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Abstract. We study the recognition afl-classes of multi-germs in families of corank-

1 maps fronm-space intoz-space. From these recognition conditions we deduce certain
geometric properties of bifurcation sets of such families of maps. As applications we give a
formula for the number of4.-codimension-1 classes of corank-1 multi-germs fr@fnto

C" and an upper bound for the number of stable projections of algebraic hypersurfaces in
R"+1 into hyperplanes.

Introduction and notation

A smooth map (where smooth means eittiér or analytic) is unstable if
it has positived.-codimension as asrgerm for some set of source points
X1, ..., xs. We study the recognition of unstable maps in familfef
equidimensional corank-1 maps, both in the local situation wiieigan
unfolding germ and in the global situation whefres the restriction of the
family of all (central or parallel) projections into hyperplanes to a smooth
hypersurface given as the zero-set of some smooth function. Using these
recognition conditions, we deduce certain local and global properties of the
bifurcation set3 in the parameter space 6f

Let F = (u, f,(x)) be a family of smooth mapg, : F* — F? (where
F = C orR). In Section 1 we give an upper boung, p) for the number
of source points (whem < p) or non-submersive source points (when
n > p)in £1(y) for a “generic” pointu € B (i.e. for a pointu € B
in the complement of strata @& that correspond to multi-germs of,-
codimensiore 2). In Sections 2.1 and 2.2 we study the recognition of open
A-orbits within KC-orbits of typeAy, | . . . |Ax, for families of projections of
hypersurfaces and for general families of equidimensional corank-1 maps,
respectively. Using these conditions one shows that, for versal corank-1
families F, the closures of thd,,| . .. | A, strata are smooth submanifolds
of the source space d@. Section 2.3 describes the recognition conditions
for s-germs of positive4,.-codimension, which define closed subsBis)
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in the source space df. The union of the projections of thB(s), s =
1,...,s(n,n) =n+1, onto the parameter spacefofs the bifurcation set

B. The setsl?(s), fors < n, can be singular, blﬁ(n + 1) is always smooth.
Fors-germs fronl" — F”, wheren > p, the same conditions are valid for

p = 1 and 2; forp > 3 there are additional unstablegerms that are not
recognized by these conditions (see Remark 1 at the beginning of Section 2).
Sections 3 and 4 contain applications of the recognition conditions in Section
2. In Section 3 it is shown that, for complex-analytic equidimensignal
germs, there is exactly one connected orbit4fcodimension 1 in each
KC-orbit of type Ay, | ... |Ax,, 2 < > k; < n + 1. From this we deduce that
there are)_'_, p(i + 1) (wherep(m) denotes the number of partitions of
m) A.-classes of corank-d-germs fromC" to C" of A.-codimension equal

to one. Finally, in Section 4, we consider the special case of projections of
algebraic hypersurfaced c F"*! into hyperplanes, and give bounds for
the degree of3 and, in the cas& = R, for the number of distinct stable
projections ofM in terms ofn andd := degM.

For the standard definitions of the (pseudo) groups of equivalesces
and/C, of mono-germs and their tangent spaces, see, for example, the books
[GG] and [M] and the survey article on determinacy by Wall [Wa]. For
multi-germsf = {f1, ..., fi} : F*, § — FP, f(S), we seb, := P;_, 0,
where thed, are, as usual, sections ¢gfTF?. LetC,,, 1 <i < s denote
the local rings of smooth function germs at tlie source point and’, the
local ring of smooth function germs at the target point, angd andm,
the corresponding maximal ideals. LBR, - f := (tf1(6n)] ... 2fs(6n,)),
whered,,, ... , 0,, areC,,-modules of germs of (independent) source vector
fields, denote the extended right tangent spacelafid f := wf(6,) the
extended left tangent space (héreis the C,,-module of germs of target
vector fields). TheA,-tangent space and codimension are then given by
TA,-f:=TR. - f+TL.- fandcodA,, f):=dimgb;/TA,- f.Forthe
(restricted) groups of source- and target-preserving equivalefcRsetc.
one obtains analogous definitions of the tangent spaces and codimension by
multiplying by the appropriate maximal ideais, andm ,. Given as-germ
f, there is an inclusioM - f c K - f of orbits that does not hold for the
orbits of the extended (pseudo) groupsand/C,. We shall frequently refer
to the openA-orbit in a fC-orbit of 4,-codimension 1, meaning that the
s-germs in this4-orbit haveA,-codimension 1 (because we cannot refer to
the openA.-orbit in a/C,-orbit).

1. A bound for the number of source points for a generic point of3

The “complexity” of the bifurcation sef of a family F of mapsf : F* —
F? depends on the number of unfolding parameters, and on the number
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s(n, p) which is defined as follows. (Here “complexity” refers, say, to the
Betti numbers of3 or, for real semi-algebraic bifurcation sets, to the number
of connected components in the complemenBgfForn < p, the number
s(n, p) is the maximak amongst the-germsf = {f1, ..., fi} : F", S —

F?, £(S) of A.-codimension no greater than one. kor p, itis easy to see
thatwe can add submersion geryhto a givens-germ (and hence increasge
without changing thel,.-codimension. We therefore defing:, p) as above,
with the restriction that the component germsfabe non-submersive.

The bound fors(n, p) below is a corollary to the following formula
for the A,.-codimension of an-germ. Analogous formulas for mono-germs
(s = 1) for several groups of equivalences are given in Theorem 4.5.1 and
Proposition 4.5.2 of [Wa], and the proofs of these formulas (including the
one below) closely follow Mather’s proof of Theorem 2.5 in [MalV]. (After
writing-up the proof below | found a reference to unpublished notes by
L. C. Wilson [Wi] which also contain a proof of this formula, but | do not
know whether his proof is different.) In [Ri96] there is also a related formula
for multi-germs having “mixed” source dimensions, but this is not needed
here.

