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ABSTRACT

In this paper we present new Jahn-Graef-Younes type algorithms for solving
discrete vector optimization problems. In order to determine all minimal elements
of a finite set with respect to an ordering cone, the original approach proposed
by Jahn in 2006 (known as the Jahn-Graef-Younes method) consists of a forward
iteration (Graef-Younes method), followed by a backward iteration. Our methods
involve additional sorting procedures based on scalar cone-monotone functions. In
particular, we analyze the case where the ordering cone is polyhedral. Computational
results, obtained in MATLAB, allow us to compare our new algorithms with the
original Jahn-Graef-Younes method.

KEYWORDS
Multiobjective optimization; Discrete optimization; Minimal elements; Domination
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Mathematics Subject Classification: 90C29; 90C26; 90C56; 68T20

1. Introduction

In this paper we develop new methods for computing all minimal elements of a finite
set of points in Rn with respect to a pointed convex cone. In practice, such a set
consists of many points, so for complexity reasons, it does not make sense to use only
the definition of minimality (cf. Jahn [1, Sec. 12.4]).

A reduction approach that eliminates some of the non-minimal elements is given
by the Graef-Younes method (see Jahn [1, Alg. 12.17]). This method was originally
proposed by Younes [2] and is based on an algorithmic conception by Graef (see Jahn
[1, p. 349]). As mentioned by Jahn [1, Sec. 12.4], the Graef-Younes method is a self
learning method which becomes better and better step by step, leading to a drastic
reduction of the initial set in many concrete instances.

In order to determine exactly the set of all minimal elements, the original algorithmic
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approach by Jahn [1, Alg. 12.20] consists of a forward iteration (Graef-Younes method)
in a first phase, followed by a backward iteration in a second one. This method is known
in the literature as the “Graef-Younes method with backward iteration” or the “Jahn-
Graef-Younes method”. Actually, as far as we know, it has been proposed by Jahn [3]
and also considered by Jahn and Rathje [4].

In recent years, Eichfelder generalized the Jahn-Graef-Younes method to partially
ordered real linear spaces in [5]) and adapted the method to variable ordering struc-
tures [6,7]). Furthermore, Köbis et al. [8] presented extensions of the Jahn-Graef-
Younes method to set optimization.

In this paper we present new Jahn-Graef-Younes type methods for computing all
minimal elements of a finite set with respect to a pointed convex cone, based on certain
sorting procedures via cone-monotone scalar functions. Although many of our results
hold within partially ordered real linear spaces, we restrict our study to the particular
framework of the Euclidean space Rn, due to practical applications.

The paper is organized as follows. In Section 2 we recall some notions and results
of convex analysis, mainly concerning polyhedral cones, that are used in the sequel.

In Section 3 we highlight the role of cone-monotone scalar functions in the context
of vector optimization. In particular we establish new results that are relevant for the
Jahn-Graef-Younes type methods (especially Lemma 3.5 and Theorem 3.8).

After a brief presentation of the classical Graef-Younes method (Algorithm 2) and
of the Jahn-Graef-Younes method (Algorithm 3), in Section 4 we introduce our new
methods, that are based on some special properties of cone-monotone sorting functions
(given by Theorem 4.1). More precisely, our Algorithm 4 is obtained from Algorithm 2
by considering a pre-sorting procedure, while Algorithm 5 is obtained from Algorithm
3 by considering an intermediate sorting procedure, after the forward iteration. Both
methods produce the whole set of minimal points of a finite set with respect to a
nontrivial ordering cone.

In order to derive implementable versions of our new methods, in Section 5 we
identify appropriate sorting functions, possessing two important features: their values
are computable efficiently and they allow to decide whether two points are comparable
with respect to the ordering cone. Therefore, we present two special classes of linear
and nonlinear cone-monotone functions, that are currently used in scalarization of
vector optimization problems.

In Section 6 we derive the implementable versions (Algorithms 6 and 7) of our new
algorithms introduced in Section 4, in the particular framework where the ordering
cone is polyhedral and the strongly cone-monotone sorting functions are linear.

Among many possible applications, our new Jahn-Graef-Younes type algorithms
can be used for approximating the sets of minimal outcomes of certain continuous
vector optimization problems, via a discretization approach. In Section 7 we apply our
algorithms to approximate the set of minimal outcomes for a particular continuous bi-
objective test problem (known in the literature as being very difficult to solve), via the
“Multiobjective search algorithm with subdivision technique” (MOSAST), proposed
by Jahn [3]. A detailed comparative analysis of our algorithms and other classical
methods is provided, based on computational experiments in MATLAB.

Finally, in Section 8 we point out possible directions for further research.
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2. Preliminaries

Throughout we denote by R, R+ and N the sets of real numbers, nonnegative real
numbers and positive integers, respectively. We endow the n-dimensional Euclidean
space Rn (n ∈ N) with the usual inner product 〈·, ·〉.

Given any set S ⊆ Rn, we denote by intS, clS, bdS and convS the interior,
the closure, the boundary and the convex hull of S, respectively; the abbreviation
|S| := cardS refers to the cardinality of S.

In what follows we recall some basic notions and results of convex analysis that will
be used in the sequel (for a detailed study of convex sets/cones we refer the reader to
the books by Rockafellar [9], Göpfert et al. [10], and Aliprantis and Tourky [11]).

We say that S ⊆ Rn is a polytope if it is the convex hull of a nonempty finite set,
i.e., there is P ⊆ Rn with |P | ∈ N, such that

S = convP.

A set C ⊆ Rn is said to be a cone, if 0 ∈ C = R+ ·C. A cone C is called: nontrivial,
if {0} 6= C 6= Rn; pointed, if C ∩ (−C) = {0}; convex, if C = convC, i.e., C +C = C;
solid, if intC 6= ∅; closed, if C = clC. Note that if C is a convex cone, then

C + intC = intC.

As usual, for any nonempty set S ⊆ Rn, we define by

coneS := R+ · S,
S+ := {x ∈ Rn | ∀ y ∈ S : 〈x, y〉 ≥ 0},

the cone generated by S and the polar cone of S, respectively. Note that S+ is always
convex, while coneS is convex whenever S is convex.

If C ⊆ Rn is a closed convex cone, then (by the Bipolar Theorem) we have

(C+)+ = C.

