Singularities of secant maps of immersed surfaces

Sunayana Ghosh and Joachim H. Rieger *

Abstract. The secant map of an immersion sends a pair of points to the direction of the line joining the images of the points under the immersion. The germ of the secant map of a generic codimension-c immersion $X: \mathbb{R}^n \to \mathbb{R}^{n+c}$ at the diagonal in the source is a \mathbb{Z}_2 stable map-germ $\mathbb{R}^{2n} \to \mathbb{R}^{n+c-1}$ in the following cases: (i) $c \geq 2$ and (2n, n+c-1) is a pair of dimensions for which the \mathbb{Z}_2 stable germs of rank at least n are dense, and (ii) for generically immersed surfaces (i.e. n=2 and any $c \geq 1$). In the latter surface case the $\mathcal{A}^{\mathbb{Z}_2}$ -classification of germs of secant maps at the diagonal is described and it is related to the \mathcal{A} -classification of certain singular projections of the surfaces.

Keywords: Secant varieties, Equivariant singularities, Immersions Mathematics Subject Classification (2000): 53A05, 58K70, 58K40

1 Introduction

In [5] Bruce has shown that the germ of the (projectivized) secant map of a generic space-curve in \mathbb{R}^3 is, at a point on the diagonal in the source, $\mathcal{A}^{\mathbb{Z}_2}$ -equivalent to a \mathbb{Z}_2 stable germ – these had been classified earlier on by Bierstone [4]. (Here and below \mathbb{Z}_2 stable means $\mathcal{A}^{\mathbb{Z}_2}$ -stable and stable means \mathcal{A} -stable.) Notice that the secant map of a curve has an obvious S_2 symmetry (permuting a pair p,q of source points), which corresponds to a \mathbb{Z}_2 symmetry (reflection in the diagonal p=q). And at a point outside the diagonal it is \mathcal{A} -equivalent (as a mono-germ) to a stable germ (notice that the \mathbb{Z}_2 symmetry of the secant map implies that the off-diagonal parts of the critical sets are mapped 2:1 into the target, which makes the secant map highly unstable as a multi-germ). Conversely, all \mathbb{Z}_2 stable and stable germs arise as germs of secant maps of generic space-curves.

In the present paper we study the (projectivized) secant maps of higher dimensional and codimensional immersions. The secant map $\hat{S}:(\mathbb{R}^n)^2\to\mathbb{P}^m$ of an immersion-germ $X:\mathbb{R}^n\to\mathbb{R}^{m+1}$ maps a pair of distinct points $(p,q)\in(\mathbb{R}^n)^2$ to the direction of X(q)-X(p), and it maps a point (p,p) on the source-diagonal to the direction of the directional derivative $D_\omega X(p)$ (here ω can be considered as the limiting direction of a vector q-p as $q\to p$). The secant map of an n-dimensional immersion is evidently S_2 symmetric (as for curves, where n=1, we can permute pairs p,q of source points), but in order to obtain a \mathbb{Z}_2 symmetric germ \hat{S} of the secant map at the diagonal for $n\geq 2$ we first have to blow up the

^{*}Correspondence to J.H. Rieger, Institut für Algebra und Geometrie, Martin-Luther-Universität Halle, D-06099 Halle (Saale), Germany (e-mail of authors: sghosh_78@yahoo.com, rieger@mathematik.uni-halle.de)

diagonal p=q in the source to a hyperplane $\lambda=0$ and then consider reflections in $\lambda=0$ (see Section 2). For immersions of codimension greater than one (i.e. for m>n) there is a jet-map sending pairs of jets of immersion-germs to jets of secants map-germs, whose restriction to the (blow-up of the) source-diagonal is transverse to the $\mathcal{A}^{\mathbb{Z}_2}$ -stable orbits (at least in pairs of dimensions (2n,m) in which the $\mathcal{A}^{\mathbb{Z}_2}$ -stable germs up to a certain corank are dense). This implies that the germs of \hat{S} at the diagonal are $\mathcal{A}^{\mathbb{Z}_2}$ -stable for a residual set of immersions, but it turns out that not all $\mathcal{A}^{\mathbb{Z}_2}$ -stable germs are germs of secant maps of generic n-dimensional immersions, $n \geq 2$ (the above jet-map can, of course, be transverse to a given orbit by not intersecting it). For generic 2-dimensional immersions in \mathbb{R}^n , $n \geq 3$, we will give an explicit classification of the germs of the secant map at the diagonal.

This "good behavior" (i.e. their $\mathcal{A}^{\mathbb{Z}_2}$ -stability) of germs of secant maps of generic immersions at the diagonal does not extend to higher secant maps nor to parametrizations of secant varieties. The higher k-secant maps $(k \geq 3)$, mapping a k-tuple of source points to the linear subspace defined by their X-images (in the appropriate Grassmannian), are S_k -symmetric germs at the main diagonal in the source – but here the corresponding jet-map fails to be transverse to the stable \mathcal{A}^{S_k} -orbits: for example, the trisecant plane map of a generic space curve can have highly unstable singularities (see [22]). Also, replacing the (ordinary) secant map by the map \tilde{F} sending a pair of points to the line joining their images under a given immersion $X: \mathbb{R}^n \to \mathbb{R}^{n+c}$, we obtain a \mathbb{Z}_2 -symmetric map $\mathbb{R}^{2n+1} \to \mathbb{R}^{n+c}$. But, at least for c > 2, the germ of this map at the source diagonal is never $\mathcal{A}^{\mathbb{Z}_2}$ -stable (see Proposition 2.5). Notice that the restiction of \tilde{F} to the source diagonal gives a parametrization of the tangent variety of X, and the latter generically has non-isolated singularities of infinite \mathcal{A} -codimension (see the survey on singularities of the tangent variety of a space-curve in [11]).

The plan of this paper is as follows. In Section 2 we define the projectivized secant map $\hat{S}:(\mathbb{R}^n)^2\to\mathbb{R}^m$ of an immersion $X:\mathbb{R}^n\to\mathbb{R}^{m+1}$, and relate the secant map to the n-parameter family of inner projections of $X(\mathbb{R}^n)$ from centers in $X(\mathbb{R}^n)$. We show that the mono-germ of the secant map at a point (p,q)outside the diagonal is a versal n-parameter deformation of a germ $\mathbb{R}^n \to \mathbb{R}^m$ for a residual set of embeddings (Proposition 2.4). And we show (with some restrictions on the pairs of dimensions (2m,n), see above) that the germ of \hat{S} at the diagonal is $\mathcal{A}^{\mathbb{Z}_2}$ -equivalent to some \mathbb{Z}_2 -stable germ of $\mathcal{A}^{\mathbb{Z}_2}$ -codimension at most 2n-1 for a residual set of immersions $X:\mathbb{R}^n\to\mathbb{R}^{m+1},\ m>n$ (Proposition 2.2). We also show that the germ of the parametrization of the secant variety at the diagonal is never $\mathcal{A}^{\mathbb{Z}_2}$ -stable for immersions of codimension greater than two (see Proposition 2.5). Section 3 describes the main result of the present paper, the classification of the germs of secant maps \hat{S} at the diagonal of surfaces generically immersed in \mathbb{R}^n , $n \geq 3$ (Theorem 3.1). These secant map-germs \hat{S} are $\mathcal{A}^{\mathbb{Z}_2}$ stable germs $\mathbb{R}^4 \to \mathbb{R}^n$, $n \geq 2$, and for $n \geq 3$ any such $\mathcal{A}^{\mathbb{Z}_2}$ stable germ is the germ of the secant map of some generically immersed surface (for n=2 there are complex $\mathcal{A}^{\mathbb{Z}_2}$ -orbits corresponding to several real orbits, whose representatives are distinguished by \pm signs, and some of these real forms cannot be the germ of any secant map). For n > 5, the $\mathcal{A}^{\mathbb{Z}_2}$ classes in this classification of secant maps are in 1:1 correspondence with certain Aclasses of germs of projections onto hyperplanes of the immersion-germ X at the corresponding points p along a certain bad direction in T_pX . For n=3 and 4 there are certain $\mathcal{A}^{\mathbb{Z}_2}$ -orbits of secant germs that can be further stratified by the \mathcal{A} -types of such projections. But the \mathcal{A} -classes of the projections distinguish the $\mathcal{A}^{\mathbb{Z}_2}$ -orbits of secants germs for any $n \geq 3$. Section 4 contains the classification of \mathbb{Z}_2 stable germs $\mathbb{R}^4 \to \mathbb{R}^n$, for $n \geq 2$ (relevant for the secant map-germs \hat{S} of generic immersions $X : \mathbb{R}^2 \to \mathbb{R}^{n+1}$).