Proposition 1. Let
=} FLS > FP ()
be ans-germ of finite4,-codimension. Then
cod(A,, /) = maxX0, codA, )+ p(s — 1) — ns].

Proof. For stablef, codA,, f) = 0. Hence suppos¢ unstable. In this
case the formula is equivalent to:

T-Ae : f +
=ns .
TA-f P
This, in turn, is equivalent to the following: & < 6,,, 1 < i < s, and
X € 0, are such that

tfrDl. .. |tfiEN)+wf(X)eTA- f:=TR-f+TL-f

theng_,» €my, -6,,1<i<s,andX € m, - 6,. This condition fails if there
existg; e m,, - 6,,, 1 <i <s, such that

(tfrg1— &) .. |1fi(& — &) € TL, - .

Sinceg; — & ¢ my, - 0,, we can, after a change of coordinates at the source
points, assume that for some

& — & =0/0x],
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wherex; = (x}, ..., x!") are the coordinates of thi¢h source point. This
means that the-germsy; at

1
X1, ooo s Xic1, X+ 1 0/0X;, Xig1, oo o 5 X

are A.-equivalent for allz. But f = fp is unstable, hence all thg are
unstable:f has therefore infinited.-codimension (by the Mather-Gaffney
criterion) which contradicts the hypothesis of the propositian.

Corollary 1. Let
s(n, p) :=sups :=|8]:3f : F", § — F?, £(S): cod(A,, f) <1},

where forn > p all the component germg of f are non-submersive. Then
s(n,p) =p+1(forn > p)ands(n, p) = L%J (forn < p).

Proof. Forn < p this follows directly from the formula for thel,-codi-
mension. Fo > p, all component germg; of f are non-submersive:
hence, by the corank product formula, tdecodimension off is at least
sm—p+1. O

2. Recognizing unstable maps

Letf ={f1,..., fs} : F", S - F", f(S), S = {x1,...x}, be ans-germ.
TheK-class off is Ay, | . . . | Ax, if theith component gernfi; of f has amy,
singularity aty; (i.e. a corank-1 singularity of multiplicity;; = k; + 1) and
fi(x1) = ... = fi(xs). In the following two sections we describe recogni-
tion conditions for suciy, | . . . |Ax, singularities that are well-behaved on
the diagonal, where two or more source points coalesce. In Section 2.1 we
consider the slightly more complicated case whergthe restriction of the
projectionF"*!* — H, whereH is some hyperplane, to some smooth hy-
persurfacéVf. Section 2.2 contains the analogous recognition conditions for
general equidimensional corank-1 maps. Finally, in Section 2.3, we supple-
mentthe conditions for afy, | . . . | Ak, singularity by additional conditions —

the resulting set of conditions detestgerms of positive4,-codimension.
Using the conditions in Sections 2.2 and 2.3 we deduce some properties
of bifurcation sets and of the closures of thg | ... |A, strata for versal
families of corank-1 maps.

Remark 1.The conditions in Sections 2.2 and 2.3 are also valid fgerms
f:F"— FP, n > p, of K-type Ay, |...|Ax . Using a “splitting lemma”
for maps, one checks that the component gefmsF? x F*~7 — F? of

such anf are equivalent to

n—p

(X1, ..., Xp—1, g(xl, cea X)) + Z :I:yj?), g(0,...,0,x,) = xk*1
j=1
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Settingf; := fi(x1,...,%,,0,...,0),weseethak = 2 x {0}, Ay =

A (whereX andA denote the critical set and the discriminant, respectively)
and codA,, f;) = cod(A., f;). However, forp > 3 there exist unstable
corank-1s-germs oflC-type different fromA,, | . . . | A, that are not detected
by the conditions described below. The first such unstable geriitt — F2
has/C-type Dj,.

2.1. Families of projections of hypersurfaces

Let M := g~1(0) c F**! be a hypersurface, and consider parallel (or
central) projections along the direction (or from the centrdéihto hyper-
planes. This yields a family of corank 1 maps frdh into F* with pa-
rameterw. The kernels of this family of projections are the families of rays
L(t) = p+t-w,wherep € F**1andw e FP" (or, for central projection with
centrew € F"™*1\ M, L(t) = p+t-(w— p)).All A-classes af-germs of this
family lie in somekC-orbit Ay, | . . . |A,, and theC-orbit membership is de-
termined by the contact-ordersMfandL (¢) atthe pointd.(1;),1 <i <.
The straightforward conditions for contact orderm;, ... , > m

K9 )=0, 0<i<m; -1, 1<j<s, am=0 (+)

where K(¢t) := g o L(t), are not well-behaved on the diagonal, where
L(Ai) = L(&)). _

We now define “modified conditionsl{’;’), which define the same zero-
set away from the diagonal, by iteration. legt; := ;41— A; andK,"’ :=
'K /ot', thenwe setfoj =1,...,s — 1:

o . (@) a—m;
K., = Z K7€ /al,
aij

where, forj > 2, K}i) := 9'K;/d¢’. The modified set of conditions
K?=0 0<i<mj—1 1<j<s, (%)

defines a variety iff*~! x F**1 x V, whereV = FP” or F**! and where

€, ..., € are coordinates i* 1. Away from the “diagonal”, where one or

more consecutive;s vanish, this variety coincides with the zero-set of the

original set of equations obtained by substituting= >"/_,€;,2< j <s

into (4+). This is so because the modified equatiﬁ’rjié, multiplied by some

suitable power o€ ;, and the original equations generate the same ideal.
Further, notice that