In addition, if the closed convex cone C is pointed, then C+ is solid, i.e., intC+ 6= ∅.
We say that C ⊆ Rn is a polyhedral cone if it is the polar cone of a nonempty finite

set of non-zero vectors, i.e., there is U ⊆ Rn \ {0} with |U | ∈ N, such that

C = U+. (1)

A polyhedral cone of type (1) satisfies the following properties:

• C is closed, convex, and C 6= Rn, hence it is nontrivial if and only if

0 /∈ int convU. (2)

• C is pointed if and only if

U⊥ := U+ ∩ (−U+) = {x ∈ Rn | ∀ y ∈ U : 〈x, y〉 = 0} = {0}. (3)

Of course this requires that |U | ≥ n.
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• the interior of C is given by

intC = {x ∈ Rn | ∀u ∈ U : 〈u, x〉 > 0}. (4)

• the polar of C is a polyhedral cone, namely

C+ = (U+)+ = cone convU,

whose interior is

intC+ = {λ ∈ Rn | ∀x ∈ C \ {0} : 〈λ, x〉 > 0}. (5)

A set X ⊆ Rn is said to be polyhedral if it can be written as the sum of a polytope
and a polyhedral cone, i.e.,

X = Y + C, (6)

where Y = convP for some nonempty finite set P ⊆ Rn and C is given by (1).
In the sequel it will be convenient to denote, for any k ∈ N, the index set

Ik := {1, . . . , k}.

As usual in vector optimization, the concept of minimality can be defined with
respect to an arbitrary pointed convex cone. In particular, the standard ordering cone

Rn+ := {x = (x1, . . . , xn) ∈ Rn | ∀ i ∈ In : xi ≥ 0}

is of special interest for concrete multiobjective optimization problems. Note that it is
a solid polyhedral pointed cone.

3. The role of cone-monotone scalar functions in vector optimization

Throughout this paper we assume that K ⊆ Rn is a nontrivial pointed convex cone.
It induces an ordering (i.e., a reflexive, transitive and antisymmetric binary relation)
defined for any x, y ∈ Rn by

x 5K y :⇐⇒ y ∈ x+K.

Its irreflexive part is defined for any x, y ∈ Rn by

x �K y :⇐⇒ y ∈ x+K \ {0}.

Definition 3.1. Let A be a nonempty subset of Rn. The elements of the set

MIN(A | K) := {x0 ∈ A | @x ∈ A : x �K x0}

are called minimal points of A with respect to K.
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Remark 1. By Definition 3.1, we actually have

MIN(A | K) = {x0 ∈ A | x0 /∈ (A \ {x0}) +K}
= {x0 ∈ A | (x0 −K) ∩A = {x0}}.

Remark 2. It is easy to check that for any set A ⊆ Rn the following relation holds:

MIN(A | K) = MIN(A+K | K).

In general, the numerical methods of vector optimization are aimed to compute the
entire set MIN(A | K) or to produce an inner/outer approximation of it. In what
follows we highlight the role of cone-monotone functions in developing such methods.
The next definition recalls some concepts introduced by Jahn [1, Def. 5.1]) by using a
slightly different terminology.

Definition 3.2. A function ϕ : D → R, defined on a nonempty set D ⊆ Rn, is called:

• K-increasing, if for any x, y ∈ D,

x 5K y =⇒ ϕ(x) ≤ ϕ(y);

• strongly K-increasing, if for any x, y ∈ D,

x �K y =⇒ ϕ(x) < ϕ(y).

• (strongly) K-decreasing if −ϕ is (strongly) K-increasing.

Obviously, strongly K-increasing/decreasing functions are K-increasing/decreasing.
The next result (see, e.g., Jahn [1, Lem. 5.14] for a more general framework) shows

that cone-monotone functions can be used for developing scalarization methods that
provide an inner approximation of MIN(A | K), that is, a set

S ⊆ MIN(A | K).

Proposition 3.3. Let A ⊆ D ⊆ Rn be nonempty sets and let ϕ : D → R be a
function. Denote Sϕ := argminx∈A ϕ(x). If either ϕ is strongly K-increasing or ϕ is
K-increasing and |Sϕ| = 1, then

Sϕ ⊆ MIN(A | K).

Other numerical methods of vector optimization are rather conceived to provide an
outer approximation of MIN(A | K), that is, a set B ⊆ Rn such that

MIN(A | K) ⊆ B ⊆ A.

In other words, an outer approximation B of MIN(A | K) is obtained from A by
removing a part of its non-minimal points.

The following results are relevant for this approach. In preparation we recall a basic
concept of vector optimization (see, e.g. Göpfert et al. [10] and references therein).
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Definition 3.4. We say that a set A ⊆ Rn satisfies the domination property with
respect to K if

A ⊆ MIN(A | K) +K.

Remark 3. A set A ⊆ Rn satisfies the domination property w.r.t. K if and only if

A+K = MIN(A | K) +K.

Remark 4. Every finite set A ⊆ Rn satisfies the domination property w.r.t. K.

Lemma 3.5. Let A ⊆ Rn be a set that satisfies the domination property w.r.t. K.
Then, for any set B ⊆ A the following assertions are equivalent:

1◦. MIN(A | K) ⊆ B.
2◦. MIN(A | K) = MIN(B | K).

Proof. Obviously (even in the absence of the domination property) 2◦ implies 1◦,
since MIN(B | K) ⊆ B.

Conversely, assume that 1◦ holds. Then, for any x ∈ MIN(A | K) we have x ∈ B
and (x − K) ∩ A = {x}. Since B ⊆ A, we infer that (x − K) ∩ B = {x}, i.e.,
x ∈ MIN(B | K). Thus inclusion MIN(A | K) ⊆ MIN(B | K) holds. In order to
prove the converse inclusion, let x′ ∈ MIN(B | K). Then we have x′ ∈ B ⊆ A and also
x′ ∈ MIN(B + K | K) = MIN(B | K). By the domination property of A and 2◦, it
follows that x′ ∈ (x′−K)∩A ⊆ (x′−K)∩(MIN(A | K)+K) ⊆ (x−K)∩(B+K) = {x′}.
Therefore we have (x′ − K) ∩ A = {x′}, i.e., x′ ∈ MIN(A | K). Thus the inclusion
MIN(B | K) ⊆ MIN(A | K) in 2◦ also holds.

Remark 5. The domination property assumption imposed on A in Lemma 3.5 is
essential for the implication 1◦ ⇒ 2◦, as shown by the following example.

Example 3.6. Let the Euclidean plane R2 be endowed with the standard ordering
cone K := R2

+. Consider the sets

A := {(0, 1)} ∪
(

]0, 1]× {0}
)

and B := {(0, 1); (1, 0)}.

It is easily seen that B ⊆ A and

MIN(A | K) = {(0, 1)} ⊆ B = MIN(B | K) 6= MIN(A | K).

