Singularities of secant maps of immersed surfaces
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Abstract. The secant map of an immersion sends a pair of points to the direc-
tion of the line joining the images of the points under the immersion. The germ
of the secant map of a generic codimension-c immersion X : R® — R"*¢ at the
diagonal in the source is a Z, stable map-germ R?" — R*+¢~1 in the following
cases: (i) ¢ > 2 and (2n,n+c—1) is a pair of dimensions for which the Z, stable
germs of rank at least n are dense, and (ii) for generically immersed surfaces
(i.e. » = 2 and any ¢ > 1). In the latter surface case the AZ2-classification
of germs of secant maps at the diagonal is described and it is related to the
A-classification of certain singular projections of the surfaces.
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1 Introduction

In [5] Bruce has shown that the germ of the (projectivized) secant map of
a generic space-curve in R® is, at a point on the diagonal in the source, A%2-
equivalent to a Zs stable germ — these had been classified earlier on by Bierstone
[4]. (Here and below Z stable means A%2-stable and stable means A-stable.)
Notice that the secant map of a curve has an obvious Sz symmetry (permuting
a pair p,q of source points), which corresponds to a Zs symmetry (reflection
in the diagonal p = ¢q). And at a point outside the diagonal it is A-equivalent
(as a mono-germ) to a stable germ (notice that the Zs symmetry of the secant
map implies that the off-diagonal parts of the critical sets are mapped 2:1 into
the target, which makes the secant map highly unstable as a multi-germ). Con-
versely, all Z, stable and stable germs arise as germs of secant maps of generic
space-curves.

In the present paper we study the (projectivized) secant maps of higher
dimensional and codimensional immersions. The secant map S : (R")2 — P™ of
an immersion-germ X : R* — R™*! maps a pair of distinct points (p, q) € (R"*)?2
to the direction of X (¢) — X (p), and it maps a point (p, p) on the source-diagonal
to the direction of the directional derivative D, X (p) (here w can be considered
as the limiting direction of a vector ¢ — p as ¢ — p). The secant map of an n-
dimensional immersion is evidently S, symmetric (as for curves, where n = 1, we
can permute pairs p, g of source points), but in order to obtain a Zs symmetric
germ S of the secant map at the diagonal for n > 2 we first have to blow up the
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diagonal p = ¢ in the source to a hyperplane A = 0 and then consider reflections
in A = 0 (see Section 2). For immersions of codimension greater than one (i.e.
for m > n) there is a jet-map sending pairs of jets of immersion-germs to jets
of secants map-germs, whose restriction to the (blow-up of the) source-diagonal
is transverse to the .AZ2-stable orbits (at least in pairs of dimensions (2n,m) in
which the A22:stable germs up to a certain corank are dense). This implies that
the germs of S at the diagonal are A%2-stable for a residual set of immersions,
but it turns out that not all A%2-stable germs are germs of secant maps of
generic n-dimensional immersions, n > 2 (the above jet-map can, of course, be
transverse to a given orbit by not intersecting it). For generic 2-dimensional
immersions in R™®, n > 3, we will give an explicit classification of the germs of
the secant map at the diagonal.

This “good behavior” (i.e. their .A%2-stability) of germs of secant maps of
generic immersions at the diagonal does not extend to higher secant maps nor to
parametrizations of secant varieties. The higher k-secant maps (k > 3), mapping
a k-tuple of source points to the linear subspace defined by their X-images (in
the appropriate Grassmannian), are Sg-symmetric germs at the main diagonal
in the source — but here the corresponding jet-map fails to be transverse to the
stable AS*-orbits: for example, the trisecant plane map of a generic space curve
can have highly unstable singularities (see [22]). Also, replacing the (ordinary)
secant map by the map F sending a pair of points to the line joining their
images under a given immersion X : R* — R"t¢, we obtain a Zs-symmetric
map R?7+1 — R+e. But, at least for ¢ > 2, the germ of this map at the source
diagonal is never A%2-stable (see Proposition 2.5). Notice that the restiction of
F to the source diagonal gives a parametrization of the tangent variety of X,
and the latter generically has non-isolated singularities of infinite .4-codimension
(see the survey on singularities of the tangent variety of a space-curve in [11]).

The plan of this paper is as follows. In Section 2 we define the projectivized
secant map S : (R")2 — P™ of an immersion X : R* — R™+!  and relate the
secant map to the n-parameter family of inner projections of X (R™) from centers
in X(R"). We show that the mono-germ of the secant map at a point (p,q)
outside the diagonal is a versal n-parameter deformation of a germ R* — R™
for a residual set of embeddings (Proposition 2.4). And we show (with some
restrictions on the pairs of dimensions (2m,n), see above) that the germ of S
at the diagonal is A%2-equivalent to some Zo-stable germ of A%2-codimension
at most 2n — 1 for a residual set of immersions X : R* — R™t! m > n
(Proposition 2.2). We also show that the germ of the parametrization of the
secant variety at the diagonal is never .A%2-stable for immersions of codimension
greater than two (see Proposition 2.5). Section 3 describes the main result of the
present paper, the classification of the germs of secant maps S at the diagonal
of surfaces generically immersed in R", n > 3 (Theorem 3.1). These secant
map-germs S are A% stable germs R* — R?, n > 2, and for n > 3 any such
A%2 stable germ is the germ of the secant map of some generically immersed
surface (for n = 2 there are complex AZ%2-orbits corresponding to several real
orbits, whose representatives are distinguished by =+ signs, and some of these
real forms cannot be the germ of any secant map). For n > 5, the AZ2 classes
in this classification of secant maps are in 1:1 correspondence with certain A
classes of germs of projections onto hyperplanes of the immersion-germ X at the
corresponding points p along a certain bad direction in 7, X. For n = 3 and 4
there are certain .A%2-orbits of secant germs that can be further stratified by the



A-types of such projections. But the A-classes of the projections distinguish the
AZ2-orbits of secants germs for any n > 3. Section 4 contains the classification
of Zy stable germs R* — R™, for n > 2 (relevant for the secant map-germs S of
generic immersions X : R? — R*+1).

