then n ≤ 11. Set T = S ∩ C(K). Then
without loss we may assume that W1 ≤ CVM

(T ). As |W1 : W1 ∩ V g
M | ≤ 2,

we get that |W1 : CW1(Y )| ≤ 2|Y : CY (K)|. As |Y : CY (K)| ≤ 25, we get
|W1 : CW1(Y )| ≤ 26. By 15.7 we have CW1(Y ) ≤ YP /YM , so |W1| ≤ 27.
Hence n ≤ 8. So we get |W1| = 16 or n = 8, |W1| = 26 and |Y : CY (K)| = 16
by 3.35. In any case we get that W1 ≤ [VM , y] for all y ∈ CY (K)]. Suppose
|CY (K)| = 2 and so 23 ≤ |Y | ≤ 25. This shows |VM/YM | ≤ 212. Hence
VM involves at most three modules. But then there is a good E which con-
tains a p–element centralizing VM , as p ≥ 5 a contradiction. So we may
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assume that |CY (K)| > 2. Let 〈y, y1〉 be a fours group in CY (K). Then
W1 = [VM , y] ∩ [VM , y1] ≤ VM ∩ V g

M . Hence t induces a transvection on W1,
which again gives that K ∼= A8 and |W1| = 16. This now shows that |Y | = 8
and Y is the transvection group in K to YP /YM . Suppose that W1 = [W,K].
By 3.35 we get that W = W1 ⊕ CW (K). As Y acts on CW (K) we get with
15.7 that CW (K) = 1. Hence W = W1. So we have that W involves a further
nontrivial irreducible module, which then also has to be the L4(2)–module.
Suppose that [CY (K), [W,K]] = 1. Then |[W,K] : C[W,K](Y )| ≤ 8. But
then |[W,K]| ≤ 25, a contradiction. Hence there is some y2 ∈ CY (K) with
[W,K] = W2 ⊕W y2

2 , where W2 is the natural L4(2)–module for K. But we
must have that |W : CW (y2)| ≤ 4, a contradiction. So in any case we have
shown that CY (K) = 1.

We have |VM/YM | ≤ 4|Y O2(M)/O2(M)|2. Let first K be sporadic. Then
with 3.49 we get that K/Z(K) ∼= Mi, J2, HiS, Co1 or Co2. In the last two
groups there is an elementary abelian group of order 33, 3 ∈ σ(M), in CK(t)
and so some element in VM∩V g

M \YM is centralized by a good E, contradicting
15.5. For M11, M12, J2, HiS, M22, M23, M24, we get |Y O2(M)/O2(M)| ≤ 4,
8,16,32,32,16,64, respectively and so we get the following upper bounds for
|VM/YM | : 26, 28, 210, 212, 212, 210, 214. As M11 and M12 possess elements
of order 11, they cannot act on a group of order 28 nontrivially. As J2 con-
tains an elementary abelian subgroup of order 25 normalized by a dihedral
group of order 12, it cannot act nontrivially on a 10–dimensional module over
GF (2). Further HiS contains a nonabelian subgroup of order 125, so it is
not a subgroup of GL(12, 2) and finally M23 contains an element of order 23,
so it cannot act nontrivially on a 2–group of order 210. Hence only M22 and
M24 are possible. But now there is some good p–element centralizing K and
so it centralizes also C[VM ,K](Y ) = YP /YM , a contradiction.

So let now K/Z(K) ∼= An. Then |Y | ≤ 2
n
2 and so |VM/YM | ≤ 2n+2. Let

first 3 ∈ σ(M). Then as |K|2′ > 2n+2 − 1, for n > 8, we see with 1.11 that
we always have some 3-element centralizing YP , a contradiction. Let n = 8.
Then |VM/YM | ≤ 210. If the permutation module is a submodule, we have
that YP /YM is centralized by a good E, a contradiction. So we have the
L4(2)–module as a submodule. If this module is Y –invariant, again YP /YM

is centralized by a good 3–element, a contradiction. Hence we have two
L4(2)–modules, which are interchanged by some element in y ∈ Y and so Σ8

is induced. We have that CK(y) ∼= Σ6 or Z2×Σ4. Further as |VM/YM | ≥ 28,
we get |Y | ≥ 23. By 15.7 we have that CVM/YM

(K) = 1, so |VM/YM | = 28

by 3.36. Now there is a good 3–element in M̃ centralizing K. But the two
K–modules in VM are not isomorphic, hence a good 3–element centralizes
VM , contradicting 15.1. Now let n ≤ 7, then |VM/YM | ≤ 26 and just one
nontrivial irreducible K–module can be involved in VM . But then we have a
3–element in CM̃(K) centralizing [VM , K], a contradiction.
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So we may assume that 3 6∈ σ(M). Then we have n ≤ 11. Now there
are at most two nontrivial irreducible modules in VM , which shows that we
must have mp(K) ≥ 2 for p ∈ σ(M), so K ∼= A10 or A11. As m3(K) = 3, we
get that e(G) ≥ 4. As |VM/YM | ≤ 212 and GL(12, 2) does not contain an el-
ementary abelian subgroup of order 54, we get a good 5–element centralizing
VM , contradicting 15.1. 2

Klie2

Lemma 15.16 We have that K is a group of Lie type in characteristic two
different from L4(2).