Next we show that strongly cone-monotone functions can be used to generate the
whole set MIN(A | K).

Lemma 3.7. Let ϕ : D → R be a strongly K-increasing function, defined on a
nonempty set D ⊆ Rn. For any set B ⊆ D the following assertions are equivalent:

1◦. B = MIN(B | K).
2◦. For any points b, b′ ∈ B with ϕ(b) < ϕ(b′) we have b′ /∈ b+K (i.e., b 65K b′).
3◦. For any points b, b′ ∈ B with b 5K b′ we have ϕ(b) ≥ ϕ(b′), i.e., the restriction

of ϕ to B is K-decreasing.

Proof. The equivalence 2◦ ⇐⇒ 3◦ is obvious.
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Assume that 1◦ holds and let b, b′ ∈ B be such that ϕ(b) < ϕ(b′). Supposing by the
contrary that b′ ∈ b+K we would have b ∈ (b′−K)∩B. Since b′ ∈ B = MIN(B | K),
we infer b = b′ hence ϕ(b) = ϕ(b′), a contradiction. Thus 1◦ implies 2◦.

Conversely, assume that 2◦ holds. In order to prove 1◦, we just have to show that
B ⊆ MIN(B | K). Suppose by the contrary that there is b′ ∈ B \MIN(B | K). Then
it would exist b ∈ B such that b′ ∈ b + K \ {0}. Since ϕ is strongly K-increasing we
infer ϕ(b) < ϕ(b′). This contradicts 2◦.

Theorem 3.8. Let A ⊆ Rn be a nonempty set satisfying the domination property
w.r.t. K and let B ⊆ A be such that MIN(A | K) ⊆ B. If ϕ : D → R is a strongly
K-increasing function, with A ⊆ D, then the following assertions are equivalent:

1◦. B = MIN(A | K).
2◦. For any points b, b′ ∈ B with ϕ(b) < ϕ(b′) we have b′ /∈ b+K (i.e., b 65K b′).
3◦. For any points b, b′ ∈ B with b 5K b′ we have ϕ(b) ≥ ϕ(b′), i.e., the restriction

of ϕ to B is K-decreasing.

Proof. Follows from Lemmas 3.5 and 3.7.

Remark 4.b) suggests to use Theorem 3.8 in order to develop new numerical methods
for solving discrete vector optimization problems.

4. Jahn-Graef-Younes type algorithms for discrete vector optimization

As stated in the previous section, in what follows K ⊆ Rn is a nontrivial pointed
convex cone. Moreover, since in the sequel we focus on discrete vector optimization
problems, throughout this section the notation A will represent a nonempty finite set

A := {a1, . . . , ap} ⊆ Rn,

where|A| = p ∈ N, i.e., the points a1, . . . , ap are pairwise distinct.
In this section we will develop new numerical methods for computing the set

MIN(A | K) of all minimal points of A w.r.t. K. In preparation we recall three
well-known methods, among which the simplest one (yet naive) is Algorithm 1, which
only requires Definition 3.1.

Algorithm 1: Naive method, by pairwise comparison

Input: The set A := {a1, . . . , ap}.
T ← ∅;
for j ← 1 to p do

if aj /∈ (A \ {aj}) +K then
T ← T ∪ {aj};

end

end
Output: The set T (representing the set of all minimal elements of A w.r.t. K).

Remark 6. The computational complexity of Algorithm 1 is O(p2). However, in prac-
tice the cardinality of the set A is very high. Hence, one needs methods for reducing
the number of necessary pairwise comparisons of the given points with respect to the
ordering induced by K.
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The next Algorithm 2 is known in the literature as the Graef-Younes method (see
Younes [2] and Jahn [1, Sec. 12.4]).

Algorithm 2: Graef-Younes method

Input: The set A := {a1, . . . , ap}.
B ← {a1};
for j ← 2 to p do

if aj /∈ B +K then
B ← B ∪ {aj};

end

end
Output: The set B (that satisfies MIN(B | K) = MIN(A | K) ⊆ B ⊆ A).

Remark 7. Since A is finite, the domination property holds in view of Remark 4.b).
Therefore, according to Lemma 3.5, the Graef-Younes method (Algorithm 2) generates
a reduced set B ⊆ A with the property

MIN(B | K) = MIN(A | K) ⊆ B. (7)

As pointed out by Jahn [1, Ex. 12.19], in some particular instance the Graef-Younes
method can reduce a set A containing 5 × 106 points to a set B containing around
3× 103 points. However, simple examples in R2 show that the set B generated by the
Graef-Younes method may be very large (sometimes B = A), hence the computation
of MIN(B | K) is not easier than the computation of MIN(A | K). In the worst-case
scenario when B = A we need to perform at most

1 + 2 + . . .+ (p− 1) =
(|A| − 1) · |A|

2

pairwise comparisons of points with respect to the ordering induced by K.

A very interesting approach to overcome this drawback has been proposed by Jahn
[3] (see also Jahn and Rathje [4] and Jahn [1]). The so-called Jahn-Graef-Younes
method (also known as the Graef-Younes method with backward iteration) is given
in Algorithm 3.
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Algorithm 3: Jahn-Graef-Younes method

Input: The set A := {a1, . . . , ap}.
/* Forward iteration */
i← 1;

bi ← ai;

B ← {bi};
for j ← 2 to p do

if aj /∈ B +K then
i← i+ 1;

bi ← aj ;

B ← B ∪ {bi};
end

end
/* Backward iteration */

T ← {bi};
for j ← 1 to i− 1 do

if bi−j /∈ T +K then
T ← T ∪ {bi−j};

end

end
Output: The set T (representing the set of all minimal elements of A w.r.t. K).

Simple examples show that the original Jahn-Graef-Younes method (Algorithm 3) is
very efficient when the enumeration of the elements of A (that is, a1, a2, . . .) starts with
some minimal elements of A with respect to K. In the worst-case, the computational
complexity of Algorithm 3 is O(p2), depending essentially on the cardinality of the
set B, generated after the forward iteration. Therefore a natural idea arises, namely
to adapt the Jahn-Graef-Younes method, by considering an appropriate pre-sorting of
the elements of A.

Given any function ϕ : D → R with A ⊆ D it is easy to find an enumeration
{aj1 , . . . , ajp} of the a priori given set A = {a1, . . . , ap} such that

ϕ(aj1) ≤ ϕ(aj2) ≤ · · · ≤ ϕ(ajp). (8)

Thus we can always pre-sort the elements of A according to (8) and thereafter apply
the algorithms stated above to {aj1 , . . . , ajp} instead of the original enumeration of
A. When ϕ is a strongly K-increasing function we obtain an interesting property,
highlighted in the next theorem.