2 Secants and inner projections of immersions

$$X: \mathbb{R}^n \to \mathbb{R}^{m+1}, \ m \ge n$$

Let $X: \mathbb{R}^n \to \mathbb{R}^{m+1}$, $p = (p_1, \dots, p_n) \mapsto X(p)$ be an immersion, and represent the \mathbb{P}^{n-1} of lines through $0 \in \mathbb{R}^n$ by one unit vector ω on each line. The map $\beta(p, \lambda, \omega) = (p, p + \lambda \cdot \omega) =: (p, q)$ blows up the diagonal in $(\mathbb{R}^n)^2$, which has codimension n, to the hyperplane $\beta^{-1}(\{p = q\}) = \{\lambda = 0\}$ and is one-toone outside $\lambda = 0$. Let [v] denote homogeneous coordinates of the vector v. We want to define a projectivized secant map $\mathbb{R}^n \times \mathbb{R} \times \mathbb{P}^{n-1} \to \mathbb{P}^m$ given by $(p,q) \mapsto [X(q) - X(p)]$, for $p \neq q$, and on the diagonal by $(p,p) \mapsto [D_\omega X(p)]$ (with D_ω the directional derivative). The desired map is given by

$$\tilde{S}: \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^{n-1} \to \mathbb{R}^m, \quad (p, \lambda, \omega) \mapsto [\lambda^{-1}(X(p + \lambda \cdot \omega) - X(p))].$$

On the diagonal we have $\tilde{S}(p,0,\omega) = [D_{\omega}X(p)]$, and outside the diagonal we obtain $\tilde{S}(p,\lambda,\omega) = [X(q)-X(p)]$, for $\lambda \neq 0$. (For an immersion X and some neighborhood of $\lambda = 0$, the vector $\lambda^{-1}(X(p+\lambda\cdot\omega)-X(p))$ is always non-zero. In Proposition 2.4, which describes the off-diagonal behaviour of the secant map, we assume that X is an embedding, so that \tilde{S} is defined for all λ .)

Next, we want to consider the germ of this secant map at a point of the diagonal. Writing an immersion germ as

$$X(p) = (p, g_{n+1}(p), \dots, g_{m+1}(p)), \quad g_i \in \mathcal{M}_n^2,$$

and by taking an affine chart such that $(1, v) = (1, v_2, \dots, v_n), v_i = \omega_i/\omega_1$ we get

$$\tilde{S} = [1, v_2, \dots, v_n, \lambda^{-1}(g_{n+1}(q) - g_{n+1}(p)), \dots, \lambda^{-1}(g_{m+1}(q) - g_{m+1}(p))].$$

Composing with the ("symmetry restoring") linear right coordinate change

$$L(\bar{p}_1,\bar{p}_2,\ldots,\bar{p}_n,\lambda,v_2,\ldots,v_n) =$$

$$((\bar{p}_1 - \lambda)/2, (\bar{p}_2 - \lambda v_2)/2, \dots, (\bar{p}_n - \lambda v_n)/2, \lambda, v_2, \dots, v_n)$$

and omitting the first (constant) component of \tilde{S} , we get a map

$$\hat{S}: \mathbb{R}^{2n} \to \mathbb{R}^m$$
, $(\bar{p}, \lambda, v) \mapsto \hat{S}(\bar{p}, \lambda, v)$.

The germ of \hat{S} at 0 is the germ of the projectivized secant map at the point $(p,q)=(0,0)\in(\mathbb{R}^n)^2$ on the source-diagonal and the direction $\omega=[1:0\ldots:0]$. We can (and will) always consider a neighborhood of this direction (in which $\omega_1\neq 0$, where $\omega=[\omega_1:\ldots:\omega_n]$) by applying an element of SO(n-1) to the tangent space of the immersion. We have the following easy

Lemma 2.1. The germ of the projectivized secant map $\hat{S}: \mathbb{R}^{2n} \to \mathbb{P}^m$ at a point on the source-diagonal is even.

Proof. We claim that $\hat{S}(\bar{p}, \lambda, v) = \hat{S}(\bar{p}, -\lambda, v)$, so that, by Whitney's lemma on even map-germs [24], $\hat{S} = f(\bar{p}, \lambda^2, v)$ for some smooth germ f. The term $c_{\alpha}p^{\alpha}$ in g_l (where $\alpha = (\alpha_1, \ldots, \alpha_n)$ is a multi-index) corresponds in \tilde{S} to

$$\lambda^{-1} c_{\alpha} \left((p_1 + \lambda)^{\alpha_1} \prod_{i>1} (p_i + \lambda v_i)^{\alpha_i} - p^{\alpha} \right) =: \lambda^{-1} c_{\alpha} Q,$$

where Q is divisible by λ . Now

$$Q \circ L = 2^{-|\alpha|} \left((\bar{p}_1 + \lambda)^{\alpha_1} \prod_{i>1} (\bar{p}_i + \lambda v_i)^{\alpha_i} - (\bar{p}_1 - \lambda)^{\alpha_1} \prod_{i>1} (\bar{p}_i - \lambda v_i)^{\alpha_i} \right)$$

is odd in λ , hence $\lambda^{-1}c_{\alpha}Q\circ L$ and therefore \hat{S} are even as claimed.

Hence the \mathbb{Z}_2 symmetric secant map \hat{S} is the composition of a map-germ $f: \mathbb{R}^{2n}, 0 \to \mathbb{R}^m, 0, (\bar{p}, u, v) \mapsto f(\bar{p}, u, v)$ with a folding map $(\bar{p}, \lambda, v) \mapsto (\bar{p}, \lambda^2, v)$. It is well-known that the $\mathcal{A}^{\mathbb{Z}_2}$ -classification of \mathbb{Z}_2 symmetric germs corresponds to the $\mathcal{A}(H)$ -classification of such germs f (see [1, 6]), where $\mathcal{A}(H)$ denotes the geometric subgroup of \mathcal{A} in which the diffeomorphisms in the source preserve the hyperplane $H:=\{u=0\}$ in the source. If $\mathcal{R}(H)$ is the subgroup of \mathcal{R} of elements preserving H, we set $\mathcal{A}(H)=\mathcal{L}\times\mathcal{R}(H)$ and $\mathcal{K}(H)=\mathcal{C}\cdot\mathcal{R}(H)$ (semi-direct product). For \hat{S} and f as above, we set

$$\operatorname{cod}(\mathcal{A}^{\mathbb{Z}_2}, \hat{S}) := \operatorname{cod}(\mathcal{A}(H), f),$$

and similarly for the corresponding extended groups $\mathcal{A}_e^{\mathbb{Z}_2}$ and $\mathcal{A}(H)_e$ of non-origin preserving diffeomorphisms. The germ \hat{S} is (infinitesimally) \mathbb{Z}_2 stable if $\operatorname{cod}(\mathcal{A}_e^{\mathbb{Z}_2}, \hat{S}) := \operatorname{cod}(\mathcal{A}(H)_e, f) = 0$, and the $\mathcal{A}^{\mathbb{Z}_2}$ -codimension of a \mathbb{Z}_2 stable germ from \mathbb{R}^{2n} to \mathbb{R}^m is at most 2n-1 (see Lemma 4.1).

Working with the group of $\mathcal{A}(H)$ equivalences of map-germs f — rather than with $\mathcal{A}^{\mathbb{Z}_2}$ equivalence of equivariant secant-germs \hat{S} — not only has technical advantages in the classification but also in transversality arguments relating submanifolds of jet spaces $J^k(2n,m)$ of k-jets of maps f to submanifolds in multi-jet spaces of jets of pairs of immersions X (and the results obtained for f then give the desired results for secants maps \hat{S} by composing f with the above folding map).

The next result shows that, for generic codimension ≥ 2 immersions, the germ of \hat{S} at a point of the diagonal is a \mathbb{Z}_2 stable germ (provided the \mathbb{Z}_2 stable germs are dense for the relevant pairs of dimensions (2n,p); for other pairs of dimension this statement holds with C^0 - \mathbb{Z}_2 stable in place of \mathbb{Z}_2 stable).

PROPOSITION 2.2. Let (2n,m) be a pair of dimensions for which the K(H)-orbits of germs $f: \mathbb{R}^{2n}, 0 \to \mathbb{R}^m, 0$ of rank at least n and K(H)-codimension at most 2n-1 are K(H)-simple. Then, for a residual subset of $\mathrm{Imm}(\mathbb{R}^n, \mathbb{R}^{m+1})$, where m > n, the germ of the secant map $\hat{S}: \mathbb{R}^{2n}, (p,p) \to \mathbb{R}^m, \hat{S}(p,p)$ at the diagonal in the source is a \mathbb{Z}_2 stable germ of $\mathcal{A}^{\mathbb{Z}_2}$ -codimension at most 2n-1 and rank at least n-1.

