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Abstract

The only stable singularities of a real map-germ f : R® — R?" are isolated transverse
double-points. All A-simple germs f have a deformation with the maximal number d(f)
of real double-points (this is a partial generalization to higher n of the result of A’Campo
[1] and Gusein-Zade [13] that all plane curve-germs have a deformation with § real double
points, with the extra hypothesis of A-simplicity). The proof of this result is based on a
classification of all 4-simple orbits.

1. Introduction

A fair number of classifications of A-simple smooth germs f : K*,0 — KP,0 (where
K = R or C and where smooth means infinitely differentiable or real analytic in the
former and complex analytic in the latter case) can be found in the literature: namely in
dimensions (n, p) = (1,2) (see [5]), (1, 3) (see [12]), (1,n), n > 2 (up to stable equivalence,
see [2]), (2,3) (see [20]), (n,2), n > 2 (see [22, 24]), (3,3) (see [17]) and (3,4) (see [15]).
In the present paper we consider the case (n,2n), n > 2, and K = R (Theorems 1-1
and 1-2), see Remark 1-3, part (iii) for the necessary modifications in the classification
over C. In our classification procedure we construct the 4-simple orbits in dimensions
(n + 1,2n + 2) from those in dimensions (n,2n), n > 3. The basic case n = 3 has
been considered by the first named author in [16], for completeness we also give the
classification for n = 2 (using his Transversal program Kirk has apparently carried out
an extensive unpublished classification of map-germs from surfaces to 4-space, but we do
not know whether this classification contains all A-simple orbits). The classification will
be used to show that all such 4-simple germs have a real deformation with the maximal
number d(f) of real double-points, which — in combination with a result by Houston [14]
— implies that these germs have a good real deformation (see part (ii) of Remark 1-6).
Also, combining the above classification with results on Ag-equivalence [10], we obtain
the simple map-germs from a n-manifold into a 2n-manifold with a volume form on it
(see part (iv) of Remark 1-3).

It will turn out that all A-simple germs have corank at most one. In order to rule out
certain adjacencies of orbits it is useful to have available A4-invariants that are upper
semi-continuous under deformations. Apart from the A-codimension of a corank-1 germ

f : Rn70 _> R2n707 f(x7 y) = (x7gn(x7 y)7 R 7g2n(x7 y))7
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we consider the upper semi-continuous A-invariants
myz(0) :==dim Cy,/ f* Moy, - Cp

(the local multiplicity of f), d(f) (the double-point number of f) and p(f). The latter
invariants are defined as follows: consider the map-germ

G(O,O) : R+ ,0— R ) (X, Y, g) — (Gnv Tt G2n)7

where G; = (gi(x,9) — 9i(%,¥))/(@ — y)- Then d(f) := 1/2-mg,,(0) and p(f) :=
corankG o,0). Notice: if f and f' are A-equivalent then the corresponding maps G/q,0)
and Gl(o,o) are K-equivalent (see Lemma 2.3 on equidimensional germs f together with
the remarks in Section 3 on germs f : R® — RP, n < p, in [23]) — the local multiplicity
and the corank are clearly K-invariants of G 0y, and hence A-invariants of f.

Finally, notice that for n = 1 the invariant d(f) is the well-known §-invariant of the
plane curve-germ f. And d(f) corresponds to the invariant r(g,g)(f) in the notation of [23]
(in [23] the numbers of isolated stable singularities of corank-1 map-germs f : C*,0 —
C?,0 are denoted by 7(s,m)(f), where k(s,m) = (k1,... , k;) denotes a s-tuple for which
there is an isolated stable s-germ consisting of Ay, -points with mn = Y7 | k;; but for
(n,p) = (n,2n) there is only one such invariant, namely r(,)(f) = d(f)). For real germs
f :R*,0 — R2" 0 the invariant d(f) measures the number of double points in a stable
perturbation of the complexification of f, and d(f) is an upper bound for the number
of real double-points appearing in a deformation of the real germ f. Deformations of f
with d(f) real double-points (provided such deformations exist) are called maximal or
M-deformations, for short. More precisely M-deformations of real map-germs f : R*,0 —
RP, 0 are deformations for which the maximal numbers of real isolated stable singularities
are simultaneously present in the image (for n < p) or in the discriminant (for n > p).
In [25] it has been shown that all A-simple singular germs f : R®,0 — R?,0, n > p, of
minimal corank n — p + 1 have an M-deformation. The main result of the present paper
is that all A-simple germs f : R*,0 — R2",0 also have an M-deformation (Theorem 1-5).

In dimensions (n,2n) the existence of an M-deformation is, by a result of Houston
[14], equivalent to the existence of a good real perturbation as defined by Mond and
his coworkers (see e.g. [18, 8]). A good real perturbation of a map-germ f is a real
perturbation for which the homology of the image (for n < p) or discriminant (for n > p)
coincides with that of its complexification (this is analogous to the definition of an M-
variety X in real algebraic geometry for which b,(Xgr) = b.(X¢), where Xi is the set of
K-points, K = R or C, and b, is the sum of the Betti numbers).

In dimensions (n,p), p < 2n, it is a priori possible that there exist map-germs with M-
deformations but without good real deformations and wvice versa. At present the following
facts about singular map-germs of minimal corank max(1,n —p+ 1) can be found in the
literature (see also the introduction of [25] for further references): (i) all A.-codimension
1 germs have a good real deformation (but there are A-simple germs of higher A.-
codimension without a good real deformation, see e.g. [8, 18]) and (ii) all A-simple
germs with n > p have an M-deformation [25]. And there are examples of A-simple
map-germs of higher corank without an M-deformation [25].

We begin the description of the main results of the present paper by stating our
classifications of A-simple orbits of map-germs R* — R2” for n = 2 and n > 3.
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THEOREM 1-1. Any A-simple map-germ f : R2,0 — R*,0 is A-equivalent to one of

the following germs:

z,y,0,0)

z,xy,y>,y"" ), k> 1

z,9%,9%, 2%y), k > 2

z,y%,y% + (1) aky 2ly), 1 > k> 2
2,47, 2%y £ y?* L 5y®), k> 2

z, 9%, 2%y, y°)

z,y?, 23y + y°, xy®)

z,zy, xy? + 328, k> 1
z,zy +y*F 2 zy? y3), k> 1

z,zy,y°,y*)
z, 2y, 9%, y°)

v,y + 9%, 2y’ +y?* ), k> 2
z, 2%y +y* £y°,2y%,9%)
z, 2’y +yt, 2%, y°%)

Table 1 contains a list of A-invariants of the non-immersive germs of this classification.
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(2, zy, zy® + y*F 41 %), k> 1
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(

(type XIV).

Table 1. A-invariants for the non-immersive germs in Theorems 1-1 and 1-2 : (x) for

n > 4 only 225 is simple.

Type Type cod(A, f) my(0) d(f) p(f)
(n=2)  (m>3)
Ir 1 k+n 2 k 1
115 2k 2k+n—1 2 k 2
IIIk,l 3}9,1 Il+k+n—-1 2 l 2
IV, 4y k+n+3 2 k+2 2
A% 5 n+6 2 4 2
VI 6 n+7 2 5 2
- 7 n+7 2 4 3
- 8 n+ 8 2 4 3
- 9 n+7 2 4 3
- 10 n+8 2 4 3
- 11 n+8 2 5 3
- 12 n+9 2 5 3
- 13 n+ 10 2 5 3
VI, 14y (n+1)(k+1) 3 3k 2
VIII, 15 (n+1)(k+1)+1 3 3k+1 2
IXg 164 (n+1)(k+1)+2 3 3k +2 2
- 17k, kE+nl+4 3 3l 2
- 18k, k+nl+5 3 3l+1 2
- 19, kE+nl+6 3 31+ 2 2
X 20 3n+1 3 3 2
XI 21 3n+2 3 4 2
XIIg - k+6 3 k+3 2
- 22 (%) 2n+k+2 3 k+3 2
- 23 3n+2 3 5 2
XIII - 9 3 5 3
XIV - 10 3 5 3
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THEOREM 1-2. Any A-simple map-germ f : R*,0 — R2",0, n > 3, is A-equivalent

to one of the following germs. (Here x and xy denote z1,... ,2,_1 and 21y,... ,Zp_1Y,
respectively, and we set €; := £1.)

