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We discuss the diagrammatic theory of knot isotopies in dimension 4. We project
a knotted surface to a three-dimensional space and arrange the surface to have
generic singularities upon further projection to a plane. We examine the
singularities in this plane as an isotopy is performed, and give a finite set of local
moves to the singular set that can be used to connect any two isotopic knottings.
We show how the notion of projections of isotopies can be used to give a com-
binatoric description of knotted surfaces that is sufficient for categorical applica-
tions. In this description, knotted surfaces are presented as sequences of words in
symbols, and there is a complete list of moves among such sequences that relate the
symbolic representations of isotopic knotted surfaces. � 1997 Academic Press

1. INTRODUCTION

Algebraic and categorical descriptions of knot diagrams have played key
roles [28] in classical knot theory since the discovery of the Jones poly-
nomial [15]. In higher dimensions, diagrammatic descriptions of knotted
surfaces that generalize classical knot diagrams, their Reidemeister moves,
and braid theories have been made by several authors [17, 16, 4, 25, 31].
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The purpose of this paper is to give algebraic and categorical interpreta-
tions of knot diagrams in dimension 4.

We remind the reader of the papers by Fischer [11] and Kharlamov�
Turaev [19]. In Fischer's thesis, the axioms of a certain type of 2-category
are given. In these axioms some obvious relations are pre-supposed. In
[19] the problem of composition is discussed in relation to these axioms.
Meanwhile, Baez and Neuchl [1] have given a definition of a braided
monoidal 2-category that serves as an alternative to the Kapranov�
Voevodsky [18] axioms. Moreover, they have constructed a 2-categorical
analogue of the quantum double [10]. For further studies of categorical
structures of knotted surfaces, we need to have moves that explicitly
include a height function in each still of movie descriptions of knotted
surfaces.

Recall that categorical�algebraic descriptions for classical knots were
obtained by fixing a height function on the plane into which a given knot
is projected (this will be reviewed in Section 2). In this case, the three
Reidemeister moves were augmented by two moves that take into con-
sideration the height function of the plane.

For knotted surfaces a movie description is obtained when a height func-
tion is fixed on the 3-space into which a given knotted surface is projected.
The height function is regarded as the time direction in the movie. We
[3, 4] generalized the Reidemeister moves for knotted surfaces that were
obtained by Roseman [25] to the case when there is a height function in
3-space. This generalization will be reviewed in Section 3.3.2.

To obtain categorical�algebraic descriptions of knotted surfaces, we will
fix a height function on each cross section (called a still of a movie), and
we will diagrammatically describe the interchange between distant critical
levels of the height function. In this case the diagrammatic changes that
occur between stills have more variety as do the diagrammatic moves that
describe the isotopies.

1.1. Organization

The paper is organized as follows.
In Section 2, we discuss the classical Reidemeister theory of knot

diagrams. The set of Reidemeister moves must be augmented when a height
function is fixed on the plane into which a knot is projected. In the classical
case, we have three types of moves to diagrams: (1) those that change
the topology of the underlying graph (these are the Reidemeister moves);
(2) those in which the topology of the underlying graph is unchanged but
the local configuration of crossings and critical points of the height func-
tion changes; (3) those that involve interchanging distant critical points.
Each of the diagrammatic moves can be interpreted cinematically as the
local picture of a surface in 4-space.

2 CARTER, RIEGER, AND SAITO



File: 607J 161803 . By:CV . Date:17:04:97 . Time:07:57 LOP8M. V8.0. Page 01:01
Codes: 2956 Signs: 2459 . Length: 45 pic 0 pts, 190 mm

In Section 3, we develop the known theory of knotted surface isotopies
in analogue to the classical theory. The moves to diagrams are the
Roseman moves; these affect the topology of the underlying diagram. Then
we project a knotted surface diagram to a plane to obtain a chart descrip-
tion (in the sense of Kamada) of the surface. We list a sufficient set of
moves to charts in Theorem 3.2.3. The moves to diagrams on which a
height function is fixed are the movie moves of [3, 4]. The moves to
diagrams on which a height function is fixed in each still form an augmen-
tation to the set of movie moves. In Section 3.5, we give a combinatorial
description of the knotted surfaces and their equivalences that should be
suitable for categorical applications.

In Section 4, we show how to prove that each of the lists that have been
compiled form a sufficient set of moves as the diagrams become more
restricted. The idea of the proof is to interpret each of the moves as a
codimension 1 singularity and then to use singularity theory to classify
these.

In Section 5, we give an overview of the 2-categorical structure that will
arise from the description given here. The axiomatization of this structure
is being worked out by Baez and Langford.

2. THE CLASSICAL THEORY OF KNOT DIAGRAMS
AND REIDEMEISTER MOVES

We discuss the Reidemeister moves, their algebraic interpretation, and
their interpretation as local pictures of surfaces embedded in 4-dimensional
space.

2.1. Classical Knot Diagrams

A classical knot is an embedded circle K : S 1 � R3 in 3-space. The image
K(S1) is projected generically into a plane 6 2. The projection is generic in
the sense that a finite number of transverse intersections of arcs occur, and
these intersections are isolated double points. The three elementary
Reidemeister moves are exemplified in the top three pictures of Fig. 1 with
one possible choice of crossing indicated in the figures. (We leave the
reader to draw the other choices of crossings.) The Reidemeister moves are
moves to knot diagrams��projections of knots into 6 2 that have crossing
information indicated at the double points. These moves can be considered
as surfaces properly mapped into 62_I by regarding the strings to trace
out a continuous surface as they move in 62_I. The boundaries of
the surface at 62_[0] and 6 2_[1] are strings before�after the move
respectively. The intersection of the surface with an interior plane, say
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Fig. 1. Reidemeister moves and surfaces.

62_[1�2], contains a singularity or a Morse critical point of the self inter-
section set of the surface.

The singularity is a branch point if the corresponding Reidemeister move
is of type I, it is a point of tangency of the double point curve if the move
is of type II, and it is a triple point if the move is of type III. Figure 1
illustrates this relation.

2.2. Reidemeister Moves with Height Functions

In this section we review how height functions were used in classical
knot theory to obtain categorical�algebraic descriptions.

Consider a classical knot, K : S1 � R3, a generic projection, p1 : S 1 � 62,
and the corresponding diagram D. In the plane 62 we choose a projection,
p2 : 6 2 � L, onto a line, L, such that the composition g=p2 b p1 b K satisfies
the following general position assumption:

1. The critical points of g are all Morse singularities and they each
occur at distinct levels.

2. The crossing points of p1 project to distinct levels and these levels
are distinct from the critical levels of g.

In this case Morse critical points are maximal and minimal points. A knot
diagram with such a projection p2 is illustrated in Fig. 2. The following
result is well known:

2.2.1. Theorem. Two knot diagrams with height function are isotopic if
and only if one can be obtained from the other by a finite sequence of the
Reidemeister moves that are illustrated in Fig. 1, the moves illustrated in 3,
the variants of these figures obtained by other choices of crossing, their
mirror images with respect to the horizontal and vertical axes, and moves in
which the relative heights of distant critical points are interchanged.
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Fig. 2. A knot diagram with a height function.

Next we review how this theorem has categorical interpretations.

2.3. Categorical Interpretations of Knot Diagrams

A strict braided monoidal category is a category C that satisfies the
following conditions:

1. There is an associative covariant functor

� : C_C � C.

2. There is a distinguished object, 1, such that

(a) for any object V # obj C

V�1=V=1�V,

and

(b) for any morphism f : V � W

f� id1=id 1�f = f.

3. There is a natural family of isomorphisms

R : V�W � W�V

such that

RU, V�W=(idV �RU, W) b (RU, V � idW)

5KNOTTED SURFACES AND THEIR ISOTOPIES
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and

RU�V, W=(RU, W� idV) b (idU�RV, W).

One can show that the braiding, R, satisfies the Yang-Baxter condition:

(idW �RU, V) b (RU, W � idV) b (idU�RV, W)

=(RV, W� idU) b (idV�RU, W) b (RU, V� idW).

The category is said to be pivotal if it satisfies the following conditions:
For each object V there is a dual object V* and morphisms

bV : 1 � V�V*

and

dV : V*�V � 1

such that

(idV�dV) b (bV� idV)=idV ,

(dV � idV*) b (idV*�bV)=idV* ,

(idU�dV) b (RV*, U� idV)=(dV � idU) b (idV*�R� V, U)

as maps V*�U�V � U. We assume that V**=V, and the composition

(idV �dV*) b (RV**, V� idV*) b (idV**�bV)

gives the identification. (The category is rigid if the last condition is
dropped.)

As in [28], for example, the axioms for a braided monoidal category
have graphical interpretations that correspond to the Reidemeister
moves��or conglomerations thereof. The graphical calculus pictures in
[28] indicate the interpretations that we summarize. The map R corre-
sponds to a crossing, the map b corresponds to a minimum, and the map
d corresponds to a maximum point of the diagram. Arcs in the diagram
that have no critical points, correspond to identity mappings. The Yang�
Baxter relation corresponds to the Reidemeister type III move. The inver-
tibility of R corresponds to the type II move. The identification between
V** and V corresponds to the type I move. The identities that are satisfied
by b and d correspond to the moves introduced in Fig. 3.

To complete our discussion of the relationship between categories and
knot diagrams, we recall the following theorems of Freyd and Yetter [12]
and Turaev [27].

6 CARTER, RIEGER, AND SAITO
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Fig. 3. Additional Reidemeister moves with height functions.

2.3.1. Theorem [12]. The category of regular isotopy classes of oriented
tangles is the free braided (strict) rigid category on one object generator.

2.3.2. Theorem [27]. The category of ambient isotopy classes of tangles
is the free pivotal braided monoidal category on one self-dual object.

2.4. Singularities and Additional Moves

In this section we review how we prove the sufficiency of two additional
moves when a height function is present. We have already observed that
Reidemeister moves are obtained by examining Morse critical points of
crossing points of one dimensional higher knot diagrams. The additional
moves are derived from other types of singularities. Here we give two
figures indicating how these two moves are related to cusps and folds of
mappings from 2-manifolds to the plane.