Proof. We will show that, for m > n, the restriction to the blow-up of the diagonal, Γ_k , of the map

$$(J^{2k+1}(n,m+1))^2 \to J^k(2n,m)$$

sending (2k+1)-jets of pairs of immersions germs $j^{2k+1}(X(p),X(q))$ to the k-jets of the associated maps f (whose composition with the folding map gives \hat{S}) is transverse to the closure of $j^k \mathcal{A}(H)$ -orbits of codimension no greater than 2n-1. Taking coordinates p and $q=p+\lambda\cdot v$ and restricting to the diagonal $\lambda=0$, we have local coordinates $(p,v)\in\mathbb{R}^{2n-1}$ on the (blow-up of the) diagonal, and $\Gamma_k:J^{2k+1}(n,m+1)\times\mathbb{R}^{n-1}\to J^k(2n,m)$ maps pairs $(c_\alpha p^\alpha,v)$, with $c_\alpha p^\alpha$ a monomial of some component function g_l of X, to terms $\lambda^{-1}c_\alpha Q\circ L(\bar{p},u^{1/2},v)$ of the corresponding component function of $f(\bar{p},u,v)$ (recall that $\lambda^{-1}Q\circ L$, defined in the proof of Lemma 2.1, is even in λ). The Γ_k -preimages of the closures of these $j^k \mathcal{A}(H)$ -orbits are therefore Whitney stratified subsets of the same codimension or are empty. The image of $(j^{2k+1}X,v)(\mathbb{R}^{2n-1})$ will therefore, for a residual set of immersions X, miss the Γ_k -preimages of orbits of $\mathcal{A}(H)$ -codimension 2n or greater.

Claim 1. Suppose $f \mathcal{A}(H)$ -stable, then $\mathcal{A}(H) \cdot f \subset \mathcal{K}(H) \cdot f$ is open.

This follows from the following analogue of a result of Mather [16]: suppose f and g are $\mathcal{A}(H)$ stable, then they are $\mathcal{A}(H)$ -equivalent if and only if they are $\mathcal{K}(H)$ -equivalent. In order to prove this, one can adapt a result of Martinet [15] on the relation between \mathcal{K}_e -versality and \mathcal{A} -stability to the subgroups $\mathcal{K}(H)_e$ and $\mathcal{A}(H)$. (A brief summary of Martinet's result is given on p. 502 of Wall's survey [23]: one considers a "regular unfolding" $F: \mathbb{R}^d \times \mathbb{R}^{2n} \to \mathbb{R}^d \times \mathbb{R}^m$ of f, i.e. one which is transverse to $\mathbb{R}^d \times \{0\}$, then $V_F := F^{-1}(\mathbb{R}^d \times \{0\})$ is a smooth submanifold of $\mathbb{R}^d \times \mathbb{R}^{2n}$. Let $\pi_F: V_F \to \mathbb{R}^d$ denote the restriction of the obvious projection onto the first factor. Checking that one can replace the group \mathcal{R} by $\mathcal{R}(H)$ we get the following variant of Martinet's result, (3.5) in [23]: F is $\mathcal{K}(H)_e$ -versal if and only if π_F is $\mathcal{A}(H)$ -stable. And one deduces the above variant of Mather's result by taking regular unfoldings F(y,x) = (y,f(x)-y) of $x \mapsto f(x) = y$ and (similarly) G of g – notice that $\pi_F = f$, because $x \mapsto (f(x),x)$ is a parametrization of V_F .)

For $\mathcal{A}(H)$ -stable germs f, transversality to the $\mathcal{K}(H)$ -orbit of f therefore implies transversality to the $\mathcal{A}(H)$ -orbit.

Claim 2. For m > n the maps Γ_k are transverse to the $\mathcal{K}^k(H)$ -orbits of codimension at most 2n-1 and rank at least n.

The map-germ f is given by

$$f = (v_2, \dots, v_n, G_{n+1}(\bar{p}, u, v), \dots, G_{m+1}(\bar{p}, u, v)),$$

where the k-jets of the G_i are the k-jets of functions

$$\sum_{|\alpha| \le 2k+1} \lambda^{-1} c_{\alpha} Q \circ L(\bar{p}, u^{1/2}, v)$$

(recall the definition of the map Γ_k). The map Γ_1 is a submersion and the maps $\mathbb{R}^{2n} \to \mathbb{R}^m$ of rank less than n form a submanifold B of $J^1(2n,m)$ of codimension greater than or equal to (m-n+1)(n+1) > 2n-1, for m > n. The set $\Gamma_1^{-1}(B)$ therefore has empty intersection with j^3X for a residual set of immersions X. Now (avoiding the bad set B of germs of rank less than n)

we can choose coordinates p_1, \ldots, p_n in the source of X and an affine chart $(1, v_2, \ldots, v_n)$ for \mathbb{P}^n such that either

$$f = (v_2, \dots, v_n, \bar{p}_1, G_{n+2}(\bar{p}, u, v), \dots, G_{m+1}(\bar{p}, u, v)),$$

or

$$f = (v_2, \dots, v_n, u + G_{n+1}(\bar{p}, 0, 0), G_{n+2}(\bar{p}, u, v), \dots, G_{m+1}(\bar{p}, u, v))$$

(in the former case \hat{S} has rank at least n and in the latter case at least n-1). Now consider in both cases the restriction f' of f to the subspace of the source given by the vanishing of the first n variables, and let Γ'_k denote the corresponding restriction of Γ_k . Again using the functions $\lambda^{-1}c_{\alpha}Q \circ L$ above we see that Γ'_k is a submersion, and hence transverse to $\mathcal{K}(H) \cdot f'$, and therefore to $\mathcal{K}(H) \cdot f$ (f being the suspension of f').

Next, the following relation between secant maps \hat{S} and n-parameter families of projections of $X(\mathbb{R}^n) \subset \mathbb{R}^{m+1}$ from centers in $X(\mathbb{R}^n)$ – so called inner projections in the terminology of [3] – will be useful. Recall that the map $\beta(p,\lambda,\omega) = (p,p+\lambda\cdot\omega)$ blows up the diagonal in $(\mathbb{R}^n)^2$, which has codimension n, to the hyperplane $\lambda = 0$. Its composition $\tilde{\beta} := \beta \circ L$ with the symmetry restoring linear right coordinate change L is given by

$$(\bar{p}, \lambda, \omega) \mapsto ((\bar{p} - \lambda \cdot \omega)/2, (\bar{p} + \lambda \cdot \omega)/2) =: (p, q).$$

If π_c denotes the projection from a center $c \in \mathbb{R}^{m+1}$, then the projectivized secant map factors as follows:

Outside the diagonal, where $p \neq q$, one can use this observation to show that the germ of \hat{S} is locally a versal *n*-parameter deformation of a germ $\mathbb{R}^n \to \mathbb{R}^m$ for a residual set of immersions X, see Proposition 2.4 below.

On the diagonal, the family inner projections is only defined after blowing-up the source diagonal and dividing by λ . The following remark implies that the germ of the secant-map \hat{S} at $(p, \lambda, v) = (p, 0, 0)$ determines the projection $\pi_1(X)$ of the germ of the immersion X at p into a hyperplane in \mathbb{R}^{m+1} orthogonal to $e_1 = dX_p(e_1') \in \mathbb{R}^{m+1}$, with $e_1' = (1, 0, \ldots, 0) \in T_p\mathbb{R}^n$ (notice that $e_1' = (1, v)$ for $v = (v_2, \ldots, v_n) = 0$). In Section 3 the $\mathcal{A}^{\mathbb{Z}_2}$ -classification of secant-maps \hat{S} and the related \mathcal{A} -classification of the associated orthogonal projections $\pi_1(X)$ will be described, the remark is also useful in relating $\mathcal{A}^{\mathbb{Z}_2}$ -orbit membership conditions to transversality conditions on the immersion. Setting

$$\gamma(p_1,\ldots,p_n)=(p_1,\ldots,p_n,p_1,p_2/p_1,\ldots,p_n/p_1),$$

we have the following.

REMARK 2.3. Let \hat{S} be a germ of the secant map of an immersion $p \mapsto X(p)$ at $(\bar{p}, \lambda, v) = (0, 0, 0)$, then $\pi_1 \circ X(p) = p_1 \cdot \hat{S}(\gamma(p))$.

Proof. Let $X(p) = (p, g_{n+1}(p), \dots, g_{m+1}(p))$ be in Monge form. From the diagram above we have

$$\hat{S} = [1, v_2, \dots, v_n, h_{n+1}, \dots, h_{m+1}],$$

where

$$h_i := \lambda^{-1}(g_i((\bar{p} + \lambda \cdot \omega)/2) - g_i((\bar{p} - \lambda \cdot \omega)/2))$$

and $\omega = (1, v_2, \dots, v_n)$. Composing with γ and multiplying through with p_1 gives the desired formula (notice that $g_i(0) = 0$).