Theorem 4.1. Let ϕ : D → R be a strongly K-increasing function with A ⊆ D. If

ϕ(a1) ≤ ϕ(a2) ≤ · · · ≤ ϕ(ap), (9)

then Algorithm 2 (the Graef-Younes method) generates the set B = MIN(A | K).

Proof. It is a direct consequence of Theorem 3.8. Indeed, the set B is constructed
within Algorithm 2 by eliminating a part of the non-minimal points of A, hence
MIN(A | K) ⊆ B ⊆ A. Therefore, it suffices to check that the set B satisfies the
property 2◦ of Theorem 3.8. To this end, let any b, b′ ∈ B with ϕ(b) < ϕ(b′). Since
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b, b′ ∈ A, there exist i, i′ ∈ Ip such that b = ai and b′ = ai
′
, hence ϕ(ai) < ϕ(ai

′
). By

(9) it follows that i < i′, which shows that during Algorithm 2, the point b′ = ai
′

is
added to B after b = ai, hence b′ /∈ b+K.

Remark 8. If the pre-sorting (8) is given by an arbitrary scalar function ϕ, then the
“reduced” set B generated by applying Algorithm 2 to {aj1 , . . . , ajp} instead of the
original enumeration of A may be very large.

In particular, if the function ϕ is strongly K-decreasing and (9) holds, then the
output set coincide with the initial one, i.e., B = A (no reduction occurs). Indeed,
by construction of B we have a1 ∈ B. Moreover, for any j ∈ Ip with j ≥ 2 we have
aj /∈ ai + K for all i ∈ Ip with i < j (otherwise we should have ai �K aj , hence
ϕ(ai) > ϕ(aj), a contradiction). This means that aj ∈ B.

Remark 9. If ϕ is K-increasing and all inequalities in (9) are strict, then Algorithm
2 generates the set B = MIN(A | K), which actually means that B ⊆ MIN(B | K)
in view of (7). Indeed, assuming by the contrary that aj ∈ B \ MIN(B | K) for
some j ∈ Ip, we can deduce (by the domination property) the existence of a point
ai ∈ MIN(B | K) with i ∈ Ip such that ai �K aj . Since ϕ is K-increasing and all
inequalities in (9) are strict, we infer that i < j, contradicting the construction of B
(because aj ∈ B and aj ∈ ai +K with ai ∈ B).

Theorem 4.1 suggests to design a new algorithm for solving discrete vector
optimization problems, by adding a pre-sorting phase to the original Graef-Younes
method, that provides an enumeration {aj1 , . . . , ajp} of A satisfying (8). Therefore we
propose the following Algorithm 4, which generates the set MIN(A | K), according to
Theorem 4.1 (applied for {aj1 , . . . , ajp} in the role of A).

Algorithm 4: Graef-Younes type method involving a pre-sorting phase

Input: The set A := {a1, . . . , ap} and the strongly K-increasing function
ϕ : Rn → R.

/* Phase 1 */

Compute an enumeration A = {aj1 , . . . , ajp} which satisfies (8).
/* Phase 2 */

B ← {aj1};
for k ← 2 to p do

if ajk /∈ B +K then
B ← B ∪ {ajk};

end

end
T ← B;
Output: The set T (representing the set of all minimal elements of A w.r.t. K).

Remark 10. In Phase 1 of Algorithm 4 we generate an enumeration of the initial set A
with respect to the sorting function ϕ. In the literature there exist effective algorithms
for sorting p real numbers with worst-case computational complexity O(p · log(p)).

In Phase 2 of Algorithm 4 the original Graef-Younes method (Algorithm 2) with
worst-case computational complexity O(p2) is applied to the sorted set {aj1 , . . . , ajp}
in the role of A in order to generate all minimal elements of A with respect to K.

Notice that Algorithm 4 has a worst-case computational complexity of O(p2) too.
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After Phase 1, we have to perform at most

(|T | − 1) · |T |
2

+ (|A| − |T |) · |T |

comparisons of points, where T = MIN(A | K).

In what follows we present another new method (Algorithm 5) for solving discrete
vector optimization problems obtained by the original Jahn-Graef-Younes method
(Algorithm 3) by implementing a sorting procedure of the set B after the forward
iteration with respect to a strongly K-increasing function ϕ : Rn → R.

Algorithm 5: Jahn-Graef-Younes type method involving a sorting
phase after the forward iteration

Input: The set A := {a1, . . . , ap} and the strongly K-increasing function
ϕ : Rn → R.

/* Phase 1 */
Apply the forward iteration of Algorithm 3 for the set A as input to get the set
B = {b1, . . . , bi}.

/* Phase 2 */

Compute an enumeration B = {bj1 , . . . , bji} such that

ϕ(bj1) ≥ ϕ(bj2) ≥ · · · ≥ ϕ(bji).

/* Phase 3 */

T ← {bji};
for k ← 1 to i− 1 do

if bji−k /∈ T +K then
T ← T ∪ {bji−k};

end

end
Output: The set T (representing the set of all minimal elements of A w.r.t. K).

Remark 11. In Phase 1 of Algorithm 5 we apply the Graef-Younes method (forward
iteration of Algorithm 3) for the a priori given set A.

In Phase 2 the elements of the reduced set B (generated in Phase 1) are sorted by
the strongly K-increasing function ϕ.

Finally, in Phase 3 the backward iteration of Algorithm 3 is applied to the sorted
set {bj1 , . . . , bji} in the role of B in order to generate all minimal elements of A with
respect to K.

Note that Algorithm 5 has a worst-case computational complexity of O(p2).

5. Special classes of cone-monotone scalar functions

Throughout this section K ⊆ Rn will be a nontrivial closed pointed convex cone, hence

intK+ 6= ∅ and (K+)+ = K.

We are going to study some special classes of K-monotone functions, currently used in
scalarization methods for vector optimization. We will use them as sorting functions
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within Phase 1 of Algorithm 4 and Phase 2 of Algorithm 5. Moreover, we show that
these functions can be also used to compare points with respect to the ordering induced
by K. Therefore, they allows us to implement the procedures described in Phase 2 of
Algorithm 4 and in Phases 1 and 3 of Algorithm 5.

5.1. Linear cone-monotone sorting functions

For any λ ∈ Rn we denote by ϕλ : Rn → R the linear function defined by

ϕλ(x) := 〈λ, x〉 for all x ∈ Rn. (10)

The next well-known result concerns the cone-monotonicity of ϕλ.