Just as the three Reidemeister moves have interpretations as surfaces
embedded in 4-space, so do the moves that are introduced in Fig. 3. The
figure indicates that moving an arc over a maximum point corresponds to
the transverse intersection of a fold line and a double point arc. The can-
cellation of a local maximum and local minimum corresponds to a cusp
singularity of the fold lines. We combine the height function on the plane
6 onto which the knot is projected with the time direction of the isotopy
to obtain a projection of the knot times an interval onto a plane. The
singularities of this projection are the fold lines that are traced out by
the maximal and minimal points and the cusps. The critical points of the
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Fig. 4. Interchanging crossings and critical points.

multiple point set correspond to the Reidemeister moves��these are critical
points in the time direction of the isotopy.

Thus in classical knot theory the moves that are used to isotope knots
correspond to Morse critical points and singularities of surface projections.

2.5. Exchanging Critical Points
When a knot diagram is interpreted algebraically or categorically, the

diagram represents a sequence of symbols. Similarly, braid theory gives the
knot as the closure of a word in the braid group. In the latter case the knot
is given as a sequence of braid generators, and a complete set of relations
among the generators is known.

When we use a height function to describe the knot diagrams, there are
explicit relations between crossings and critical points, distant crossings,
and distant critical points. These relations are found by looking at the
plane that has the interval factors (the interval onto which the diagram is
projected) times (the time direction in the isotopy). Indeed, the distant
critical points and crossing points trace out lines in this plane, and these
lines cross as their height levels are exchanged. In Fig. 4 we have indicated
these exchanges, and their interpretation as surfaces traced out during the
isotopy. (In the figure we have not included intermediate arcs that may be
present. For example, if |i&j |>2, the braid generators _i and _j in the top
left hand side of the picture will be separated by a number of vertical
strings, and the corresponding surfaces will be separated by as many walls.)
The film strip icon will help us interpret these exchanges in the sequel.

3. DIAGRAMS AND SYMBOLIC REPRESENTATIONS
OF KNOTTED SURFACES

In this section a complete symbolic representation of knotted surfaces
will be given so that the category representing the surfaces can be defined.

8 CARTER, RIEGER, AND SAITO
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The section is organized as follows. We recall the definitions of crossings
and their lifts to the abstract surfaces. We review the Roseman Theorem
and the Movie Move Theorem. We discuss putting a height function on the
stills in a movie, and we present a list of moves that are sufficient for
surface isotopies in that setting. Finally, we discuss the interchange of
distant critical points, and we show how to interpret these interchanges
graphically. The graphical interpretation gives rise to a notion of charts
and chart moves that generalize those given by Kamada in the case of
surface braids [17].

In Section 3.5, we use the graphical interpretation to give a combina-
torial description of knotted surfaces that should suffice for any categorical
applications. Proofs of the sufficiency of the sets of moves that we propose
in each setting will be postponed until Section 4.

3.1. Diagrams and Their Isotopies

We define the crossing points of a knot diagram, and review the
Roseman Moves.

3.1.1. Definitions. Let F be a closed manifold of dimension 2, and let
K : F � R4 denote an embedding. Choose a projection p : R4 � R3 such that
the composition p b K is a generic map of an 2-manifold into 3-space. The
hyperplane, R3 is a chosen subspace of R4 so that K(F )/R4"R3. The
multiple point manifolds are defined as follows. Let f = p b K. Let

C� r=[(x1 , ..., xr) : xj # F xs{xt for s{t 6 f (x1)= f (x2)= } } } = f (xr)];

this is a manifold of dimension 3&r. There is a free action of the permuta-
tion group 7r on C� r . The associated r-fold cover

Dr=C� r_7r [1, 2, ..., r]

is called the r-decker manifold (double, triple, and quadruple decker
manifolds when appropriate). The r-decker manifold is mapped into F via
the map [(x1 , ..., xr); j] [ xj . The quotient Cr=C� r �7r is called the r-tuple
manifold, and this is mapped into R3 via the map fr : [x1 , ..., xr] [ f (x1).
Evidently, the r-to-1 covering space Dr � Cr factors through these maps.
For convenience, we will include branch points in the double point
manifold.

Recall that a generic map from a 2-manifold to 3-space has embedded
points, double point curves, isolated triple points, and branch points.
A knotted surface diagram consists of a generic projection of the surface
into 3-space together with crossing information (defined in the next two
sentences) included along the image of the double and triple point

9KNOTTED SURFACES AND THEIR ISOTOPIES
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manifolds. The sheet of the diagram that is further from the hyper-plane
onto which the surface is projected is broken; that is, a small tubular
neighborhood of the image of one of the sheets of the double decker
manifold is removed from the surface F. At a triple point, this will mean
that there is an indication of a top, middle, and bottom sheet. Knotted
surface diagrams of surfaces are also called broken surface diagrams. See
[7] for more details. The local pictures of knotted surface diagrams are
depicted in Fig. 5. We may abuse notation and not make the distinction

Fig. 5. Projections and broken diagrams of knotted surfaces.

10 CARTER, RIEGER, AND SAITO



File: 607J 161811 . By:XX . Date:17:04:97 . Time:11:24 LOP8M. V8.0. Page 01:01
Codes: 1133 Signs: 678 . Length: 45 pic 0 pts, 190 mm

between the diagram and the projection of the knotted surface. In par-
ticular, the moves to diagrams will be drawn as moves to projections.

3.1.2. Roseman Moves. For such diagrams of knotted surfaces,
Roseman obtained a complete set of moves generalizing the Reidemeister
moves. Thus two diagrams represent isotopic knottings if and only if they
are related to each other by a finite sequence of moves taken from the
Roseman moves that are depicted in Fig. 6.

One proves that the Roseman moves are a sufficient set of moves for
knot isotopies, by showing how each move corresponds to a Morse critical

Fig. 6. Roseman moves of knotted surfaces.

11KNOTTED SURFACES AND THEIR ISOTOPIES
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point on one of the multiple point sets where the isotopy direction provides
a height function. Alternatively, Goryunov [14] has classified the codimen-
sion one singularities of stable maps from C2 to C3, and the real pictures
of the versal unfoldings of these singularities correspond to the Roseman
moves.

3.2. Charts of Knotted Surfaces and Their Moves

Charts for surface braids were defined by Kamada [17, 16]. Here we
define charts for any generic projections of knotted surfaces.

3.2.1. Definition. Consider a surface embedded in R4, and choose a
projection p : R4 � R3 that is generic with respect to the knotting
K : F � R4. We define a retinal plane to be a plane, P, in R3 with a projec-
tion ? : R3 � P such that p b K(F )/R3"P.

3.2.2. Definition. Consider the image I=? b p b K(F ) of a generic
projection of a given knotted surface in the retinal plane. Let D denote the
projections of the double points, triple points, and branch points con-
sidered as subsets of I. Assume without loss of generality that the map
? b p b K is generic. Let S denote the image of the fold lines and cusps of the
generic map ? b p b K in I. Without loss of generality assume that D and S
are in general position.

Let the chart, C=C(K, p, ?), of K with respect to p and ?, be the planar
graph D _ S considered as a subset of I which is further contained in the
retinal plane. We label the the chart C according to the following rules.

The image D is depicted by a collection of solid arcs while the image S
is depicted by a collection of dotted arcs in our figures. In the figures a
thick dotted arc can be either an arc in D or an arc in S.

There are seven types of vertices in the chart C ; these vertices
correspond to isolated stable singularities of codimension 0.

(1) The projection of a triple point gives rise to a 6-valent vertex.
Every edge among the six coming into the vertex is colored solidly.

(2) Each branch point in the projection of the knotted surface K(F )
corresponds to a 3-valent vertex. Two of the edges at the vertex are colored
as dotted arcs (the fold lines); the other edge is solidly colored (the double
arc that ends at the branch point).

(3) Each cusp of the projection ? gives rise to a 2-valent vertex in
which both edges are colored as dotted arcs.

(4) The projection of a point at which an arc of double point crosses
a fold is a 4-valent vertex. Two of the edges at this vertex are solid; the

12 CARTER, RIEGER, AND SAITO
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other two are dotted. A circle in the retinal plane that encompasses such
a vertex encounters the edges in the cyclic order (solid, solid, dotted,
dotted).

(5) The points of the retinal plane at which the double points cross
are 4-valent vertices at which all of the incoming edges are solid.

(6) The points of the retinal plane at which the fold lines cross are
4-valent vertices at which all of the incoming edges are dotted.

(7) The points of the retinal plane at which an arc of D crosses an
arc of S are 4-valent vertices at which there are two solid edges and two
dotted edges. A circle encompassing the vertex encounters the edges in
cycle order (dotted, solid, dotted, solid).

We use the projection of the knotted surface K in 3-space to label the
edges of the chart as follows (Fig. 7). Consider a ray R that is perpendi-
cular to the retinal plane. Assume that R is in general position with
p(K(F )), and assume that the end of the ray lies on an edge E. The edge
E is the image of the double point arc or a fold line of p(K(F )). Let E$ be
the preimage (either the double point arc or a fold line). Let m (resp. n) be
the number of sheets of p(K(F )) that are farther away (resp. closer to) from
the retinal plane than E$ along the ray. Then the pair of the integers (m, n)

Fig. 7. Labeling of charts.

13KNOTTED SURFACES AND THEIR ISOTOPIES
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is assigned to the edge E as a label. The label does not depend on the
choice of point along the edge near which the ray R starts.

Furthermore, we indicate a normal to fold lines. A fold line is formed by
two sheets coming into it. In the retinal plane, one side of the fold line is
the image of these sheets. We indicate this side by a normal vector to the
edge of the chart that are the images of fold lines.