Next, consider the off-diagonal behaviour of the secant map. Notice that we can exchange the roles of X(p) and X(q) in the projection $\pi_{X(p)}(X(q))$, this global \mathbb{Z}_2 -symmetry makes the off-diagonal part of the secant map highly unstable as a bi-germ. But considering \hat{S} as a mono-germ we have the following.

Proposition 2.4. The germ of the secant map

$$\hat{S}: \mathbb{R}^{2n}, (p_0, q_0) \to \mathbb{R}^m, \hat{S}(p_0, q_0)$$

at any pair of points $p_0 \neq q_0$ is a versal n-parameter deformation of a germ \mathbb{R}^n to \mathbb{R}^m for a residual subset of $\text{Emb}(\mathbb{R}^n, \mathbb{R}^{m+1})$.

Proof. Consider disjoint neighborhoods U and V of p_0 and q_0 , respectively. The n-parameter family of projections $\pi_{X(U)}: U \times \mathbb{R}^{m+1} \to U \times \mathbb{R}^m$, $(p,r) \to \pi_{X(p)}(r)$ is a family of submersions, and hence \mathcal{A} -versal. By a transversality theorem for composite maps [19, 10] and a partition of unity argument, we can approximate the embedding germ X(V) in a neighborhood of $X(q_0)$ by an embedding germ Y(V), without changing the embedding germ X(U) near $X(p_0)$, such that the composite family $\pi_{X(U)}: U \times V \to U \times \mathbb{R}^m$, $(p,q) \to \pi_{X(p)}(Y(q))$ is an \mathcal{A} -versal n-parameter deformation of central projections of the embedding germ $Y(V) \subset \mathbb{R}^{m+1}$.

We conclude this section by considering parametrizations of the secant variety of an immersion $X: \mathbb{R}^n \to \mathbb{R}^{n+c}$, $X(p) = (p, g_{n+1}(p), \dots, g_{n+c}(p))$, $g_i \in \mathcal{M}_n^2$. The map

$$F: \mathbb{R}^{2n+1} \to \mathbb{R}^{n+c}, \quad (p, q, t) \mapsto 1/2(X(q) + X(p)) + t(X(q) - X(p))$$

has the symmetry F(q,p,-t)=F(p,q,t). We can again extend F to the "diagonal" p=q by taking $q=p+\lambda(1,v_2,\ldots,v_n)$ and by replacing X(q)-X(p) by $\lambda^{-1}(X(q)-X(p))$. By composing again on the right with the symmetry restoring linear coordinate change L we obtain a map $\tilde{F}(\bar{p},\lambda,v,t)$. And setting $w=(1,v)=(1,v_2,\ldots,v_n)$, we see that the first term $1/2(X((\bar{p}+\lambda w)/2)+X((\bar{p}-\lambda w)/2))$ in \tilde{F} is even in λ , and the second term is even by Lemma 2.1. Setting $u=\lambda^2$, the least degenerate $j^1\tilde{F}$ is $j^1\mathcal{A}(H)$ -equivalent to $h:=(t,\bar{p}_2,\ldots,\bar{p}_n,u,0,\ldots,0)$ (if the x^2 coefficients of all the g_i components of X vanish then we obtain a more degenerate 1-jet). The $j^1\mathcal{A}(H)$ -codimension of h is cn, and Lemma 4.1 below implies that the $\mathcal{A}(H)$ -stable

germs $\mathbb{R}^{2n+1} \to \mathbb{R}^{n+c}$ have $\mathcal{A}(H)$ -codimension at most 2n. Hence \tilde{F} is $\mathcal{A}(H)$ -unstable, and hence $\mathcal{A}^{\mathbb{Z}_2}$ -unstable, for any c > 2, and we obtain

PROPOSITION 2.5. The germ at the diagonal, $\tilde{F}: \mathbb{R}^{2n+1} \to \mathbb{R}^{n+c}$, of the parametrization of the secant variety of any immersion $X: \mathbb{R}^n \to \mathbb{R}^{n+c}$ of codimension c > 2 is $\mathcal{A}^{\mathbb{Z}_2}$ -unstable.

REMARK. The restriction of the secant variety to the diagonal is the tangent variety, and the latter has already for the simplest case of space-curves in \mathbb{R}^3 non-isolated singularities of infinite \mathcal{A} -codimension. The map \tilde{F} might therefore be more degenerate than just $\mathcal{A}^{\mathbb{Z}_2}$ -unstable. (In fact, one checks, that for curves in 3-space the map \tilde{F} has infinite $\mathcal{A}^{\mathbb{Z}_2}$ -codimension.)

3 Secant maps of generically immersed surfaces in \mathbb{R}^n , $n \geq 3$

In this section the germs of the secant map at a point in the source diagonal will be classified for generically immersed surfaces in \mathbb{R}^n , $n \geq 3$. Locally such an immersion is given by an embedding-germ

$$X(x,y) = (x,y, \sum_{i+j>1} a_{ij}^{(3)} x^i y^j, \dots, \sum_{i+j>1} a_{ij}^{(n)} x^i y^j)$$

at (x,y)=(0,0). The projectivized secant map (in the affine chart (1,v) for ω , see Section 2) is given by $\tilde{S}=[1:v:S_3:\ldots:S_n]$, hence we have a map-germ into (n-1)-space $\hat{S}(\bar{x},\bar{y},\lambda,v):=(v,S_3,\ldots,S_n)$, where \bar{x},\bar{y} correspond to the coordinates \bar{p}_1,\bar{p}_2 in Section 2 (after applying the coordinate change L that restores the \mathbb{Z}_2 -symmetry of \hat{S}). Using the map Γ_k (defined in the proof of Proposition 2.2), one obtains $S_i=a_{20}^{(i)}\bar{x}+a_{11}^{(i)}(\bar{y}+v\bar{x})/2+a_{02}^{(i)}v\bar{y}+a_{30}^{(i)}(u+3\bar{x}^2)/4+\ldots$, with $u=\lambda^2$.

Let $\pi_x \circ X$ be the projection-germ at x=y=0 of the immersed surface $X(\mathbb{R}^2)$ along the x-direction. By Remark 2.3, the projection-germ $\pi_x \circ X$ is determined by the secant map-germ \hat{S} at $\bar{x}=\bar{y}=\lambda=v=0$ (the direction (1,v)=(1,0) in $T_{X(0,0)}X(\mathbb{R}^2)$ corresponds to the x-direction), but $\mathcal{A}^{\mathbb{Z}_2}$ -equivalence of \hat{S} does in general not preserve the \mathcal{A} -class of $\pi_x \circ X$. In the classification of secant-germs of generically immersed surfaces we therefore decompose certain $\mathcal{A}^{\mathbb{Z}_2}$ -orbits of secant-maps into strata on which the \mathcal{A} -type of the corresponding projection $\pi_x \circ X$ is invariant. In the normal forms \hat{S} certain monomials are therefore present which affect the \mathcal{A} -type of $\pi_x \circ X$ but which could be removed by an $\mathcal{A}^{\mathbb{Z}_2}$ -change. On the other hand, redundant terms in the corresponding projection-germs $\pi_x \circ X$ have been eliminated (by suitable \mathcal{A} -changes). (Also recall that if $\operatorname{cod}(\mathcal{A}^{\mathbb{Z}_2}, \hat{S})$ denotes the $\mathcal{A}^{\mathbb{Z}_2}$ -codimension of \hat{S} in the space of \mathbb{Z}_2 -symmetric germs and $\hat{S}=f\circ(\bar{x},\bar{y},\lambda^2,v)$ then $\operatorname{cod}(\mathcal{A}^{\mathbb{Z}_2},\hat{S})=\operatorname{cod}(\mathcal{A}(H),f)$.) The main result of the present section is then the following.

THEOREM 3.1. For a residual subset of $\operatorname{Imm}(\mathbb{R}^2, \mathbb{R}^n)$, $n \geq 3$ the germ of the secant map $\hat{S} : \mathbb{R}^4 \to \mathbb{R}^{n-1}$ at a point on the diagonal is equivalent to one of the

 \mathbb{Z}_2 stable germs in Table 1. The projection-germs $\pi_x \circ X$ associated with the \hat{S} are also listed (up to A-equivalence).