2 Secants and inner projections of immersions
X:R* R m>n

Let X : R® —» R™* p=(py1,...,pn) = X(p) be an immersion, and represent
the P*~1 of lines through 0 € R™ by one unit vector w on each line. The
map B(p, \,w) = (p,p+ A - w) =: (p,q) blows up the diagonal in (R"*)2, which
has codimension n, to the hyperplane 3~'({p = ¢}) = {\ = 0} and is one-to-
one outside A = 0. Let [v] denote homogeneous coordinates of the vector wv.
We want to define a projectivized secant map R* x R x P"~! — P™ given by
(p,q) — [X(g) — X(p)], for p # ¢, and on the diagonal by (p,p) — [D,X (p)]
(with D,, the directional derivative). The desired map is given by

SR xRxP"' 5 P™, (p, A w) = NTHX (p+ A w) — X ()]

On the diagonal we have S(p,0,w) = [D, X (p)], and outside the diagonal we
obtain S(p, \,w) = [X(¢) — X (p)], for A # 0. (For an immersion X and some
neighborhood of A = 0, the vector A= (X (p+\-w)— X (p)) is always non-zero. In
Proposition 2.4, which describes the off-diagonal behaviour of the secant map,
we assume that X is an embedding, so that S is defined for all A.)

Next, we want to consider the germ of this secant map at a point of the
diagonal. Writing an immersion germ as

X(p) = (pu gn+l(p)7 v ;gm+1(p))7 gi € Mf”

and by taking an affine chart such that (1,v) = (1,v2,...,vp), v; = w;/w1 We
get

g = [17 V2,... ,Un, ’\_l(gn+1 (q) — gn+1 (p))J ree a’\_l(gm-i-l(q) — 9m+1 (p))]
Composing with the (“symmetry restoring”) linear right coordinate change

L(ﬁlaﬁZ)"' aﬁna)‘av%"- 7Un) =

((}51 — )\)/2, @2 — )\1}2)/2,. .. ,(ﬁn — )\Un)/2,)\,1}2,.. - ;Un)
and omitting the first (constant) component of S , we get a map
SR 5 R™, (P, v) = S, A, v).

The germ of S at 0 is the germ of the projectivized secant map at the point
(p,q) = (0,0) € (R*)? on the source-diagonal and the direction w =[1:0...:0].
We can (and will) always consider a neighborhood of this direction (in which
wy # 0, where w = [w; : ... : wy]) by applying an element of SO(n — 1) to the
tangent space of the immersion. We have the following easy



LEMMA 2.1. The germ of the projectivized secant map S:R"™ - P™ gt a
point on the source-diagonal is even.

Proof. We claim that S:(p, Av) = S(p, —A,v), so that, by Whitney’s lemma

on even map-germs [24], S = f(p,N\*,v) for some smooth germ f. The term
cap® in g; (where a = (aq,... ,qy,) is a multi-index) corresponds in S to

A e ((pr+ N [ (i + Mvi)™ = p*) = A0,
i>1

where (@ is divisible by A. Now

QoL =271 + N []i + A — (B — N [[ @i — i) ™)

i>1 i>1
is odd in A, hence A1c,Q o L and therefore S are even as claimed. O

Hence the Zs symmetric secant map S is the composition of a map-germ
f:R™ . 0— R™,0, (p,u,v) = f(p,u,v) with a folding map (p, \,v) — (p, A2, v).
It is well-known that the A%2-classification of Z, symmetric germs corresponds
to the A(H)-classification of such germs f (see [1, 6]), where A(H) denotes the
geometric subgroup of A in which the diffeomorphisms in the source preserve
the hyperplane H := {u = 0} in the source. If R(H) is the subgroup of R
of elements preserving H, we set A(H) = £ x R(H) and K(H) = C - R(H)
(semi-direct product). For S and f as above, we set

cod(A%2, 8) := cod(A(H), f),

and similarly for the corresponding extended groups A%2 and A(H). of non-
origin preserving diffeomorphisms. The germ § is (infinitesimally) Z, stable
if cod(AZ2,3) := cod(A(H)., f) = 0, and the A%*-codimension of a Z, stable
germ from R?" to R™ is at most 2n — 1 (see Lemma 4.1).

Working with the group of A(H) equivalences of map-germs f — rather than
with A%2 equivalence of equivariant secant-germs S — not only has technical
advantages in the classification but also in transversality arguments relating
submanifolds of jet spaces J¥(2n,m) of k-jets of maps f to submanifolds in
multi-jet spaces of jets of pairs of immersions X (and the results obtained for f
then give the desired results for secants maps S by composing f with the above
folding map).

The next result shows that, for generic codimension > 2 immersions, the
germ of S at a point of the diagonal is a Z» stable germ (provided the Z, stable
germs are dense for the relevant pairs of dimensions (2n, p); for other pairs of
dimension this statement holds with C°-Z, stable in place of Z» stable).