Proposition 5.1. The following statements hold:

1◦. ϕλ is K-increasing for λ ∈ K+ \ {0}.
2◦. ϕλ is strongly K-increasing for λ ∈ intK+.

The linear function ϕλ is often used in scalarization methods for vector optimization
due to the following direct consequence of Propositions 3.3 and 5.1.

Corollary 5.2. Let A ⊆ Rn be a nonempty set and let λ ∈ K+. Then, for any
minimizer x0 ∈ argminx∈A ϕλ(x), the following assertions hold:

1◦. If λ ∈ intK+, then x0 ∈ MIN(A | K).
2◦. If λ ∈ K+ \ {0} and | argminx∈A ϕλ(x)| = 1, then x0 ∈ MIN(A | K).

In particular, for the standard ordering cone K = Rn+, Corollary 5.2 corresponds to
the classical weighted sum scalarization method (see Jahn [1, Sec. 11.2.1]). Next we
illustrate how ϕλ can be also used as a sorting function.

Example 5.3. Let R2 be endowed with the standard ordering cone K := R2
+ and let

A := {a1, . . . , a6} ⊆ R2 be a finite set, where a1 = (2, 5), a2 = (1, 2), a3 = (4, 4.5),
a4 = (2, 3), a5 = (4, 2) and a6 = (6, 1). Consider the linear sorting function ϕλ
with λ := (1, 1). Note that ϕλ is strongly R2

+-increasing by Proposition 5.1. Then for
aj1 := a2, aj2 := a4, aj3 := a5, aj4 := a6, aj5 := a1, aj6 := a3, we have

ϕλ(aj1) ≤ ϕλ(aj2) ≤ . . . ≤ ϕλ(aj6)

and hence aj1 ∈ MIN(A | R2
+) by Corollary 5.2. In Figure 1 we illustrate the level lines

of the sorting function ϕλ through the points a1, . . . , a6.

The linear functions ϕλ with λ ∈ K+ can be used to evaluate the ordering relation
induced by the ordering cone K ⊆ Rn, as shown by the following straightforward
consequence of the fact that (K+)+ = K.

Proposition 5.4. For any points x, y ∈ Rn we have

x 5K y ⇐⇒ ∀λ ∈ K+ : ϕλ(x) ≤ ϕλ(y). (11)

Corollary 5.5. Assume that the cone K is polyhedral, i.e., K = U+ for some
nonempty finite set U ⊆ Rn \ {0} satisfying the conditions (2) and (3). Then, for
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Figure 1. Level lines of the linear sorting function ϕλ for λ = (1, 1).

any points x, y ∈ Rn we have

x 5K y ⇐⇒ ∀u ∈ U : ϕu(x) ≤ ϕu(y). (12)

5.2. Nonlinear cone-monotone sorting functions

Throughout this section let X be a closed proper subset of Rn, i.e., ∅ 6= X = clX 6= Rn,
let C ⊆ Rn be a nontrivial closed solid convex cone, such that X + intC ⊆ X, and let
c0 ∈ intC.

Following Tammer and Weidner [12], we define a function φX,c0 : Rn → R ∪ {±∞}
for all x ∈ Rn by

φX,c0(x) := inf{s ∈ R |x ∈ sc0 −X}. (13)

The next result collects some important properties of this function φX,c0 (see Göpfert
et al. [10, Th. 2.3.1 and Prop. 2.3.4]):

Proposition 5.6. The following statements hold:

1◦. φX,c0 is well-defined, finite-valued, and continuous.
2◦. φX,c0 is convex if and only if X is convex.
3◦. φX,c0 is K-increasing if and only if X +K ⊆ X.
4◦. φX,c0 is strongly K-increasing if and only if X + (K \ {0}) ⊆ intX.

As a direct consequence of Propositions 3.3 and 5.6 we get the following result
that motivates the use of φX,c0 in nonlinear scalarization methods for solving vector
optimization problems.

Corollary 5.7. Let A ⊆ Rn be a nonempty set. For any x0 ∈ argminx∈A φX,c0(x) the
following assertions hold:
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1◦. If X + (K \ {0}) ⊆ intX, then x0 ∈ MIN(A | K).
2◦. If X +K ⊆ X and | argminx∈A φX,c0(y)| = 1, then x0 ∈ MIN(A | K).

By imposing additional assumptions on X and/or C we obtain new insights on the
function φX,c0 . In this regard we have the following two results:

Proposition 5.8. Assume that X = Y + C, where Y ⊆ Rn is a nonempty compact
convex set. Then the following statements hold:

1◦. φX,c0 is well-defined, finite-valued, continuous and convex.
2◦. If K ⊆ C, then φX,c0 is K-increasing.
3◦. If K \ {0} ⊆ intC, then φX,c0 is strongly K-increasing.

Proof. Clearly X satisfies all initial assumptions of Section 5.2. Indeed, X is closed
(as the sum of a compact set and a closed one) and proper (since ∅ 6= C 6= Rn), while

X + intC ⊆ Y + C + C = Y + C = X. (14)

Moreover, X is convex (as being the sum of two convex sets). Therefore assertion 1◦

follows from Proposition 5.6 (1◦ and 2◦).
If K ⊆ C, then we obviously have X + K ⊆ Y + C + C = Y + C = X, hence

assertion 2◦ holds in view of Proposition 5.6 (3◦).
Finally, when K \ {0} ⊆ intC, then (14) yields X + (K \ {0}) ⊆ X + intC ⊆ X,

hence assertion 3◦ follows by Proposition 5.6 (4◦).

Proposition 5.9. Assume that X = Y + C is a polyhedral set given by (6), where
Y = convP and C = U+ for some nonempty finite sets P ⊆ Rn and U ⊆ Rn \ {0}.
Then for all x ∈ Rn we have

φX,c0(x) = min
p∈P

max
u∈U

〈u, x〉+ 〈u, p〉
〈u, c0〉

.

Proof. Under the general assumptions stated at the beginning of Section 5.2, we have
c0 ∈ intC, hence 〈u, c0〉 > 0 for all u ∈ U , in view of (4). By Proposition 5.8 (1◦), the
function φX,c0 is well-defined. Moreover, for all x ∈ Rn we have

φX,c0(x) = φY+C,c0(x)

= inf{s ∈ R | sc0 − x ∈ Y + C}
= inf{s ∈ R | ∃ y ∈ Y : sc0 − x− y ∈ C}
= inf{s ∈ R | ∃ y ∈ Y ∀u ∈ U : 〈u, sc0 − x− y〉 ≥ 0}
= inf{s ∈ R | ∃ y ∈ Y ∀u ∈ U : 〈u, x〉+ 〈u, y〉 ≤ s〈u, c0〉}

= inf{s ∈ R | ∃ y ∈ Y : max
u∈U

〈u, x〉+ 〈u, y〉
〈u, c0〉

≤ s}

= min
y∈Y

max
u∈U

〈u, x〉+ 〈u, y〉
〈u, c0〉

= min
p∈P

max
u∈U

〈u, x〉+ 〈u, p〉
〈u, c0〉

.