Table 1: Generic secant germs for immersions in \mathbb{R}^n

\overline{n}	$\hat{S}(ar{x},ar{y},\lambda,v) \sim_{\mathcal{A}^{\mathbb{Z}_2}}$	$\mathcal{A}^{\mathbb{Z}_2}\operatorname{-cod}$	$\pi_x \circ X \sim_{\mathcal{A}}$	\mathcal{A} -cod
3	(v, \bar{x})	0	(y,x^2)	1
	$\sim_{\mathcal{A}^{\mathbb{Z}_2}} (v, ar{y} + ar{x}^2)$		$(y, xy + x^3)$	2
	$\sim_{\mathcal{A}^{\mathbb{Z}_2}} (v, ar{y} + ar{x}^3)$		$(y, xy + x^4)$	3
	$\sim_{\mathcal{A}^{\mathbb{Z}_2}} (v, \bar{y} + \bar{x}^4 \pm \bar{x}^6)$		$(y, xy + x^5 \pm x^7)$	4
	$(v,\lambda^2 + \bar{x}^2 \pm \bar{y}^2)$	2	$(y, x^3 \pm xy^2)$	3
	$(v,\lambda^2 + v\bar{y} + \bar{x}^2 + \bar{y}^3)$	3	$(y, x^3 + xy^3)$	4
	$(v,\lambda^4 + v\lambda^2 + \bar{x}^3 + \bar{x}\bar{y})$	3	$(y, x^2y + x^4 + x^5)$	4
4	$(v,ar{x},ar{y})$	0	(y,x^2,xy)	2
	$s^\pm = (v, ar{x}, \pm \lambda^2 + ar{y}^2)$	1	$(y,x^2,x^3\pm xy^2)$	3
	$s^+ \sim_{\mathcal{A}^{\mathbb{Z}_2}} (v, \bar{y} + \bar{x}^4, \lambda^2 + \bar{x}^2)$		$(y, xy + x^5, x^3)$	4
	$\sim_{\mathcal{A}^{\mathbb{Z}_2}} (v, ar{y} + ar{x}^7, \lambda^2 + ar{x}^2)$		$(y, xy + x^8, x^3)$	5
	$(v, \bar{x}, \lambda^2 + v\bar{y} + \bar{y}^3)$	2	$(y, x^2, x^3 + xy^3)$	4
	$(v, \bar{x}, \lambda^4 + v\lambda^2 \pm \bar{y}^2)$	2	$(y, x^2, x^5 \pm xy^2)$	4
	$(v, \bar{x}, \lambda^2 + v\bar{y} + \bar{x}\bar{y}^2 \pm \bar{y}^4)$	3	$(y, x^2, x^3 \pm xy^4)$	5
	$(v, \bar{x}, v\bar{y} + \bar{x}\bar{y}^2 + \bar{y}^3 \pm \bar{y}\lambda^2)$	3	$(y, x^2, xy^3 \pm x^3y)$	5
	$(v, \bar{x}, \bar{y}^2 + v\lambda^2 \pm \lambda^6 + \bar{x}\lambda^4)$	3	$(y, x^2, xy^2 \pm x^7)$	5
5	$(v,ar{x},ar{y},\lambda^2)$	0	(y, x^2, xy, x^3)	3
	$(v, \bar{x}, \bar{y}, \lambda^4 + v\lambda^2)$	1	(y, x^2, xy, x^5)	4
	$(v, \bar{x}, \bar{y}, \lambda^6 + v\lambda^4 + \bar{x}\lambda^2)$	2	(y, x^2, xy, x^7)	5
	$(v, \bar{x}, \lambda^2 + v\bar{y}, \bar{y}^2)$	2	(y, x^2, x^3, xy^2)	5
	$(v, \bar{x}, \bar{y}, \lambda^8 + v\lambda^6 + \bar{x}\lambda^4 + \bar{y}\lambda^2)$	3	(y,x^2,xy,x^9)	6
	$(v, \bar{x}, \lambda^2 \pm \bar{y}^2, v\bar{y} + \bar{y}^3 + \bar{x}\bar{y}^2)$	3	$(y, x^2, x^3 \pm xy^2, xy^3)$	6
6	$(v, \bar{x}, \bar{y}, \lambda^2, 0)$	0	$(y, x^2, xy, x^3, 0)$	4
	$(v, \bar{x}, \bar{y}, \lambda^4 + \bar{x}\lambda^2, v\lambda^2)$	2	$(y, x^2, xy, x^5, 0)$	6
	$(v, \bar{x}, \bar{y}^2, \lambda^2 + v\bar{y}, \bar{x}\bar{y})$	3	$(y, x^2, xy^2, x^3, 0)$	7
7	$(v, \bar{x}, \bar{y}, \lambda^2, 0, 0)$	0	$(y, x^2, xy, x^3, 0, 0)$	5
	$(v, \bar{x}, \bar{y}, \lambda^4 + v\lambda^2, \bar{x}\lambda^2, \bar{y}\lambda^2)$	3	$(y, x^2, xy, x^5, 0, 0)$	8
≥ 8	$(v, \bar{x}, \bar{y}, \lambda^2, 0, \dots, 0)$	0	$(y, x^2, xy, x^3, 0, \dots, 0)$	n-2

Remark 3.2. (i) Projecting an immersion-germ $X: \mathbb{R}^2, p \to \mathbb{R}^n, X(p)$ along a direction $w \in T_{X(p)}X(\mathbb{R}^2)$ always gives rise to a singular projection-germ of \mathcal{A} -codimension at least n-2. Furthermore, in a 3-parameter family of such projection-germs, varying with $(p,w) \in \mathbb{R}^2 \times \mathbb{P}^1$, we generically expect that $n-2 \leq \operatorname{cod}(\mathcal{A}, \pi_x \circ X) \leq n+1$. Comparing the \mathcal{A} -classes of projections $\pi_x \circ X$ in the theorem (which correspond to secant-germs \hat{S} of generic immersions) with the existing classifications of \mathcal{A} -orbits of maps $\mathbb{R}^2 \to \mathbb{R}^{n-1}$ we find that for $n \neq 5$ all \mathcal{A} -classes [f] with $n-2 \leq \operatorname{cod}(\mathcal{A}, f) \leq n+1$ arise as the \mathcal{A} -class of a projection $\pi_x \circ X$ associated with some \hat{S} : for n=3 we get the \mathcal{A} -classes 2, 3, \mathcal{A}_k (k=2,3), 5, 6 and \mathcal{A}_k and \mathcal{A}_k (k=2,3), \mathcal{A}_k and \mathcal{A}_k (k=2,3) from [21] and for n=4 we get \mathcal{A}_k $(k=0,\ldots,4)$, \mathcal{A}_k (k=2,3), \mathcal{A}_k and \mathcal{A}_k (k=2,3) from [18]. Finally, one checks that in higher dimensions $n\geq 6$ this is also true (the normal forms for $\pi_x \circ X$ in the table represent the only \mathcal{A} -orbits of \mathcal{A} -codimension between n-2 and n+1). For n=5 we get \mathcal{A}_k $(k=1,\ldots,4)$, \mathcal{A}_k , \mathcal{A}_k and \mathcal{A}_k and \mathcal{A}_k from [13], but there is no \mathbb{Z}_2 -stable

secant germ \hat{S} whose associated projection $\pi_x \circ X$ is \mathcal{A} -equivalent to VII₁ (and cod(\mathcal{A} , VII₁) = 6, see [13]).

(ii) For n=3 there are $\mathcal{A}^{\mathbb{Z}_2}$ -stable germs that cannot be equivalent to any germ of a secant-map \hat{S} . The $\mathcal{A}^{\mathbb{Z}_2}$ -stable germs $(v, \lambda^2 - \bar{x}^2 - \bar{y}^2), (v, \lambda^2 + v\bar{y} - \bar{x}^2 + \bar{y}^3)$ and $(v, \lambda^4 + v\lambda^2 + \epsilon \bar{x}^2 + \epsilon \bar{y}^2)$ ($\epsilon = \pm 1$) which, over \mathbb{C} , are $\mathcal{A}^{\mathbb{Z}_2}$ -equivalent to the representatives \hat{S} of the third, fourth and fifth $\mathcal{A}^{\mathbb{Z}_2}$ -orbit in the table, respectively, are not equivalent to the germ of any \hat{S} . The reason in all three cases is that an ax^3 term in the last component of the immersion-germ X yields an $a(\lambda^2 + 3\bar{x}^2)/4$ term in the last component of \hat{S} .