PROPOSITION 2.2. Let (2n,m) be a pair of dimensions for which the K(H)-
orbits of germs f : R*™,0 — R™ 0 of rank at least n and K(H)-codimension at
most 2n — 1 are K(H)-simple. Then, for a residual subset of Imm(R"™, R™+1),
where m > n, the germ of the secant map S : R2", (p,p) — Rm,S’(p,p) at the
diagonal in the source is a Zo stable germ of A%2-codimension at most 2n — 1
and rank at least n — 1.



Proof. We will show that, for m > n, the restriction to the blow-up of the
diagonal, 'y, of the map

(J**F(n,m +1))% = J*(2n,m)

sending (2k + 1)-jets of pairs of immersions germs j2¢*+1(X (p), X(q)) to the k-
jets of the associated maps f (whose composition with the folding map gives
5’) is transverse to the closure of j* A(H)-orbits of codimension no greater than
2n — 1. Taking coordinates p and ¢ = p + X - v and restricting to the diagonal
A = 0, we have local coordinates (p,v) € R2"~! on the (blow-up of the) diagonal,
and Ty : J?*1(n,m+1)x R*~! — J*(2n, m) maps pairs (cap®,v), with c,p* a
monomial of some component function g; of X, to terms A~ 'cqQ o L(p, u'/?,v)
of the corresponding component function of f(p,u,v) (recall that A=1Q o L,
defined in the proof of Lemma 2.1, is even in ). The T'y-preimages of the
closures of these j* A(H)-orbits are therefore Whitney stratified subsets of the
same codimension or are empty. The image of (j2¥+1 X, v)(R?"~ 1) will therefore,
for a residual set of immersions X, miss the I'y-preimages of orbits of A(H)-
codimension 2n or greater.

Claim 1. Suppose f A(H)-stable, then A(H) - f C K(H) - f is open.

This follows from the following analogue of a result of Mather [16]: suppose
f and g are A(H) stable, then they are A(H)-equivalent if and only if they are
K(H)-equivalent. In order to prove this, one can adapt a result of Martinet [15]
on the relation between K.-versality and .A-stability to the subgroups K(H).
and A(H). (A brief summary of Martinet’s result is given on p. 502 of Wall’s
survey [23]: one considers a “regular unfolding” F : R? x R?" — R? x R™ of
f, i.e. one which is transverse to R? x {0}, then Vp := F~}(R? x {0}) is a
smooth submanifold of R* x R2". Let np : Ve — R? denote the restriction of
the obvious projection onto the first factor. Checking that one can replace the
group R by R(H) we get the following variant of Martinet’s result, (3.5) in [23]:
Fis K(H)-versal if and only if 7 is A(H)-stable. And one deduces the above
variant of Mather’s result by taking regular unfoldings F(y,z) = (y, f(z) —y) of
z — f(z) =y and (similarly) G of g — notice that mp = f, because z — (f(z), z)
is a parametrization of Vp.)

For A(H)-stable germs f, transversality to the (H)-orbit of f therefore
implies transversality to the A(H )-orbit.

Claim 2. For m > n the maps 'y are transverse to the K¥(H)-orbits of
codimension at most 2n — 1 and rank at least n.

The map-germ f is given by

f = ('1)2, -+ Un, Gn-l—l(ﬁ; u,'v), s ;Gm+1(p7 U,’U)),
where the k-jets of the G; are the k-jets of functions

D> A 'eaQo L(p,u'’?,v)

|| <2k+1

(recall the definition of the map I'y). The map T’y is a submersion and the
maps R?" — R™ of rank less than n form a submanifold B of J!(2n,m) of
codimension greater than or equal to (m —n +1)(n+ 1) > 2n — 1, for m > n.
The set I'y 1(B) therefore has empty intersection with j3X for a residual set
of immersions X. Now (avoiding the bad set B of germs of rank less than n)



we can choose coordinates pi,...,p, in the source of X and an affine chart
(1,vs,... ,v,) for P™ such that either

f = (U27"' ;Un;ﬁlyGn+2(ﬁ;u7U)7--- aGm-l—l(p:u;U));
or
f = (vQJ"' ,vn,u+Gn+1(ﬁ,0,0),Gn+2(ﬁ,u,v),... aG’ITI+1(pau7U))

(in the former case S has rank at least n and in the latter case at least n — 1).
Now consider in both cases the restriction f' of f to the subspace of the source
given by the vanishing of the first n variables, and let I'j, denote the correspond-
ing restriction of I'y. Again using the functions A~!c,Q o L above we see that
I', is a submersion, and hence transverse to K(H) - f', and therefore to KC(H) - f
(f being the suspension of f'). |

Next, the following relation between secant maps S and n-parameter fam-
ilies of projections of X (R*) C R™*! from centers in X (R") — so called inner
projections in the terminology of [3] — will be useful. Recall that the map
B(p, A\, w) = (p,p+ A-w) blows up the diagonal in (R™)2, which has codimension
n, to the hyperplane A = 0. Its composition 8 := f o L with the symmetry
restoring linear right coordinate change L is given by

(ﬁa)‘7w) = ((p—)\LU)/2,(ﬁ+)\CU)/2) = (paq)

If 7. denotes the projection from a center ¢ € R™*!, then the projectivized
secant map factors as follows:

) R* x R x pn—1 A
B NS
R* xR* — Rt xRt pm
(r,g) —  (X®,X(@) — 7xEp(XQ)

Outside the diagonal, where p # g, one can use this observation to show that
the germ of S is locally a versal n-parameter deformation of a germ R® — R™
for a residual set of immersions X, see Proposition 2.4 below.