G+X1 m)

1

K](-i)=c-K + R(ea, ... ,Ej’Kim))
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wherec # 0 andm > i + Z{;llm,. Also note that; = A;,i < j, ifand

only if Zi=i+1 ¢, = 0, and inthis case the required contact orddr@t) =
Liy1) = ... = L) isat Ieastz,{:i my. The modified conditions are
therefore “additive” with respect to contact-order. The boundaries of the
s-local bifurcation sets made up of strata of type

Al 1Ak TAG ] LA

are therefore closed subsetqof- j + i)-local bifurcation sets made up of
strata of type

Agl... 1A | Ag..

s

S krjil
(the strange index in the middle stems from the fact that asingularity
has contact-order, or multiplicity, + 1).

Note that the conditions above are already sufficient to detect the4pen
orbits within a giventC-orbit. In order to detect unstabtegerms contained
in A-orbits that are closed in their respectikeorbit the conditions have
to be supplemented by additional conditions (see Section 2.3). The number
of additional conditions is equal to the codimension of #herbit within a
givenC-orbit.

2.2. General families of corank 1 map% — [F"

Consider an unfolding" = (u, f(u, z)) of a corank 1 equidimensional
map f(z) = f(0,z). We can assume thatis of the form(xy, ... , x,_1,
g(u, x,y)), wherez = (x, y) are coordinates if". In order to recognize
an Ay, ... |Ax, singularity at(x, y1), ..., (x, y;) we, again, define in an
iterative fashlorg(’) =d'g/dylandforj =1,...,5s —L:

o ._ (01) a—kj—
8jr1= Z 8; €iq1 /Ol'
a>k;+1

wheree; 1= yjt1— y; andg]+l = 9'gj41/d¢€’ . The conditions

D= =g =0, 1<j<s,b1=1b,=0 Ciox)

then define the desiredlocal stratum and are again “additive” (w.r.t. the
multiplicities of the component germs) on the diagonal. In fact all the prop-
erties stated in the previous section hold V\gﬁﬂ in place ofK

For future reference we also state the corresponding nalve" conditions
(that have excess dimension on the diagonal):

r j
g(x, yﬁrzei) = g(x, y0); &9 (x, it ZQ) =0,e1=0, (++)

i=2 i=1
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whereg® := 9%g/dy* and with the index ranges2 r < s, 1 < a <k;
and 1< j <.
Using the conditionssx), it is straightforward to show the following.

Proposition 2. Let F : F¢ x F* — F¢ x " be an.A,-versal unfolding of
ans-germ f of corank 1. Then the strata iff x F*" corresponding to the
closure of thed,, | ... |Ag,-stratum are smooth submanifolds.

Proof. Setk := )’_,(k; + 1) and letW C J*(n 4 s — 1, n) denote the
Ap,l ... |Ag,-Stratum. The conditiong) above define the closuig of W
and are all linear in some coordinate of the jet-space, and these coordinates
are pairwise distinct. The closufg of the Akl ... | Ay, -stratum inJ*(n +
s—1, n) istherefore a smooth submanifold of codimensiprj_, k;)+s—1.
Now note that/*(n + s — 1, n) and = [, J*(n, n)] are isomorphic, and
the coordinate change

N
(X1, .00 s Xno1, Y1, €2, ..., €) > <xl,..- s Xn—1, Y15 -+ s Y1+ E 6,-)
j=2

maps the supmanifoIdV in the former jet-space diffeomorphically to a
submanifoldW” in the latter jet-space. Sindeis versal, we can pull-back
W’ to a submanifold if? x F*". O

Remark 2.The smoothness of the closure of thg| . . . | A, stratum simpli-

fies certain arguments in [MMR], where formulas are given for the number
of isolated stable singularities appearing in a deformation of a weighted
homogeneous, complex corank-1 singularity.

2.3. The bifurcation set

A multi-germ of a corank-1 may : F* — F” is stable if and only if its
component germs are Morin singularities and it satisfies the normal cross-
ings condition (NC), see e.g. Theorem 6.4, p. 192, of [GG]. The stable
s-germs are precisely the opghorbits in theXC-orbits of typeAy, | . . . | Ag,,

for Y k; < n+1ands < n+ 1. The unstable-germs can therefore be
characterized by the property that their jet-extensions (of the appropriate
order) fail to be transverse to some submanifold defined by the recogni-
tion conditions for the closure of one of theclassesAy, | . .. |Ax,, where

> ki < n+1lands < n+ 1. Recall that the recognition conditions for
an Ay, | ... |Ax, singularity in Sections 2.1 and 2.2 are conditions on the
k-jet,k =Y "._,(k; + 1), of a functionk : F"** — F (with source coordi-
natesry, ..., X,41, €2, ... , €) or of amapf : F*+~1 — F" (with source
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coordinatesy, ... , x,_1, y1, €2, . .. , €), respectively. Hence we will con-
sider transversality to submanifolds # (n + s, 1) or J¥(n + s — 1, n),
respectively.

The conditions for the failure of transversality require some extra nota-
tion. Let

K(s,m) := (k. ... . k), wherek; > kip1. ks = 1> ki=m

denote a partition ofz involving s non-zero summands, and [Bi(s, m)
be the set of all such partitions. Leélt ) = Axl...|Ar, be thek-
class associated with such a partition, anddet, .., : F'** — F"*s and
Gkis.m) - Fr+s—1 _ F+s—1 denote the maps with component functions the
recognition conditiongx) and(xx) for the closure of thel, ,,)-stratum of
Sections 2.1 and 2.2, respectively.