Proof of Theorem 3.1. We consider map-germs $f(\bar{x}, \bar{y}, u, v)$ (up to $\mathcal{A}(H)$ equivalence) whose composition with $(\bar{x}, \bar{y}, u, v) \mapsto (\bar{x}, \bar{y}, \lambda^2, v)$ yield \mathbb{Z}_2 -symmetric map-germs. Theorem 4.2 in Section 4 contains the classification of $\mathcal{A}(H)$ -stable germs $f: \mathbb{R}^4, 0 \to \mathbb{R}^{n-1}, 0, n \geq 3$. Proposition 2.2 implies that for a residual set of immersion-germs $X: \mathbb{R}^2 \to \mathbb{R}^n$, n > 4, the associated germs f are $\mathcal{A}(H)$ -stable. Furthermore, for n=3 (codimension-1 immersions) the proof of Proposition 2.2 implies that for a residual set of immersions f is an $\mathcal{A}(H)$ -stable germ of rank 2 or a germ of lower rank. From the classification in Theorem 4.2 we have that for n-1=2 there are three real stable $\mathcal{A}(H)$ -orbits of rank 1 with representatives $f_i = (v, u^2 + vu + \epsilon_1 \bar{x}^2 + \epsilon_2 \bar{y}^2)$, where $(\epsilon_1, \epsilon_2) = (+1, +1)$ for i = 1, (-1, -1) for i = 2 and (+1, -1) for i = 3, and all germs of rank less than two lie in the closure of these orbits. Now one checks that the jet-map Γ_2 (defined in the proof of Proposition 2.2) has empty intersection with the closures of $j^2 \mathcal{A}(H) \cdot f_i$, i = 1, 2 and that $\Gamma_2^{-1}(A)$, where A is the closure of $j^2\mathcal{A}(H)\cdot f_3$, is a submanifold of $J^3(2,3)\times\mathbb{R}$ defined by $a_{20}^{(3)}=a_{11}^{(3)}=a_{30}^{(3)}=0$ (notice that $f_3\sim_{\mathcal{A}(H)}(v,u^2+vu+\bar{x}\bar{y})$). Furthermore, the Γ_2 -preimages of the orbits of $j^2\mathcal{A}(H)$ -codimension greater than three in the closure of $j^2\mathcal{A}(H) \cdot f_3$ have codimension greater than three (or are empty). Hence we conclude that in all cases (i.e. the ones covered by Proposition 2.2 – or its proof – and also for n=3 and rank <1) we obtain $\mathcal{A}(H)$ -stable map-germs f (and hence $\mathcal{A}^{\mathbb{Z}_2}$ -stable secant maps S) for a residual set of immersion-germs.

Finally, we have to consider the following two points: (i) we want to see which $\mathcal{A}(H)$ -stable germ $\mathbb{R}^4 \to \mathbb{R}^{n-1}$ can be realized as a germ f (or \hat{S}) of an immersion and (ii) we want to decompose the $\mathcal{A}(H)$ -orbits of f into \mathcal{A} -invariant strata of $\pi_x \circ X$. For (i) we consider the list of $\mathcal{A}(H)$ -stable map-germs f in Theorem 4.2 and check whether the Γ_k -preimage of a k-sufficient orbit $\mathcal{A}(H) \cdot f$ is non-empty. In the normal forms of Theorem 4.2 the variables x_1 and u always correspond to v and u in f (or to v and λ^2 in \hat{S}). One finds that for $n \geq 4$ all these Γ_k -preimages are non-empty, and for n = 3 the Γ_k -preimages are empty in the cases mentioned in Remark 3.2 (ii).

For (ii) we simultaneously consider two jet-maps: the map $\Gamma_k: J^{2k+1}(2,n) \times \mathbb{R}^1 \to J^k(4,n-1)$, sending $(j^{2k+1}X,v)$ to j^kf , and a second map $\Gamma_{2k+1}: J^{2k+1}(2,n) \times \mathbb{R}^1 \to J^{2k+1}(2,n-1)$, sending $(j^{2k+1}X,v)$ to $j^{2k+1}(\pi_{(1,v)} \circ X)$. Here $\pi_{(1,v)}$ denotes the projection onto a hyperplane in \mathbb{R}^n orthogonal to the (1,v) in the tangent plane $T_{X(p)}X(\mathbb{R}^2)$. (Recall that we actually fix the direction (1,v)=(1,0), the x-direction, in the tangent plane of $X(x,y)=(x,y,g_3,\ldots,g_n)$ at (0,0) and instead rotate the surface about an axis orthogonal to the (x,y)-plane, but the transversality arguments are perhaps clearer if we consider varying directions (1,v).) Using the correspondence of pairs consisting of germs of secant

maps $\hat{S} = f(\bar{p}, \lambda^2, v)$ at (\bar{p}, v) and projection germs $\pi_{(1,v)} \circ X$ from Remark 2.3, we obtain submanifolds

$$\Gamma_k^{-1}(j^k\mathcal{A}(H)\cdot f)\cap \tilde{\Gamma}_{2k+1}^{-1}(j^{2k+1}\mathcal{A}\cdot (\pi_{(1,v)}\circ X))\subset J^{2k+1}(2,n)\times \mathbb{R}^1\,,$$

and such submanifolds of codimension greater than three will generically have empty intersection with $(j^{2k+1}X,v)(\mathbb{R}^3)$. For the pairs $\hat{S}, \pi_x \circ X$ in Table 1 we find that the codimensions of these submanifolds are given by the sum of the $\mathcal{A}^{\mathbb{Z}_2}$ -codimension of \hat{S} and the difference of the \mathcal{A} -codimensions of $\pi_x \circ X$ and of the least degenerate projection-germ corresponding to some secant map-germ in the $\mathcal{A}^{\mathbb{Z}_2}$ -orbit of \hat{S} .

The projection-germs $\pi_x \circ X$ distinguish all the $\mathcal{A}^{\mathbb{Z}_2}$ -orbits of secant mapgerms in the classification above. In some cases there is also a relation between \hat{S} and curvature properties of $X(\mathbb{R}^2)$.

REMARK 3.3. For n=3 the last three $\mathcal{A}^{\mathbb{Z}_2}$ -orbits of secant map-germs \hat{S} occur at parabolic points of the surface $X(\mathbb{R}^2)$ and the direction (1,v)=(1,0) is an asymptotic direction. The last orbit occurs, in fact, at points of tangency between the parabolic and the flecnodal curve (such points of tangency are called godron- or gutter-points and correspond to cusps of the Gauss map, see e.g. [12]). For the first $\mathcal{A}^{\mathbb{Z}_2}$ -orbit there is no restriction on the Gaussian curvature (here the degenerations of the corresponding projection-germs occur for asymptotic directions (1,v)=(1,0) at a hyperbolic point).

For n=4 the $\mathcal{A}^{\mathbb{Z}_2}$ -type of \hat{S} imposes no restriction on the second fundamental form of $X(\mathbb{R}^2)$. Only for the degenerations of the projection-germs corresponding to the secant map-germ s^+ we obtain such a restriction. These occur at parabolic points p that are not inflection points (the invariant Δ introduced by Little [14] vanishes at p, but the 3×2 matrix α_X of the second fundamental form has rank 2) and such p have negative Gaussian curvature.

For n=5, consider the 3×3 matrix α_X of the second fundamental form of a surface $X(\mathbb{R}^2)$ and the sets $M_i:=\{p: \mathrm{rank}\alpha_X(p)=i\}$. Mochida *et al.* [17] have shown that generic surfaces consist of regions of M_3 points and curves of M_2 points, but the $\mathcal{A}^{\mathbb{Z}_2}$ -types of \hat{S} in our classification can occur at M_3 as well as at M_2 points.

4 Classification of \mathbb{Z}_2 stable map-germs $\mathbb{R}^4 \to \mathbb{R}^n$

Let $f: \mathbb{R}^n, 0 \to \mathbb{R}^p, 0$ be a smooth \mathbb{Z}_2 -equivariant germ. We wish to classify the $\mathcal{A}^{\mathbb{Z}_2}$ -stable germs, where $\mathcal{A}^{\mathbb{Z}_2} = \mathcal{L} \times \mathcal{R}^{\mathbb{Z}_2}$ (i.e. \mathbb{Z}_2 -equivariant diffeomorphisms in the source and arbitrary diffeomorphisms in the target). By an observation of Arnol'd [1], the $\mathcal{A}^{\mathbb{Z}_2}$ classification of \mathbb{Z}_2 -symmetric map-germs $f(x_1,\ldots,x_{n-1},y)=f(x_1,\ldots,x_{n-1},-y)$ over \mathbb{C} coincides with the $\mathcal{A}(H)$ -classification of germs $f(x_1,\ldots,x_{n-1},u)$, where $\mathcal{A}(H)=\mathcal{L}\times\mathcal{R}(H)$ and where $\mathcal{R}(H)$ is the group of diffeomorphisms preserving the hyperplane $H=\{u=0\}$ in the source (which are of the form $k=(k_1(x,u),\ldots,k_{n-1}(x,u),u\cdot k_n(x,u))$). Substituting $u=y^2$ into the normal forms of the latter classification gives the desired \mathbb{Z}_2 -symmetric germs. Over \mathbb{R} the last component of the source diffeomorphism k has to satisfy the extra condition $k_n(0,0)>0$ (so that k preserves the set $\{(x_1,\ldots,x_{n-1},u):u>0\}$).