Note that the last equality holds, since we minimize a concave function (namely the
maximum of a finite number of affine functions) over the polytope S, and therefore the
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minimum is attained at some extreme point of S hence an element of P , by a classical
argument in convex analysis (see, e.g., Rockafellar [9, Cor. 32.3.4]).

Remark 12. In the particular case when X = C = K (i.e., X is given by (6) where
P = {0}), we have

x 5K y ⇐⇒ ∀u ∈ U : ϕu(x) ≤ ϕu(y)

⇐⇒ ∀u ∈ U : 〈u, x− y〉 ≤ 0

⇐⇒ ∀u ∈ U :
〈u, x− y〉
〈u, c0〉

≤ 0

⇐⇒ max
u∈U

〈u, x− y〉
〈u, c0〉

≤ 0

⇐⇒ φK,c0(x− y) ≤ 0

for all x, y ∈ Rn, in view of Propositions 5.5 and 5.9.

5.3. Nonlinear sorting functions defined by means of oblique norms

In order to derive optimality conditions in vector optimization based on scalarization,
Tammer and Winkler [13] considered the particular framework where K = Rn+ is the
standard ordering cone and X ⊆ Rn is a special polyhedral set, defined by means of a
certain block norm. More precisely, let γ : Rn → R be a norm and let

Bγ := {x ∈ Rn | γ(x) ≤ 1}

the corresponding unit ball. Notice that Bγ is convex, compact and symmetric with
respect to the origin. In addition, we suppose that γ is a block norm, meaning that
Bγ is polyhedral, i.e.,

Bγ = {x ∈ Rn | ∀i ∈ Iq : 〈vi, x〉 ≤ 1},

where v1, . . . , vq ∈ Rn \ {0}, q ∈ N, with R+ · vi 6= R+ · vj for all i, j ∈ Iq, i 6= j. Let

Iact :=
{
i ∈ Iq

∣∣ {x ∈ Rn | 〈vi, x〉 = 1} ∩Bγ ∩ intRn+ 6= ∅
}
. (15)

Notice that Iact is nonempty. Consider the polyhedral set

Xγ := {x ∈ Rn | ∀i ∈ Iact : 〈vi, x〉 ≤ 1}

and let w0 ∈ Rn. Tammer and Winkler [13] considered the (polyhedral) set

X := −Xγ − w0 = {x ∈ Rn | ∀i ∈ Iact : 〈−vi, x〉 ≤ 1 + 〈−vi, w0〉}. (16)

In order to give an easier representation for the index set Iact, we will impose
additional assumptions on the block norm γ. Recall (see, e.g., Schandl et al. [14]) that
γ is called absolute if for every x := (x1, . . . , xn) ∈ Rn we have

γ(x) = γ(x) for all x ∈ R(x),
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where

R(x) := {x = (x1, . . . , xn) ∈ Rn | ∀i ∈ In : |xi| = |xi|}.

Furthermore, the block norm γ is called oblique if it is absolute and moreover for every
x ∈ Rn+ ∩ bdBγ we have

(x− Rn+) ∩ Rn+ ∩ bdBγ = {x}.

In the sequel, we assume that the block norm γ is absolute.
The next lemma presents equivalent characterizations for the index set Iact defined

in (15) (see Tammer and Winkler [13, Lem. 3.2]).

Lemma 5.10. We have

Iact = {i ∈ Iq | vi ∈ Rn+ \ {0}},

and if γ is oblique, then

Iact = {i ∈ Iq | vi ∈ intRn+}.

According to Tammer and Winkler [13], we introduce the set

V := {vi | i ∈ Iact}.

Then, for a given c0 ∈ intRn+, we consider a function ϕV,c0,w0 : Rn → R defined by

ϕV,c0,w0(x) := inf{s ∈ R |x ∈ sc0 +Xγ + w0} (17)

for all x ∈ Rn. Notice that ϕV,c0,w0 = φX,c0 , where X is given by (16), while the new
notation ϕV,c0,w0 is motivated by the next result, based on Tammer and Winkler [13,
Cor. 3.1, 3.2 and 3.3].

Proposition 5.11. The following statements hold:

1◦. ϕV,c0,w0 is well-defined, finite-valued, continuous, convex and Rn+-increasing.
2◦. For all x ∈ Rn we have

ϕV,c0,w0(x) = max
i∈Iact

〈vi, x〉 − 〈vi, w0〉 − 1

〈vi, c0〉
.

3◦. If γ is oblique, then ϕV,c0,w0 is strongly Rn+-increasing.

Remark 13. Notice, for any c0 ∈ intRn+, we have 〈vi, c0〉 > 0 for all i ∈ Iact, since
vi ∈ Rn+ \ {0} by Lemma 5.10.

Example 5.12. Let us consider the cone K = R2
+ and the set A = {a1, . . . , a6} ⊆ R2

as given in Example 5.3. Now, we consider the nonlinear sorting function ϕV,c0,w0 with

V := {(1, 2), (2, 1)}, c0 := (1, 1) and w0 := (0, 0).
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Notice that ϕV,c0,w0 is strongly R2
+-increasing by Proposition 5.11. It is easily seen that

ϕV,c0,w0(aj1) ≤ ϕV,c0,w0(aj2) ≤ . . . ≤ ϕV,c0,w0(aj6),

where aj1 := a2, aj2 := a4, aj3 := a5, aj4 := a1, aj5 := a3 and aj6 := a6. The level lines
of the sorting function ϕV,c0,w0 through the points a1, . . . , a6 are shown in Figure 2.

Figure 2. Level lines of the nonlinear sorting function ϕV,c0,w0 .

6. Implementation of the new Jahn-Graef-Younes type algorithms for
polyhedral ordering cones and linear sorting functions

In this section we will develop implementable versions of our new Jahn-Graef-Younes
type methods (namely Algorithm 4 and Algoritm 5) for computing the minimal points
of a finite set with respect to a polyhedral cone, by using linear sorting functions.