Notice that the isolated stable singularities of agerm f from F”
to " are the openA-orbits within the-classesAy. ). All s-germs of
type Ax;..4+1) are therefore unstable. Furthermore, the orbit through the
stable mono-germy, ... , x,_1, y?) is the only.4,-orbit in Ay, 1. Hence
it is sufficient to find the conditions for the failure of transversality to the
submanifoldsAk .., where 2< m < n. We first consider the case of
parametrized corank-1 maps and then indicate the necessary changes in the
more complicated global case of projections of hypersurfaces.

For parametrized corank-1 maps the closure of AQg ,,, stratum is
a submanifold in/*(n + s — 1, n) of codimensionn + s — 1 which is
given as the zero-set of a regular map J¥(n +s — 1,n) — Fms—L,
Let Gkn.s) = (G1, ..., Gpys_1) : B — F7+5-1 pe the map whose
component functions are the recognition conditigrs) of Section 2.2,
and letHy, 5 be the corresponding map with the “naive” conditigast)
as components. The maf ., is the composition of the jet-extension
j* £ with . Now, j* f fails to be transverse tp~1(0) at ¢ if and only if
Hy.m) fails to be a submersion at It is easy to see that ., fails to
be a submersion at source points belonging to the closug ©f, 1, but
we are only interested in the failure of transversality to the proger,,
stratum. Lettingﬁ]k(s’m) denote the map defined by omitting thenaximal
derivative conditiong*/’(p;) = 0,1 < j < s, from (++) andd, Hs.m)
its differential with respect tay, ... , x,_1, and restricting to they m)
stratum, we see thd;ﬁlk(s,m) has maximal rank if and only i Hy, ., has.

However,dxﬁk(s,m) is not well-behaved on the diagonal, where some
€; = 0: we have to add to certain columns appropriate linear combinations
of others and divide by powers of. The resulting matrix is the differential,
dy Hk(x,m), of a mapﬁk(s,m), whose component functions are again defined
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by iteration: seg'” := dig/dyi, for0<i < ki, andforj =2, ..., s set
1 1

(O) : Zg(a) ’/oz' .i = 8ig§0)/8€j., 1<i<kj.

a>k;

Notice that, away form the diagonaly ;) := (Hx, ... , Hy,_1) andHy s.m)
define the same ideal. Spt:= Y7 'v;H;, where(vy : ... : v,_1) €
FP"—2, then the component functions of the map

C_;k(s,m) = (le LR anerl) : ]Fﬂ+5—1 - Fﬂ_m+l9

which are defined by eliminating the between the functiondo/dx; (1 <

j < n — 1), vanish if and only ifH (and henceGy..) fails to be a
submersion. Henc@k(s,m) is the desired condition for the non-transversality
to Ax(s.m) in the case of parametrized corank-1 maps.

For projections of hypersurfaces, the closure of Aje ,, Stratum is a
submanifold inJ*(n + s, 1) of codimensionn + s. The recognition con-
ditions () and(+) of Section 2.1 define map3x.m) = (Q1, --- s Qm+s)
and Ky,my = (K1, ..., Knts) in the variablesy; (1 < i < n+1),¢;

(2 < j <s),recallthate;, 1 := Aj11 — A; andi; = 0. We now follow the
same procedure as in the case of parametrized corank-1 mapsk uith

in place of Hy(, ). Remove again the highest derivative conditions at the
s source points and Idf’k(s =) be the map, whose component functions
are defined as follows. Set\” := 8K /a1, for 0 < i < ky, and for
j=2,...,sset

KO:= 3 K@ al KV =0k /el 1<i <kj.

a>kj_1

Let ¢ := w (for parallel projection) of := w — x (for central projection).
If ¢ is the kernel direction of the projection then, at4g; ) singularity,
dR(0) = 0for0 <i <k, 1<) <sbutdR{?@e # 0. Let
e, ..., e, be abasis fofx € F**1: (x, ¢) = 0} and setp := > I, v;K;,

where(vy : ... : v,) € FP"~1. The component functions of the map

A A A X —m+1
Qk(s,m) = (Ql’ s Qn—m+1) :}FYH_Y - Fn mt 5

which are defined by eliminating the between the functiond,p(e;)
(1 < j < n), vanish if and only if the restriction 0@y ) t0 the Ak m)
stratum fails to be submersive — they therefore represent the desired non-
transversality conditions tdy, ., for projections of hypersurfaces.

The unstable-germs in families of projections of hypersurfaces, where
the parameter spade is eitherF"+! (for central projection) offP" (for
parallel projection), or in general-parameter families of corank-1 maps
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from " to " are then characterized as follows. Foxls < n and 2 <
m < n, let By, be the zero-set of one of the following maps:

(Qksms Qkismy) ¥ X B — et
(for families of projections) or
(Gk(s,m)a Gk(s,m)) . Fd X }Fn—Q—s—l - ]Fn—i-s

(for generali-parameter families). And set

[;’(s) = U U [;’k(s,m)-

m=2 K(s,m)eP(s,m)

Andfors =n+ 1, we seB(n +1) := Q1,410 O Gylhyg .1, (0). I
otherwordsB(n+1) isthe closure ofthe 1| . . . |A;-stratum f+1A;S). Let,
in both casesy denote the projection onto the parameter space flien: =
7 (B(s)) is the closure of the-local bifurcation set an#§ := Ufjj B(s) the
full bifurcation set (notice that, by Corollary 3(n, n) = n + 1).