Next we consider the moves to charts for isotopic knotted surfaces.
Specifically, we will prove

3.2.3. Theorem. Two charts of the isotopic knotted surfaces are related
by the moves depicted in Fig. 8 through 10.

The moves that are depicted in Fig. 11 will be discussed in Section 3.5.
In these figures labels and normals are not specified for simplicity.

3.3. Knotted Surface Diagrams with Height Functions. We define
height functions for knotted surface diagrams and give the list of movie
moves.

3.3.1. Definition. A projection p2 : R3 � R is a generic height function
for the knotting if

Fig. 8. Chart moves, part I.

14 CARTER, RIEGER, AND SAITO
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Fig. 9. Chart moves, part II.

Fig. 10. Chart moves, part III.

15KNOTTED SURFACES AND THEIR ISOTOPIES
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Fig. 11. Chart moves, part IV.

1. p2 b fr has only non-degenerate critical points for all r=1, ..., n+1,
and

2. each critical point is at a distinct critical level of p2 .

Condition (1) for r=1 states that p2 b f has non-degenerate critical
points. Here we define critical points to include branch points and triple
points. So in condition (2), we have that each critical point of either the
manifold or its multiple point set is at a different critical level.

3.3.2. Knotted Surface Movies. A knotted surface movie consists of a
knotted surface diagram together with a choice of height function for the
diagram. The main theorem in [3, 4] is the following:

3.3.3. Theorem [3, 4]. Two knotted surfaces movies represent isotopic
knottings if and only if they are related by a finite sequence of moves to
movies depicted in Figs. 12, 13, 14 or interchanging the levels of distant criti-
cal points.

In the illustration of moves to movies we have shown local pictures
where the surface is cut between critical levels by a plane and the crossing

16 CARTER, RIEGER, AND SAITO
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Fig. 12. Movie versions of the Roseman moves.

information is indicated. Thus the stills represent the level sets of the height
function. We also remind the reader that only one possible choice of cross-
ing information is indicated as with the classical Reidemeister moves. In the
next section, we discuss the need to fix a height function in each of the
stills.

3.4. Movies for Which a Height Function is Fixed in Each Still.
We begin this section with an example that indicates the geometric need
to fix height functions in the stills. Subsequently, we give an overview of
the categorical justification of these height functions. We analyze the

17KNOTTED SURFACES AND THEIR ISOTOPIES
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Fig. 13. Movie moves in which the topology of the image is unchanged (1).

projections of the surfaces when a height function is fixed in 3-space and
in the stills, and we list a sufficient set of moves (that are an annotation of
the movie moves) in the new more restricted setting.

3.4.1. Example. Consider the isotopy of the trefoil knot diagram that is
depicted in Fig. 15. A diagram with 3-fold symmetry is rotated clockwise
through an angle of 2?�3. Of the 3 Reidemeister moves illustrated in the

18 CARTER, RIEGER, AND SAITO
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Fig. 14. Movie moves in which the topology of the image is unchanged (2).

introduction, none is employed in this isotopy, but the isotopy clearly
changes the diagram so exactly what is happening here?

The diagram of the trefoil was rotated, or equivalently the position of the
top of the diagram changed. In Fig. 15 we indicate how the height function
is changed by the non-Reidemeister moves depicted in Figs. 16 and 4.

The significance of such a rotation in knotted surface movies is that
when this rotation occurs in a movie, it may give a surface which is not
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Fig. 15. Rotation of trefoil.

Fig. 16. Elementary string interactions.
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isotopic to the surface without the rotation in the corresponding stills.
Thus we need to be able to describe such changes in diagrams.

Recall that Fig. 4 included those moves to knot diagrams that involved
interchanging distant critical points and crossings. The non-Reidemeister
moves in Fig. 16 are local changes to the knot diagrams with height func-
tions. Again the film strip icon is used because we are thinking of the
diagrams as non-critical cross sections of a surface.

The scene consisting of a twisted trefoil can occur as a scene in a larger
movie. In fact, Roseman uses this scene in his video, ``Twisting and Turning
in 4-Dimensions'' [26] (See also [9]).

3.4.2. Categorical Motives. In Section 5, we will generalize the
categorical structure of a braided monoidal category to apply a similar
structure to embedded surfaces in 4-space. Here we give an overview of the
notion and motivation for a 2-category.

In a 2-category there are objects, morphisms, and 2-morphisms. Objects
are symbolized as dots, morphisms are symbolized as arrows that start and
end at a specific pair of dots, and 2-morphisms are symbolized as polygons
whose vertices are the dots, and whose edges are the arrows. Strictly speak-
ing, a 2-morphism is a 2-gon between two given 1-morphisms, but com-
position and pasting allows the more general case to be well-defined.

The philosophy of 2-categories is that an equality between a pair of
1-morphisms (or even a similarity or equivalence) should be replaced by a
2-morphism that expresses that equality, similarity, or equivalence.

In the classical case, a knot diagram represents a morphism. (In the
representation of the braided monoidal category, it represents a map from
C to C.) In dimension 4, we have a movie description of a knotted surface
which we will give as a sequence of classical knot diagrams where there is
a height function fixed in each diagram, and a pair of subsequent diagrams
differ at most by one of the moves depicted in Figs. 16 or 4. Each still
of the movie (one element in the sequence of diagrams) will represent a
1-morphism. Thus we regard the knotted surface as a composition of
2-morphisms in a 2-category. To get this description, then, we will need to
fix a height function on each still so that we can associate a 1-morphism
to the diagram as in the classical case. For this purpose, we need a com-
plete set of Reidemeister moves when height functions are fixed for each
still.

3.4.3. Definition. Let ? : R3 � R2 be the projection to a retinal plane.
The vertical axis is defined by a projection v : R2 � R (the image is the
up�down axis) and we require that the composition v b ? is a generic height
function for the knotting in the sense defined in Section 3.3.1. The horizon-
tal axis is defined by a projection h : R2 � R (the image is the left�right
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axis). The horizontal axis of the retinal plane will be used to define a height
function in each of the stills of the knotted surface movie.

Let us examine the singularities of the projection of K(M) onto the
retinal plane. First there are the cusp and fold singularities of a surface as
classified by Whitney. Second, the double point manifold has singularities,
critical points, and crossing points. Since branch points can occur, the
double point manifold is a manifold with boundary, and the branch points
lie along the fold lines of the projection onto the retinal plane. Other maxi-
mal and minimal points of the double point manifold can also occur along
the fold lines. Finally, the triple points of the projection are isolated, and
these are the three fold intersections of arcs of the double point manifold.
Each of these situations is a local and stable phenomenon, and they are
illustrated by the drawings in the Fig. 16.

3.4.4. Definitions. Consider the singular levels of the projection of the
knotted surface on the retinal plane. Suppose t=1�2 is a singular value on
the vertical axis and no other singularities occur for t # [&1, 2], then we
say that the inverse images of the t=0 and the t=1 levels differ by an
elementary string interaction or ESI with respect to the movie description
with a still height function.

There are seven basic types of ESIs. They are depicted in Fig. 16. We
describe the singularities.

1. When a branch point occurs, it will occur at a fold line, and this
is called a type I Reidemeister move. The double point arc ends at the fold
line.

2. When a maximal point or minimal point occurs on the interior of
a double point arc, this is a type II Reidemeister move. The pair of strings
involved has no fold lines.

3. When an isolated triple point occurs among three double point
arcs and there are three sheets of surface intersecting pairwise along these
arcs, this is called a type III Reidemeister move. Three strings involved have
no fold lines.

4. A Morse critical point of the surface F of index 0 or 2 with respect
to projection onto the vertical axis is a birth or death of an unknotted
circle. Small circles at each maximal�minimal point have one maximal and
one minimal point with respect to the height function in the still (given by
projection onto the horizontal axis).

5. A Morse critical point of index 1 on the surface is a saddle. At a
saddle point, a single pair of optimal point (one maximum and one mini-
mum) either is introduced or cancelled.

6. A cusp on a fold line is called a switch back move.
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7. When a double point arc crosses a fold line so that in the projec-
tion onto the retinal plane the double point arc crosses the fold line this is
called a camel-back move or a �-move.

Of course we include the following variations for the ESIs. Each film can
run backward, crossing information can vary, and in cases 1, 6, and 7 we
turn both of the stills upside down by reflecting through a central hori-
zontal axis. (The remaining ESIs are symmetric under such a reflection.)

The first five of the above are called ESIs with respect to the movie
descriptions. They are used in the movie moves. The remaining two ESIs do
not change the topological type of the knot diagram (considered as a graph
in the plane), but they give local changes to the diagram when the height
function is changed. At this point we are not including the interchange of
distant critical points to be among the ESIs, but will include these later to
obtain a combinatorial description of the knotted surface.

3.4.5. Singularities of Knotted Surface Isotopies. We will examine
singularities in the retinal plane as an isotopy of a knotted surface is
performed.

Consider an isotopy Kt between knottings K0 , K1 : F � R4 for t # [0, 1].
For each t, Kt is an embedding. Recall that p : R4 � R3 (resp. ? : R3 � R2)
denotes the projection onto a hyperplane (resp. the retinal plane). The
moves that are used to decompose the knotted surface isotopy are
codimension 1 singularities. We will ``watch'' the projection of the isotopy
on the retinal plane. If R2 is the retinal plane, then the isotopy provides a
map K from F_[0, 1] onto R2_[0, 1]. Here is a list of the local types
of changes we see in the fold lines and multiple point sets:

1. Changes in the fold lines;

2. Changes in the positions of the double points and triple points in
relation to the fold lines where the changes do not affect the topological
type of the double point set and the fold lines remain fixed;

3. Changes in the positions of the double points and triple points in
relation to the optimal point of the multiple point sets;

4. Critical points of the multiple point sets in the direction of the
isotopy.

Let us describe these more concretely.

(1) There are 5 types of changes in the fold line set that can occur.
Elliptical and hyperbolic confluence of cusps are two of these. A fold line
can undergo cusp singularity because the vertical direction of the retinal
plane provides a height function for the fold lines. In the presence of
a nearby saddle point, a cusp can change from pointing downward to
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pointing upward. The singular point that serves as the intermediate point
is called a horizontal cusp [20]. Finally, there can be a swallow-tail
singularity in the fold set. These moves are illustrated in Figs. 17, 18, 19,
20, and 21, respectively.