On the diagonal, the family inner projections is only defined after blowing-up
the source diagonal and dividing by A. The following remark implies that the
germ of the secant-map S at (p, A, v) = (p, 0, 0) determines the projection m; (X)
of the germ of the immersion X at p into a hyperplane in R™*! orthogonal to
e1 = dX,(e}) € R™*, with €] = (1,0,...,0) € T,R" (notice that e} = (1,v)
for v = (vs,...,v,) = 0). In Section 3 the A%2-classification of secant-maps S
and the related A-classification of the associated orthogonal projections 7 (X)
will be described, the remark is also useful in relating .A%2-orbit membership
conditions to transversality conditions on the immersion. Setting

'Y(Pl,--- 7pn) = (pla-" 5pnap15p2/p17"' apn/pl)a

we have the following.



REMARK 2.3. Let S be a germ of the secant map of an immersion p — X (p)
at (P, A,v) = (0,0,0), then m o X(p) = p1 - S(v(p))).-

Proof. Let X(p) = (p,9n+1(D),--- ,gm+1(p)) be in Monge form. From the
diagram above we have

S = [1aU27--- 7Un7hn+17"' 5hm+1]7

where

hi = A" gi((P+ A -w)/2) = g:(F— A~ w)/2))

and w = (1,vs,...,v,). Composing with v and multiplying through with p;
gives the desired formula (notice that g;(0) = 0). O

Next, consider the off-diagonal behaviour of the secant map. Notice that
we can exchange the roles of X (p) and X(q) in the projection mx,)(X(q)),
this global Zo-symmetry makes the off-diagonal part of the secant map highly
unstable as a bi-germ. But considering Sasa mono-germ we have the following.

ProrosiTiON 2.4. The germ of the secant map

g : R2n7 (p07QO) - Rm"§(p0’qo)

at any pair of points py # qo s a versal n-parameter deformation of a germ R"
to R™ for a residual subset of Emb(R™, R™+1).

Proof. Consider disjoint neighborhoods U and V of pg and qg, respectively.
The n-parameter family of projections mx ) : U x R™*!' — U x R™, (p,r) —
Tx(p)(r) is a family of submersions, and hence A-versal. By a transversality
theorem for composite maps [19, 10] and a partition of unity argument, we can
approximate the embedding germ X (V') in a neighborhood of X (go) by an em-
bedding germ Y (V), without changing the embedding germ X (U) near X (po),
such that the composite family 7x ) : U xV = U xR™, (p,q) = mx () (Y (q))
is an 4-versal n-parameter deformation of central projections of the embedding
germ YV (V) Cc Rm+L, O

We conclude this section by considering parametrizations of the secant va-
riety of an immersion X : R* — R"™° X(p) = (D,9n+1(D);--- s In+c (D)),
gi € M2. The map

F:R™ S R™ (pg,t) = 1/2(X(g) + X () + (X () — X (p)

has the symmetry F(q,p,—t) = F(p,q,t). We can again extend F' to the “di-
agonal” p = ¢ by taking ¢ = p+ A(1,v2,... ,v,) and by replacing X (¢) — X (p)
by A™}(X(q) — X(p)). By composing again on the right with the symme-
try restoring linear coordinate change L we obtain a map F(f,\,v,t). And
setting w = (1,v) = (1,v2,...,v,), we see that the first term 1/2(X((p +
Mw)/2) + X((p — Mw)/2) in F is even in A, and the second term is even by
Lemma 2.1. Setting u = A2, the least degenerate j'F is j'.A(H)-equivalent
to h == (t,p2,--. ,Pn,u,0,...,0) (if the 22 coefficients of all the g; compo-
nents of X vanish then we obtain a more degenerate 1-jet). The jlA(H)-
codimension of h is ¢n, and Lemma 4.1 below implies that the A(H)-stable



germs R27+1 — R™F¢ have A(H)-codimension at most 2n. Hence F is A(H)-
unstable, and hence A%2-unstable, for any ¢ > 2, and we obtain

PROPOSITION 2.5. The germ at the diagonal, F : R2"t1 — Rrte of the
parametrization of the secant variety of any immersion X : R* — R"T¢ of codi-
mension ¢ > 2 is A%2-unstable.

REMARK. The restriction of the secant variety to the diagonal is the tangent
variety, and the latter has already for the simplest case of space-curves in R3
non-isolated singularities of infinite A-codimension. The map F might therefore
be more degenerate than just A%2-unstable. (In fact, one checks, that for curves
in 3-space the map F has infinite .4%2-codimension.)

3 Secant maps of generically immersed surfaces
in R",n>3

In this section the germs of the secant map at a point in the source diagonal
will be classified for generically immersed surfaces in R", n > 3. Locally such
an immersion is given by an embedding-germ

X(z, xy,Za“wy,.. Za(n)’

i+j>1 i+j>1

at (z,y) = (0,0). The projectivized secant map (in the affine chart (1,v) for w,
see Section 2) is given by S = [L1:v:8S3:...:8,], hence we have a map-germ
into (n — 1)-space S(Z,7,\,v) := (v,53,-.. ,S,), where Z, § correspond to the
coordinates py, P2 in Section 2 (after applying the coordinate change L that re-
stores the Zy-symmetry of S). Using the map 'y, (defined in the proof of Propo-
sition 2.2), one obtains S; = a$iz+a\) (7 +v7)/2+al)vg+ald) (u+322) /4+. ..,
with u = \2.