Proof: By 15.15 we may assume that K is a group of Lie type in odd
characteristic which is not also a group of Lie type in characteristic two, too.

Let first q = 2. As in 15.14 let t ∈ Y with [K, t] 6= 1 and 1 6= y ∈ CY (K),
W = [VM , y] and W1 be a nontrivial quasi irreducible K–module in W .
Now |[W, t]| ≤ 4 and so with 3.31 we get that K ∼= 3U4(3). Further W1

is the 12–dimensional module. But we may choose t ∈ Z(S ∩ K). Then
|[W1, t]| = 16, a contradiction. So we have that CY (K) = 1. Now by 3.48
we get that K ∼= 3U4(3), L3(3), U4(3), L4(3) or L2(25). If K 6∼= L3(3)
or L2(25), we have that 3 ∈ σ(M). We have that U4(3) cannot act on
a group of order 212 as it contains a subgroup 34L2(9). In L4(3) we have
34(SL2(3)SL2(3)) and so it also cannot act on such a group. If we have
3U4(3), then t is centralized by some elementary abelian subgroup of order
33. We have |[VM , t] : VM ∩V g

M ∩ [VM , t]| = 2. As VM ∩V g
M ∩ [VM , t] 6≤ YM , we

get some 1 6= x in VM ∩ V g
M \ YM , which is centralized by a good E, contra-

dicting 15.5. If we have L3(3) or L2(25), then |Y | ≤ 23 and so |VM/YM | ≤ 28,
but K contains an element of order 13, a contradiction.

So we have q > 2. By 15.12 we have CY (K) = 1. We have that ω in-
duces an automorphism on K which normalizes a Sylow 2 - subgroup of K.
As [ω,X] = X, we have that [ω, K] 6= 1. Let q = 64 and ν ∈ P∩M , o(ν) = 7.
Suppose that ν does not normalize K. Then K〈ν〉 = K1 × · · · ×K7, and so
3 ∈ σ(M) and all 3–elements are good. But NG(〈ω〉) 6≤ M , a contradiction.
So ν normalizes K and induces an automorphism which normalizes a Sylow
2–subgroup of K.

Let first K ∼= L2(r) or 2G2(r). Then we have |Y | ≤ 8. So we have
|VM/YM | ≤ 212. Assume 2G2(r) ≤ Ω±(12, 2). This is just possible for r = 3,
but 2G2(3) is isomorphic to L2(8), a group in characteristic two. In case of
L2(r) we get o(ω) = 3 and so |X| = |Y | = 4. Now K ≤ Ω±(8, 2), which gives
K ∼= L2(17). But then ω would centralize K, a contradiction.

Suppose now that ρ = ν or ω induces a field automorphisms. Hence
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K = G(pf ) and we have p ∈ σ(M). Let K1 = CK(ρ). Then we have
that K1 is nonsolvable and mp(K1) ≥ 2 as K 6∼= L2(r) or 2G2(r). But now
application of 5.3 shows NG(〈ρ〉) ≤ M , a contradiction.

So we have shown that neither ω nor ν induces a field automorphism. Ap-
plication of 1.13 shows that o(ω) = 3. Hence q = 4. Further ω induces an
inner automorphism. As [ω, Y ] = Y , we get that |Y | ≤ 2m2(K).

This now implies that m3(K〈ω〉) ≤ 3 as otherwise NG(〈ω〉) ≤ M . Let
m2(K) ≤ 6. We have that |VM/YM | ≤ q2|Y |2 ≤ 16 · 212 = 216. Then we get
K . O±

16(2). As K contains a nonabelian subgroup of order u3 for some odd
prime u, this implies r = 3f . As m3(K) ≤ 3, we get with 1.1 K ∼= L3(3),
U3(3), PSp4(3), or G2(3). But as ω has to induce some automorphism which
acts nontrivially on X which is contained in the center of a Sylow 2–subgroup,
we get a contradiction in all cases, as always this center has order two.