Remark 3.Whenn = 2 the above conditions for an unstablgerm are
equivalent to the presence of an isolated stable singularity of higher multi-
plicity. In dimensionz = 2 there are two isolated stablegerms, namely
Whitney cusps and transverse double-folds. They represent the.4pen
orbitsinA; andinA;| A, respectively. The cusp and double-fold multiplic-
ities of a map-gernf of the plane, denoted ky f) andd (/) in [Ri87], char-
acterize the unstable germgis unstable if and only i€(f) > 2 ord(f) >

2. Forn > 3thisis no longer true: the mono-getm y, z3+ (x?+y?)z) has
A.-codimension one, but the multiplicities of the isolated stable singularities
Az, Ap|A; andA |A1|Aq are all zero.

A natural question concerning the sB(s) is the following: given am, -
versal family of corank-1 maps : F¢ x F* — F¢ x F", are the set8(s) C
F¢ x F**+5-1 smooth submanifolds? For the ié@l’lN—f— 1) the smoothness
follows from Proposition 2. But for the other sefgs), 1 < s < n, this
turns out to be false: the componeifig; ,,, have non-empty intersection.
In dimension two, however, the componeﬁt@s,m) themselves are smooth
(as we will show next); in dimension > 3 we suspect that thék(s,m),
wherem < n + 1, fail to be smooth (at least the corresponding strata in
jet-space are singular, see the proof of Proposition 5).

Now consider the geometry of bifurcation sets in the particular case
n = 2. There are fived,.-codimension-1 singularities (ov&): (i) (x, y* +
x2y), (i) (x,xy + yH), (i) {(x,y%), 0% x), (@, x + y2)}, (V) {(x, xy +
v®), %, x)} and (V) {(x, y?), (x, x2 + y?)}. The open.A-orbits in As,
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A1|A1]A1 and A5|Aq are (ii), (iii) and (iv), respectively, and the closed
codimension-1 orbits withir, andA;|A; are (i) and (v), respectively. The
partitionsk (s, m) appearing in the indices of the seﬁ?{s(s,m) correspond-
ing to the closures of thel.-classes (i) to (v) above are given B), (3),
(1,1, 1), (2,1) and(l, 1), respectively. Then

B(1) = Bo UBa, B2 =BeyUBay
andB(3) = 5’(1,1,1)-

Proposition 3. Let F : F? x F?2 — F? x F? be an.A,-versal family of
corank-1 maps of the plane. (i) Then the five d&tg,,, c F¢ x F*+-1

defined above are smooth submanifolds of dimensgieri (or are empty).
(i) The pairs of component8,), Bz ¢ B(1) and By, By € B(2)

have non-empty intersections for an open set of famiies

Proof. (i) From the preceding discussion we know that the Bets B1.1.1),
1’5’(2,1) correspond to openl-orbits in their respectivéC-orbit, hence they
are smooth by Proposition 2. FBf,), we have to add the non-transversality
conditiond?g/9xdy; = 0 to the conditions for am . Forl’S’(l,D, we sup-
plement the condition&«x) in Section 2.2 for am 1, bi-germ by

aH—
7 0x9y;

gl 1 1/ ,:0

which is the condition for the failure of transversality to thg 1, stratum.
(Geometrically this condition is equivalent to the linear dependence of

the (limiting) tangent lines of the discriminants of the twgpoints. Notice

that the “naive” condition for the linear dependence of the (limiting) tangent

lines to the discriminant at the points, g1(x, y1)) and(x, g1(x, y1 + €2),

given bydgi(x, y1 + €2)/9x — dg1(x, y1)/dx = 0, vanishes identically for

e> = 0. Also notice that

By N{ex =0} = {9%g1/0xdy; = d'g1/0y, =0,1<i < 3},

the intersection 0B 1, with the diagonal therefore corresponds to the clo-
sure of thed-class(x, xy +y 44+y9),i.e.type 1} in the notation of [Ri87].)

In both cases» andB1.1), the conditiongx) and the additional con-
dition clearly define smooth submanifolds of the appropriate jet-space of
codimensiom + s. The pull-back of these submanifolds by a versal family
F yields submanifolds of dimensiah— 1 (or empty sets).

(if) The defining conditions for the non-transverég, stratum and the
A stratum (and similarly for the non-transverde 1) stratum and the
A(2.1) Stratum) imply that these pairs of strata have non-empty interseiction
in jet-space. To complete the proof of the assertion itis sufficient to construct
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examples of versal familieg whose jet-extensions meet the intersection
locus I (because this will then be the case for a Zariski- open set of jet-
extensmns) foB(z), B(g) take any versal unfoldmg‘ of (x, xy?+ y*+y°)

and forB31.1), B2.1) take a versal unfolding aft, xy?+ y®+ y%). The results

in [Ri90] then show that the jet-extension Bfmeets! (in [Ri90] C°-A,-

versal unfoldings are considered, but the adjacencies of strata are preserved
if one passes t@*-versal unfoldings). O

From the smoothness of the componelﬁxg,m) for versal families one
can easily deduce the following topological properties of the corresponding
real bifurcation sets. Let denote the restriction of the projectian: F¢ x
F**+1 — F to Byis.m and setA := (J,.,{e; = 0}. By a “free boundary”
of a componenty; ., of the blfurcatlon set we mean the following: for a
versal family,By .. is locally diffeomorphic to a semi-algebraic set which
can be triangulated, and we say thatiagimplex is free if it is adjacent to
only one(i + 1)-simplex.