Let 7, o X be the projection-germ at x = y = 0 of the immersed surface
X (R?) along the z-direction. By Remark 2.3, the projection-germ m, o X is
determined by the secant map-germ Satz=g=A=v=0 (the direc-
tion (1,v) = (1,0) in TX(O,O)X(RQ) corresponds to the z-direction), but A%2-
equivalence of S does in general not preserve the A-class of w0 X . In the classifi-
cation of secant-germs of generically immersed surfaces we therefore decompose
certain A%2-orbits of secant-maps into strata on which the A-type of the corre-
sponding projection 7, o X is invariant. In the normal forms S certain monomi-
als are therefore present which affect the A-type of 7, o X but which could be
removed by an A%2-change. On the other hand, redundant terms in the corre-
sponding projection-germs m, 0 X have been ehmlnated (by suitable A-changes).
(Also recall that if cod(AZZ S) denotes the .A%>-codimension of S in the space of
Z.y-symmetric germs and S = fo (&, §, A2, v) then cod(A%2, §) = cod(A(H), f).)
The main result of the present section is then the following.

THEOREM 3.1. For a residual subset of Imm(R2,R"), n > 3 the germ of the
secant map S : R* = R"~1 at a point on the diagonal is equivalent to one of the



Zy stable germs in Table 1. The projection-germs 7, o X associated with the S
are also listed (up to A-equivalence).

Table 1: Generic secant germs for immersions in R”

n S(Z,7,A,0) ~ 425 A%2-cod gy 0X ~ 4y A-cod
3 (v,2) 0 (y,z?) 1
~aza (0,7 + ) (y, 2y + 2°) 2
~ara (0,7 +Z%) (y,zy + z*) 3
Az(vy+at~ +z%) (y, 2y + 2° + z7) 4
(v, A2 + 7% £ ?) 2 (y, 2% + zy?) 3
(v, A2 + vy + 22 + °) 3 (y, 2% + zy®) 4
(v, A\ + A2 + 33 + Z7) 3 (y, 2%y + z* + ) 4
4 (v, Z,7) 0 (y, 2, zy) 2
s = (v, 2, £X + §7) 1 (y, 2%, 2° £ zy°) 3
g (v, G+ 240 4 77) (y,zy +m5,:c3) 4
~ e (0,5 + 7,0 + 2%) (y,zy +m , %) 5
(v, 2, \* + v§ + 7°) 2 (y,2°, = +wy3) 4
(v, 2, \* +vA2 £ 2) 2 (y,z2?, :c5 + zy?) 4
(v,2,\2 + vy + 25> £ §*) 3 (y, 2%, 2° :Emy) 5
(v, Z,v7 + Ty + §° £ §A?) 3 (y, x* :I:y3 + 23y) 5
(v, 2,72 + vA2 £ X6 + z21) 3 (y,:z:z,xy2 +27) 5
5 ('Z)Jf’ y_7 A2) 0 (y’$2’$y’$3) 3
(v, 2,9, X* + vA?) 1 (y,2°,zy,2°) 4
(v, z, )\6 +ort 4 :c)\2) 2 (y, 22, zy,27) 5
(0, 7,22 + 05,5) 2 (y,2%,2°, 2y) 5
(U7 7)‘ +U)‘6 +$)‘4 +y)‘2) 3 (y7$27$y)$9) 6
(v, a? A2 2 0y + 92 + zy?) 3 (y,z%, 2% + zy?, zy®) 6
6 (v, 7, 7%, 0) 0 (y, 2%, zy,2°,0) 4
(v, Z, 7, S vA?) 2 (y,2?, zy, z°,0) 6
( z g2 A2 +vy,:ﬂy) 3 (ya$23$y271’370) 7
7 (v,%,7,2%,0,0) 0 (y, 2%, zy,2°,0,0) 5
(v,3, 5, Xt + vA2, 2N, N?) 3 (y, 2% =y, 2°,0,0) 8
>38 (v,7,7,A%,0,...,0) 0 (y, 2%, 2y,2%,0,...,0) | n—2

REMARK 3.2. (i) Projecting an immersion-germ X : R?,p — R™, X (p) along
a direction w € T'x(,) X (R?) always gives rise to a singular projection-germ of
A-codimension at least n — 2. Furthermore, in a 3-parameter family of such
projection-germs, varying with (p,w) € R? x P!, we generically expect that
n—2 < cod(A,m, o X) < n+1. Comparing the A-classes of projections 7, o X
in the theorem (which correspond to secant-germs $ of generic immersions)
with the existing classifications of .A-orbits of maps R> — R"~! we find that for
n # 5 all A-classes [f] with n —2 < cod(A, f) < n+ 1 arise as the A-class of a
projection 7, o X associated with some S: for n = 3 we get the A-classes 2, 3,
41 (k=2,3), 5,6 and 115 from [21] and for n =4 we get Si, (k =0,...,4), By
(k =2,3), C3 and Hy, (k = 2,3) from [18]. Finally, one checks that in higher
dimensions n > 6 this is also true (the normal forms for 7, o X in the table
represent the only A-orbits of A-codimension between n — 2 and n + 1). For
n=5wegetl; (k=1,...,4), Il and III, 3 from [13], but there is no Zy-stable



secant germ S whose associated projection 7, o X is A-equivalent to VI (and
cod(A, VII;) = 6, see [13]).