So we have m2(K) > 6. Application of 1.1 shows that m3(K) = 3,

K ∼= Sp6(r), Ω−
8 (r), L6(r), U6(r), L7(r), or U7(r). Now 3 6

∣∣∣ r and 3 6
∣∣∣ r − 1,

while 3 6
∣∣∣ r + 1 in case of K ∼= U6(r) or U7(r). Hence never K possesses a

diagonal automorphism of order 3. As ω does not induce a field automor-
phism, we see 〈ω,K〉 ∼= Z3 ×K. But now m3(Z3 ×K) = 4, a contradiction.
2

nocentq2

Lemma 15.17 Let q = 2, then CY (K) = 1.

Proof: By 15.16 we have that K is of Lie type in characteristic
two but not isomorphic to L4(2). We choose y ∈ CY (K)] and define
W = [VM , y, K] and W1 to be a quasi irreducible submodule of W . We
may assume that [CY (K),W1] = 1. By 15.7 we have CW1(K) = 1, as other-
wise YP /YM ≤ CW1(K) and so K is covered by M ∩M g, but Y ≤ O2(M

g).
According to 15.14 let t ∈ Y with [K, t] = K and [t, S] = 1. As |[W, t]| ≤ 4,
we get with 3.29 that K ∼= Ln(r), Sp(2n, r), r ≤ 4, Ω±(2n, 2), Un(2) or
G2(2)′. As |W1 : W1∩V g

M | ≤ 2 and Y acts as a transvection group to YP /YM

on VM ∩ V g
M by 15.6, we get with 15.7 |W1| ≤ 4|Y : CY (K)|. So W1 is given

by 3.33.

Let first K ∼= G2(2)′. Then W1 is the 6–dimensional module. But
|Y : CY (K)| ≤ 8, which gives |W | ≤ 25, a contradiction.

Let K ∼= Un(2), then we will assume that we have the natural module (U4(2)
on the orthogonal module will be handled next). Now t corresponds to an uni-
tary transvection, so CK(t) involves Un−2(2). If n > 4, then 3 ∈ σ(M), but al-
ways some 3–element centralizes [W, t], a contradiction as [W, t]∩YP /YM 6= 1.
So we have 3 6∈ σ(M) and n = 4. Then |Y : CY (K)| ≤ 24 and so |W | ≤ 26,
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a contradiction.

Let next K ∼= Ω±(2n, 2). We then have the natural module W1. We as-
sume n ≥ 3 and K 6∼= Ω+(6, 2). Then as [W, t] is of order 4, t corresponds
to a root element and so CK(t) involves Σ3 × Ω±(2n − 4, 2). So we have
always some element of order three which centralizes [W, t]. Hence we get
that 3 6∈ σ(M). So we get K ∼= Ω−(8, 2) or Ω−(6, 2). Again we have that
|W1 : CW1(Y )| ≤ 2|Y : CY (K)|, so we get |W1 : CW1(Y )| ≤ 27 or 25.
As |CW1(Y )| = 2, we get W1 = W . Assume there is y 6= y1 ∈ CY (K)].
Then as YP /YM ≤ W1, we get that W1 ≤ [VM , y1] as well. But then
W1 ≤ [VM , y] ∩ [VM , y1] ≤ VM ∩ V g

M . Then t induces a transvection on W1,
a contradiction. So we have that |CY (K)| = 2, which gives that |Y | ≤ 27,
25, respectively. Then |VM/YM | ≤ 216, 212. In particular there are exactly
two natural modules involved. As mp(K) ≤ 1, we get a good E centralizing
K. But p ≥ 5 for p ∈ σ(M), and so there is a good E centralizing VM , a
contradiction.

Let K ∼= L2(4) and W1 be the permutation module. Again we have
|CY (K)| = 2 and so |Y | ≤ 8. This gives |VM/YM | ≤ 28. Then we have
that |VM/YM | = 28 as there are two nontrivial K–modules involved. But
then we have that p = 3 ∈ σ(M) and all 3–elements are good. But in W1,
we have that YP /YM is centralized by a 3–element, contradicting 14.2.