We denote the local rings of smooth source and target functions by C_n and C_p , respectively, and \mathcal{M}_n and \mathcal{M}_p are the corresponding maximal ideals. Let θ_f denote the C_n -module of vector fields over f (i.e. sections of $f^*T\mathbb{R}^p$). Set $\theta_n = \theta(1_{\mathbb{R}^n})$ and $\theta_p = \theta(1_{\mathbb{R}^p})$, and define homomorphisms tf and wf:

$$tf: \theta_n \to \theta_f, \quad tf(\xi) = df \cdot \xi,$$

(where df is the differential of f), and

$$wf: \theta_p \to \theta_f, \quad wf(\phi) = \phi \circ f.$$

The tangent spaces to the groups $\mathcal{G} = \mathcal{A}, \mathcal{K}, \mathcal{R}$ and \mathcal{C} are then defined in the usual way (see [23]). Hence we shall only indicate the required modifications for the subgroup $\mathcal{A}(H)$ of \mathcal{A} (where we have to restrict tf to $\theta_n(H)$, see below).

Apart from $\mathcal{A}(H)$ we need the group $\mathcal{K}(H) = \mathcal{C} \cdot \mathcal{R}(H)$ (semi-direct product), both groups are so-called geometric subgroups of \mathcal{A} and \mathcal{K} so that the usual unfolding and determinacy results hold (see Damon [9]). For any such group \mathcal{G} we denote, as usual, by \mathcal{G}_e and \mathcal{G}_1 the extended pseudo-group (of non-origin preserving diffeomorphisms) and the subgroup of diffeomorphisms with 1-jet the identity. For calculations of complete transversals (see [8]) and of determinacy degrees we use the notation \mathcal{H} for a unipotent subgroup of $\mathcal{A}(H)$ $(\mathcal{H} \text{ can contain certain elements of } \mathcal{A}(H) \setminus \mathcal{A}(H)_1)$. Since $\mathcal{A}(H)$ -equivalence is much finer than A-equivalence, we often have to work with bigger unipotent groups \mathcal{H} than $\mathcal{A}(H)_1$, even for stable germs f – frequently one also has to use the whole group $\mathcal{A}(H)$ (which is not unipotent) and apply Mather's lemma [16]. Combining the determinacy results in [7, 20] we get the following useful criterion: if $\mathcal{M}_n^l \theta_f \subset T\mathcal{K}(H)_e \cdot f + \mathcal{M}_n^{l+1} \theta_f$ and $\mathcal{M}_n^{k+1} \theta_f \subset T\mathcal{H} \cdot f + \mathcal{M}_n^{k+l+1} \theta_f$ then f is k-H- and hence k- $\mathcal{A}(H)$ -determined. Recall that $T\mathcal{R}(H)_e \cdot f = tf(\theta_n(H))$, where $\theta_n(H)$ is the C_n -module of source vectorfields tangent to H (i.e. $\theta_n(H) \ni$ $\xi = \sum_{i=1}^{n-1} a_i(x,u) \partial/\partial x_i + u \cdot b(x,u) \partial/\partial u$, where $a_i, b \in C_n$). The following relation is also useful in the classifications below.

LEMMA 4.1. For an $\mathcal{A}(H)$ -finite map-germ $f: \mathbb{R}^n, 0 \to \mathbb{R}^p, 0$ we have the following relation between codimensions of orbits:

$$\operatorname{cod}(\mathcal{A}(H)_e, f) = \max[0, \operatorname{cod}(\mathcal{A}(H), f) - n + 1].$$

Proof (Sketch). The argument is almost the same as that for the analogous formula for ordinary \mathcal{A} -equivalence, see for example Proposition 4.5.2 (ii) of [23]. For $\mathcal{A}(H)$ -stable germs f the formula holds trivially, hence suppose f unstable. In that case the formula is equivalent to

$$\dim (T\mathcal{A}(H)_e \cdot f/T\mathcal{A}(H) \cdot f) = n + p - 1,$$

which in turn is equivalent to: if $\alpha \in \theta_n(H)$ and $\beta \in \theta_p$ are such that $tf(\alpha) + wf(\beta) \in T\mathcal{A}(H) \cdot f$ then $\beta \in \mathcal{M}_p \cdot \theta_p$ and $\pi(\alpha) \in \mathcal{M}_n \cdot \theta_{n-1}$, where π is the projection onto the first n-1 components (this makes the difference to the usual formula for \mathcal{A}). The proof now concludes as in the \mathcal{A} -case.

The classification of $\mathcal{A}(H)$ -stable map-germs with source dimension four is given by the following

THEOREM 4.2. Any $\mathcal{A}(H)$ -stable map-germ $f: \mathbb{R}^4, 0 \to \mathbb{R}^n, 0$, where $n \geq 2$, is equivalent to one of the germs in Table 2. (Here $\epsilon_i := \pm 1$ and the cases $(\epsilon_1, \epsilon_2) = (+1, -1), (-1, +1)$ are equivalent.).

Table 2: $\mathcal{A}(H)$ -stable germs $\mathbb{R}^4 \to \mathbb{R}^n$

n =	$f(x_1, x_2, x_3, u) =$	$cod(\mathcal{A}(H), f) =$
2	(x_1,x_2)	0
	$(x_1,u+\epsilon_1x_2^2+\epsilon_2x_3^2)$	2
	$(x_1, u + x_1x_2 \pm x_3^2 + x_2^3)$	3
	$(x_1, u^2 + x_1u + \epsilon_1x_2^2 + \epsilon_2x_3^2)$	3
3	(x_1, x_2, x_3)	0
	$(x_1, x_2, u \pm x_3^2)$	1
	$(x_1, x_2, u + x_1x_3 + x_3^3)$	2
	$(x_1, x_2, u^2 + x_1 u \pm x_3^2)$	2
	$(x_1, x_2, u + x_1 x_3 + x_2 x_3^2 \pm x_3^4)$	3
	$(x_1, x_2, x_1x_3 + x_2x_3^2 + x_3^3 + x_3u)$	3
	$(x_1, x_2, x_3^2 + x_1 u \pm u^2)$	3
4	(x_1,x_2,x_3,u)	0
	$(x_1, x_2, x_3, u^2 + x_1 u)$	1
	$(x_1, x_2, x_3, u^3 + x_1 u + x_2 u^2)$	2
	$(x_1, x_2, u + x_1 x_3, x_3^2)$	2
	$(x_1, x_2, x_3, u^4 + x_1u + x_2u^2 + x_3u^3)$	3
	$(x_1, x_2, u \pm x_3^2, x_1x_3 + x_3^3 + x_2x_3^2)$	3
5	$(x_1, x_2, x_3, u, 0)$	0
	$(x_1, x_2, x_3, u^2 + x_2 u, x_1 u)$	2
	$(x_1, x_2, x_3^2, u + x_1 x_3, x_2 x_3)$	3
6	$(x_1, x_2, x_3, u, 0, 0)$	0
	$(x_1, x_2, x_3, u^2 + x_1 u, x_2 u, x_3 u)$	3
≥ 7	$(x_1, x_2, x_3, u, 0, \ldots, 0)$	0

Remark on Proof. By Lemma 4.1 one obtains the $\mathcal{A}(H)$ -stable germs (of $\mathcal{A}(H)_e$ -codimension 0) by classifying the $\mathcal{A}(H)$ -orbits of germs \mathbb{R}^4 , $0 \to \mathbb{R}^n$, 0 of $\mathcal{A}(H)$ -codimension at most three. The group $\mathcal{A}(H)$ is a geometric subgroup of the group \mathcal{A} (as defined by Damon [9]), the classification techniques are therefore the same as for \mathcal{A} . Below we give an outline of this classification for the case n=4, p=3 (indicating the structure of the classification pattern of the $\mathcal{A}(H)$ -stable orbits, but omitting all calculations). For the other $p \geq 2$ the classifications are similar (and often less extensive).

So for n = 4, p = 3 we have the following classification.

PROPOSITION 4.3. Any $\mathcal{A}(H)$ -stable map-germ $f: \mathbb{R}^4, 0 \to \mathbb{R}^3, 0$ is equivalent to one of the following germs: $(x_1, x_2, x_3), (x_1, x_2, u \pm x_3^2), (x_1, x_2, u + x_1x_3 + x_3^3), (x_1, x_2, u + x_1x_3 + x_2x_3^2 \pm x_3^4), (x_1, x_2, x_3^2 + x_1u \pm u^2), (x_1, x_2, x_3^2 + x_1u + u^3 + x_2u_2)$ and $(x_1, x_2, x_3u + x_1x_3 + x_3^3 + x_2x_3^2)$.