(ii) For n = 3 there are A%Z2-stable germs that cannot be equivalent to any
germ of a secant-map S. The AZ>-stable germs (v, A2 — Z2 — §2), (v, A2 + vj —
Z°+7°) and (v, \* +vA? +€3® +€jf®) (€ = £1) which, over C, are A*>-equivalent
to the representatives S of the third, fourth and fifth AZ2_orbit in the table, re-
spectively, are not equivalent to the germ of any S. The reason in all three cases
is that an az® term in the last component of the immersion-germ X yields an
a(A\? 4 3z%)/4 term in the last component of S.

Proof of Theorem 3.1. We consider map-germs f(Z,¥,u,v) (up to A(H)-
equivalence) whose composition with (z, ¢, u, v) = (Z,%, A2, v) yield Zo-symmetric
map-germs. Theorem 4.2 in Section 4 contains the classification of A(H)-stable
germs f : R*,0 — R*~1,0, n > 3. Proposition 2.2 implies that for a resid-
ual set of immersion-germs X : R2 — R®, n > 4, the associated germs f are
A(H)-stable. Furthermore, for n = 3 (codimension-1 immersions) the proof of
Proposition 2.2 implies that for a residual set of immersions f is an A(H)-stable
germ of rank 2 or a germ of lower rank. From the classification in Theorem 4.2
we have that for n — 1 = 2 there are three real stable A(H)-orbits of rank 1
with representatives f; = (v,u? + vu + €22 + €292), where (€1, €2) = (+1,+1)
fori =1, (—1,-1) for i = 2 and (+1,—1) for ¢ = 3, and all germs of rank less
than two lie in the closure of these orbits. Now one checks that the jet-map
Iy (defined in the proof of Proposition 2.2) has empty intersection with the
closures of j2A(H) - f;, i = 1,2 and that T';'(A), where A is the closure of
j2A(H) - f3, is a submanifold of J3(2,3) x R defined by agﬁ) =d® = aégo) =0
(notice that f3 ~ (g (v,u® +vu + Z7)). Furthermore, the I'y-preimages of the
orbits of j2A(H)-codimension greater than three in the closure of j2A(H) - f3
have codimension greater than three (or are empty). Hence we conclude that in
all cases (i.e. the ones covered by Proposition 2.2 — or its proof — and also for
n = 3 and rank < 1) we obtain .A(H )-stable map-germs f (and hence AZ2_gtable
secant maps S) for a residual set of immersion-germs.

Finally, we have to consider the following two points: (i) we want to see
which A(H)-stable germ R* — R™! can be realized as a germ f (or S) of an
immersion and (ii) we want to decompose the A(H)-orbits of f into A-invariant
strata of m; o X. For (i) we consider the list of A(H)-stable map-germs f in
Theorem 4.2 and check whether the I'y-preimage of a k-sufficient orbit A(H) - f
is non-empty. In the normal forms of Theorem 4.2 the variables z; and u always
correspond to v and w in f (or to v and A2 in §). One finds that for n > 4 all
these I'p-preimages are non-empty, and for n = 3 the I'y-preimages are empty
in the cases mentioned in Remark 3.2 (ii).

For (ii) we simultaneously consider two jet-maps: the map T'y : J2¥1(2,n) x
R! — Jk(4,n — 1), sending (j2**1X,v) to j*f, and a second map Topiy :
JHHL(2,n) xR — J*H1(2,n—1), sending (j2¥*1 X, v) to j2¥* (11 )0 X). Here
T(1,0) denotes the projection onto a hyperplane in R" orthogonal to the (1,v) in
the tangent plane T'x () X (R?). (Recall that we actually fix the direction (1,v) =
(1,0), the z-direction, in the tangent plane of X(z,y) = (z,v,93,-.-,9n) at
(0,0) and instead rotate the surface about an axis orthogonal to the (z,y)-plane,
but the transversality arguments are perhaps clearer if we consider varying
directions (1,v).) Using the correspondence of pairs consisting of germs of secant
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maps S = f(p, A\2,v) at (p,v) and projection germs T(1,0) © X from Remark 2.3,
we obtain submanifolds

T GRAMH) - ) N T G A (e 0 X)) € I (2,n) x RY,

and such submanifolds of codimension greater than three will generically have
empty intersection with (j2%+1 X, v)(R?). For the pairs S, 7, o X in Table 1 we
find that the codimensions of these submanifolds are given by the sum of the
AZ2_codimension of S and the difference of the .A-codimensions of 7, 0 X and of
the least degenerate projection-germ corresponding to some secant map-germ
in the AZ2-orbit of S. O

The projection-germs 7, o X distinguish all the A%2-orbits of secant map-
germs in the classification above. In some cases there is also a relation between
S and curvature properties of X (R?).

REMARK 3.3. For n = 3 the last three 4%2-orbits of secant map-germs S
occur at parabolic points of the surface X (R?) and the direction (1,v) = (1,0)
is an asymptotic direction. The last orbit occurs, in fact, at points of tangency
between the parabolic and the flecnodal curve (such points of tangency are
called godron- or gutter-points and correspond to cusps of the Gauss map,
see e.g. [12]). For the first A%2-orbit there is no restriction on the Gaussian
curvature (here the degenerations of the corresponding projection-germs occur
for asymptotic directions (1,v) = (1,0) at a hyperbolic point).

For n = 4 the A%>-type of S imposes no restriction on the second fun-
damental form of X(R?). Only for the degenerations of the projection-germs
corresponding to the secant map-germ st we obtain such a restriction. These
occur at parabolic points p that are not inflection points (the invariant A in-
troduced by Little [14] vanishes at p, but the 3 x 2 matrix ax of the second
fundamental form has rank 2) and such p have negative Gaussian curvature.