As in Section 4, we consider a finite set

A := {a1, . . . , ap} ⊆ Rn,

where the points a1, . . . , ap are pairwise distinct. We are interested to compute the set
MIN(A | K) of all minimal points of A with respect to a polyhedral cone

K := U+ with U := {u1, . . . , um} ⊆ Rn \ {0}, (18)

where u1, . . . , um are pairwise distinct and U satisfies the conditions (2) and (3).
In what follows, for any α := (α1, . . . , αm) ∈ Rm, we denote

λα :=
∑
t∈Im

αtu
t
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and we introduce the linear scalar function ηα := ϕλα , defined according to (10) as

ηα(x) := ϕλα(x) = 〈λα, x〉 =
∑
t∈Im

αt〈ut, x〉 =
∑
t∈Im

αtϕut(x) (19)

for all x ∈ Rn. The following result shows that, by an appropriate choice of α, the
corresponding function ηα can be used for the sorting procedures our algorithms.

Proposition 6.1. If α = (α1, . . . , αm) ∈ intRm+ , then the function ηα (i.e., ϕλα) is
strongly K-increasing.

Proof. By Proposition 5.1 it suffices to prove that λα ∈ intK+, which in view of (5)
(applied to K in the role of C) reduces to show that

〈λα, x〉 > 0 for any x ∈ K \ {0}. (20)

To this aim, consider an arbitrary point x ∈ K \ {0}. Since

αt > 0 and 〈ut, x〉 ≥ 0 for all t ∈ Im, (21)

we can easily deduce by (19) that

〈λα, x〉 ≥ 0.

Actually, this inequality is strict. Indeed, assume to the contrary that 〈λα, x〉 = 0. This
means that

∑
t∈Im αt〈u

t, x〉 = 0 by (19). In view of (21), it follows that 〈ut, x〉 = 0 for
all t ∈ Im. By assumption (3), we get x = 0, a contradiction. Thus (20) holds.

Now, we are ready to present the implementation of Algorithm 4 for computing the
minimal elements of A with respect to K.
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Algorithm 6: Graef-Younes type method involving a pre-sorting phase
(for a polyhedral ordering cone and a linear sorting function)

Input: The cone K = U+ where U = {u1, . . . , um}, the set A := {a1, . . . , ap},
and some α := (α1, . . . , αm) ∈ intRm+ .

/* Phase 1 */
for j ← 1 to p do

ηj ← 0;
for t← 1 to m do

ϕjt ← 〈ut, aj〉;
ηj ← αt · ϕjt + ηj ;

end

end
/* Phase 2 */
Compute an enumeration of the given points of the set A
such that A = {aj1 , . . . , ajp} and ηj1 ≤ ηj2 ≤ . . . ≤ ηjp
for k ← 1 to p do

ak ← ajk ;
for t← 1 to m do

ϕkt ← ϕjkt ;
end

end
/* Phase 3 */
i← 1;
indi ← 1;

B ← {aindi};
for j ← 2 to p do

s← 0;
for l← 1 to i do

for t← 1 to m do

if ϕindlt > ϕjt then
s← s+ 1;
break ;

end

end
if s < l then

break ;
end

end
if s = i then

i← i+ 1;
indi ← j;

B ← B ∪ {aindi};
end

end
T ← B;
Output: The set T (representing the set of all minimal elements of A w.r.t. K).

19



Remark 14. In the preparatory Phase 1 of Algorithm 6 we compute the values ϕut(a
j)

and ηα(aj) for all t ∈ Im and j ∈ Ip.
In Phase 2, we generate an enumeration A = {aj1 , . . . , ajp} such that

ηα(aj1) ≤ ηα(aj2) ≤ . . . ≤ ηα(ajp).

Moreover, we put ak := ajk and ϕut(a
k) := ϕut(a

jk) for all k ∈ Ip and all t ∈ Im.
Finally, in Phase 3 the Graef-Younes method (Algorithm 2) is applied to the set

A = {a1, . . . , ap} (generated in Phase 2) in order to compute all minimal elements
of the initial set A with respect to K. For the evaluation of the ordering relation of
5K we use the characterization (12) taking into account that all values ϕut(a

k) with
t ∈ Im and k ∈ Ip are already computed in Phase 2.

Notice that the worst-case computational complexity of Algorithm 6 is O(p2 ·m).

The corresponding algorithmic implementation to Algorithm 5 for computing
MIN(A | K) is formulated in Algorithm 7.

20



Algorithm 7: Jahn-Graef-Younes type method involving a sorting
phase after the forward iteration (for a polyhedral ordering cone
and a linear sorting function)

Input: The cone K = U+ where U = {u1, . . . , um}, the set A := {a1, . . . , ap},
and some α := (α1, . . . , αm) ∈ intRm+ .

/* Phase 1 */
for j ← 1 to p do

for t← 1 to m do

ϕjt ← 〈ut, aj〉;
end

end
/* Phase 2 */
i← 1;
indi ← 1;

bi ← aindi ;

B ← {bi};
for j ← 2 to p do

s← 0;
for l← 1 to i do

for t← 1 to m do

if ϕindlt > ϕjt then
s← s+ 1;
break ;

end

end
if s < l then

break ;
end

end
if s = i then

i← i+ 1;
indi ← j;

bi ← aindi ;

B ← B ∪ {bi};
end

end
/* Phase 3 */
for j ← 1 to i do

ηj ← 0;
for t← 1 to m do

ηj ← αt · ϕindjt + ηj ;
end

end
Compute an enumeration of the given points of the set B
such that B = {bj1 , . . . , bji} and ηj1 ≥ ηj2 ≥ . . . ≥ ηji
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for k ← 1 to i do
bk ← bjk ;
for t← 1 to m do

ϕkt ← ϕ
indjk
t ;

end

end
/* Phase 4 */
q ← 1;
indq ← i;

T ← {bindq};
for j ← 1 to i− 1 do

s← 0;
for l← 1 to q do

for t← 1 to m do

if ϕindlt > ϕi−jt then
s← s+ 1;
break ;

end

end
if s < l then

break ;
end

end
if s = q then

q ← q + 1;
indq ← i− j;
T ← T ∪ {bindq};

end

end
Output: The set T (representing the set of all minimal elements of A w.r.t. K).

Remark 15. In Phase 1 of Algorithm 7 we compute ϕut(a
j) for all t ∈ Im and j ∈ Ip.

In Phase 2 we apply the Graef-Younes method (forward iteration of Algorithm 3)
for the a priori given set A to get the reduced set B = {b1, . . . , bi}. For the evaluation
of the ordering relation 5K we use the characterization (12), taking into account that
the values ϕut(a

j) for all t ∈ Im and all j ∈ Ip are already computed in Phase 1.
In Phase 3 we compute the values ηα(bk) for all k ∈ Ii. Moreover, we generate an

enumeration B = {bj1 , . . . , bji} such that

ηα(bj1) ≥ ηα(bj2) ≥ . . . ≥ ηα(bji).