(x,9,0,...,0) (immersion)
(x,xy,y%,y**1), k> 1 (type 1)
(X, Z2Ys -+ s Tn-1Y, Y7, y ,2ty), k> 2 (type 2&)
(X, 229, -+, Tn-19, 47, y + (£1)aty, 2ly), 1 > k> 2 (type 31,)
(X, Z2Y, - - - s Tno1y, Y2, iy £y 29®), B> 2 (type 4k)
(X, 22y, ..., Tn 19,9, wly,ys) (type 5)
(X, 22Y5 - s Tn1Y,y%, 2}y + 4%, 219°) (type 6)
(X, Z3Y, - - s Tn_19, Y%, 1Y, T3y, y° + T122Y) (type 7)
(X, 239, ... , Tn 19,97, 27y, 23y, 1°) (type 8)
(%, 23Y, .- ., Tn_19, Y7, 2122y, (23 — 23)y, y° + 23y) (type 9)
(X,73Y, .- s Tn_1Y,y%, 172y, (22 — 22)y,3°) (type 10)
(X, 23y -+ s Tn—1Y,Y%, T122Y, (27 + 23)y, y3 =+ a3y) (type 11)
(X,23Y, ..., Tno1y, ¥°, 2122y, (23 + 23)y, 4° + 23y) (type 12)
(X, 23Y, ..., Tn 19,92, T122y, (23 + 23)y,1°) (type 13)
(x5, xy, 219 + y** 1, 4%), k> 1 (type 144)
(x,xy, 219 + y**2,4%), k> 1 (type 15)
(x, 21y + %2 moy, ... o1y, 1Y% 0%, B> 1 (type 164)
(x, 21y, T2y + Y32 m3y, . maay, my? 4+ Y3 ),

I1>k>1 (type 1719,1)
(%, 21y, T2y + y* 2, 23y, . 2aay, 11y + 47,00,

I>k>1 (type 18k,l)
(%, 21y + 2, 2oy + 4352 23y, ey, 11y, 00,

I>k>1 (type lgk’l)
(x,xy,4%,y%) (type 20)
(x,xy,9%,9°) (type 21)
(%, 21y + 9%, 22y, - -, Ta1y, 119° + 92 20y® + 44,
k>2Mm=3),k=2(Mn>4) (type 22)
(X, 21y + 9%, 229, . .. , 1y, 192 + 90, 44), (type 23)

Table 1 contains a list of A-invariants of the non-immersive germs of this classification.

Remark 1-3. (i) The normal forms f for n > 3 in Table 1 that appear in the same row as
some normal form h : R?,0 — R*,0 have the form f = (z2,... ,Zn_1,%2Y, ... ,Tn_1Y, h).
The last three invariants in the table are the same for all normal forms f in a given
row, and for those with mz(0) = 2 the A.-codimension is also the same (notice that
cod(Ae, f) = cod(A, f) —n, for non-immersive f), but for the others the A,-codimension
increases with n.

(ii)) All germs in our classification, except for types XIIj, 225 and 23, are either semi-
quasihomogeneous (type XIII) or quasihomogeneous (the remaining germs). (For n > 3
the germs 22; and 23 are “weakly quasihomogeneous” in the sense of [10]: for integer
weights the weighted degrees are non-negative and the total weighted degree is positive.)

If wy,...,w, are the weights of the variables z1,... ,2,-1,y and if d;, ... ,ds, are the
weighted degrees of the component functions of a quasihomogeneous corank-1 germ f =
(X, 9n, - - - »G2n) or of the filtration-0 part of a semi-quasihomogeneous germ f = fo + f+

then we have the following formula (apply the generalized Bezout formula to G gy with
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wy, the weight of the additional variable 4):

Hfgn(dz - wn)
2w [[72 w;

(iii) In the classification of A-simple orbits over C we omit types 9% and 10 (over C,
we have 7 ~ 9 and 8 ~ 10) and we identify all real A-orbits in Theorems 1-1 and 1-2
that are distinguished by =+ signs.

(iv) In [10] the (non-geometric in the sense of Damon [9]) subgroup Aq of A, in
which the target diffeomorphisms are volume-preserving, has been studied. And it has
been shown that, over C, the Aq- and the A4-orbit of a weakly quasi-homogeneous germ
coincide. As a corollary of our classification we obtain the list of Ag-simple orbits over
C consisting of the following map-germs: for dimensions (2,4) the germs I, to XI and for
dimensions (n,2n), n > 3, the germs 1; to 8 and 11 to 21, and, for n > 4, in addition
the germs 225 and 23. (Over R the volume-preserving diffeomorphisms are orientation-
preserving, hence different connected components of a given 4-orbit can correspond to
distinct Agq-orbits.)

(v) In dimensions (n, p), where p > 2n, a map-germ is A-finite if and only if it is £L-finite
(see e.g. [26]), hence any A-finite germ f : K*,0 — K2" 0 in the above classification gives
rise to A-finite germs (f, h) : K*,0 — K2"*¢ (for some smooth germ h : R",0 — R, 0). It
would be interesting to obtain the .A-simple orbits in dimensions (n,p), for any p > 2n,
from the above classification and induction on ¢ (similar to Arnol’d’s classification of
curves up to stable equivalence [2]).

(vi) Recently Zhitomirskii has introduced the notion of a fully A-simple map-germ: f
is fully A-simple if only a finite number of .4-classes of multi-germs can appear in a defor-
mation of f (ordinary A-simplicity of mono-germs only requires deformation finiteness
with respect to mono-germs), see [27]. And he found that the fully .4-simple curve-
singularities form a small subset of the set of A-simple curve-singularities [27]. We do
not know the fully 4-simple orbits in our classification above.

da(f) =

The following result is an analogue of a key property in the construction of M-
deformations of X" P+l_germs f : R* — RP, n > p, in [25]. For map-germs in dimension
(n,p) = (n,2n) this property ensures the existence of M-deformations only in certain
cases, hence additional techniques are required (see Section 4).

PROPOSITION 1-4. For any A-simple germ f : R*,0 — R2™,0, where n > 2, there
exists another such germ g (of lower A-codimension) such that [f] — [g] and d(f)—d(g) <
1.

Notice that this proposition implies the following lower bound for the 4.-codimension:

cod(Ae, f) = d(f).

THEOREM 1-5. All A-simple germs f : R*,0 — R2",0 have a deformation with d(f)
real double-points.

Remark 1-6. (i) For germs of parameterized plane curves f (n = 1) the statement of
Theorem 1-5 holds even without the hypothesis A-simplicity of f (see [1, 13]), but an
analogue of Proposition 1-4 does not hold for n = 1 (for example, the A-simple curve-
germ f = (y*,y® + ¢7) with §(f) = 8 cannot be deformed to any mono-germ g of lower
codimension with d(g) = 7 or 8).
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(ii) A result of Houston (Theorem A in [14]) states that for the pair of dimensions
(n,2n) the disentanglement of an A-finite map-germ f has the homotopy type of a
wedge of circles (roughly speaking, the disentanglement is the intersections of the image
of a stable perturbation of f with a suitable neighborhood in the target). Theorem 1-5
therefore implies that any A4-simple germ f has a good real deformation as defined in [18]
(i.e. the homology of the the image of a deformation f; of f with d(f) real double-points
coincides with that of the complexification of f;).

(iii) For dimensions (n,p), where n > p, there are examples of A-simple singularities
of non-minimal corank that fail to have an M-deformation (and these are also fully .4-
simple in the sense of [27], e.g. the corank-2 germ f = (z? —y? + 23, zy) in [25], Remark
2.2). For dimensions (n, 2n) we do not know whether there are germs f of corank greater
than one (that are necessarily of positive A-modality) and without a deformation with
d(f) real double-points. For map-germs f = (f1(x),... , fon(x)) : C*,0 — C?",0, where
x = (21,... ,%y,), of any corank there is a double-point formula

e(f) = 2d(f) = dimc¢

<$1 —T1,...,ZTp —.’Z‘n)
<f1(X) - fl(i)a' . af2n(x) - f2n(i)>

of Artin and Nagata [3] (counting the double points in the source, i.e. twice the number
of double points in the target) and the work of Gaffney [11] relating 2d(f) to other
invariants of f. But for the example of a corank-2 germ f = (22,92, 23 — zy,y® + 2zy)
from [11] (which is bi-modal and for which 2d(f) = 12) one calculates that the quotient
of ideals appearing in the formula for e(f) is isomorphic to C4/Z, for some ideal Z that
fails to define the source double point set as a complete intersection. For maps f of
higher corank 2d(f) is therefore, in general, not given by the multiplicity of a K-finite
map analogous to G (g ) in the corank-1 case, which makes the study of M-deformations
more difficult.

The plan of the present paper is as follows. In Section 2 we introduce some notation
and illustrate some classification techniques using one series in our classification as an
example. All such details will be suppressed in the actual classification in Section 3: the
results in 3-1 reduce the classification in dimensions (n,2n), n > 2, to that in dimensions
(2,4) and (3,6) of corank-1 and multiplicity 2 and 3, and the latter is described in 3-2
and 3-3. And 3-4 describes some partial adjacencies of A-simple orbits that are sufficient
to establish Proposition 1-4. Finally, in Section 4 it is shown that all the A-simple germs
f have a deformation with d(f) real double-points.