Let now K ∼= Sp(2n, 4) or Ln(4). then W1 is the natural module and t
is a transvection. As |CW1(Y )| = 2, we get some y1 ∈ Y , which induces
a field automorphism on K. Then CK(y1) ∼= Sp(2n, 2) or Ln(2). We have
that CK(y1) acts on [W1, y1]. As |[W1, y1]| ≤ 4, we get CK(y1) ∼= Σ3. So
K ∼= L2(4). Then |Y : CY (K)| = 4 and so |W1| = 16, W1 is the natural
module. Again |CY (K)| = 2 and t induces a transvection over GF (4) on W1.
So we get |Y | ≤ 8 and |VM/YM | = 28. Now 3 ∈ σ(M) and all 3–elements are
good. As YP /YM is not centralized by a 3–element, we get that 27 divides
|(YP /YM)M |. As elements of order 5 in K act fixed point freely on VM/YM

we get that |(YP /YM)m| = 135 and all involutions in VM \ YM are conjugate.
Let now E ≤ M , E ∼= E27. Then E contains some element ρ of order 3 such
that |CVM

(ρ)| = 25. But then ρ centralizes some involution in VM \ YM and
so YP is centralized by a good 3–element in M , contradicting 14.2.

Let K ∼= Sp(2n, 2). Then Z(S∩K) is centralized by some Sp(2n−4, 2). Let
n ≥ 4. Then [W1, t] is centralized by Sp(2n − 4, 2)′ and so by a good E, as
m3(K) ≥ 4 and so 3 ∈ σ(M).

So we may assume that K ∼= Sp(6, 2) or A6. Now we have that |W1| ≤ 28, 25,
respectively. If |CY (K)| > 2, we get again that W1 ≤ VM ∩ V g

M and so
Y/CY (K) has to induce transvections, so |Y : CY (K)| = 2. Then we have
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that |Y | ≤ 27 or 24. This gives that |VM/YM | ≤ 216 or 210. This in fact im-
plies that K induces at most two nontrivial irreducible modules in VM/YM .
In particular CM̃(K) . Σ3. Hence in any case σ(M) = {3} and all 3–elements
are good. But W1 is either the natural module or the spin module and in
both cases CW1(S ∩K) is centralized by a 3–element, contradicting 14.2 as
CW1(S ∩K) ≥ YP /YM .

So we are left with K ∼= Ln(2). Then CK(t)/O2(CK(t)) ∼= Ln−2(2). Sup-
pose 3 ∈ σ(M). If n ≥ 5, then we have that YP is centralized by a good
3–element, a contradiction. Hence in this case we must have K ∼= L3(2).
Now |Y : CY (K)| ≤ 2 and so |W1| ≤ 16, i.e. W1 involves just one natural
module. Let 3 6∈ σ(M), then n ≤ 7. Let n ≥ 5. Then [W1, t] is centralized
by CK(t) and so YP is centralized by CK(t). By Smith lemma [Sm] we have
that YP /YM = [W1, t] and so t induces a transvection and then W1 is the
natural module.

In any case we have that n ≤ 7 and W1 is the natural module. Let
|CY (K)| > 2. Then we have that W1 ≤ VM ∩ V g

M and so Y/CY (K) is
the full transvection group. Let n 6= 3. If W = W1, then we have with 3.36
that [VM , y] = W1 ⊕ CW1(K). But now 15.7 shows that CW1(K) = 1. This
gives the contradiction W1 = [VM , y]. So we have that W 6= W1 and there is
some y2 ∈ CY (K) and so some module W2 such that W2 ⊕W y2

2 ≤ W . But
we have that |[W, y2]| ≤ 4, a contradiction. This shows [W,CY (K)] = 1 and
then |W | ≤ 2n+1, a contradiction.

So we have that n = 3 or |CY (K)| = 2. In case of n = 3, we have that
W = W1 and |[VM , y] : W1| = 2.

Let next |CY (K)| = 2. Assume further that K is normal in M̃/CM̃(VM/YM).
As 3 6∈ σ(M), there is some good E centralizing K. Set W̃ = 〈WE

1 〉. We
have that CE(YP ) = 1. So we get at least 9 conjugates of W1 under E.
Hence |VM/YM | ≥ 29n and on the other hand |Y/CY (K)| ≤ 212. This
shows |VM/YM | ≤ 226, a contradiction. So we have that K is not normal
in M̃/CM̃(VM/YM). As 3 6∈ σ(M), we have that K ∼= L3(2).

Now in any case we are left with K ∼= L3(2). Further |[VM , y]| = 24.
Let y1 ∈ CY (K) \ 〈y〉. Then [[VM , y], y1] ≤ W1 and so [[VM , y], y1] = 1.
This shows that [[VM , y], CY (K)] = 1. Set U = 〈[VM , y] | y ∈ CY (K)〉.
Then [U,CY (K)] = 1. As [[VM , y], K] = W1 for all y ∈ CY (K)], we see
that [U,K] = W1. Further CU(K) = 1 by 15.7, so we get with 3.36 that
U = [VM , y] is of order 16. But we have that |[CY (K), VM ]/W1| ≥ |CY (K)|
and so |CY (K)| = 2. Now |Y | ≤ 8 and |VM/YM | ≤ 28. As mp(M) ≥ 3
for p ∈ σ(M), we get with 15.1 that σ(M) = {3}. Now we get that

KM̃ . L3(2) × L3(2) and 3 divides |KM̃ |, so all 3–elements are good. But
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CK(YP ) contains a 3–element, a contradiction. 2

qgreater2

Lemma 15.18 We have q > 2.