Proposition 4. Let F : F? x F?2 — F? x F? be an.A,-versal family of
corank-1 maps of the plane. (i) The map: B’k(s,m) — By.my IS anr-
fold covering, where = 1 for k(s,m) = (2), (3) and (2, 1), r = 6 for
k(s,m) = (1,1, 1) andr = 2fork(s, m) = (1, 1). Whenr > 2, the branch-
locus is given by?k(s,m) N A =: Skem. (i) For F = R, the components
B1,1,1) andB 1,1y have “free boundaries” in codimension 2 alongSk . m)) -
The full bifurcation set3 := J Bk.») does not have free boundaries in
codimension 2.

Proof. (i) ConsiderF = (u, f,) as a multi-germ of a family with target
(v, q) € F¢ x F2. The versality ofF implies that for allu € B; \ C, where
C is a closed subsef, has exactly oned,-codimension-1 singularity at
£ X(q"), for someg’ nearq. Letk < s be the number of source points with
identical recognition conditions (= 3 = s for Bi1.1.1), k = 2 = s for B.1),
butk = 1 # s for B(z,l)). There is anS; action on the source points with
identical recognition conditions, hence theresare- k! points ofl?k(s,m) in
each fibrez ~1(u), for u € By \ C. And the branch-locus$y .., of ther
sheets 0By iS Bi(s.my N A (in the casek (s, m) = (1,1, 1) and(1, 1)
wherer > 2).

(if) Adding the conditiore; = O to the defining conditions d%k(s,m) in
some appropriate multi-jet space (see above) and pulling back by the multi-
jet extension of the versal family, we see thaB.., N A is a smooth
submanifold of dimensiod — 2 or is empty. The versality of implies that
7 is finite-to-one, hence (Bk..,,N A) has codimension 2 iR“. In the cases
kK(s,m) = (1, 1,1) and(1, 1), whereSx,m) = Bk(s,m) N A is hon-empty, let
U be any open neighborhoodo{ Sk, .): then, by the versality of , all the
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vy}

® \

Fig. 1. Multi-local bifurcation sets: thé; 1 1) andB(; 1) components have free boundaries
atn(Bk(S’m) NA),k(s,m) = (1,1,1), (1,1 (leftand middle diagrams), b, 1) merely

has a cusp at(B(,1) N A) (diagram on the right). The points(Bys.,») N A) are marked

by a dot and the corresponding componesitg; ,,,), kK(s, m) = (1,1, 1), (2, 1), (1, 1), (to

the left, middle and right, respectively) are drawn as solid lines, the other components are
drawn as dashed lines.

fiores7~1(u), u € U, “correspond” to exactly ongl,-codimension-2s —
1)-germ (i.e. if (u, x, y1, €2, . .. , &) € 7 1(u), where some; = 0, then

f. is a codimension-2s — 1)-germ at(x, y1), ..., (x, y1 + ZZS,(#J.S €)).

The smoothness (ﬂk(s,m) implies that the mag is of “folding type” (has
even multiplicity) along open subsets 8§ ... Hencer (Sk.m)) is a free
boundary ofBx.. . Finally, the defining conditions a1 11, and B4
|mpIy thatn'(S(]_,l,l)) C 8(3) N 8(2’1) andTL'(S(]_,l)) C B(z) N 6(3). But the
setsB(y), Bz andB 2,1, do not have free boundaries, becaﬁsel?’k(s,m) —

By s.my 1S 1: 1 in the complement of some closed subset. It follows that the
full bifurcation set does not have free boundarias.

Remark 4.For non-versal families all the seﬁs(Bk(s,m) N A) are poten-
tially free boundaries, and the sdfg ., can also have an “off-diagonal”
branch-locus. Non-versal families of projections of a certain class of sin-
gular surfaces have been studied in [Ri96]: in this case the full bifurca-
tion set still cannot have free boundaries in codimension 2 and the in-
cidences between components of the bifurcation sets (like, for example,
7(Ba,1,1 NA) C B NBi1y) are also valid in this more general situation.

Example 1.Figure 1 shows the bifurcation sets in the base of the miniversal
unfoldings of{(x, xy+y%), (¥, x)} (to the left),(x, xy?+ y*+y®) (middle)
and(x, xy + y° + y7) (to the right). These examples illustrate the fact that,
for versal families, the componeritg; 1 1) andB 1 1) have free boundaries of
codimension 2 aﬂr(l’S’k(s,m) N A), wheread3, 1) merely has cuspidal edges
at the corresponding locus.
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3. Counting .A,-classes of codimension 1 ovef

The stable corank-3-germs fromC” to C" are all simple, at present it is

not known whether all4.-codimension-1s-germs are simple (except for

the case of mono-germs, see Remark 5 (ii) at the end of the present section).
In the present sectiom4,.-codimension-1 class therefore either refers to a
simple.4,-orbit or to a modular stratum of codimension one.

Proposition 5. For s-germs fromC” to C" there is exactly one connected
codimension-14,-orbit (or, in the presence of moduli in codimension 1,
one connected modular stratum) for eaCkorbit of type Ay ), for 2 <

m < n + 1. The A,-orbits of C-type Aks.m), wherem > n + 2, haveA,-
codimension greater than one (and, in the presence of moduli, the modular
stratum also has codimension greater than one).