2. Notation and techniques

Let f: R",0 — R?,0 be a C*®-germ, the group .4 = Diff(R",0) x Diff (R?,0) acts on
the space of smooth germs f as follows: (h,k) - f = ho fok~!, (k,h) € A. Let C,, and
() denote rings of function-germs at the origin in source and target, and let m,, and m,,
denote the corresponding maximal ideals. We write J*(n,p) for the space of kth-order
Taylor polynomials at the origin, and j* f for the k-jet of the map f. Similarly A* = j*(A)
denotes k-jets of elements of .A. The Lie group AF acts smoothly on .J*(n,p), and when
we speak of equivalence of k-jets we shall always mean A*-equivalence. Instead of writing
Ty (0)A" - j* £(0) we shall write T.A* - f. A map-germ f is said to be k-determined (for
some given group of equivalences) if every map g with the same k-jet as f is equivalent
to f, in that case any jet j'f with [ > k is said to be sufficient.
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Let 8¢ denote the Cp-module of vector fields over f (i.e. sections of f*TRP), which is
a free Cy,-module of rank p which can be identified with (C,)*? (below we shall refer to
the jth component of §; meaning the jth copy of Cy, in (Cp)*?). Set 6,, = 6(1g~) and
0, = 6(1r»); then the homomorphisms tf and wf are defined as follows:

tf:60n —0f, tf(a)=4df -a,
(where df is the differential of f), and
wf:0, =68z, wf)="bof.

Apart from A, we need the groups A;, A, and K.: A; is the subgroup of A of elements
whose 1-jet is the identity, A, is the extended pseudo-group of non-origin-preserving
diffeomorphisms, and K., resp. K, is the (pseudo-) group obtained by allowing invertible
p X p matrices with entries in C,, to act on the left, the right action is the same as
for A., resp. A. The following tangent spaces are associated with these latter groups:
TA.-f=tf(0n) +wf(0p) and T, - f = tf(0,)+ f*my -0y, for A and K one multiplies
by the first and for A; by the second powers of the relevant maximal ideals, respectively.

To find the A*-orbits over a given (k — 1)-jet we use a combination of coordinate
changes, Mather’s Lemma (Lemma 3.1 in [21]) and complete transversals (Theorem 2.9
in [7]), to determine the order of .A-determinacy we use Theorem 2.1 in [6] (for intro-
ductions to determinacy theory see the surveys in [4, 26]). For many of the more com-
plicated normal forms in our classification it is useful to consider filtrations by weighted
degrees, the following example illustrates this technique for the series of germs XII;. In
Section 3 such details will be suppressed. Notice that this example is not even semi-
quasihomogeneous (the initial part not being A-finite), but it is still useful to work with
weight filtrations using the weights of the initial part.

ExXAMPLE. Claim: all the A-finite germs over the 4-jet f = (z,zy + y*, zy?,y*) belong
to the series XIT;, = (z,zy + y%, zy? + y?*+1,y*) for some k > 2. And XII, is (2k + 1)-
determined.

In order to prove the claim we assign weights 2,1 to z,y so that the component
functions Xi,..., X4 have weighted degrees (di,...,ds) = (2,3,4,4). Then the ¢; :=
0/0X; have weighted degree —d; and 0/0x and 0/0y (which we also denote by e, e,
which should cause no confusion because the source vector fields appear in ¢f(-) and the
target vector fields in wf(-)) have the weights —2 and —1. For the above weights let (6,,)s,
(62,,)s and (6¢)s denote the filtration s parts of the modules of source-, target-vector fields
and vector fields along f, respectively, and consider the linear map

Vs : (Bn)s @ (B2n)s = (65)s,  (a,b) = tf(a) +wf(b),

of R-vector spaces. We claim that -~y is surjective for all s = 2r > 2 and that for all
s = 2r +1 > 1 the cokernel of v, is spanned by y?>"*° - §/8X3. This implies that the
complete transversals for f of even filtration are empty and those of odd filtration are
spanned by the one element above.

For even filtration s = 2r it is easy to see that the elements of (6¢); in the first, third
and fourth component are in wf((f2,)s). And modulo these we obtain the elements of
the second component from generators tf(m - e1), where m has weighted degree s + 3.

For odd filtration s = 2r + 1 the elements of the second component of (fy)s are in
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the image of wf((fan)s). For s = 2r + 1 > 5 we get from any element of each of the
remaining components of (67),, together with wf((625,)s), all the remaining elements of
that component. Selecting y?"+? - 8/0X3 as such an element of the third component, we
obtain (working modulo elements of the second component) from # f (3273
tf(y2 2 -e3) such elements in the first and fourth component. Hence y?"+5-9/8X3 spans
the cokernel of 7, for s > 5, as desired. For s = 1,3 we have to use some more generators
from tf in order to obtain the same conclusion.

Next, it is clear that f and f.:= f + cy?"*® - 3/0X;3 are not A-equivalent for ¢ # 0,
because the latter is A-finite but not the former (maybe the easiest way to see this is to
check that the double-point numbers are d(f) = oc and d(f.) < oo, respectively). The
coefficient ¢ # 0 can be scaled to 1: from the “Euler generator” e(f.) :=tf.(2z-e; +y -
es) — wfc(2;21 d;jX;-ej) = (2r + 1)ey?™° - §/0X5 and Mather’s lemma we conclude
that {f.:c> 0} and {f. : ¢ < 0} lie in a single A?"*+5-orbit, hence we can scale ¢ to %1,
but fi; and f_; are clearly A-equivalent.

Finally, we have to show that gy := (z,zy + y°, zy? + y?**t1,9), k > 2, is (2k + 1)-
determined. The local multiplicity of g, is three, hence it suffices to show that M2k+2.
8,5, C T A1 - gp + M2E+5.9,. or that the three successive r-transversals, r = 2k + 2, 2k +
3,2k + 4, are empty for g (we are using transversal by degree here as g is no longer
weighted homogeneous). But from the weighted-degree transversal calculations above it
is clearly sufficient to check that y***3.-9/0X3 € TA; - gp + M2+ .0, : notice that,
at the r-jet level, we can use the initial part f of g5 to “push” terms T of filtration
greater than r — d; in the jth component into MrHl -8,, (using a sequence of generators
tgr(a) +wgy (b) such that tf(a) +wf(b) = T and deg(tgy(a) +wgy(b) —T) > degT); and
for r = 2k + 2,2k + 4 we obtain all terms of filtration r — d; from the initial part f (as
in the weighted-degree transversal calculations above). For r = 2k + 3, we can eliminate
the terms of filtration 2 between tgy(g; X5 -e1), tgr(y> - e2), tgr(y* -€1) and some obvious
generators of type wgy(a) and obtain an additional generator

(2]€y2k+3 _ 3ary2k+1 _ 2x2y2k_1) ) 6/8X3

-e1) and from

of filtration 2k — 1, which together with the generators of filtration 2k — 1 from the initial
part f of gj yields (modulo terms of higher filtration, and hence modulo M2k+1 .9 )
the term y?*+3 . 9/0X3, as desired.

3. Proof of classification

We will see that all A-simple germs f : R*,0 — R?™,0, n > 2, have corank at most one
and local multiplicity at most three. Furthermore, for each A-simple germ h : R*,0 —
R?",0, h(x,y), where n > 3, there is at most one A-class of A-simple germs f : R**1,0 —
R2"+2 0, with f = (2, Zny, h(X,y)). (In fact, the only pairs h and f, where h is A-simple
but not f, come from the series 22; for k¥ > 3.) And any A-simple f can be obtained
from such an h, and clearly we have d(f) = d(h), p(f) = p(h) and m;(0) = m;(0). (Also,
for my(0) = my(0) = 2 there is an isomorphism of normal spaces NA, - f =2 NA, - h,
but not for m(0) = mp(0) = 3.) Hence the basic case in the classification of germs
f:R*,0 —» R2" 0, n > 3, is that of n = 3. (The classification of map-germs from R?
to RS was the subject of the MSc thesis of the first named author, see [16]. Below we
shall correct some of the adjacencies described in [16], this leads to a slightly bigger list
of A-simple orbits). The relation between the classifications for (2,4) and (3,6) follows
in many cases the same pattern as for (n,2n), n > 3, and (n + 1,2n + 2), namely for the
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n = 2 germs h in Table 1 appearing in the same row as the corresponding n = 3 germ
f = (z2, 22y, h) — but here we have some additional exceptional germs (not appearing
for n = 3 and vice versa) which can be classified without too much extra effort.