(2) There are 9 situations in which the double points and triple
points change their position in relation to the fold lines. A branch point
may pass through an optimum of the surface (Fig. 22) or a saddle point
of the surface (Fig. 23); in either case the fold line has a local optimum.
A branch point may pass through a cusp of the fold line set (Fig. 24).
Similar to these three moves, we have a double point curve passing over a
fold-line near a maximum point (Fig. 25), saddle point (Fig. 26), or cusp
(Fig. 27); the changes are realized when the point at which the double line
passes over the fold intersects the optimal points on the fold line set.
A double point curve can pass back and forth over a fold line and this
situation is replaced with the double point curve not passing at all over
the folds (Fig. 28). There may be a triple point in a neighborhood of a
fold line, and the move in this case passes the triple point over the fold
(Fig. 29).

Finally, a pair of fold lines may cross, and a pair of double points may pass
over the pair of fold lines. By interchanging the relative height of the double
points it is possible to interchange the fold-line over which a given arc passes.
The two arcs then are connected by a type II move. The singularity that
one sees in the retinal plane that connects these two moves occurs when the
double arc becomes tangent to the direction of projection; in following the
projection of the double arcs, one sees them undergo a type I Reidemeister
move in the retinal plane. Fig. 30 contains an illustration.

(3) The optima of the double points can change in a cusp-like
fashion (Fig. 31), or a maximum point can be pushed through a branch
point (Fig. 32). A triple point can be pushed over a maximum point of the
double point set (Fig. 33).

(4) The remaining changes are movie parametrizations of the
Roseman moves. Their description as Morse critical points on the multiple
point set appears in [4].

In relation to these changes we observe that the changes described in (1)
affect only the fold lines. Those changes in (2) affect the relative position
of multiple points and fold lines. Those changes in (3) affect the relative
height of the multiple points. Those changes in (4) affect the topology of
the projection of the diagram.

3.4.6. Theorem. Let two knotted surface diagrams be given, each as a
sequence of ESIs. Then one is obtained from the other by a finite sequence
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Fig. 17. An elliptic confluence of cusps.

Fig. 18. A hyperbolic confluence of cusps.

Fig. 19. A cusp on the set of fold-lines.

Fig. 20. A horizontal cusp.
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Fig. 21. A swallow-tail on the fold lines.

Fig. 22. A branch point passes over a maximum point of the surface.

Fig. 23. A branch point passes over a saddle point of the surface.
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Fig. 24. A branch point passes through a cusp.

Fig. 25. A double point arc passes over a fold line near a maximum point.

Fig. 26. A double point arc passes over a fold line near a saddle point.
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Fig. 27. A double arc passes over a fold line near a cusp.

Fig. 28. Removing redundant double points crossing the fold lines.

Fig. 29. A triple point near a fold line.
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Fig. 30. A double point arc becomes tangent to the line of projection.

Fig. 31. A cusp on the double point set.

Fig. 32. A maximum point of the double point set being pushed through a branch point.
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Fig. 33. A triple point passing through a maximum on the double point set.

Fig. 34. An elliptic confluence of branch points.

Fig. 35. A hyperbolic confluence of branch points.

Fig. 36. An elliptic confluence of double points.
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Fig. 37. A hyperbolic confluence of double points.

Fig. 38. Canceling triple points.

Fig. 39. A branch point moving through a triple point.
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Fig. 40. A quadruple point in the isotopy.

of local moves taken from those depicted in Figs. 17, through 40, or by
exchanging the order in which ESIs occur when they occur in disjoint
neighborhoods.

Here we did not strictly specify what we mean by exchanging the order
of ESIs. In Section 3.5, we will give a concrete description of moves
addressing this point. Let us motivate the sequel.

3.4.7. Motivation. We want to give a complete combinatoric or
algebraic description to the set of knotted surface diagrams. To this end,
we must explicitly describe the set of moves to the classical knot diagrams
that occur at the critical levels of the surface with respect to the height
function in the retinal plane. In particular, we must include among the
critical data the crossings of double point arcs, the crossings of fold lines,
and the crossings between double points and fold lines. Once we establish
that the set of moves to classical diagrams include these interchanges, we
find that the set of moves to knotted surface diagrams must take into
account these subtleties.

In categorical language, we have identified new 2-morphisms that are
natural equivalences which used to be considered to be equalities. Thus
these equivalences must satisfy some further equalities. This language does
not cast aspersions on the previous results��for example, the Reidemeister
Theorem, the movie move theorem, or even Theorem 3.4.6. Each of these
theorems provides a valid technique for moving knots (or knotted surfaces)
around in space (or 4-space). But as we specify the diagrams as certain
combinatorial data, the moves can affect those data. And we have to take
into consideration those changes.
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In the next section, we will examine all of the folds and double lines as
they are projected to the retinal plane. In this way we will take into
account the folds and double points that are not necessarily close (on the
diagram of the surface) but that have projections that are close. In the
language of singularity theory, we are examining the multi-local situation.

3.5. Complete Symbolic Representations

In Section 3.2, we illustrated the changes that occur in the retinal plane
among the double point lines, triple points, branch points, and fold lines in
the retinal plane. In Section 3.3.2, we illustrated the movie moves. And in
Section 3.4, we illustrated the local changes in the movie description that
can occur when a height function is included in the retinal plane. Here we
amalgamate these results to give a complete list of moves to charts when
a height function is fixed in the retinal plane.

3.5.1. Definition. The full set of elementary string interactions (FESIs)
are those illustrated in Figs. 16 and 4. These include the 3 classical
Reidemeister moves, the two moves (also found in [23]) that involve
changing a height function, and the four (multi-local) moves that involve
interchanging the height of crossings and critical points.

3.5.2. Example. Consider the diagram of the trefoil that is illustrated in
Fig. 2. At any critical level, one can read across the diagram (from left to
right) a sequence of symbols taken from the set X, X� , �, and �. The sym-
bols can be adorned with double subscripts��the left subscript will indicate
the number of straight strings to the left of the critical point, the right sub-
script will indicate the number of straight strings to the right of the critical
point. In this way the diagram illustrated gives rise to the sequence

�0, 0 �0, 2X1, 1X1, 1X1, 1 �0, 2�0, 0 .

Clearly any such classical knot diagram that has a height function can
be described in similar manner. We turn to give the combinatorial descrip-
tion in the following.

3.5.3. Definition. Let a set of symbols Xm, n , X� m, n , �m, n and �m, n be
given. Define the initial number of a symbol, @(Ym, n), and the terminal num-
ber of a symbol, {(Ym, n), (where Ym, n is one of the above symbols) as
follows: @(Xm, n)=@(X� m, n)={(Xm, n)={(X� m, n)=m+n+2, @(�m, n)=m+n,
{(�m, n)=m+n+2, @(�m, n)=m+n+2, {(�m, n)=m+n.

A word is a sequence Y0 } } } Yk in symbols Yj=Xm, n , X� m, n , �m, n or �m, n

where m and n are non-negative integers such that {(Yj)=@(Yj+1).
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For a word W=Y0 } } } Yk with Y0 and Yk non-empty, {(W ) is defined by
{(Yk) and @(W ) is defined by @(Y0).

The empty word is allowed as a word, and any given word need not
involve all of the symbols.

A sentence is a sequence (W0 , W1 , ..., Wf ) of words such that W0 and Wf

are the empty words, and for any i=0, ..., f&1, Wi+1 is obtained from Wi

by performing one of the following changes.

1. Cancellation or creation of a pair of adjacent symbols �m, n�m, n

in the word. More specifically, if Wi=U�m, n�m, n V (resp. Wi=UV )
where U and V are words such that {(U )=m+n=@(V ), then Wi+1=UV
(resp. Wi+1=U�m, n�m, nV ). (Similar explicit expressions for Wi and
Wi+1 are omitted in the following.)

2. Cancellation or creation of a pair of adjacent symbols �m, n�m, n

in the word.

3. A replacement of �m, nXm, n by �m, n , or vice versa; a replacement
of �m, nX� m, n by �m, n , or vice versa; a replacement of Xm, n �m, n by �m, n ,
or vice versa; or a replacement of X� m, n�m, n by �m, n , or vice versa.

4. Cancellation or creation of a pair Xm, nX� m, n or X� m, nXm, n .

5. A replacement of one of the following:
Xm, nXm+1, n&1 Xm, n by Xm+1, n&1Xm, nXm+1, n&1 or vice versa,
Xm, nXm+1, n&1 X� m, n by X� m+1, n&1Xm, nXm+1, n&1 or vice versa,
Xm, nX� m+1, n&1 X� m, n by X� m+1, n&1X� m, nXm+1, n&1 or vice versa,
X� m, nXm+1, n&1 Xm, n by Xm+1, n&1Xm, nX� m+1, n&1 or vice versa,
X� m, nX� m+1, n&1 Xm, n by Xm+1, n&1X� m, nX� m+1, n&1 or vice versa, or
X� m, nX� m+1, n&1 X� m, n by X� m+1, n&1X� m, nX� m+1, n&1.

Note that these correspond to various crossing types of Reidemeister
type III move.

6. A replacement of �m, nXm+1, n&1 by �m+1, n&1 X� m, n , or vice versa;
a replacement of �m, nX� m+1, n&1 by �m+1, n&1 Xm, n , or vice versa; a
replacement of Xm, n�m&1, n+1 by X� m&1, n+1�m, n , or vice versa; or a
replacement of X� m, n�m&1, n+1 by Xm&1, n+1�m, n , or vice versa.