Proof: Suppose q = 2. By 15.17 we may assume that there is a compo-
nent K of M̂ = M̃/CM̃(VM/YM) with [K, Y ] ≤ K and CK(Y ) = 1. Further
by 15.16 we have K ∼= G(r), r = 2n, a group of Lie type but K 6∼= L4(2).

Let first K be a rank 1 group L2(r), U3(r) or Sz(r). Then |Y | ≤ r and
so |VM | ≤ 4r2 ≤ r3. Hence only L2(r) is possible. Further we have that K is
normal in M̂ . So if p ∈ σ(M) and p divides |K|, then all p–elements are good,
as a Sylow p–subgroup of M contains an elementary abelian group of order
p2 in its center. Further by 5.18 we have that there is no field automorphism
of order p of K. Hence there is a good E centralizing K. But then there is
a good p–element centralizing [VM , K] and so YP , a contradiction.

By 3.51 we now have that Y ≤ O2(Y P1), P1 some minimal parabolic. Hence
CVM

(O2(Y P1)) = YP /YM . This shows that P1 does not contain a good p-
element. Going over the groups of Lie type, we now get that K ∼= Ln(r),
n ≤ 4, Ln(2), 5 ≤ n ≤ 7, Un(r), n ≤ 5, Sp(2n, r), n ≤ 3, Ω−(8, r), G2(r),
3D4(r), or 2F4(r). Let p ∈ σ(M), then we get that p does not divide r2 − 1,
r6−1 for 3D4(r). Hence we see that mp(K) ≤ 2. By 14.2 we have no good p–
element in NG(S), hence we see that always some good p–element centralizes
K. In particular Y 6≤ K, and CVM

(O2(P1)) 6= YP /YM . Hence we have that
[VM , K] involves a direct sum of at least two isomorphic nontrivial irreducible
K–modules. Now we go over the cases above. Recall that |VM/YM | ≤ 4|Y |2.

Let K ∼= Ω−(8, r). Then we get |VM/YM | ≤ 4r12 < r15, which by 3.45
can never involve two nontrivial modules.

Let K ∼= 3D4(r) or 2F4(r), then |VM/YM | ≤ 4r10 < r12, which by 3.45
also is not possible.

Let K ∼= G2(r), then |VM/YM | ≤ 4r6 ≤ r8, a contradiction again with
3.45.

In case of K ∼= U5(r) or U4(r), we get |VM/YM | ≤ 4r8 ≤ r10, which also
is not possible, as by 3.45 minimal modules have order at least r6.

Let K ∼= Sp(6, r), then we get |VM/YM | ≤ 4r12 ≤ r14. Now as p cannot
divide r2 − 1, we see that mp(K) ≤ 1 and so there is a good E centralizing
K, which shows that we must have at least three modules. But by 3.45 min-
imal modules have dimension at least 6, a contradiction.
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Let K ∼= Sp(4, r). Then we get |VM/YM | ≤ 4r6 ≤ r8. This is just pos-
sible for r = 2. Now we have exactly two irreducible modules, but p > 3
as otherwise P1 contains a good 3–element, and so they are centralized by a
good p–element, a contradiction.

Let next K ∼= L3(r). Then |VM/YM | ≤ 4r4 ≤ r6, which shows r = 2
and we have exactly two modules. As p > 3, we get a contradiction as in the
case of Sp(4, r).

Let K ∼= L4(r). Then |VM/YM | ≤ 4r8 ≤ r10. As p does not divide r2− 1, we
have mp(K) ≤ 1, so some good E centralizes K and we have at least three
modules involved, a contradiction.

Let K ∼= L5(2). Then |VM/YM | ≤ 214. As p > 3, we have that mp(K) ≤ 1
and so some good E centralizes K, which gives a contradiction as above.

Let K ∼= L6(2), we get |VM/YM | ≤ 220. Let p = 3. Then by 1.17 all 3–
elements are good, but P1 contains a 3–element. Hence we have p > 3 in
particular e(G) ≥ 4. So we have a good E in CM(K). In particular we now
have that there are at least three modules involved. This gives p = 7 and
then some good p–element centralizes [VM , K], a contradiction.