The remainder of the present section consists of the following parts: in 3-1 we obtain
restrictions on the invariants of A-simple orbits in dimensions (n,2n), n > 2, in 3-2 and
3-3 we describe the structure of the classifications of A-simple orbits of multiplicity 2
and 3, respectively, and in 3-4 we describe some partial adjacencies of A4-orbits (which
are sufficient to prove Proposition 1-4 and the simplicity of the orbits in Theorem 1-1
and 1-2).

3-1. Restrictions on ms(0) and p(f) for A-simple germs f

We first rule out A-simple germs of corank greater than one.
LeEMMA 3-1. All A-simple germs f : R*,0 = R2™_0 have corank at most one.

Proof. Tt is enough to show that all ¥2-germs have positive .A-modality (then the same
is true for all fz—germs). Let ¥2.J3(n,2n) denote the space of 3-jets of corank-2 of the
form

f = (:Ela"' y Tn—2,9n—1,--- 592”)7 9i :gi(wla"' Jmn) € <$n71,$n> N (M%,/M?L)

Consider the subspace U of ¥£2.J3(n,2n) = U @ V of dimension (n + 2)(2n + 3) spanned
by the following monomial vectors:

a

1'"71.23‘2 -e; and z;zy - €4

where i =n—1,...,2n,a+b=2,3,j=1,...,n—2and £k = n —1,n. Modulo V,
the A3-tangent space of any element f € U @ V contains the following generators for
the subspace U: wf(X;-e;) (n —1<14,j <2n),tf(z;-e;) i=1,...,n,j=n—1,n),
tf(m%—lm% : ej) (a‘+b =2,j=n- 1}”)7 tf('ri : 6]') _wf(Xi : ej) (1 <i4,j<n- 2)
and in addition hgpj = tf(z%_;28 -e;) — 22 12l -ej (a+b=2,j=1,...,n—2),
provided z¢_,z%-e; € TA3- f+V. (Remark: there are no additional generators hg p, ; with
a+b =1, because ¢t f(z;-e;) is the only generator for the monomial vector z;-e; ¢ U®V
fori =n—1,n,j = 1,...,n — 2.) These are at most 2n% + 5n + 8 generators for a
subspace of dimension (n + 2)(2n + 3), hence the modality at the 3-jet level is at least
2n—2>2(forn>2). O

Remark 3-2. For corank-2 germs f : R?,0 — R2",0 with n > 10 already the A?-orbits
are at least uni-modal, as the following argument shows. A complete 2-transversal T for

o= f(x1,...,2) = (®1,... ,Tpn_2,0,...,0)

is given by all degree 2 monomials divisible by x,_1 or z,, in the last n + 2 component
functions, hence dim 7" = (n + 2)(2n — 1). Setting f := o + }_ .y a;m;, we have the
following generators for the subspace TNTA% - f of TA2 - f:

wf(Xi-ej)n—1<i,j <25 tf(zi-ej),1<i,j<n—2

tf(zi-ej),i=1,...,n, j=n—1n.

These are (n + 2)? + (n — 2)? + 2n = 2n? + 2n + 8 generators. But f is weighted
homogeneous, so we have at least one relation (Euler’s relation) between these generators.
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Hence dimT > 2n2 +2n +7 <= n > 10, so we get at least one modulus at the 2-jet
level for n > 10.

LEMMA 3-3. There are no open A-orbits of corank-1 map-germs f : R* 0 — R?" 0,
n > 2, in the K-orbit As (i.e. with local multiplicity m¢(0) = 4).

Proof. For n > 3 one checks that over the open A*-orbit in A3 N J*(n,2n), n > 3, one
has the unimodal .A%-orbits

(x, 21y + ¥4, 22y, .., Tno1y, 71y + ay®, zay® +yt).

For n = 2 the AS-orbit in A3 of minimal codimension has the representative f, =
(z, 2y, zy? +9° + 4%, y* +ay®). The A%-codimension of f, is 10 (and the modular stratum
has codimension 9). O

Next consider germs of local multiplicity two.

LEMMA 3-4. Let f: R*,0 = R**,0, n > 3, be A-simple, of local multiplicity m;(0) =
2 and of corank-1. Then (i) p(f) < 3 and (ii)

f ~A ('7"37"' y Lp—1,23Y, - - - >mn—1y7h)7

for some A-simple germ h : R®,0 — R®,0 of corank one and 2-jet j2h(x1,2,y) =
(1'17$27y2ag4595796): gi € Mg

Proof. We claim that for all n > 4 there are no simple A3-orbits over ¢ := j2f =
(x,92,0,...,0). The complete 3-transversal T for ¢ is spanned by the cubic monomials
containing odd powers of y in the last n component functions, hence dim7T = n +
n?(n — 1)/2. Considering for the weighted homogeneous germ f := o + Zm,-eT a;m; the
1+ (n — 1)? + n? generators of TNTA?> - f C TA® - f, namely tf(y - es), tf(z; - €;)
(1<i,j<n-—1)and wf(X;-e;) (n+1<14,j <2n), and taking into account the Euler
relation between them, we see that dim T > n? + (n — 1)? for all n > 4, as desired.

Statement (i) now follows (for f with 2-jet o as above the associated G(g,0) has the
1-jet (y + 7,0, ... ,0) and therefore has corank at least four). For (ii) we observe that the
Ae-normal spaces of f and h are isomorphic (see Section 3-2 for more details). [

Remark 3-5. For f : R2,0 — R*,0 with m;(0) = 2 we, of course, have p(f) < 2.
Also notice that the A-simple germs f : R*,0 — R?" 0 with m;(0) = 2 and p(f) =
i < 3 can be obtained from an A-simple germ h : R',0 — R* 0 with m,(0) = 2
by adding to h component functions x;,z;y,... ,Zn_1,Zn—1y in y and the additional

variables x;,... ,Tp_1.
Finally, consider germs of local multiplicity three.

LEMMA 3-6. Suppose f : R*,0 — R** 0, n > 3, A-simple, of corank-1 and mz(0) = 3.
Then p(f) =2, i.e. j2f ~42 (x,xy,0,0).

Proof. All p(f) > 3 and m;(0) = 3 germs f lie in the closure of the A%-orbit of
o= (X,71Y,... ,Tn_29,0,0,0).

The complete 3-transversal T' for o is spanned by y3,z,_1y%,22_,y in the last n + 1
component functions, call this part Ty C T, and by z;%, 1 < i < n — 2, in the last

three component functions, call this subspace T1. Then write fo :=o+3_, eT, @M and
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f=fo+fi:=fo+ 2 ,.cr bimi, where fo has 0 weighted degree and f; has weighted
degree one. The Euler generator e(f) together with tf(z; - e,) (i = 1,...,n — 2) are
the only generators for the subspace Ty N T.A% - f C T\A® - f of positive filtration, hence
dimT; =3n—6>n—1 <= n >3, as desired. [

Remark 3-7. For f : R2,0 — R*,0 with m;(0) = 3 we could (and actually do) have
A-simple germs with p(f) = 3.

3-2. Germs of local multiplicity two

Let h: R*,0 — R2",0, h(x,y) be a corank-1 germ with my (0) = 2, then z1, ... ,zp_1,y>
are amongst the component functions of h. For f : R*t!,0 — R?"*2 0, where f =
(zn, Zny, h(x,v)), we have the inclusion

(xn) -0, CTL-fCTA-f.
Using this inclusion and generators of the type
tf(p(x,y) 'en)a wf(q(X3a"' 5X27L+2) 'ei)a i=1,2

we see that the first two components of T'A, - f are each equal to C,,4+1. Then, modulo
the first two components of T A, - f and (z,) -0y C T'A- f, the last 2n components of
TA. - f are equal to T A, - h.

Lemma 3-4 — and the remark following it — imply that the .4-simple germs f : R*,0 —
R2™, 0 of local multiplicity two and p(f) = i can be obtained for i = 1 from the series of
curve germs

% y* ), k>1,
for i = 2 (and n > 2) from the A-simple germs R?,0 — R*,0 (setting z := 1)

2k+1

(z, 4%, 2%y £ y** T ay®), (2,97 2%9,9°), (2,9%,9°,2%), k>2

(@, 97,9 + (F) by, aly), 1>k>2, (5,07,2%y + 9% 2°)
and for i = 3 (and n > 3) from the A-simple germs R*,0 — R®,0

(371,372,92755%%55%9&3 + 3711172.7!); (551,332,92737%%37%1/;193)
(mla T2, y27 172y, (ilf% - mg)ya y3 + mgy): (.7]1,332,]/2, T172Y, (-73% - mg)ya y3)

(@1, %2, y°, 2172y, (2] + 23)y,y° £ 23Y), (21, 72,9°, 2122y, (2] + 23)y, y° + 23y)
and
(21, 22,47, 2172y, (27 + 23)y, y°).
The case p(f) = 1, where n = 1, is well-known from the classification of plane curves.
Hence consider the
Case p(f) = 2, n = 2. Here we have the following .43-orbits over the 2-jet (z,y2,0,0):

1. (z,9%,9%2%), cod=5
2. (z,9%,y° £ 2%y,0), cod = 6
3. (2,9,4%,0), cod=7
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4. (z,y%, 2%y,0), cod =17
5. (z,42%,0,0), cod = 9.