Proof. For 2 < m < n, the unstable-germs inAg. ) are recognized by
the map(Gs,m). (_}k(s‘m)) defined in Section 2.3. Recall th@l;(ﬁ’m)(O) is
the closure of theiy, ,, stratum in the source of the corank-1 mapand
that (Gk(s,m)» Gk(&m)‘l(O) consists of non-transversé, ., -points that
do not belong to the closure dfys, 1. Also recall thatG;(i’m)(O) is the
projection of the sefdp/dx; = Ohi<;-, C CP"=2 x C"*~1. The maps
(Gks.my» Gks.my) and(Gs,my» 9p/9x1, . .. , dp/dx,_1) factor:

crts-t ﬁ> J*n+s—1,n) ot

and

CP2 x Ot LTI o2 o g g — 1, m) B> Qo2
(herek = Y'_;(k;+1)). SetA := ¢; *(0) andA := ¢,*(0). The definition
of Gs.m) @andp in Section 2.3 implies thak ¢ CP" 2 x J*(n +s — 1, n)
is a smooth connected submanifold of codimensioft s + m — 2 (in
fact, it is the graph of a map). Furthermore, the projectionf A onto
J¥(n+ s — 1, n) is a connected variety of codimension- s, but forn > 3
A fails to be smooth. Deleting certain closed str&f@orresponding te-
germs of4,-codimension greater than one, yields a connected submanifold
A\ S C J¥(n+s —1, n) of codimensiom + s that corresponds to a single
A_-orbit of codimension one (or, in the presence of moduli in codimension
1, to the modular stratum).

The remaining cases, where > n are straightforward. The closure of
the Aks.m) Stratum is a connected smooth submanifoldofr + s — 1, n)
of codimensiom: +s — 1, but thelC-codimension of the-germAj .., ism
(thes — 1 constant conditions do not contribute to fiecodimension). The
A.-codimension of the oped-orbit (or the modular stratum) iRy ) iS
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m — n (by Proposition 1), hence 1 fat = n + 1 and> 2 form > n + 2.
]

Using the above proposition, we can count theclasses of equidi-
mensional codimensionstgerms. But first we need some definitions. Let
p(i) denote the number of partitions of Let (u, f,) be a mini-versal
unfolding of a codimension-i-germ f, : C" — C™, then thes-germ
g = (u, f,2) : C"*1 — C™*lis called a (quadratic) augmentation fif
We need the following fact about such augmentations (see [ACM]): aug-
mentations of4,-equivalents-germs of codimension 1 atd,-equivalent
and also have codimension 1. Argerm that is not (equivalent to) an aug-
mentation is said to be primitive. Notice that all codimensiosrderms
from C”" to C" are simple if all the primitive codimensionstgerms from
C" - C",1<m < n, are simple.

Proposition 6. The number of corank-H4,-classes of-germs fromC” to
C" is equal to)_"_; p(i + 1). (In the presence of moduli, we count the
modular strata of codimension 1 as a single-class.)

Proof. By induction om. EachA4,-codimension-k-germf : C* — C" is
either the(n — i)th augmentation of exactly oné,.-codimension-k-germ
f:C" — C",1<i < n,oris primitive. The number afl,-classes of
s-germs fromC” to C" of codimension 1 is therefore equal to the number
of primitive codimension-%-germs fromC” — C", 1 <m < n.

We claim that the opent-orbits (or, in the presence of moduli jA,-
codimension 1, the modular strata) within thé: + 1) C-classesAk s, 41
correspond to primitive-germsy : C* — C" of A.-codimension 1 (or, if
the modality is-, of A,.-codimension + 1). Notice that anyf : C"~ —
C"" in Ak.ne1) hasA,.-codimension greater than one (by Proposition 5),
hencef cannot be the augmentation of suclf a

Finally, there are no primitive-germs fromC" — C" of codimension
1 of K-type Ak.m), for m < n. The (n — m + 1)st augmentation of a
representativg : C"~1 — C"~! of the openA-orbit in the/C-orbit Ay
hasA,-codimension 1 and is, by Proposition 5, the osdgerm fromC” to
C" in Ags.m) Of A,-codimension 1. O

Remark 5.(i) The arguments above show that if the open stratuAkin,,+1,
consists of simple4,.-codimension-Is-germs then all equidimensional
germs of corank 1 and,-codimension 1 are simple. We conjecture that all
these codimension<kgerms are indeed simple.

(i) The normal forms in [Go] show that this the case for mono-germs
(wheres = 1). Hence there arecodimension-14.-classes of mono-germs
from C" to C" of corank-1, which are all simple and do not consist of
modular strata.
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4. The complexity of the complement of3

Throughout this section, the dimensiomvill be an arbitrary but fixed con-
stant. The upper bound for the number of connected regions in the comple-
ment of a bifurcation se will be based on the following estimate.

LemmaAl. Let B be a semi-algebraic bifurcation set ih = R” or RP",
and let be a closed real algebraic subset ®fcontaining5. ThenP \ B
has at mosD ((degB)") connected components.

Proof. The bifurcation sef3 is a semi-algebraic subset of the closed real
algebraic seB c P, and the number of connected regions cut ousiyless
than or equal to the number of regions cutouﬁoy'he number of connected
regions of P \ B is a linear function of thén — 1)st Betti number of3:
taking a 1-point compactification &" or, in case of? = RP”, identifying
anti-podal points we can considBras a subset of the-sphere and obtain
the isomorphism of reduced (co-)homology growfsss” \[3’) ~ A" 1(B)
(Alexander duality). The desired upper bound then follows at once from a
result of Milnor [Mi], which says that the sum of the Betti numberfbis

of order(degB)". O

Next, we derive a bound for the degree of the bifurcation set of the family
of all projections of an algebraic hypersurface (for real hypersurfaces, the
bound applies to the complexification Bj. Recall the following result of
Mather [Ma71] (which is an algebraic-geometric analogue of a well-known
result of Mather in the smooth case [Ma73]).