For n = 5, consider the 3 x 3 matrix ax of the second fundamental form of
a surface X (R?) and the sets M; := {p : rankax(p) = i}. Mochida et al. [17]
have shown that generic surfaces consist of regions of M3 points and curves of
M, points, but the A%2-types of S in our classification can occur at M3 as well
as at Ms points.

4 Classification of Z, stable map-germs R* — R”

Let f : R*,0 — RP,0 be a smooth Zs-equivariant germ. We wish to clas-
sify the AZ2-stable germs, where A%2 = £ x R%2 (i.e. Zs-equivariant diffeo-
morphisms in the source and arbitrary diffcomorphisms in the target). By an
observation of Arnol’d [1], the A%2 classification of Zo-symmetric map-germs
flx1,...,zpn_1,9) = f(®1,... ,2n_1,—y) over C coincides with the A(H)-classi-
fication of germs f(z1,...,%,—1,u), where A(H) = L x R(H) and where R(H)
is the group of diffeomorphisms preserving the hyperplane H = {u = 0} in the
source (which are of the form k = (k1 (z,u), ..., kn—1(z,u),u-k,(2,u)). Substi-
tuting u = y? into the normal forms of the latter classification gives the desired
Zo-symmetric germs. Over R the last component of the source diffeomorphism
k has to satisfy the extra condition %,(0,0) > 0 (so that k preserves the set
{(z1,.-. ,Zn-1,u) : u > 0}).

11



We denote the local rings of smooth source and target functions by C,, and
Cp, respectively, and M,, and M, are the corresponding maximal ideals. Let
67 denote the Cj,-module of vector fields over f (i.e. sections of f*T'RP). Set
0, = 0(1r~) and 8, = §(1rr), and define homomorphisms ¢f and wf:

tf 00— 0f, tf(E) =df &,
(where df is the differential of f), and

wf:bp =0, wf(g)=4¢of

The tangent spaces to the groups G = A, K, R and C are then defined in the
usual way (see [23]). Hence we shall only indicate the required modifications for
the subgroup A(H) of A (where we have to restrict tf to 6,(H), see below).

Apart from A(H) we need the the group K(H) = C - R(H) (semi-direct
product), both groups are so-called geometric subgroups of A and K so that
the usual unfolding and determinacy results hold (see Damon [9]). For any
such group G we denote, as usual, by G, and G; the extended pseudo-group (of
non-origin preserving diffeomorphisms) and the subgroup of diffeomorphisms
with 1-jet the identity. For calculations of complete transversals (see [8]) and of
determinacy degrees we use the notation H for a unipotent subgroup of A(H)
(H can contain certain elements of A(H) \ A(H);). Since A(H)-equivalence is
much finer than A-equivalence, we often have to work with bigger unipotent
groups H than A(H)1, even for stable germs f — frequently one also has to use
the whole group A(H) (which is not unipotent) and apply Mather’s lemma [16].
Combining the determinacy results in [7, 20] we get the following useful crite-
rion: if MLO; C TK(H).- f+ M40 and MEFL0, C TH - f+ MEHF10, then
f is k-H- and hence k- A(H)-determined. Recall that TR(H). - f = tf(6,(H)),
where 6,,(H) is the Cp,-module of source vectorfields tangent to H (i.e. 6,(H) 3
¢ = Z?;ll ai(z,u)0/0z; + u - b(x,u)d/0u, where a;,b € Cy). The following
relation is also useful in the classifications below.

LEMMA 4.1. For an A(H)-finite map-germ f : R*,0 — RP,0 we have the
following relation between codimensions of orbits:

cod(A(H), f) = max[0,cod(A(H), f) —n +1].

Proof (Sketch). The argument is almost the same as that for the analogous
formula for ordinary A-equivalence, see for example Proposition 4.5.2 (ii) of [23].
For A(H)-stable germs f the formula holds trivially, hence suppose f unstable.
In that case the formula is equivalent to

dim (TA(H), - f/TAH)-f) =n+p—1,

which in turn is equivalent to: if o € 6,(H) and § € 6, are such that ¢f(a) +
wf(B) € TA(H) - f then g € M, -6, and w(a) € M, - 0,_1, where 7 is the
projection onto the first n — 1 components (this makes the difference to the
usual formula for A). The proof now concludes as in the A-case. a
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The classification of A(H)-stable map-germs with source dimension four is
given by the following

THEOREM 4.2. Any A(H)-stable map-germ f : R*,0 — R™,0, where n > 2,
is equivalent to one of the germs in Table 2. (Here €¢; := x1 and the cases
(€1,€2) = (+1,-1),(=1,+1) are equivalent.).

Table 2: A(H)-stable germs R* — R"
n= flx1, 22, 23,u) = cod(A(H), f) =
2 (.’L‘l,.'li'g)
(T1,u + €173 + €222)
(T1,u + T179 £ 22 + 23)
(z1,u% + T1u + €173 + €222)
3 (z1,72,73)
(IEl,.’L'Q,’U/:*:J?g)
(%1, T2,u + T123 + T3)

(%1, T2, u? + T1u + 23)
(T1,T2,u + 2173 + T272 £ T})
(21, %2, 2123 + L2235 + 75 + T3U)
(%1, T2, T3 + 10 + u?)