The orbit in 1. is 3-determined, and the 4-orbits over 2. are completely classified by the
series (z,4?%,y° +x%y,y'), 1 > 3. The A-orbits over the 3-jet in 3. are completely classified
by the two series (z,y?,9%, 2%y), k > 3, and (z,v%, 9 + (£1)*Hzky, aly), I > k > 3.
The first series can be combined with the orbit in 1. by taking k > 2 (type II;) and the
second (doubly-indexed) series can be combined with the series in 2. by taking [ > k > 2
(type IIIk,l)

Over the 3-jet in 4. we get:

4.1 (z,92, 2%y, zy?*1) 1> 1, cod=3l+4
4.2 (z,y2%, 2%y, y? ) 1> 2, cod=3l+5
4.3 (z,9%, 2%y £y*+1,0) ,1> 2, cod = 3l + 6.

In the “best case”, I = 1 in 4.1, we find the A-simple series (z,y?,z%y + y?**1 zy?),

k > 2 (type IVg), and in the next best case, [ = 2 in 4.2, we get the A-simple germ
(z,9%, 2%y, y°) (type V). For [ = 2 in 4.3 (containing the orbits corresponding to [ > 2 in
4.1,1>3in 4.2 and [ > 3 in 4.3 in its closure) we obtain non-simple orbits lying in the
closure of the uni-modal germ f, = (z,y?, 2%y £ y°, zy® + ay").

Finally, over the 3-jet in 5. we obtain five A%-orbits: the first is that of (z,y?, z3y, zy®),
which leads to the series (z,4?%, 2%y + y***1,zy3), k > 2. For k > 3, this series is non-
simple, because it lies in the closure of the orbit of f, above. The first member of this
series, (z,y%, 2%y + y°, zy®) (type VI) has double-point number 5 and lies in the closure
of the orbit of (z,y?, 2%y, y%). The second A*-orbit is that of (z,y?, 23y + 2y*,0). This
orbit does not contain any .A-simple orbits, and the remaining three A*-orbits lie in
its closure. All the A-orbits over the A*-orbit (z,y2, 23y + zy*,0) lie in the closure of
9o = (2,97, 2% + zy®,4° + az'y).

Finally, we record for future reference the following uni-modal “bordering germs”
(whose orbits contain together all non-simple orbits with m¢(0) = p(f) = 2 in their
closures):

B.1 fo = (z,y%, 2%y £ 9%, 29° + ay”),  d(fa) =6.
B.2 g4 = (z,9%, 2%y + z®,y° + azly),  d(g.) = 6.

Next, consider the

Case p(f) = 3, n = 3. The 2-jet of such a germ is equivalent to (x1,2,%2,0,0,0).
A complete 3-transversal is spanned by the cubic monomials with y® or y as a factor
in the last three components. We are only interested in A3-orbits leading to simple or
bordering germs. Assuming that some y* coefficient is non-zero (say, the one in the last
component), we can reduce to

(181,-"62,312;(1(931,$2)y;ql($1,$2)y,y3 + ¢" (21, 22)y),

where ¢, ¢’,q" are functions in z1,z2 of degree at least two. By linear left-changes and
right-changes in 21, 2o we can reduce the fourth and fifth components to 21 z2y, (2 £z4)y,
2 < a < b, where the + cases coincide unless a,b are both even. For a = b = 2 we can
take in the + case the equivalent form z?y, 2y and reduce ¢"(z1,%2)y to r&1T2y with
r=1or 0 (types 7 and 8, respectively). These have codimension 10 and 11, respectively,
and double-point number 4.
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In the other cases we reduce to
[ = (@1, 22,07, 2120y, (2 £ 28)y,v° + rasy), d(f) =a+Dd,

where 2 < a,¢ < b. For a > 2,b > 4 we obtain non-simple orbits in the closure of the
uni-modal bordering germ g, (type B.2) and for a > 3,b > 3 we obtain non-simple orbits
in the closure of the uni-modal bordering germ f, (type B.1). The remaining orbits are
simple: for a = b = 2 we obtain in the — case (the + case gave types 7 and 8 above) the
types 9 and 10 (with » = 1 or 0 and codimensions 10 and 11, respectively, and ¢ = 2),
and for a = 2,b = 3 we get types 11 (with ¢ = 2, r = £1 and codimension 11), 12 (with
¢ =3, 7 =1 and codimension 12) and 13 (with 7 = 0 and codimension 13).

Finally, consider the case where all three y° coefficients in the 3-transversal of the 2-jet
(w1, x2,y%,0,0,0) vanish. This leads to non-simple germs in the closure of the orbit of
the following tri-modal bordering germ:

B.3 hapy = (21, 32,9%, 23y + (21 + 22)y° + ay®, w3y + 21y° + By°,
T122y + 7Y°), d(hagy) =8,

which has codimension 16 (the codimension of the stratum being 13).

This completes the classification of local multiplicity 2 germs. Also notice that any non-
simple germ of multiplicity 2 lies in the closures of the orbits of one of three bordering
germs (B.1, B.2, B.3, which have double-point numbers 6, 6 and 8), hence any germ of
multiplicity 2 with double-point number at most 5 is simple.

3-3. Germs of local multiplicity three
Let f:R",0 — R?",0 be an A-simple germ with m(0) = 3. First consider the

Case n > 3. From Lemma 3-6 we have that j2f ~ (x,xy,0,0) and a complete 3-
transversal is spanned by

v e (i=mn,...,2n), =xy’-e (i=1,...,n—1; j=2n—1,2n).

1. Provided that one of the y3 coefficients in the last two component functions of f is non-
zero (say, the one in the last component) one can reduce to 53 f = (x,xy,y% >~ a;zi, y3).
If some a; # 0 (say, a;) we obtain the A3-orbit in 1.1 (of codimension 2n + 2), otherwise
we obtain the orbit in 1.2 (of codimension 3n + 1):

1.1 (x,xy, 2192, 9°), cod = 2n + 2
1.2 (x,xy,0,y%), cod=3n+1

Both A3-orbits lead to A-simple orbits, which will be listed later.

2. If the y? coefficients in the last two components of f are zero then (because m¢(0) = 3)
some other y? coefficient (say, the one in the nth component) must be non-zero. By direct
coordinate changes we reduce

(% 21y + 4%, 20y + 028”1y an 1y Y7 Y bimi,y? Y cimi)
i>1 i>1
to

(Xaxly + y3a r2Y,... ,Tn-1Y, 3/2(3-771 + Z bix’i)ayQ(Cxl + Z Cz'xi))a
i>2 i>2
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where B :=b; —asbs —... —ap_1b, 1 and C :=¢; —agscs — ... —ap_1¢n—1. For B #0
(or C #0) and ¢z # 0 (or some ¢; # 0, i > 2) we reduce to 2.1, for B # 0 (or C' # 0) and
all ¢; = 0 we reduce to 2.2 and for B = C' = 0 the “best possible” A3-orbit (containing
the others in its closure) is the one in 2.3.

21 (X7$1y+y37x2y7"' ;wnflyaxlyzaauyz); cod =2n +4
2.2 (X,m1y+y3,m2y,... 7xn—1y7$1y270)7 C0d=3n+2
2.3 (X;$1y+y3;$2y;--- 7xn—1yax2y2ax3y2)a cod =2n+6

One shows that 2.3 leads to non-simple orbits lying in the closure of the following uni-
modal bordering germ

B.4 ko = (x,21y + 4%, 22y, - . ., Tn1y, T2y® + 219° + ay®, w3y® + y*), d(ka) =6

having codimension 2n + 7 (codimension of modular stratum being 2n + 6).

Hence we have to consider 1.1, 1.2, 2.1 and 2.2 further.