7. Cancellation or creation of a pair �m, n�m+1, n&1 or �m+1, n&1�m, n .

8. A replacement of Ym, nY$i, j by Y$i $, j $ Ym$, n$ where Y and Y$ denote
either X, X� , � or � and |m&i |>1, m+n=i+ j. The values of the sub-
scripts i $, j $, m$, n$ depend on the value of the Y and Y$ in the replacement.
For example, if both Y and Y$ take values from X or X� , then the primed
subscripts have the same values as the unprimed subscripts. If one of Y and
Y$ (say Y ) is X or X� and the other (say Y$) is � or �, then one of the
subscripts of Y changes by \2, and the subscripts of Y$ do not change. If
both of Y and Y$ are � or �, then two of the four subscripts change by
\2��The signs are the same (different) if Y and Y$ are different (the same).
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Since the letters X, X� �, and � correspond to crossings, maxima, and
minima in a cross sectional knot diagram, we leave the reader to work out
the values of the subscripts in the various cases by examining Fig. 4. In the
following (especially in Theorem 3.5.5) we abuse notation when this
phenomena happen, and use the notation Y$i, jYm, n for the replacement of
Ym, nY$i, j instead of Y$i $, j $Ym$, n$ .

Thus when the symbol Y appears for Xm, n , X� m, n , �m, n or �m, n , the
same subscripts of Ys are kept for consecutive words to simplify the nota-
tion. We thank J. Baez and L. Langford for pointing out this phenomena.

Notice that successive words in a sentence differ by a certain changes, but
in some circumstances the place where the change takes place is crucial infor-
mation. For example, the sentence fragment (..., �0, 0 , �0, 0�0, 0 �0, 0 , ...)
is ambiguous. It could mean (..., �0, 0C, �0, 0�0, 0 �0, 0 , ...) or (..., C�0, 0 ,
�0, 0 �0, 0�0, 0 , ...) where the C indicates the point at which the insertion
takes place. In the former case the operation is an insertion of �� and
corrresponds to a saddle point. In the latter, the operation is an insertion
of �� and corresponds to a birth of a simple closed curve. Thus the infor-
mation carried in a sentence must include the point of change between
words. Precisely speaking we include the location at which an FESI is per-
formed, and which FESI is performed. However to simplify notation we
only indicate sequences of words in the following. We will specify the point
of change as this ambiguity occurs.

In the following Theorem 3.5.5 we discuss equivalences among sentences.
We remark here that when we change a sentence by a local replacement, it
may happen that the result is a sentence such that Wi=Wi+1 for some i.
This violates the definition of a sentence, so we delete Wi+1 in this
case. The opposite case may also happen (we may have to first introduce
Wi+1 which is equal to Wi before we make a replacement). Thus, strictly
speaking, we allow such repetitions of words in sentences and define an
equivalence relation, and work on equivalence classes. Note that this
phenomenon corresponds to taking repetitive slices in the movie descrip-
tion, to see slow motion pictures.

Let F be a knotted surface in 4-space, and let p(F ) be its generic projec-
tion onto a vertical axis in the retinal plane. For each non-critical value
y # R, the inverse image of y in R3 consists of a classical knot diagram. The
horizontal axis in the retinal plane provides a height function for this
diagram. We can use the height function to express such a diagram as a
sequence of symbols defined in Section 2.5. The critical values correspond
to the changes in stills that are expressed by one of the FESIs that are
depicted Figs. 16, 4; these interactions correspond to the operations that
connect any two words in a sentence. Thus any knotted surface diagram
(with projection onto the vertical axis in the retinal plane) gives rise to a
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sentence. Conversely, given a sentence we can construct a knotted surface
diagram: Each word gives a knot diagram, and each successive pair of
words gives rise to a FESI. In summary we have proved

3.5.4. Theorem. To any knotted surface diagram a sentence is assigned.
For any sentence there is a knotted surface whose corresponding sentence is
the given one.

A proof of the following Theorem will be given in the next section. It
combines three results we have presented in this section:

(1) moves on charts,

(2) movie moves,

(3) movie moves with height functions on each still.

3.5.5. Theorem. Two sentences represent isotopic knotted surfaces if and
only if one can be obtained from the other by a finite sequence of moves
where the moves are taken from the list that follows.

In the following list, parts of sentences are given. If the left hand side of
the relation is found as a part of a sentence, then the part is replaced by the
right hand side, or vice versa.

In the following Y, Y$, Y" denote either X, X� , �, or �. In this case we
abuse notation and use the same subscripts for consecutive words even though
those values can change from word to word depending on the value of Y. We
also assume for any consecutive word PQ of P and Q that {(P)=@(Q). The
symbols W and V represent any words satisfying this condition.

1. (W�m, nV, W�m, nXm, nV, W�m, nV ) W (W�m, nV ).

2. (W�m, nXm, nV, W�m, nV, W�m, nXm, n V ) W (W�m, nXm, n V ).

3. (WV ) W (WV, WXm, nX� m, n V, WV ).

4. (WXm, nX� m, n V, WV, WXm, nX� m, n V ) W (WXm, n X� m, nV ).

5. (WXm, nXm+1, n&1Xm, nV, WXm+1, n&1Xm, nXm+1, n&1V,
WXm, nXm+1, n&1Xm, nV ) W (WXm, nXm+1, n&1Xm, n V ).

6. (WXm, n+2Xm+1, n+1Xm, n+2 Xm+2, n Xm+1, n+1Xm, n+2V,
WXm+1, n+1 Xm, n+2Xm+1, n+1Xm+2, n Xm+1, n+1Xm, n+2V,
WXm+1, n+1 Xm, n+2Xm+2, nXm+1, n+1 Xm+2, n Xm, n+2 V,
WXm+1, n+1 Xm+2, nXm, n+2Xm+1, n+1 Xm+2, n Xm, n+2 V,
WXm+1, n+1 Xm+2, nXm, n+2Xm+1, n+1 Xm, n+2 Xm+2, n V,
WXm+1, n+1 Xm+2, nXm+1, n+1Xm, n+2 Xm+1, n+1Xm+2, nV,
WXm+2, nXm+1, n+1Xm+2, nXm, n+2Xm+1, n+1 Xm+2, n V,
WXm+2, nXm+1, n+1Xm, n+2Xm+2, nXm+1, n+1 Xm+2, n V )
W (WXm, n+2Xm+1, n+1Xm, n+2Xm+2, nXm+1, n+1 Xm, n+2 V,

36 CARTER, RIEGER, AND SAITO



File: 607J 161837 . By:CV . Date:17:04:97 . Time:07:57 LOP8M. V8.0. Page 01:01
Codes: 2915 Signs: 1503 . Length: 45 pic 0 pts, 190 mm

WXm, n+2Xm+1, n+1Xm+2, nXm, n+2Xm+1, n+1 Xm, n+2 V,
WXm, n+2Xm+1, n+1Xm+2, nXm+1, n+1 Xm, n+2 Xm+1, n+1V,
WXm, n+2Xm+2, nXm+1, n+1Xm+2, nXm, n+2Xm+1, n+1 V,
WXm+2, nXm, n+2Xm+1, n+1Xm+2, nXm, n+2Xm+1, n+1 V,
WXm+2, nXm, n+2Xm+1, n+1Xm, n+2Xm+2, nXm+1, n+1 V,
WXm+2, nXm+1, n+1Xm, n+2Xm+1, n+1 Xm+2, n Xm+1, n+1V,
WXm+2, nXm+1, n+1Xm, n+2Xm+2, nXm+1, n+1 Xm+2, n V )

7. (W�m+1, n&1X� m+1, n&1 Xm, nV,
W�m+1, n&1 Xm, nX� m, n X� m+1, n&1Xm, nV,
W�m, nX� m+1, n&1X� m, n X� m+1, n&1Xm, nV,
W�m, nX� m+1, n&1Xm+1, n&1X� m, nX� m+1, n&1V,
W�m, nX� m, n X� m+1, n&1V, W�m, nX� m+1, n&1V )
W (W�m+1, n&1X� m+1, n&1 Xm, nV, W�m+1, n&1Xm, nV,
W�m, nX� m+1, n&1V ).

8. (WV, W�m, n�m&1, n+1V, WV ) W (WV ).

9. (W�m, n�m&1, n+1V, WV, W�m, n �m&1, n+1V )
W (W�m, n�m&1, n+1V ).

10. (W�m, nV, W�m, n�m+2, n �m+1, n+1V,
W�m, n�m, n+2�m+1, n+1V, W�m, nV ) W (W�m, nV ).

11. (W�m+1, n&1X� m, nV, W�m, nXm+1, n&1 V, W�m+1, n&1 X� m, nV )
W (W�m+1, n&1X� m, n V ).

12. (W�m+1, n&1Xm, n�m+1, n&1V, W�m+1, n&1 X� m+1, n&1�m, nV,
W�m+1, n&1 �m, nV, WV ) W (W�m+1, n&1Xm, n�m+1, n&1V,
W�m, nX� m+1, n&1�m+1, n&1V, W�m, n �m+1, n&1 V, WV ).

13. (W�m+2, n&2X� m+1, n&1 �m, nV, W�m+2, n&2 Xm, n �m+1, n&1V,
WXm, n&2�m+2, n&2�m+1, n&1V, WXm, n&2V )
W (W�m+2, n&2X� m+1, n&1 �m, nV,
W�m+1, n&1 Xm+2, n&2�m, nV, W�m+1, n&1�m, n Xm, n&2 V,
WXm, n&2V ).

14. (W�m, nX� m+1, n&1Xm&1, n+1Xm, n V,
W�m+1, n&1 Xm, nXm&1, n+1Xm, nV,
W�m+1, n&1 Xm&1, n+1Xm, nXm&1, n+1 V,
WXm&1, n&1 �m+1, n&1 Xm, nXm&1, n+1V,
WXm&1, n&1 �m, nX� m+1, n&1Xm&1, n+1V,
WXm&1, n&1 �m, nXm&1, n+1X� m+1, n&1V )
W (W�m, n X� m+1, n&1Xm&1, n+1Xm, nV,
W�m, nXm&1, n+1X� m+1, n&1Xm, nV,
W�m&1, n+1 X� m, nX� m+1, n&1Xm, nV,
W�m&1, n+1 Xm+1, n&1X� m, nX� m+1, n&1 V,
WXm&1, n&1 �m&1, n+1 X� m, nX� m+1, n&1V,
WXm&1, n&1 �m, nXm&1, n+1X� m+1, n&1V ).
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15. (WYi, j Y$m, n V, WY$m, nYi, j V, WYi, j Y$m, nV ) W (WYi, j Y$m, nV )
where |i&m|>1, i+ j=n+m, and the subscripts change from
word to word depending on the values of Y and Y$.