Outline of Proof. The elements of $\mathcal{R}(H)$ are germs of diffeomorphisms k of \mathbb{R}^4 preserving the hyperplane $H = \{u = 0\}$, which — by Hadamard's lemma — have the form $k = (k_1, k_2, k_3, uk_4)$ with $k_i = k_i(x_1, x_2, x_3, u)$ and $k_4(0, 0, 0, 0) > 0$. By Lemma 4.1 the $\mathcal{A}(H)$ -stable germs $f : \mathbb{R}^4, 0 \to \mathbb{R}^n$, 0 are those with $\mathcal{A}(H)$ -codimension at most three. Let $\mathcal{A}(H)^k := j^k \mathcal{A}(H)$ denote the Lie group of k-jets of elements of $\mathcal{A}(H)$. For n = 3, one finds (by direct $\mathcal{A}(H)$ coordinate changes) $\mathcal{A}(H)^1$ -orbits of codimension 0, 1 and 2, respectively, with the following representatives:

$$(x_1, x_2, x_3), (x_1, x_2, u), (x_1, x_2, 0).$$
 (*)

The remaining $\mathcal{A}(H)^1$ -orbits lie in the closure of $\mathcal{A}^1 \cdot (x_1, u, 0)$ and have codimension at least 4 and can therefore be discarded.

The first germ in (*) is 1- $\mathcal{A}(H)$ -determined, and a complete 2-transversal for the second germ σ is spanned by x_3^2 , x_1x_3 and x_2x_3 in the last component. From the "general" 2-jet $(x_1, x_2, u + ax_3^2 + bx_1x_3 + cx_2x_3)$ we obtain over the 1-jet σ the $\mathcal{A}(H)^2$ -orbits represented by $(x_1, x_2, u \pm x_3^2)$, $f = (x_1, x_2, u + x_1x_3)$ and (x_1, x_2, u) . The first of these has codimension 1 and is 2-determined, the third has codimension 4, and the second has codimension 2 and has to be considered further. Over f we find three $\mathcal{A}(H)^3$ -orbits given by

$$(x_1, x_2, u + x_1x_3 + x_3^3), (x_1, x_2, u + x_1x_3 + x_2x_3^2), (x_1, x_2, u + x_1x_3).$$

The first has codimension 2 and is 3-determined, the third has codimension 4, and over the second (which has codimension 3) there is one $\mathcal{A}(H)^4$ -orbit that has codimension 3 (the others have higher codimension), which is 4-determined and given by $(x_1, x_2, u + x_1x_3 + x_2x_3^2 \pm x_3^4)$. This completes the classification of the $\mathcal{A}(H)$ -stable germs over the second 1-jet in (*).

Finally, consider the third 1-jet $\sigma=(x_1,x_2,0)$ in (*). A complete 2-transversal consists of all degree 2 monomials in the third component involving x_3 or u. We consider two cases: the x_3^2 coefficient is non-zero or zero.

In the first case we can reduce, up to $\mathcal{A}(H)^2$ -equivalence, to $(x_1, x_2, x_3^2 + au^2 + bx_3u + cx_1u + dx_2y)$. Assuming that c and d are not both zero (otherwise the $\mathcal{A}(H)^2$ -codimension is greater than 3) we can reduce to the case where c = 1 and d = 0, and letting $x_3 \mapsto x_2 - bu/2$ we get:

$$(x_1, x_2, x_3 + x_1u + (a - b^2/4)u^2).$$

Hence we get the following three $\mathcal{A}(H)^2$ -orbits: $(x_1,x_2,x_3\pm u^2)$ (these are 2-determined and have $\mathcal{A}(H)$ -codimension 2) and $\sigma=(x_1,x_2,x_3^2+x_1u)$ (of $\mathcal{A}(H)^2$ -codimension 3). A complete 3-transversal for σ is given by u^3 and x_2u^2 in the third component, and when the coefficients of these two terms are both non-zero we can reduce to $f=(x_1,x_2,x_3^2+x_1u+u^3+x_2u^2)$. Some more substantial calculations then show that f is 3-determined and $\operatorname{cod}(\mathcal{A}(H),f)=3$. The other $\mathcal{A}(H)^3$ -orbits over σ (for which the product of the two coefficients vanishes) have codimension at least four.

In the second case (zero x_3^2 coefficient) the $\mathcal{A}(H)^2$ -codimension is at least three, and in the best possible case the coefficients of x_3u and x_1x_3 are non-zero (any degeneration would lead to $\mathcal{A}(H)^2$ -orbits of codimension at least four) so that we can reduce to the 2-jet $\sigma = (x_1, x_2, x_3u + x_1x_3)$. A complete 3-transversal for σ is given by x_3^3 and $x_2x_3^2$ in the third component, and using

Mather's lemma one shows one can reduce to $f = (x_1, x_2, x_3u + x_1x_3 + x_3^3 + x_2x_3^2)$ provided that the coefficients of both terms are non-zero. Finally one shows that f is 3-determined and $cod(\mathcal{A}(H), f) = 3$.

Acknowledgements. This work has been carried out in part during the authors' stay at the Banach Centre in Warsaw (with the financial support of the EU Centre of Excellence programme, IMPAN – Banach Center, ICAI-CT-2000-70024) and at the University of Sao Paulo at Sao Carlos (with financial support of a CAPES-DAAD project, 415-br-probral/po-D/04/40407). We thank Maria Ruas for valuable discussions.

References

- [1] Arnol'd, V.I.: Wave front evolution and equivariant Morse lemma, Comm. Pure Appl. Math. 29 (1976), 557-582.
- [2] Arnol'd, V.I.: Critical points of functions on a manifold with boundary, the simple Lie groups B_k , C_k and F_4 and singularities of evolutes, Russian Math. Surveys 33 (1978), 99-116.
- [3] Bauer, I.: Inner projections of algebraic surfaces: a finiteness result, J. Reine Angew. Math. 460 (1995), 1-13.
- [4] Bierstone, E.: Local properties of smooth maps equivariant with respect to finite group actions, J. Differential Geom. 10 (1975), 523-540.
- [5] Bruce, J.W.: Generic space curves and secants, *Proc. Roy. Soc. Edinburgh* 98A (1984), 281-289.
- [6] Bruce, J.W., Giblin, P.J.: Smooth stable maps of discriminant varieties, *Proc. London Math. Soc.* 50 (1985), 535-551.
- [7] Bruce, J.W., du Plessis, A.A., Wall, C.T.C.: Determinacy and unipotency, Inventiones Math. 88 (1987), 521-554.
- [8] Bruce, J.W., Kirk, N., du Plessis, A.A.: Complete transversals and the classification of singularities, *Nonlinearity* 10 (1997), 253-275.
- [9] Damon, J.: The unfolding and determinacy theorems for subgroups of A and K: I. Finite codimension conditions, Mem. Amer. Math. Soc. 306 (1984).
- [10] Fuster, M.C.R., Mancini, S., Ruas, M.A.S.: Stability and genericity of composition of maps, *Mat. Contemporanea* 5 (1993), 29-51.
- [11] Ishikawa, G.: Singularities of developable surfaces, in Singularity Theory, 403-418, London Math. Soc. Lecture Note Series 263, Cambridge University Press (1999).
- [12] Kergosien, Y.L., Thom, R.: Sur les points paraboliques des surfaces, C.R. Acad. Sc. Paris t. 290 (1980), 705-710.

- [13] Klotz, C., Pop, O., Rieger, J.H.: Real double-points of deformations of \mathcal{A} -simple map-germs from \mathbb{R}^n to \mathbb{R}^{2n} , Math. Proc. Cambridge Phil. Soc., to appear
- [14] Little, J.A.: On singularities of submanifolds of higher dimensional Euclidean spaces, Ann. Mat. Pura Appl. 83 (1969), 261-336.
- [15] Martinet, J.: Déploiements versels des applications différentiables et classification des applications stables, Lect. Notes in Mathematics 535 (Springer, Berlin, 1976), 1-44.
- [16] Mather, J.N.: Stability of C^{∞} -mappings IV: classification of stable germs by \mathbb{R} -algebras, *Publ. Math. IHES* 37 (1970), 223-248.
- [17] Mochida, D.K.H., Romero-Fuster, M.C., Ruas, M.A.S.: Inflection points and nonsingular embeddings of surfaces in \mathbb{R}^5 , *Rocky Mountains J. Math.* 33 (2003), 995-1009.
- [18] Mond, D.: On the classification of germs of maps from \mathbb{R}^2 to \mathbb{R}^3 , *Proc. London Math. Soc.* 50 (1985), 333-369.
- [19] Montaldi, J.: On generic composites of maps, Bull. London Math. Soc. 23 (1991), 81-85.
- [20] du Plessis, A.A.: On the determinacy of smooth map-germs, *Inventiones Math.* 58 (1980), 107-160.
- [21] Rieger, J.H.: Families of maps from the plane to the plane, J. London Math. Soc. 36 (1987), 351-369.
- [22] Rieger, J.H.: Trisecant planes of space-curves, preprint.
- [23] Wall, C.T.C.: Finite determinacy of smooth map-germs, Bull. London Math. Soc. 13 (1981), 481-539.
- [24] Whitney, H.: Differentiable even functions, Duke J. Math. 10 (1943), 159-160.