For the 3-jet in 1.1 and k > 1 the (3k + 1)-transversal is spanned by y3*¥+!.e,,_;, the
(3k +2)-transversal by y°**2.¢;, i =n,...,2n—1 and the (3k + 3)-transversal is empty.
Hence we can reduce to the following cases

1.1.1 (x,xy, 719% + v?**14°), cod=(n+1)(k+1)
1.1.2 (x,xy, z19% + v***2,4%), cod=(n+1)(k+1)+1
1.1.3 (x,z1y + ¥** 2, 20y, ... ,zp 1y, 2192, 9°%), cod=(n+1)(kE+1)+2

1.1.4 (x, 21y, T2y + v** 2 23y, ... ;2 1y, 219%,9°%), cod=(n+1)(k+1)+3

The first three germs are sufficient and correspond to types 14y, (with d-number 3k), 154
(d-number 3k + 1) and 16, (with d-number 3k + 2), respectively. The last germ in 1.1.4
has infinite d-number, for | > k we find the following transversals for this (3k + 2)-jet:
y3+1 . ey, 1 spans the (3] + 1)-transversal, y*'*2 - e;, i = n,2n — 1 span the (3] + 2)-
transversal and the (3] + 3)-transversal is empty. Hence we obtain

1.1.4.1 (x, 21y, 22y + %2, 23y, ... sz 1y, 2192 + 43 9°), cod =k +nl +4
1.1.4.2 (x, 21y, 22y + ¥°5 12, 23y, ..., zn 1y, 2192 + 4°42,9°), cod =k +nl +5
1.1.4.3 (x, 21y + v3F2 2oy + o312 23y, ... 21y, 219%,9%), cod =k +nl+ 6

These germs are sufficient and correspond to types 17;; (with d-number 3l), 18;,; (d-
number 3! + 1) and 195, (with d-number 3! + 2), respectively.

For the 3-jet in 1.2 a 4-transversal is spanned by y*-es,_1 and a 5-transversal by y°-e;,
1 =mn,...,2n — 1. Hence we have the following cases

1.2.1 (x,xy,y%,9%), cod=3n+1

1.2.2 (x,xy,y5%,4%), cod=3n+2

1.2.3 (x,71y +¥°, 22y, ... ,Tn_1¥,0,7%), cod=3n+3
1.2.4 (x,xy,0,y%), cod=4n+1

The first two germs are sufficient and are of type 20 (with d-number 3) and 21 (d-number
4). All A-orbits over the jets in 1.2.3 and 1.2.4 lie in the closure of the following uni-modal
bordering germ

B.5 lo = (x,21y + 4°, %2y, - - - , Tnry, w1y° £y + ay®,y?), d(la) =6
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For the 3-jet in 2.1 a 4-transversal is spanned by »* in the last two component functions
and by z;y? in the last (which could also be replaced by y*-e,,;1). Provided the coefficient
of y* - ea, is non-zero, one can reduce to j*f = (x, 1y +v%, 22y, ... , Tn_1¥, T1Y%, T2y* +
y*). The A-sufficient orbits over j*f belong to the series (type 22)

(X, 21y + 92,22y, ..., o1y, 11y + Y moy® +yt), k> 2

with d(22;) = k + 3 and codimension 2n + k 4+ 2. For n > 4, the deformation of the
73y component by t - y? gives for t # 0 a germ at the origin which lies in the closure of
type 6, for k = 2 we get type 6 and for £ > 3 a non-simple germ adjacent to type 6 and
which lies in the closure of the bordering germ B.2 (here and in the following we mean, of
course, the higher-dimensional analogue (za,... ,Zn_1,Z2Y,-.. ,Zn_1Y, ga(x1,y)) of the
germ g, in B.2). In case the y* - es,, coefficient is zero, we obtain non-simple orbits in the
closure of the following uni-modal .4*-orbit:

(X, 21y + ¥, T2y, - -+, Tn1y, 2197 + ay®, 22y® + 213%),

which has codimension 2n + 6 (the modular stratum has codimension 2n + 5) and, for
generic values of a is 5-determined. At the 5-jet level we get the following bi-modal
bordering germ

B.6 faﬁ = (X, 1y + 93,132?!; oo 3 Tn—1Y, :I'.ly2 + Oéyzl’ 3322!2 + 1313/3 + By5)a
d(fap) = 6.

Finally, a complete 4-transversal for the 3-jet in 2.2 is spanned by y* in the last two
components and by z1¢° in the last component. If the y* coefficient in the last component
is zero, we obtain non-simple orbits in the closure of the bordering germ B.2, otherwise
the A-orbits are classified by the series

f = (X7x1y + y37$2y7 s J'IL.nflyr'EIy2 + y2k+17y4)7 k Z 2.

For k = 2 we obtain the simple germ of type 23 (of codimension 3n + 2 and double-point
number 5), for k£ > 3 the germs lie in the closure of the orbit of the bordering germ B.2
and hence are non-simple.

This completes the classification of simple orbits of multiplicity 3 for n > 3. Finally
consider the

Case n = 2. For p(f) = 2 the classification of the simple A-orbits over the 2-jet
(z,2y,0,0) leads at the 3-jet level to the cases (z,zy,zy?,vy%), (z,zy,0,y°), (z,zy +
y3,zy?,0) and (z,zy + 43,0,0) that are analogous (or in many cases even identical) to
the cases 1.1, 1.2, 2.2 and 2.3, respectively, for n > 3 above. We omit the details.

For p(f) = 3 we obtain additional .4-simple orbits. Over the 2-jet (x, 0,0, 0) we consider
3-jets of the form

(z,ax’y + bry?, ax’y + bxy?,y°)

(for germs of local multiplicity 3 one of the y3 coefficients in the last three components
must be non-zero, say the one in the third — we then can reduce to the 3-jet above).

Now if (a,b) and (a, b) are linearly independent one can reduce to (z, 2y, zy?,y°) and
a 4-transversal is spanned by y* in the second and third component. For non-zero y* - e;
coefficient one obtains the A-orbits

f=(@2*y+y* £y° 29°,9°), cod=9, d(f) =5, type XIII,
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and
9= (z,2%y +y*,zy*,y%), cod=10, d(g) =5, type XIV.

For zero y* - e5 coefficient we obtain non-simple A-orbits in the closure of the uni-modal
A5 -orbit of

B.7 hy = (z,7%y + zy* + ay®,zy? + y*,9?), d(hy) = 6

which has codimension 11 (the modular stratum has codimension 10).

Finally, when (a, b) is a multiple of (a,b), but a # 0 # b, then the 3-jet is equivalent to
i3 f = (x, 2%y + zy?,0,y°). The A*-orbits over j2f (and those of 3-jets in the closure of
the A3-orbit of j2f) are non-simple and lie in the closure of the uni-modal A*-orbit of

B.8 go = (z,2%y +ay’,y* + az’y,y%), d(ga) = 6 (@ # —1)
which has codimension 12 (the modular stratum has codimension 11).

3-4. Some partial adjacencies

We can now complete the proofs of Theorems 1-1 and 1-2 (by showing that none of
the germs given in these lists is adjacent to some non-simple A-orbit) and of Proposition
1-4, which states that for any A-simple germ there exists another such germ g (of lower
A-codimension) such that [f] — [g] and d(f) — d(g) < 1. We will use the notation
[f] =i [g] if d(f) —d(g9) =i (i =0,1). The adjacencies of type X — Y in 1. to 6. below
are between A-orbits X, Y consisting of germs f with the same invariants m;(0) and
p(f), the adjacencies denoted by X — (Z) indicate that at least one of the invariants
is lower for Z. In the case where d(f) — d(g) = 1 there are three possibilities: the point
splitting off 0 in the target is (i) a real transverse double-point, (ii) a complex transverse
double-point (coming from a complex-conjugate pair of source points) or (iii) a “virtual”
double-point of type I; (for n = 2) or 1; (for n > 3). For future reference we will note
below some of the adjacencies [f] —1 [g] that come from origin-preserving deformations
from f to g with one real transverse double-point splitting off 0. This information will be
used in Section 4 in the construction of a deformation of f with d(f) real double-points
(if such a deformation of f is constructed in a different way then nothing will be said
here about the point splitting off 0 — it then can be of any of the three types).

In order to show that all the germs f in Theorems 1-1 and 1-2 are A-simple it suffices
to check that they are not adjacent to any of the bordering germs B.1 to B.8, which gives
the following restrictions on invariants and dimensions:

B.1, B.2: ms(0) > 2, p(f) > 2, d(f) > 6,n > 2

B.3: ms(0) > 2, p(f) >3, d(f) >8,n >3

B.4, B.5, B.6: m;(0) > 3, p(f) > 2,d(f) > 6,n >3
B.7, B.8: ms(0) > 3, p(f) >3, d(f) > 6, n = 2.