16. (WYi, j Y$k, l Y"m, nV, WY$k, lYi, jY"m, n V,
WY$k, lY"m, n Yi, jV, WY"m, nY$k, lYi, j V )
W (WYi, jY$k, lY"m, nV, WYi, jY"m, nY$k, lV,
WY"m, nYi, j Y$k, lV, WY"n, mY$k, lYi, j V )
where |i&k|>1, |i&m|>1, |k&m|>1, i+ j=k+l=n+m,
and the subscripts change from word to word depending on the
values of Y, Y$, and Y".

17. (WYi, j Xm, n&1 Xm+1, n&2Xm, n&1V,
WXm, n&1Yi, jXm+1, n&2Xm, n&1V,
WXm, n&1Xm+1, n&2Yi, jXm, n&1V,
WXm, n&1Xm+1, n&2Xm, n&1Yi, jV,
WXm+1, n&2 Xm, n&1Xm+1, n&2Yi, jV )
W (WYi, jXm, n&1Xm+1, n&2Xm, n&1V,
WYi, jXm+1, n&2Xm, n&1Xm+1, n&2V,
WXm+1, n&2 Yi, jXm, n&1Xm+1, n&2V,
WXm+1, n&2 Xm, n&1Yi, jXm+1, n&2V,
WXm+1, n&2 Xm, n&1Xm+1, n&2Yi, jV )
where i<m&1 or i>m+2, i+ j=m+n, and the subscripts
change from word to word depending on the value of Y.

18. (WYi, j �m+1, n&1 �m+2, n&2V, W�m+1, n&1Yi, j�m+2, n&2V,
W�m+1, n&1 �m+2, n&2 Yi, j V, WYi, j V )
W (WYi, j�m+1, n&1�m+2, n&2V, WYi, jV )
where |i&m|>1, i+ j+2=m+n, and the subscripts change
from word to word depending on the value of Y. Note here also
that in the second word of the first sentence, Yi, j should be
replaced by Yi, j+2 (resp. Yi+2, j) if i<m&1 (resp. i>m+1).

19. (WYi, j Xm, n �m, nV, WXm, nYi, j�m, nV, WXm, n �m, nYi, j V,
W�m, nYi, j V )
W (WYi, jXm, n �m, nV, WYi, j �m, n V, W�m, nYi, jV )
where |i&m|>1, i+ j=m+n, and the subscripts change from
word to word depending on the value of Y.

20. (WYi, j �m+1, n&1 X� m, n V, W�m+1, n&1Yi, jX� m, n V,
W�m+1, n&1 X� m, nYi, jV, W�m, nXm+1, n&1Yi, jV )
W (WYi, j�m+1, n&1X� m, nV, WYi, j�m, nXm+1, n&1V,
W�m, nYi, j Xm+1, n&1 V, W�m, nXm+1, n&1Yi, jV )
where |i&m|>1, i+ j+2=m+n, and the values of the sub-
scripts change from word to word depending on the value of Y.

21. (W�m+1, n+1Xm, n+2X� m+2, n�m+1, n+1V,
W�m+1, n+1 X� m+2, nXm, n+2�m+1, n+1V,
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W�m+1, n+1 X� m+2, nX� m+1, n+1�m, n+2V,
W�m+2, nXm+1, n+1X� m+1, n+1�m, n+2V,
W�m+2, n�m, n+2V, W�m, n �m, nV )
W (W�m+1, n+1Xm, n+2X� m+2, n�m+1, n+1V,
W�m, n+2X� m+1, n+1X� m+2, n�m+1, n+1V,
W�m, n+2X� m+1, n+1Xm+1, n+1�m+2, nV, W�m, n+2�m+2, n V,
W�m, n�m, n V ).

22. (WYi, j V, WYi, j Zm, nZ� m, n V, WZm, nYi, jZ� m, n V )
W (WYi, jV, WZm, nZ� m, nYi, jV, WZm, nYi, jZ� m, nV )
where (Z, Z� ) is either of (X, X� ), (X� , X ), (�, �), or (�, �),
|i&m|>1, i+ j=m+n, and the values on the subscripts change
from word to word depending on the value of Y.

23. (WZm, nV, WZm, nZ� m, nZm, nV, WZm, n V ) W (WZm, nV )
where the pair (Z� , Z) was introduced and the pair (Z, Z� ) was
cancelled in the left hand side, and (Z, Z� ) is either of (X, X� ),
(X� , X ), (�, �), or (�, �).

24. (W�m+1, nV, W�m+1, n�m, n+1�m, n+1 V, W�m, n+1 V )
W (W�m+1, nV, W�m, n+1 �m+1, n�m+1, n V, W�m, n+1 V ).

25. (WXm+1, n&1Xm, nV, WXm, n X� m, nXm+1, n&1Xm, nV,
WXm, nXm+1, n&1Xm, nX� m+1, n&1 V )
W (WXm+1, n&1Xm, nV, WXm+1, n&1Xm, nXm+1, n&1 X� m+1, n&1V,
WXm, nXm+1, n&1Xm, nX� m+1, n&1 V ).

26. (W�m, nV, W�m, nXm, nX� m, n V, W�m, n X� m, nV )
W (W�m, nV, W�m, n X� m, nV ).

27. (WV, W�m, n�m, nV, W�m, nXm, n�m, nV )
W (WV, W�m, n�m, nV, W�m, nXm, n�m, nV )
where in the left hand side �m, nXm, n was introduced while in the
right hand side Xm, n�m, n was introduced.

28. (WV, W�m&1, n+1�m&1, n+1 V,
W�m&1, n+1 X� m, nXm, n �m&1, n+1 V,
W�m, nXm&1, n+1Xm, n �m&1, n+1 V )
W (WV, W�m, n�m, nV, W�m, nXm&1, n+1X� m&1, n+1�m, nV,
W�m, nXm&1, n+1Xm, n �m&1, n+1 V ).

29. (W�m, n�m, nV, W�m, n�m, nXm, n V, WXm, nV )
W (W�m, n�m, nV, WXm, n�m, n �m, nV, WXm, nV ).

30. (WX� m+1, n&1�m, n�m+1, n&1X� m, n V,
WXm, n�m+1, n&1�m+1, n&1 , X� m, nV, WXm, nX� m, nV, WV )
W (WX� m+1, n&1�m, n�m+1, n&1X� m, nV,
WX� m+1, n&1 �m, n�m, n Xm+1, n&1V,
WX� m+1, n&1 Xm+1, n&1 V, WV ).
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31. (WZ1 Z2 V, WZ$1 Z2V, WZ$1Z$2V ) W (WZ1Z2 V, WZ1Z$2 V,
WZ$1Z$2V ) where the changes Zi to Zi$ for i=1, 2 are FESIs.

Furthermore, we include the following variations to the list.

1. If (S1 , ..., Sf) W (S$1 , ..., S$f $) is in the list, then (Sf , ..., S1) W
(S$1 , ..., S$f $) is also a relation. This replacement corresponds to running a
movie backwards.

2. If (S1 , ..., Sf ) W (S$1 , ..., S$f $) is in the list, then (T1 , ..., Tf ) W
(T $1 , ..., T $f $) is also a relation where Tj (resp. Tj$) is obtained from Sj (resp.
Sj$ ) as follows. If Sj=Y j

1 } } } Y j
k where Y j

h are generators, then Tj=Z j
1 } } } Z j

k

where Z j
h=Xm, n (resp. X� m, n) if Y j

k&h+1=X� m, n (resp. Xm, n) and Z j
h=�m, n

(resp. �m, n) if Y j
k&h+1=�m, n (resp. �m, n), for all j=1, ..., f, h=1, ..., k.

There is a similar replacement for Tj$ (just put in primes).

3. If (S1 , ..., Sf ) W (S$1 , ..., S$f $) is in the list, then (T1 , ..., Tf ) W
(T $1 , ..., T $f $) is also a relation where Tj (resp. Tj$) is obtained from Sj (resp.
Sj$) as follows. If Sj=Y j, 1

m1 , n1
, ..., Y j, k

mk , nk
where Y j, h

mh , nh
are generators,

then Tj=(Y j, 1
n1 , m1

)$, ..., (Y j, k
nk , mk

)$, where (Y j, h)$=Y j, h if Y j, h=� or �,
(Y j, h)$=X (resp.X� ) if Y j, h=X� (resp. X ) for all j=1, ..., f, h=1, ..., k. This
corresponds to reflecting the stills in their vertical axis.

4. Change X to X� and vice versa in the relations consistently when-
ever possible. Recall that we had six variations for the Reidemeister type
III move (listed as one ESI). Thus a given sentence may also be valid with
such a replacement, and there is a move on sentences when these (and
similar) replacements are valid. Add such variations to the list; they corre-
spond to reflecting the stils from front to back in their plane of projection.

We remark here that the number of moves in Figs. 8 through 11, that of
moves in the above theorem, and that of singularities in the proof of the
theorem are different. This is because thick dotted lines in the figures repre-
sent either solid or dotted lines, and the symbol Z in the above theorem
represents different generators. Thus a single move in one description can
represent two or more moves in another. Furthermore, we count the
codimension 1 singularities over the complex numbers, and some of the
complex singularities split into two orbits over the reals.