4 (z1,72,73,u)

(21,22, 23,u% + T1U)
(21,22, 73,4 + T1u + T2u?)
(%1, T2,u + T173, T3)

(.771, Za2, :L"3,u4 + z1u + x2u2 + a:3u3)
(w1, T2, u £ 2%, 2123 + T3 + T273)

5 (371755'27373;'“70)
(w1, 2, 23, u% + To2u, T11)
(21, 22,73, u + 2123, T2T3)

SO WOWNOIWWNNFOIWWWNNFEOWWN O

6 ($1,.’L’2,.’L‘3,U,0,0)
2
(21,22, %3,u° + T1U, Tou, T3u)
27 (.’L'l,.Z'z,.’Eg,U,O,...,O)

Remark on Proof. By Lemma 4.1 one obtains the A(H)-stable germs (of
A(H),-codimension 0) by classifying the A(H)-orbits of germs R*,0 — R, 0 of
A(H)-codimension at most three. The group A(H) is a geometric subgroup of
the group A (as defined by Damon [9]), the classification techniques are there-
fore the same as for 4. Below we give an outline of this classification for the
case n = 4, p = 3 (indicating the structure of the classification pattern of the
A(H)-stable orbits, but omitting all calculations). For the other p > 2 the clas-
sifications are similar (and often less extensive). O

So for n =4, p = 3 we have the following classification.
PROPOSITION 4.3. Any A(H)-stable map-germ f : R*,0 — R3,0 is equiv-
alent to one of the following germs: (z1,%2,%3), (%1,T2,u + z3), (z1,Z2,u +

3 2 4 2 2 2
123 +23), (21,%2,u + 2123 + 2223 + 23), (21, 22,235 + T1u £ u?), (21,220,235 +
T1u + ud + T2us) and (T1,T2, T3u + T1T3 + T3 + T223).
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Outline of Proof. The elements of R(H) are germs of diffeomorphisms k of
R* preserving the hyperplane H = {u = 0}, which — by Hadamard’s lemma —
have the form k = (ky, k2, k3, uks) with k; = k;(x1, z2, z3,u) and k4(0,0,0,0) >
0. By Lemma 4.1 the A(H)-stable germs f : R*,0 — R™,0 are those with
A(H)-codimension at most three. Let A(H)* := j* A(H) denote the Lie group
of k-jets of elements of A(H). For n = 3, one finds (by direct A(H) coordinate
changes) A(H)!-orbits of codimension 0, 1 and 2, respectively, with the following
representatives:

(1,22, 23), (@1,72,u), (T1,22,0). (%)

The remaining A(H)!-orbits lie in the closure of A! - (z1,u,0) and have codi-
mension at least 4 and can therefore be discarded.

The first germ in (x) is 1-A(H)-determined, and a complete 2-transversal for
the second germ ¢ is spanned by x%, z1x3 and zox3 in the last component. From
the “general” 2-jet (z1,z2,u + aw§ + bx1xs + cxaxs) we obtain over the 1-jet
o the A(H)?-orbits represented by (z1,z2,u + z2), f = (z1,22,u + z123) and
(z1,22,u). The first of these has codimension 1 and is 2-determined, the third
has codimension 4, and the second has codimension 2 and has to be considered
further. Over f we find three A(H)3-orbits given by

(wl,xQ,u+w1x3+m§), (wl,xg,u+w1x3+x2$§), (z1,22,u + T123).

The first has codimension 2 and is 3-determined, the third has codimension 4,
and over the second (which has codimension 3) there is one A(H)*-orbit that
has codimension 3 (the others have higher codimension), which is 4-determined
and given by (z1,%2,u + 123 + 2732 £ z3). This completes the classification of
the A(H)-stable germs over the second 1-jet in (x).

Finally, consider the third 1-jet ¢ = (x1,22,0) in (x). A complete 2-
transversal consists of all degree 2 monomials in the third component involving
z3 or u. We consider two cases: the z2 coefficient is non-zero or zero.

In the first case we can reduce, up to A(H)?-equivalence, to (x1, 72,23 +
au® + brsu + cxiu + dzoy). Assuming that ¢ and d are not both zero (otherwise
the A(H)?2-codimension is greater than 3) we can reduce to the case where ¢ = 1
and d = 0, and letting z3 — z3 — bu/2 we get:

(z1, 22,23 + z1u + (a — b?/4)u?).

Hence we get the following three A(H)?-orbits: (z1,z2,23 + u?) (these are 2-
determined and have A(H)-codimension 2) and ¢ = (1, za, z3+z1u) (of A(H)?-
codimension 3). A complete 3-transversal for ¢ is given by «® and zou? in the
third component, and when the coefficients of these two terms are both non-zero
we can reduce to f = (x1,%2,73 + T1u + u® + T2u?). Some more substantial
calculations then show that f is 3-determined and cod(A(H), f) = 3. The other
A(H)3-orbits over o (for which the product of the two coefficients vanishes) have
codimension at least four.

In the second case (zero z3 coefficient) the A(H)?-codimension is at least
three, and in the best possible case the coefficients of x3u and z; 23 are non-zero
(any degeneration would lead to A(H)2-orbits of codimension at least four)
so that we can reduce to the 2-jet ¢ = (w1, T2,23u + T123). A complete 3-
transversal for o is given by x3 and z2z% in the third component, and using
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Mather’s lemma one shows one can reduce to f = (21, T2, T3u+21 T3+ 23 +2273)
provided that the coefficients of both terms are non-zero. Finally one shows that
f is 3-determined and cod(A(H), f) = 3. O
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