Let finally K ∼= L7(2), then |VM/YM | ≤ 226. Again p > 3 by 1.17 and
so e(G) ≥ 4. Hence we have a good E which centralizes K and then also
some good p–element centralizes [VM , K], a contradiction. 2

Kstruk

Lemma 15.19 We have a component K of M̃/CM̃(VM/YM) with [Y, K] ≤
K, [ω, K] ≤ K and CY (K) = 1, which is isomorphic to Ln(r), 3 ≤ n ≤ 4,
Un(r), 4 ≤ n ≤ 5, Sp(2n, r), n ≤ 3, G2(r),

3D4(r),
2F4(r), Ω−(8, r), with

r = 2n ≥ q > 2. Further there is a minimal parabolic P1 of K such that
Y ≤ O2(P1Y ), and P1 is normalized by ω. Finally O(∞)(P1) does not contain
a good p–element for p ∈ σ(M).

Proof: By 15.18 we have that q > 2. Now by 15.12 we have some K
with [K,Y 〈ω〉] ≤ K and CY (K) = 1. By 15.16 we have that K = G(r),
r = 2n, a group of Lie type in characteristic two.

Let first K ∼= L2(r), Sz(r) or U3(r). As [X,ω] = X and |X| = q, we
have that q ≤ r. Further we have that |VM/YM | ≤ q2|Y/Y ∩ O2(M̃)|. Then
we have |Y : Y ∩ O2(M)| ≤ r and so |VM/YM | ≤ q2r2 ≤ r4. This first gives
K 6∼= U3(r). Further as VM is non abelian, we have that K 6∼= Sz(r) by 3.55.
So we are left with K ∼= L2(r). In particular there are at most two nontrivial
irreducible modules involved. If we have some good field automorphism, we
get with 14.2 that there is s ∈ S with [K, Ks] = 1 and then |VM/YM | = r4
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and r = q. If [[VM , K], Ks] = 1, then as YP ∩ [VM , K] > YM , we get that
Ks is covered by M g and so [Y, Ks] = 1. But [X, K] 6= 1 and Xs = X,
so [X, Ks] 6= 1, a contradiction. So we have that VM/YM is the orthogonal
Ω+(4, q)–module. As mx(〈KS, ν〉) = 3 for any prime x dividing o(ν) = q−1,
we get that e(G) > 3, and so again there is some good p–element, p does not
divide q − 1, which centralizes 〈KS〉 and then also VM/YM , a contradiction.
So we may assume that K is normal in M/O2(M) and there is a good E
centralizing K. Then as there are at most two nontrivial modules in VM , we
get that p has to divide q − 1. But now the center of a Sylow p–subgroup of
M is noncyclic and so all p–elements are good. But now p divides |P ∩M |,
a contradiction.

So the Lie rank of K is at least two. Then by 3.51 there is some mini-
mal parabolic P1 of K such that Y ≤ O2(P1Y ) and O2(P1/O2(P1)) ∼= L2(r)
in case of 2F4(r). Hence O2(P1/O2(P1)) ∼= L2(r) or U3(r). By 15.7 we
have that CVM/YM

(O2(P1Y )) ≤ YP /YM . Assume [ω, P1] 6≤ P1. Then we
have K ∼= Ω+

8 (r) and ω induces a graph automorphism of order 3. But as
m3(Ω

+
8 (r)) ≥ 4 all 3–elements are good, a contradiction. So [ω, P1] ≤ P1.

Then as ω acts fixed point freely on YP /YM , we get that O2(P1) centralizes
YP and so it does not contain any good p–element.

As ω acts nontrivially on some root subgroup of K, we also get r > 2.
This now implies that K ∼= Ln(r), n ≤ 4, Un(r), n ≤ 5, Sp2n(r), n ≤ 3,
G2(r),

3D4(r),
2F4(r), Ω−

8 (r). 2

bnot2

Proposition 15.20 b 6= 2.

Proof: Suppose false. Then we are in the situation of 15.19. In par-
ticular in all cases we have that |VM/YM | ≤ q2|Y/Y ∩O2(M̃)|2.

Let first K ∼=3 D4(r) or 2F4(r), then we have that |Y : Y ∩ O2(M̃)| ≤ r5 by
1.5. Hence we have that |VM/YM | ≤ q2r10 ≤ r12, contradicting 3.45.

We have that CVM/YM
(K) = 1 as otherwise by 15.7 YP ∩ CVM

(K) > YM

and so K is covered by M g but Y ≤ O2(M
g).