3.5.6. Example. We demonstrate how a sequence from the above rela-
tions unties a knotted surface diagram. The first sequence represents an
embedded 2-sphere with two critical points, two cusps, and two simple
closed curves in the fold set. The subsequent sequences represent the result
of applying various moves to the sequence until a standard unknot results.
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(<
, �0, 0 �0, 0

, �0, 0 X0, 0�0, 0

, �0, 0 X0, 0�2, 0�1, 1�0, 0

, �0, 0 �2, 0X0, 2�1, 1�0, 0

, �0, 0 �2, 0X� 1, 1�0, 2�0, 0

, �0, 0 �0, 2X� 1, 1�0, 2�0, 0

, �0, 0 �0, 2X� 1, 1�2, 0�0, 0

, �0, 0 �1, 1X0, 2�2, 0�0, 0

, �0, 0 �1, 1�2, 0 X0, 0�0, 0

, �0, 0 X0, 0�0, 0

, �0, 0 �0, 0

, <)

W

(<
, �0, 0 �0, 0

, �0, 0 �2, 0�1, 1 �0, 0

, �0, 0 X0, 0�2, 0�1, 1�0, 0

, �0, 0 �2, 0X0, 2�1, 1�0, 0

, �0, 0 �2, 0X� 1, 1�0, 2�0, 0

, �0, 0 �0, 2X� 1, 1�0, 2�0, 0

, �0, 0 �0, 2X� 1, 1�2, 0�0, 0

, �0, 0 �1, 1X0, 2�2, 0�0, 0

, �0, 0 �1, 1�2, 0 X0, 0�0, 0

, �0, 0 �1, 1�2, 0 �0, 0

, �0, 0 �0, 0

, <)

W

(<
, �0, 0 �0, 0

, �0, 0 �2, 0�1, 1�0, 0

, �0, 0 X0, 0�2, 0�1, 1�0, 0

, �0, 0 �2, 0X0, 2�1, 1�0, 0

, �0, 0 �0, 2X0, 2�1, 1�0, 0

, �0, 0 �0, 2X� 1, 1�0, 2�0, 0

, �0, 0 �1, 1X0, 2�0, 2�0, 0

, �0, 0 �1, 1X0, 2�2, 0�0, 0

, �0, 0 �1, 1�2, 0 X0, 0�0, 0

, �0, 0 �1, 1�2, 0 �0, 0

, �0, 0 �0, 0

, <)

W
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(<
, �0, 0 �0, 0

, �0, 0 �2, 0�1, 1 �0, 0

, �0, 0 �0, 2�1, 1 �0, 0

, �0, 0 �0, 2X0, 2�1, 1�0, 0

, �0, 0 �0, 2X� 1, 1�0, 2�0, 0

, �0, 0 �1, 1X0, 2�0, 2�0, 0

, �0, 0 �1, 1�0, 2 �0, 0

, �0, 0 �1, 1�2, 0 �0, 0

, �0, 0 �0, 0

, <)

W

(<
, �0, 0 �0, 0

, �0, 0 �2, 0�1, 1 �0, 0

, �0, 0 �0, 2�1, 1 �0, 0

, �0, 0 �0, 0

, �0, 0 �0, 2�1, 1 �0, 0

, �0, 0 �0, 2X0, 2�1, 1�0, 0

, �0, 0 �0, 2X� 1, 1�0, 2�0, 0

, �0, 0 �1, 1X0, 2�0, 2�0, 0

, �0, 0 �1, 1�0, 2 �0, 0

, �0, 0 �0, 0

, �0, 0 �1, 1�0, 2 �0, 0

, �0, 0 �1, 1�2, 0 �0, 0

, �0, 0 �0, 0

, <)

W

(<
, �0, 0 �0, 0

, �0, 0 �0, 2�1, 1 �0, 0

, �0, 0 �0, 2X0, 2�1, 1�0, 0

, �0, 0 �0, 2X� 1, 1�0, 2�0, 0

, �0, 0 �1, 1X0, 2�0, 2�0, 0

, �0, 0 �1, 1�0, 2 �0, 2

, �0, 0 �0, 0

, <)

W

42 CARTER, RIEGER, AND SAITO



File: 607J 161843 . By:CV . Date:17:04:97 . Time:07:57 LOP8M. V8.0. Page 01:01
Codes: 1554 Signs: 443 . Length: 45 pic 0 pts, 190 mm

(<
, �0, 0 �0, 0

, �0, 0 �0, 2�1, 1 �0, 0

, �0, 0 �0, 2X0, 2�1, 1�0, 0

, �0, 0 �0, 2X� 1, 1�0, 2�0, 0

, �0, 0 �0, 2X0, 2�1, 1�0, 0

, �0, 0 �0, 2�1, 1 �0, 0

, �0, 0 �0, 0

, <)

W

(<
, �0, 0 �0, 0

, �0, 0 �0, 2�1, 1 �0, 0

, �0, 0 �0, 2X0, 2�1, 1�0, 0

, �0, 0 �0, 2�1, 1 �0, 0

, �0, 0 �0, 0

, <)

W

(<
, �0, 0 �0, 0

, �0, 0 �0, 2�1, 1 �0, 0

, �0, 0 �0, 2�1, 1 �0, 0

, �0, 0 �0, 0

, <)

W

(<
, �0, 0 �0, 0

, �0, 0 �0, 0

, <)

4. SINGULARITIES AND KNOTTED SURFACE ISOTOPIES

In this section we provide proofs of Theorems stated in the preceding
section.
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Observe that Theorem 3.5.5 is a combinatorial restatement of the moves
to charts that are depicted in Figs. 8, 9, 10, 11, and moves in which distant
critical points of the vertical direction are interchanged. Similarly,
Theorem 3.4.6 can be restated in terms of the moves depicted in those
figures. In particular, the Theorem states explicitly which of the moves in
these four figures involve only local changes in the diagrams.

The local moves in the retinal plane listed in Theorem 3.5.5 are generic
singularities of isotopies R3_I#F_I � R_R � R. This means that
without loss of generality we can assume that the isotopy has only these
types of singularities. These singularities in turn give rise to codimension 1
singularities of maps R3

#F � R_R � R and vice versa. Hence the results
follow once we prove that the list of local singularities of the surface iso-
topies described in Section 3.4.5 and the multi-local singularities depicted in
Fig. 10 exhausts the codimension 1 singularities of surface maps R3

#F �
R_R � R where the first map is the projection onto the retinal plane and
the second map is the projection onto the vertical direction of the retinal
plane.

In Section 4.1, and in particular, the table in Section 4.1.2, we give a corre-
spondence between codimension 1 singularities and the moves depicted in
Figures 8 through 11.

The figures illustrate the relations between these codimension 1
singularities and knotted surface isotopies.

Thus Theorems 3.5.5 and 3.4.6 will follow once we have given a complete
classification of the codimension 1 singularities that occur when a surface
is projected from R4 onto a plane in which a height function is given. Also
observe that Theorem 3.2.3 follows by combining the classifications given
by Goryunov [14], Rieger [24], and West [30]. Now we turn to a discus-
sion of the singularities. For a description of the techniques for classifying
smooth map-germs we refer the reader to the survey by Wall [29].

4.1. Codimension 1 Projections of Generic Surfaces. Let V/R3

denote the image of a generic map f = p b K from a surface into R3. So,
locally, (V, q) is a germ of either an embedded surface, of a pair of surfaces
intersecting transversely, of a triple point, or of a branch point (cross-cap).
Below we classify the codimension 1 germs and multi-germs of simul-
taneous projections of V into a plane and a line contained in this plane.
More precisely, we classify the following s-germs of diagrams of maps
(where S=[q1 , ..., qs] is a finite set of source points)

?2 b g : (R3, S)#(V, S) � (R_R, 0) � (R, 0)

[qi=(xi , yi , zi)]1�i�s [ (X, Y ) [ Y
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up to germs of diffeomorphisms hi # Diff(R3, qi), k # Diff(R_R, 0) and
l # Diff(R, 0) such that:

(hi (V ), qi)=(V, qi), 1�i�s

and

d?2(k)+l b ?2=0.

It turns out that, considering complex multi-germs, there are 33
codimension 1 orbits under this equivalence relation (in the cases where
moduli are present, the codimension of the entire modular stratum is equal
to one). Some of these orbits split into distinct orbits of real multi-germs
(as indicated by the \-signs in some normal forms below). So, considering
simultaneous projections of generic (complex) surfaces in 3-space onto
planes and lines (fixing height functions in the projection planes), there are
33 possible codimension 1 singularities��for ordinary projections onto
planes (without considering height functions) there are 22 codimension 1
singularities.

Following the terminology in Mancini and Ruas [20] we call a projec-
tion germ at qi into the plane tangent if qi is a critical point of the height
function, and transverse otherwise. The list of codimension 1 projections
under the above equivalence then consists of the following parts.

(i) Tangent and transverse projections of embedded surfaces are
classified in Propositions 3.1 and 3.2 of Mancini and Ruas [20]. Actually,
these authors assume that ?2 b g is a Morse function. One easily checks that
there is one more such codimension 1 projection for which ?2 b g is not
Morse, namely

(x, y) [ (x, x3+ y2),

whose versal deformation is (x, x3+ y2+tx).

(ii) Local and multi-local projections of surfaces with double curves
and triple points are classified in Proposition 4.1 of Rieger [24], and local
projections of branch points are classified in Theorem 8.6.1 of West [30].
Furthermore, there are two bi-local codimension 1 projections involving
branch points. The first is given by

[(x1 , y1) [ (x1 , x1 y1 , y2
1) [ (x1 , y2

1),

(x2 , y2) [ (x2 , y2 , x2+ y2
2) [ (x2 , x2+ y2

2)]
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and the second by the restriction of the pair of maps from R3 to R2

[g1=(x1 , z1), g2=(z2 , z2\x2+ y2)]

to y2
1&x2

1z1=0 and x2y2=0, respectively. Note that the first component
of both bi-germs is a fold of the projection of a branch point (which is
given by a parametrization in the first case and as a zero-set in the second
case); the second component is an ordinary fold (first case) and a projected
double curve (second case). A versal deformation of both bi-germs can be
obtained by adding the term [(0, 0), (0, t)].