(If necessary, we again add component functions z;, z;y in additional variables x; to the
normal forms of these bordering germs so that the resulting germs have the required
source and target dimensions.) Notice that all the exceptional germs in our classification
(i-e. those not belonging to some series) have d-number less than six and hence cannot
be adjacent to any of these bordering germs.

Now consider the following six sets of germs f from Theorems 1-1 and 1-2 having the
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same invariants.
1.mz(0)=2,p(f) =1,n>2:forn =2

It =1 Ie—1, Iy —1 (immersion)

and for n > 3 the same with 1 in place of I.
None of the above germs can be adjacent to some bordering germ (because p(f) = 1),
and the adjacencies between them follow from the obvious deformations.

2.ms(0) =2, p(f) =2,n>2: forn =2

II; —o (Ik), 1112’3 —1 I
IIIkJ —1 IIIk’l_l, IIIk,l —0 IIIk—l,l
IV - I3y, IVE =1 IV,

V =9 IVQ, VI V

and for n > 3 the same with 2,...,6 in place of IIj,... , VL

Here the relevant bordering germs are B.1 and B.2: that none of the above germs lies
in the closure of B.1 or B.2 follows from the adjacencies of A"-orbits (r = 3,4, 5) over the
2-jet (z,2,0,0) in Section 3-2 (case p(f) = 2). Notice that a d-constant origin-preserving
deformation from IT}, to Iy, is given by (z,y2,y° + tzy, z*y). And in the origin-preserving
deformations from VI to V and from IVki to IV,EJF_1 a real transverse double-point splits
off 0.

3.ms(0)=2,p(f) =3,n >3
8 —0 7 —0 (5), 10 —0 9 —0 (42)

13 =0 12 —¢ 11 —¢ (6)

None of the above germs can be adjacent to some bordering germ (because d(f) < 5),
and the adjacencies shown follow from the obvious deformations.

4.mp(0) =3, p(f) =2, n = 2
VIIk+1 —1 IXk —1 VIIIk —1 VIIk, VIIl —1 (112)

XI —1 X —0 VIIl

XTI, =, XI;_;, XII, —, VIII,

The relevant bordering germs are B.1 and B.2. Deforming the above multiplicity-3 germs
to multiplicity-2 germs we see that the orbits VII; to XI can only be adjacent to germs
in the series I and II;. From the adjacencies of A*-orbits it is also clear that the
germs in the series XII; are not adjacent to B.1 or B.2 (but from the deformation
(z,2y + v° + ty?, zy? + 2k, y*) we see that XII; — IVy). Finally, it is clear that
one can make an origin-preserving deformation from XII; to XII;_; and from XIIy to
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VIII; such that a real transverse double-point splits off 0.

5.mg(0) =3, p(f) =3, n=2:
XIV —¢ XIII —o (XIL)

These have d-number equal to 5 and hence are 4-simple. And the above adjacencies are
easily checked.

6.ms(0) =3, p(f) =2,n > 3

1441 —1 165 —1 155 —1 14, 144 = (32,3)
19k, k41 =1 18k,k+1 —1 17k k41 —1 164
1Tg041 =1 198 —1 18 —1 17y
21 =1 20 —¢ 144

23 = 225 —1 151
and for n = 3
22; —1 225 4

First, notice that none of the above germs is adjacent to B.4, B.5 or B.6: using the A3-
orbit structure —see 1.1, 1.2, 2.1 to 2.3 in Section 3-3, case n > 3 — we see that 1.1 leads
to types 144 to 19;,, 1.2 to types 20, 21 and B.5, 2.1 to types 22; and B.6, 2.2 to type
23 and 2.3 to type B.4. The adjacencies of A%-orbits imply that the series in 1.1 are not
adjacent to B.4, B.5 or B.6 and that the series 22} is not adjacent to B.4 or B.5. From
the adjacencies of A*-orbits inside 2.1 it is also clear that 22, is not adjacent to B.6.
(And recall that the exceptional types 20, 21 and 23 have d-number less than six and
therefore are simple.)

Then we observe that none of the above germs is adjacent to B.1 or B.2. These border-
ing germs have local multiplicity and p-invariant equal to two, hence we have to deform
the z;y-component functions of the above series by y? terms. The series 14, to 19 can-
not be deformed to B.1 or B.2 in this way, because of the 33 term in the last component.
Finally, consider the members of the series 22;: deforming, for any n > 3, the compo-
nents n or n + 1 by a y? term yields type 4; (but never B.1, independent of k > 2), and
deforming, for n > 4, the components n+2, ... ,2n — 2 by y2 yields type 6 for k = 2 and
something in the closure of B.2 for any k& > 3. Hence all of the above germs are simple.

There is an origin-preserving deformation from 22; to 22;_; (analogous to the one
from XII; to XIIx_4 for n = 2) and from 22, to 15; (analogous to the one from XII,
to VIII;) such that in each case a real transverse double-point splits off 0. For the
adjacency 14; — 3,3 we deform one of the z;y (i > 2) components of 14; by a y? term,
the deformations for the remaining adjacencies are evident from the classification.

4. Deformations with the mazximal number of real double-points

Set h;i(y,9) == (F! — 4"t /(¥ — y). In order to show that all A-simple germs f have
deformations with d(f) real double-points we distinguish the following four cases:
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(i) For the germs Iy, 1p, VIIi, 14y, VIIIi, 15k, 175, 18k, X, 20, XI and 21 the
associated maps G(g,0) are suspensions of double-point maps (3, a;hi, 3_; bjih;)
of plane curve-germs (3_; a;y**, 3", bjy?*'). The result of A’Campo and Gusein-
Zade [1, 13] then implies that these have deformations with d(f) real double-
points.

(ii) For Il y, 3k, IV, and 42 we can simply write down a suitable deformation.

(iii) For the remaining germs, except for IXy, 165 and 19, we apply — as described
in Section 3-4 — an origin-preserving deformation to another mono-germ (of lower
codimension) having either the same d-number or d-number one less, and in the
latter case a real double-point splits off the origin. (This was the strategy for
constructing M-deformations in [25], but the lemma from this paper stating that
the O-stable singularities splitting off 0 are real does not apply to double-points.)

(iv) Finally, we have the remaining harder cases IXy, 16 and 19;;, where an origin-
preserving deformation to a mono-germ of d-number one less splits off 0 a complex
double-point. Here we show that these are adjacent to a certain series IV, of bi-
germs having the same d-number and having deformations with d real double-
points.

First, consider the second case. For III ; (for n > 3, the case of 3, is analogous) take

the deformation

I
fto= (2,07 92 + (D) aby —teay,y H(x — tc;)).
i=1
Then G, is K-equivalent to (7,y° + (+1)*'a* — tex, [T\_, (& — tc;)). Hence we have
for all t € (0,¢), € > 0, exactly [ distinct real pairs of solutions (z,y,¥) = (z;, £y;,0) by
taking ¢ = 0 and 0 > ¢; > ... > ¢ for odd k and for even k in the — case. For even
k = 2r in the + case we take 0 < ¢; < ... < ¢ and ¢ > €272, 1.
For IV, (for n > 3, the case of 4, is again analogous) take the deformation

ff=(z,9°, 2%y £ 4° + tay, 2y°).

For t # 0 the corresponding map Gfo,o) ~xk (7,2% £ y* + tz,y?) has a real solution
(0,0,0) of multiplicity 6 corresponding to a singularity of type I3 and another real solution
(z,y,9) = (—t,0,0) of multiplicity 2 corresponding to a singularity of type I;. The I3-
point and the I;-point can be further deformed into 3, respectively 1, real transverse
double-points, giving the required 4 real double-points in a deformation of IVs.

Finally, consider the fourth case. Consider the .4.-classification of bi-germs with im-
mersive component germs. By a left-change we obtain the following prenormal form:

F = {flan} = {(Kl(xay)i"' ,Kn(x,y),x,y),(O,... JO:XI:yl)}'

Notice that the A.-classification of such bi-germs F' is given by the K.-classification
of the associated maps K = (K3,...,K,) (which measure the order of contact of the
immersion germs f; and f2), and that the double-point number of F is given by the
dimension of the local algebra @k of K. The mono-germs f in the fourth case have
invariant p(f) = 2, hence, by upper semi-continuity, we can expect double-point algebras
of corank < 2 in a deformation of f. In fact, we will construct special deformations f;
such that the double-point algebra has at most corank-1 for ¢ # 0. In the corank-1 case
the following series of bi-germs gives the complete classification.
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LEMMA 4-1. Consider the following series Ny of bi-germs of non-transverse double-
points from R" to R?" of A.-codimension k — 1:

{fi,fo} ={(z1,... ,2n 1,9%,0,...,0,9),(0,...,0,24,... 2" 1,9}, k>2.
Each Ny, has a deformation with d(Ny) = k real double-points.