Let first [[VM/YM , K], CS(K)] = 1. This in fact happens if [VM/YM , K]
is irreducible. By 15.7 we have that C[VM/YM ,K](Y ) = YP /YM . As
[Y, ω] = Y , we get that Y projects onto a subgroup of S ∩ K and so
C[VM/YM ,K](S ∩ K) = YP /YM . Let K1 be a preimage of K, then we get

that M̃ = K1(M̃ ∩ M g). If M ∩ M g does not contain a good p–element,
we must have that mp(AutM(K)) ≥ 3. Hence by 5.5 we may assume that
p = 3 and either K ∼= SL3(4) or Z3 o Z3 is a Sylow 3–subgroup of M . In
the former a good E is in N(YP ), a contradiction. So assume that Z3 o Z3
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and m3(K) ≤ 2. But we have that |K| is divisible by 3 and as the cen-
ter of a Sylow 3–subgroup is of order 3, we get that a Sylow 3–subgroup of
CM̃/CM̃ (VM/YM )(K) is in K. Hence also m3(AutM(K)) = 3. So in any case

we have that mp(AutM(K)) ≥ 3 for p ∈ σ(M).

As M = K1(M̃ ∩ M g) and Y ≤ O2(M̃ ∩ M g), Y is normalized by S, we
see that KS = K.

Let first mp(K) ≥ 3 for some p ∈ σ(M). Then we get K ∼= L4(r), p
∣∣∣ r − 1,

U4(r) or U5(r), p
∣∣∣ r + 1, or Sp(6, r) or Ω−(8, r) and p

∣∣∣ r2 − 1. In any case a

p–element in K centralizes an elementary abelian subgroup of order p3 and
so all p–elements in K are good. Let P1 be as in 15.19, then we have that
P1/O2(P1) ∼= L2(r), L2(r

2) or U3(r) and in any case p divides the order of
O(∞)(P1), contradicting 15.19.

Assume now mp(K) = 2. Then as K is normal in M̃/CM̃(VM/YM) we have
an outer automorphism of order p. By 5.18 this is not a p–element besides
Z3 oZ3 is a Sylow 3–subgroup of M . Suppose we have an outer automorphism
which is not a field automorphism, then we have K ∼= L3(r), p = 3 or U5(r),

p = 5. In the latter as 5
∣∣∣ r + 1 we have that m5(K) > 2. Hence we have that

K ∼= L3(r) and 3
∣∣∣ r− 1. With 5.11 we get that all 3–elements in K are good,

contradicting 15.19. So we have that Z3 oZ3 is a Sylow 3–subgroup of M and
some field automorphism is induced. Now 3 divides r2− 1 and so by 5.11 we
may assume that a Sylow 3–subgroup of K is extraspecial of order 27. Let u
be the 3–element inducing the field automorphism. Then u centralizes in K
an elementary abelian subgroup of order 9. Hence all 3–elements in CK(u)
are good. So 3 does not divide CP1(u), which is a contradiction.

So we have that mp(K) ≤ 1. Hence Out(K) possesses a nonabelian Sy-
low p–subgroup. This shows that p = 3 and we have K ∼= L3(r) or U3(r), or
p = 5 and we have K ∼= U5(r). As some p–element has to induce a diagonal
automorphism, we have that p divides r − 1 in the linear case and r + 1 in
the unitary case. But then in any case mp(K) ≥ 2.

So we have that [[VM , K], CS(K)] 6= 1. In particular [VM , K] involves at
least two nontrivial irreducible K–modules.

Let K ∼= G2(r), then |Y/Y ∩ O2(M̃)| ≤ r3 by 1.5, so we have that
|VM/YM | ≤ r8, a contradiction to 3.45.

Let K ∼= Ω−(8, r), then by 1.5 |Y/Y ∩ O2(M̃)| ≤ r6 and so |VM/YM | ≤ r14,
contradicting 3.45.
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We are left with K ∼= Sp(6, r), then |VM/YM | ≤ q2r12, K ∼= L4(r),
|VM/YM | ≤ q2r8, K ∼= Sp(4, r), |VM/YM | ≤ q2r6 and K ∼= L3(r) and
|VM/YM | ≤ q2r4. In the last two cases we have equality, q = r and
|Y/Y ∩O2(M̃)| = r3 or r2. In all cases by 3.45 there are exactly two nontriv-
ial irreducible modules involved. Now Y is a 2F–module offender on these
modules and so with 3.29 we get that they are the natural ones.