The above normal forms for codimension 1 projections, and the ones in
[24] and [30], do not take into account a height function in the projec-
tion plane. In order to construct the corresponding normal forms of
transverse codimension 1 projections, one has to change the projection
?2 : R2 � R to ?(X, Y )=aX+bY, h=(a, b) # S 1, such that (h, li){0 for
all limiting tangent lines li at 0 of projected double-curves and folds. (Also,
for the tri-germs in [24] corresponding to triple-crossings of folds and
projected double-curves there will be a modulus��as for the transverse
triple-fold in [20]��given by the cross-ratio of the slopes of the three
tangent lines and the direction of the height function.)

(iii) Finally, the following codimension 1 tangent projections of non-
embedded points complete our list:

4.1.1. Proposition. The tangent projections of a double-, triple- or
branch point

?2 b g : (R3, S)#(V, S) � (R_R, 0) � (R, 0)

of codimension 1 are equivalent to one of the following mono-germs g or bi-
germs g=[g1 , g2] below. Note that the gi marked with a V denote the com-
position of a parametrization of (V, qi) with a projection into the plane and
hence are, locally, maps from R2 to R2. The terms u of a versal deformation
g+t } u of g and either the defining equations ri of r&1

i (0)=(V, qi) or, in the
cases V, a parametrization of (V, qi) are given for each g (also, we set =,
=i=\1).

1. g=(x+z, y+z+=x2), u=(0, x), r=xyz

2. g=(z, x+=1z2+=2y2+yz), u=(0, z), r=xy

3. g=(x, y2+=x2) V, u=(0, x), (x, y) [ (xy, g(x, y))

4. g=( y2, x+ y4) V, u=(0, y2), (x, y) [ (xy, g(x, y))

5. g=(z, =x+ y+z3), u=(0, z), r=xy
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6. g=[(z1 , =x1+ y1+z2
1), ( y2

2 , x2) V], u=[(0, 0), (1, 0)], r1=x1 y1 ,
(x2 , y2) [ ( y2 , g2(x2 , y2))

7. g=[(z1 , =1 x1+y1+z2
1), (=2x2+ y2 , z2)], u=[(0, 0), (1, 0)], r1=

x1 y1 , r2=x2 y2

8. g=[(x1 , y2
1+=1x2

1) V, (=2x2+ y2 , z2)], u=[(0, 0), (1, 0)], (x1 , y1)
[ ( y1 , g1(x1 , y1)), r2=x2 y2 .

Proof. The derivation of this classification combines the methods of
[20] and [24] and involves fairly routine calculations��we omit the
details. Roughly speaking, one determines the orbits of the appropriate
group of equivalences inductively modulo increasingly higher powers k of
the maximal ideal until some orbit either has codimension >1 or is
(k&1)-sufficient (i.e. any representative g of this orbit is (k&1)-determined
in the sense that j k&1ft j k&1g implies f t g). The codimension and the
sufficiency of an orbit can be determined from its tangent space at g. Let
us briefly illustrate this for the first example in our list.

Let Cxyz denote the local ring of smooth function germs in the source
variables and m

�
xyz its maximal ideal. Likewise, the CXY and CY denote the

rings of function germs in the target variables of g and of ?2 , respectively.
Let %g denote the Cxyz-module of vector fields over g (that is, sections of
g*TR3).

For the triple point V=[xyz=0] one checks that the tangent space to
the orbit of the corresponding group of equivalences at g is given by

T(g)=Cxyz[x �g��x, y �g��y, z �g��z]+CXY [���X]+CY [���Y].

Note that T(g) differs from the usual right-left tangent space in the follow-
ing respects: the usual right tangent space is restricted to Cxyz -modules of
vector fields tangent to V=[xyz=0] and the usual left tangent space is
restricted to CXY -modules of vector fields tangent to the level set Y=0 at
the origin (which preserve the ``height'' of the critical point). The codimen-
sion of g is defined to be dimR %g �T(g).

For g=(x+z, y+z+=x2) one calculates that m
�

3
xyz } %g /T(g) which

means that g is 2-determined � in fact

T(g)=(Cxyz , Cxyz "[x]).

So g has codimension 1, and G= g+t } (0, x) is a versal deformation of g.

4.1.2. The Correspondence Between Chart Moves and Singularities.
In this section we explicitly state which singularities in the various lists
correspond to the moves on charts that we have depicted. In either Fig. 10
or Fig. 11, the illustration (i, j) refers to the move that is depicted in the
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TABLE I

Figure
Number Reference

8(1, 1) [21] 1 : 1 S+
1 ; [14] I

8(1, 2) [21] 1 : 1 S&
1 ; [14] I

8(2, 1) [21] 7 : 2; [14] II
8(3, 1) [21] 7 : 2; [14] II
8(4, 1) [14] III
8 (2, 2) [21] 7 : 5; [14] IV
8(5, 1) [14] V
9(1, 1) [20], 4+

2 (Table 1); [24] (Table 1) item 1
9(1, 2) [30] 8.6.1 (b)
9 (2, 1) [20] (Table 1) 4&

2 ; [24] (Table 1) item 1
9(2, 2) [24] (Table 1) item 7
9(3, 1) [20] (Table 1) 5; [24] (Table 1) item 2
9(3, 2) [24] (Table 1) item 8
9(4, 1) [24] (Table 1) item 6
9(4, 2) [24] (Table 1) item 19

10(1, 1) [20] (Table 2) item 3;
[24] (Table 1) 5, 10, or 12

10(1, 2) [20] (Table 2) item 4 [24] (Table 1) item 4 or 11
10(2, 1) [20] (Table 2) item 5 [24] (Table 1) items 3, 9, 13, 14
10(2, 2) 4.1 item (ii)
10 (3, 1) [24] (Table 1) items 17 or 18
10(3, 2) [24] (Table 1) items 15 or 16
11(1, 1) [20] (Table 2) item 2; 4.1.1 above, items 6, 7 or 8
11(1, 2) 4.1.1 above, item 4
11(2, 1) 4.1.1 above, item 5; or Sect. 4.1 (i)
11 (2, 2) 4.1.1 above, item 3+

11(3, 1) [20] (Table 1), item 3$
11(3, 2) 4.1.1 above, item 2 (=1==2)
11 (4, 1) 4.1.1 above, item 1
11(4, 2) 4.1.1 above, item 3&

11(5, 2) 4.1.1 above, item 2 (=1{=2)

ith row and j th column of the figure. Thus in Table I, 8 (1, 2) refers to the
illustration in the first row second column of Fig. 8. In the second column
we list the reference in square brackets, the theorem or table number, and
the item in that list. Thus [30], 8.6.1, (b) refers to the second item in
West's Theorem 8.6.1. In the case where no numbering is given in the table,
we give either a brief description, or the number of the singularity if the
table had been numbered.

We note that in the table the correspondences are sometimes many-to-
one or one-to-many, for in the figures we have used thick dotted lines to
indicate either fold lines or double point curves, and in the various lists of
singularities plus and minus signs are included in some of the cases.
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Also Goryunov's classification [14] is over the complexes, and so, for
example, the confluences of branch points splits into two real cases. In any
case, the correspondences between the figures and the singularities are not
difficult to work out when the table is ambiguous.

4.1.3. Proof of Theorem 3.5.5. Proposition 4.1.1, the results of [20],
[24], and [30], give complete lists of the appropriate codimension 1
singularities in case a generic surface is given in 3-space. The table indicates
that these singularities correspond exactly to the cases depicted in Figs. 9,
10, and 11. The illustrations in Fig. 8 correspond to the codimension 1
singularities classified in [21] and [22], or equivalently, these are chart
depictions of the Roseman moves [25]. Thus any codimension 1
singularity is either found in one of these lists, or occurs when the height
of distant critical points in the chart are interchanged. Theorem 3.5.5
contains a combinatorial description of each of the cases found in the
charts, and thus it gives a complete list of changes to sequences of FESIs.
This completes the proof.

5. THE 2-CATEGORY OF KNOTTED SURFACES

In this section we give an outline of the definition of the 2-category of
knotted surfaces.

A (small) 2-category consists of the following data: (1) a set of objects
Obj, (2) a set of 1-morphisms 1-Mor, whose elements have source and
target objects, (3) a set of 2-morphisms 2-Mor, whose elements have source
and target 1-morphisms. There are compositions of these morphisms
defined, and we refer to [18] for more details since their definition takes
3 pages.

The set of objects in the 2-category is the non-negative integers. There is
a tensor product 1-Mor_1-Mor � 1-Mor given as the sum of integers,
m�n=m+n. We assume that the tensor product is strictly associative
((a�b)�c=a� (b�c)). The set of 1-morphisms is generated by the
1-morphisms �m, n �m, n , Xm, n and X� m, n , where m, n are non-negative
integers. The 1-morphism Xm, n and X� m, n have source and target the
integer m+n+2; the 1-morphism �m, n has target the integer m+n and
source m+n+2; the 1-morphism �m, n has target the integer m+n+2 and
source m+n. Thus the set of 1-morphisms is the set of compositions of
�m, n �m, n , Xm, n and X� m, n , where compositions are made when the source
of one coincides the target of the next. We associate a composition of
1-morphisms to a tangle diagram that has a fixed height function, and the
composition of 1-morphisms is read from the bottom to top of the diagram.
Thus a knotted surface is represented by a sequence of 1-morphisms.
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The 2-morphisms are the moves that connect words in a sentence as
described in Section 3.5. The relations among the 2-morphisms are those
that are described in Theorem 3.5.5.

In the diagrammatical situation the 2-morphisms are represented as a
sequence of tangle diagrams where a successive pair of diagrams in the
sequence differs by at most an FESI. Furthermore, the moves to sentences
are represented as the moves to movies as depicted in Theorem 3.4.6.

It is reasonable to conjecture a generalization of the Freyd�Yetter
Theorem to this 2-category. A systematic and categorical way of describing
these relations will be needed.
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