Theorem 1. Let M c CV (N sufficiently large) be a regular algebraic
surface of dimension, and letr, (M) denote the projection a#/ onto
somep-dimensional linear subspace®f' from centrew. If (1, p) is a nice
pair of dimensions, then the sBt:= {w € CN : 7,(M) is unstablg has
positive codimension for any.

Remark 6.The restriction to the nice dimensions, p) in the theorem
above is necessary, because outside the nice dimensions the stable maps fail
to be dense. But projections of hypersurfaces into hyperplanes are equidi-
mensional corank-1 maps, and the stable corank-1 maps are dense for all
(n, n). Hence no restrictions anare required in the results below.

We have the following degree bound for bifurcation s8tsf families
of projections of hypersurfaces {(n + 1)-space into hyperplanes.

Proposition 7. Let M c F"+1, whereF = C or R, be a regular algebraic
hypersurface of degreg and consider the family of all central or parallel
projections ofM into n-planes from centres or directions € V, where
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V = F1 or FP". Let B be either the bifurcation sef (for F = C) or the
smallest real algebraic set containing the semi-algebraidsgor F = R).
ThenB is a closed subset of of degree at mos® (42" +V).

Proof. Note that, by Theorem 1 (and Remark 6 following B)is closed in
V. Consider the following diagram (recall the discussion in Section 2.3):

B(s) C V x Frts

lm

B(s) c B(s) C V

wherer is the projection onto the first factor and whéte) = B(s) inthe
casel = C. There are two distinct cases,{i}= n+1and (ii)s = 1,... , n.
In the first case (iB(n + 1) is the zero-set of the ma@y+1..41) : V X
F2+1 — F2+2_ |n the second case (i§(s) = ! _, U Bk.m)» Where the
second union ranges oveér(1l) partitions ofm < n havings summands
(notice that: is assumed to be a constant). Hence theredde setsB(s),
1 < s < n, and each such set has(1) componentsBy .. And each
componenték(s,m) is the zero-set of some maWys.m), Qk(s,m)) VY x
FnJrs N Fn+s+1_

Now if d is the degree a#f then each component function@f ,+1,,+1
and of Qk(,.m) has degre® (d), and the degree of the component functions
of Qk(x,m) is also O (d) (see Section 2.3 for the definition @k(s,m) and
recall thatn is some given constant). Hence, the degree of dch is
bounded above b (@"*1) in both cases (i) and (ii).

Let 7, denote the projection onto the second factor (i.e. dfitd). A
“generic” line L c V will cut B(s) in § = degB(s) points. LetH C F*s
be a “generic” linear subspace whose codimension is equal to the dimension
of B(s) N z; }(L). By Bezout's theorem, the sB(s) N7, X(L) Ny 2(H)
consists of at mosb (4"+*1) isolated points whose projections orito
are thes points ofl’S’(s) N L. HenceO (d"**1) is an upper bound for the
degree of3(s). Finally, note that < n 4 1 (by Corollary 1). The degree of
B =,., B(s) is therefore at mosD (42"*+D). O

Remark 7.For regular algebraic surfacas in 3-space (where = 2) the
above bound for the degreeBﬁs asymptotically sharp. This follows from

a formula by Petitjean for the degree of the subvarigtg) = B(1.11) of

B corresponding to triple fold crossings, which is given%m}(d —-3)d —

4)(d — 5)(d? + 3d — 2), see p. 122 of [Pe]. In fact, Petitjean gives formulas
for the degrees of all the se&(s,m). The proof of these formulas is based
on iterative techniques by Colley for enumerating stationary multiple points
[Col] and the recognition conditions for tbé.-codimension-1 singularities
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for n = 2 (i.e. the defining conditions of the sé@s,m)) in [Ri96] in terms

of contact between lines and the surfadeat a set of points. It would be
very interesting to derive a general formula for the degree of the variety
B(n +1) = ék(,ﬁl,n“) of lines inF"*! that are tangent td/ atn + 1
points. Notice tha3(n + 1) is the component off of maximal degree (for

d = degM sulfficiently large).

The above degree bound B B, together with the bound in Lemma
1, yields the following

Theorem 2. Let M C R"*! be a regular algebraic hypersurface of degree
d. Then the number of connected region$’of B — and hence the number
of distinct stable projections dff — are bounded above by (42'"*+Y) (for
parallel projection) oro (d2n+?) (for central projection).

Remark 8.The same bounds are valid for certain singular surfaces in 3-
space: namely for surfaces with transverse double curves and isolated triple-
points [Ri96] and for surfaces with additional cross-caps [Ri98].

5. A final remark

After the present paper had been submitted for publication, a classification
by Damon of discriminants of maps &fy .-codimension 1 has appeared

in print (see Sec. 4 of [Da]). This classification and the relation between
the A,-classification of multi-germs and tit@, .-classification of their dis-
criminants (see Sec. 6.2 of [Da]) imply that all corank-1 equidimensional
multi-germs ofA.-codimension 1 are simple, which confirms the conjec-
ture in Remark 5 (i). In particular, we now know that all the codimension-1
A,-orbits in Propositions 5 and 6 are simple.

Acknowledgements. am grateful for discussions with Roberta Atique, Sylvain Petitjean
and Maria Ruas. | also thank the research foundation FAPESP for financial support.
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