Proof. The A.-normal space is spanned by y,42,... ,4*~! in the nth component func-

tion of the first component germ f;. And the deformation Hle(y — a;) of the nth
component function of f; yields for pairwise distinct a; € R exactly &k transverse double-
points. [

PROPOSITION 4-2. We have the following adjacencies:
IXk, 16k = N3gpt2, 191 = Naiyo,
for allk > 1 or alll > k > 1, respectively.

Proof. If we exchange the roles of k and ! (so that k¥ > ) then we can consider (up
to a suspension) the same deformation of the associated G g,y for all three adjacencies.
For 164 and 19; 5 we set = := x1. Take the following deformations of the zy + y3*+2, zy?
and y® components of the mono-germs on the left of the adjacencies (which are weighted
homogeneous for wt(z) = 3k + 1 and wt(y) = wt(t) = 1): 4 — t?y and for odd k (setting
bo = 0)

zy? + ety foept3 oyt 4 e 12y

2y + 4P+ +b1t3(k—1)y5 +b2t3(k—3)y11 +...+b(k,1)/2t6y3k_4,
and for even k

wa + clt3k+2y + c2t3k72y5 L+ Ck+1t2y3k+1,

oy + 32 4 b3k y? b2t3(k72)y8 TR bk/2t6y3k’4,

where we don’t deform in the zy? component by powers of y that are divisible by 3 (these
would contribute A-trivial deformation terms).

This deformation induces (up to a suspension and K-equivalence) the following defor-
mation (G1,G2) of G(g,), where the h; are the Zs-symmetric functions of degree i in y, 3
defined above: G1 = hy — t2 and for odd &

Gy = _h1h3k+1 + Clt3k+1h1 + 02t3k_1h3 - b1t3k_3h1h4 +...+ Ck+1t2h3k
and for even k
Gy = —hihsgy1 + Clt3k+2 — bltgkh% + 02t3k72h4 + ...+ Ck+1t2h3k.

Composing (G1,G2) on the right with (y,7) = (u + v,u — v), we obtain even functions
in v (Z2 now acts by a reflection in v = 0). Hence we can substitute w for v2, and solve
G, for w = t? — 3u®. Substituting this solution w into G2 (and scaling u — u/2) we get
monic polynomials in u of the form:

(—1)FFudh+2 A 2030 4 Appteh=2 4

where the A; are (non-homogeneous) linear functions of the ¢;, b;.
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First, we claim that for a unique choice of the c;, b; the A; vanish simultaneously, so
that Gy = +u®**2? and G; = v? — 2 + 3u®. For t # 0 we then have a non-transverse
double point (u,v) = (0, £t) of multiplicity 3% + 2, as desired. And second, we claim that
the bi-germ of f corresponding to this double point is of type N3gia.

For the first claim, we note that the functions h; satisfy the recurrence

hi=(y+§hi-1 —yghia, ho=1h =y+7.
Let H; denote the composition of h; with
K(y,9) = ((u+ (4% = 3u®)"/?)/2, (u — (4% - 3u*)'/?)/2)
on the right, then H; satisfies the recurrence
H;=uH;, 1+ (t* —v*)H;_y, Hy=1,H, =u.

The H; are homogeneous of degree i in u and ¢, and the coefficient, of u? is 0 (if i + 1 is
a multiple of 3) or £1 (otherwise): for ¢ = 0 we get

H; = u(H;i—1 —uH;_5) = uw(u(H;—s — uH;_3) — uH;_») = —u’H;_s,

with Hy =1, H; = w and Hy = 0. Let N be (3k+1)/2 (for odd k) or (3k+2)/2 (for even
k). For each of the N monomials M = 2y t443%=2 | in (=1)F+103%+2 4 A 4243% +
Aot*uk=2 4 . there is exactly one deformation term c;t3¥+2="H, or —b;t3*+1-"H, H,
in Go o K with £¢;M or +b; M as the monomial with the highest degree in u (notice
that none of the r + 1 is a multiple of 3, hence the u" coefficient in H, is £1). It follows
that the linear map from the RV of deformation coefficients ¢;, b; to the real vector space
spanned by the monomials M = t2u3F t4u?*=2 .. (of degree 3k + 2 and divisible by #2¢,
i > 1) is an isomorphism. Hence there is a unique choice of coeflicients c;, b; such that
Ay, ..., Ay vanish simultaneously, as claimed.

For the second claim, we recall that the bi-germs N3, have non-singular component
germs and that the n-dimensional tangent spaces of the images of the component germs
span together a linear subspace of R2" of dimension 2n — 1. The map K, defining the
double-point algebra Qx of these bi-germs, is K-equivalent to (x,y*) (corank-1). The
pair of source points corresponding to to the non-transverse double point (u,v) = (0, +t)
is given by yo = t,%%0 = —t, and the component germ G; = hy — t? of the induced
deformation of G(g,g) is given by G1(y —t,7 +t) = t(§ — y) + ho, hence the germ of the
the deformation of G(g ) has corank-1 for ¢ # 0. The double-point of multiplicity 3k + 2
must therefore be of type Nsg42. Finally note that both component germs of the bi-germ
are immersive (the 1-jets of the y® —t?y component at yo = t and gy = —t are both given
by 2t2y). O

Remark 4-3. Using the recurrence for the H, we can determine the solutions ¢;, b; of
Ai=...=AnN=0(N=(3k+1)/2, for odd k, or N = (3k + 2)/2, for even k). (Recall
that these give an explicit deformation f; from a type IX singularity fo to a type N3g4a
bi-germ fi, t # 0.) For low k we find that b; = 0 for all j and the following c¢;:

C1 = 3, Co = -1

1012—8,62210,032—2

1 C1 = 36, Co2 = —52, C3 = 21, Cq4 = -3

:cp = —101, ¢o = 250, ¢c3 = —181, ¢4 = 36, ¢c5 = —4

10 =777, co = —1322, ¢3 = 962, ¢4 = —465, ¢5 = 55, ¢g = —5H

el O
Il
U W
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We do not have a general formula for all the coeflicients ¢; and b;, but cxy1 = —k and
¢, =k + 2k?%, for example.

We conclude with a remark on the relation between the A-simplicity of map-germs
[ of local multiplicity two and their double-point maps G g,0). We consider G(g) as a
Zo-symmetric equidimensional map-germ under K%2-equivalence.

PROPOSITION 4-4. Let f : K",0 — K?*,0 be a corank-1 germ of multiplicity mz(0) =
2. Then f is A-simple if and only if G(o,0) : K" ,0 — K"+ 0 is K%>-simple.

Proof. For the contrapositive of = we use Lemma 2.3 (i) of [23], which says in this
special case that for A-equivalent corank-1 germs f and f’ the corresponding G/g )
and Gl(o,o) are K-equivalent, and it is easy to see that this K-equivalence preserves the
Zo-symmetry and hence, in fact, is a K%2-equivalence. Write (using the Preparation
Theorem)

f = (Xayzaygn-i-l(xayz)a s 7yg2n(x7y2))7

then the corresponding G/q,o) is K%2-equivalent to

G:= (gagn-i-l(X’ y2)7 s 792n(xa yZ))

Hence we can lift a deformation G? of G to one of f: suppose G(0,0) non-K%2-simple,
then there is a family of non-K%2-equivalent Gfo,o) (with G(o,0) = G(()o,o))v and hence
of non-K%2-equivalent G*, and the latter induces a family f* of non-.A-equivalent germs
with f = f9.

For the contrapositive of < we recall that any non-A-simple germ f with mz(0) = 2
lies in the closure of the union of the A-orbits of the bordering germs B.1, B.2 and B.3,
and notice that the G gy associated with such an f lies in the closure of the union of
the KZ2-orbits of the G(0,0) associated with B.1, B.2 and B.3. And it is easy to check
that the A-moduli of these B.i give rise to KX%2-moduli of the associated G- O

Notice that = in this proposition is an analogue of a result in [25] that states that for
an A-simple corank-1 germ f : R”,0 — R", 0 of multiplicity n+ 1 the corresponding map
G (n) (whose multiplicity gives the A,-number of f) has to be K-simple. The classification
of K-simple equidimensional germs G is known, and one can then show that each of them
has a real deformation with mq(0) real preimages over some point in the target near the
origin. For K%2-equivalence the classification of simple equidimensional germs and the
analogous result about their real deformations are not available — otherwise we could
conclude at once from Proposition 4-4 above that A-simple germs f : R®,0 — R?",0 of
corank 1 and multiplicity 2 have an M-deformation (without using the A-classification
of such f).
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