Let W1 = CVM/YM
(CS(K)). Then we have that CW1(Y ) = YP /YM and

so CM̃(CW1(S)) ≤ M g. This now shows that |Y/Y ∩O2(M̃)| ≤ r5 in case of
K ∼= Sp(6, r) and |Y/Y ∩O2(M̃)| ≤ r3 in case of K ∼= L4(r). So we get that
|VM/YM | ≤ q2r10, q2r6, respectively and so also in these cases we get that
r = q and |Y/O2(M̃)| = q5, q3 respectively. So in all cases we have q = r
and VM/YM is an extension of a natural module by a natural module. As
O2(CM̃/CM̃ (VM/YM )(K)) = 1, we even get that VM/YM is a direct sum of two
natural modules for K. Let L be the point stabilizer in K on the natural
module. Then we have that L is covered by M g and as Y ≤ O2(M

g) and
normal in M ∩M g, we see that the projection of Y onto L is in O2(L) and
so Y = O2(L) ≤ K. But as VM/YM is a direct sum of two modules, we
now get |CVM/YM

(Y )| = q2, contradicting CVM/YM
(Y ) = YP /YM by 15.7 and

|YP /YM | = q. 2
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16 Proof of the Theorem

In this final chapter we collect the results of this paper to prove the main
theorem.

We have a uniqueness group M and a Sylow 2–subgroup S of M which
is also a Sylow 2–subgroup of G. We assume that there is at least one
further maximal 2–local subgroup in G containing S. By 6.17 we get
that F ∗(M) = O2(M). Further by 7.3 also NG(S) ≤ M . By 8.14 for
any 2–local subgroup H containing S we get F ∗(H) = O2(H). Then
by 9.1 there is a unique uniqueness group containing S. Now we define
M0 = NM(S ∩ CM(YM)). Then 10.5 shows that there are at least two maxi-
mal 2-locals containing M0. Starting with such a H such that

(1) H 6≤ M

(2) CH(O2(H)) ≤ O2(H)

(3) YH is maximal with respect to (1) and (2)

(4) M ∩H is maximal with respect to (3)

(5) H is maximal with respect to (1) - (4)

we define in 11.4, 11.5 and 11.6 certain groups P relative to H which are
minimal with respect containing M0 but not be contained in M . These
groups are called nice. In 12.28 we show the existence of such a nice P if
YH ≤ O2(M) and in 13.8 if YH 6≤ O2(M). A nice P is one of the following
groups

P contains S but P 6≤ M and one of the following holds

(1) E(P/CP ) ∼= L2(q
2) and YP is the orthogonal module.

(2) E(P/CP ) ∼= L2(q)× L2(q) and YP is the Ω+(4, q)–module.

(3) E(P/CP ) ∼= L2(q) or P/CP
∼= Σ3 and YP is a sum of natural modules.

(4) E(P/CP ) = K1×K2, K1
∼= K2

∼= A5, YP = V1×V2, where [Ki, YP ] = Vi

and [K3−i, Vi] = 1. Further Vi is the orthogonal Ki–module and K1 is
not normal in P/CP .

(5) P/O2(P ) ∼= Σ3 oZ2 or Σ3×Σ3 and YP involves just orthogonal modules
and at most three of them.

(6) P/CP is an extension of a cyclic group of order q2 − 1 by Galois auto-
morphisms and P acts semiregularly on YP , with an element of order
q − 1 in M .
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(7) P/CP is an extension of a cyclic group of prime order greater than
three, which acts semiregularly on YP , Further YP = YM ×Y t

M for some
t ∈ P .

In (1) - (5),(7) the group P is minimal with respect not to be in M .

Then we make the following definition.

We define a group ỸP . In the cases (3),(6) and (7) we just set ỸP = YP .
If we are in (1) or (2) then let ỸP be the preimage of CYP /YM

(S ∩E(P/CP )).

In case (5) let ỸP the group generated by the commutators of the transvec-
tions in S. In case (4) let ỸP = CYP

(S ∩ E(P/CP )).

Now set
VM = 〈ỸP

M〉.
Suppose that CM(VM) contains a good E. As NG(YP ) 6≤ M , we get that P
is not as in (3), (6) or (7). Set P̃ = 〈CP (x) | 1 6= x ∈ ỸP 〉. In case of (4)
or (5) we have P = P̃S, a contradiction. In case (1) and (2) we have always
some element y ∈ ỸP \ YM whose centralizer in P/CP involves L2(q). Hence
〈P̃ , S〉 = P by minimality. So by 5.11 we have mp(CM(VM)) ≤ 1. Let T ≤ S
such that S ∩CM(VM) ≤ T and TCM(VM)/CM(VM) = O2(M/CM(VM)). Set
M̂ = NM(T ). Then we have with 2.5 that M̂ contains some good E. So

O2(〈M̂, P 〉) = 1.

We have CM(VM)T ≤ CM . Hence we get that YM = YM̂ .

Then we study the amalgam Γ(M̂, P ) and show in 14.36 that b = bΓ = 2.
Then 15.20 gives the final contradiction.
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