Notice that ηα is strongly K-increasing, since α ∈ intRm+ by Proposition 6.1. Moreover,

we put bk := bjk for all k ∈ Ii and ϕut(b
k) := ϕut(b

jk) for all k ∈ Ii and all t ∈ Im.
Finally, in Phase 4 the backward iteration of Algorithm 3 is applied to the set

B = {b1, . . . , bi} (generated in Phase 3) in order to compute all minimal points of A
with respect to K. Again, we use (12) to evaluate 5K , taking into account that the
values ϕut(b

k) with t ∈ Im and k ∈ Ii are already computed in Phase 3.
The worst-case computational complexity of Algorithm 7 is O(p2 ·m).
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7. Applications

Our new Jahn-Graef-Younes type algorithms introduced in Sections 4 and 6 can be
used for approximating the sets of minimal outcomes of certain continuous vector
optimization problems, via a discretization approach proposed by Jahn [3], namely
the “Multiobjective search algorithm with subdivision technique” (MOSAST).

In this section we will apply our algorithms to a particular continuous bi-objective
test problem (known in the literature as being very difficult to solve). A detailed
comparative analysis of our algorithms and other classical methods is provided, based
on computational experiments in MATLAB.

7.1. Continuous bi-objective optimization problems and the
approximation of their solution sets

Consider a vector-valued function f = (f1, f2) : S → R2, defined on a nonempty
bounded set S ⊆ R2, and let f(S) := {f(x) | x ∈ S}. Assume that K ⊆ R2 is
a nontrivial pointed polyhedral cone. An element x ∈ S is said to be an efficient
solution of the vector optimization problem{

f(x) = (f1(x), f2(x))→ min w.r.t. K

x ∈ S
(22)

if f(x) ∈ MIN(f(S) | K). In what follows we denote by

EFF(S | f,K) := f−1(MIN(f(S) | K))

the set of all efficient solutions to problem (22).
Since the computation of the set MIN(f(S) | K) is in general a very difficult task,

we are interested in finding a good enough approximation of MIN(f(S) | K). One

possibility is to generate a finite set S̃ ⊆ S and to compute the set MIN(f(S̃) | K). Of
course, in general there is no containment relation between the sets MIN(f(S) | K)

and MIN(f(S̃) | K), but we always have

MIN(f(S̃) | K) ⊆ MIN(f(S) | K) +K,

by the domination property.
In what follows S̃ will be generated by an iterative procedure, as a union of sets

S̃ := S̃0 ∪ S̃1 ∪ . . . ∪ S̃l.

Then, for each i ∈ {0, 1, . . . , l} we will compute the set

Ti := MIN(f(S̃i) | K)

by our methods from the previous sections for the finite set A := f(S̃i). Then, denoting

T := T0 ∪ T1 ∪ . . . ∪ Tl,
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we have

MIN(f(S̃) | K) = MIN (T | K) , (23)

in view of Remarks 2, 3 and 4. The right-hand side term of (23) will be computed
by applying our methods for the set A := T . Next, we present the main steps of this
iterative procedure:

Step 1. Compute a first approximation of MIN(f(S) | K):

• Consider a box (i.e., an axis-parallel rectangle) B0 ⊆ R2 such that S ⊆ B0.

Generate a finite set of random points B̃0 ⊆ B0 and define S̃0 := B̃0 ∩ S.
• Compute the sets T0 := MIN(f(S̃0) | K) and EFF(S̃0 | f,K) := f−1(T0).

Step 2. Apply a subdivision technique similar to that introduced by Dellnitz et al.
[15] (see also Jahn [3]) in order to improve the approximation of the set MIN(f(S) | K):

• Consider a system B of boxes in R2 that covers the set S, i.e., S ⊆
⋃
B∈B B.

• Determine the subsystem of boxes

Bact := {B ∈ B | B ∩ EFF(S̃0 | f,K) 6= ∅}

and let {B1, . . . , Bl} = Bact be an enumeration of Bact with l = |Bact|.
• For each i ∈ Il generate a finite set of random points B̃i ⊆ Bi and let S̃i := B̃i∩S.
• For every i ∈ Il compute the set Ti := MIN(f(S̃i) | K).

Step 3. Compute the set MIN (T | K) .

Remark 16. The iterative procedure described above represents a counterpart of the
MOSAST method. In contrast to the classical approach by Jahn [3] (see also Limmer
et al. [16]), we use a fixed number of randomly generated points.

In order to get a good approximation of the set MIN(f(S) | K), the cardinality

of S̃0 should be high enough. In Step 2 we have to solve a family of l discrete vector
optimization problems. Since l can be very high, it is convenient to consider sets S̃i,
i ∈ Il, with reasonable small cardinality (significantly smaller than |S̃0|).

In what follows we present the pseudo-code of our iterative procedure.
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Algorithm 8: Special instance of MOSAST

Input: The nonempty bounded set S ⊆ R2, the objective function f : S → R2, a
box B0 := [Pmin1 , Pmax1 ]× [Pmin2 , Pmax2 ] ⊆ R2 , such that S ⊆ B0, and
three positive integers (custom parameters) #step1, #step2, #int.

/* Step 1 */

Generate a set of random points, B̃0 ⊆ B0 with |B̃0| = #step1;

S̃0 ← B̃0 ∩ S;

T0 ← MIN(f(S̃0) | K);

EFF(S̃0 | f,K)← f−1(T0);
/* Step 2 */
T ← T0;
for k ← 1 to #int + 1 do

P k1 ← Pmin1 + k−1
#int
· (Pmax1 − Pmin1 );

P k2 ← Pmin2 + k−1
#int
· (Pmax2 − Pmin2 );

end
l← 0;
for k ← 1 to #int do

for t← 1 to #int do

B ← [P k1 , P
k+1
1 ]× [P t2, P

t+1
2 ];

if |B ∩ EFF(S̃0 | f,K)| > 0 then
l← l + 1;
Bl ← B;

Generate a set of random points, B̃l ⊆ Bl with |B̃l| = #step2;

S̃l ← B̃l ∩ S;

Tl ← MIN(f(S̃l) | K);
T ← T ∪ Tl;

end

end

end
/* Step 3 */

T̃ ← MIN(T | K);

EFF(S̃ | f,K)← f−1(T̃ );

Output: The set T̃ (representing the minimal elements of the set f(S̃) with

respect to K) and the set EFF(S̃ | f,K) (representing the
corresponding set of efficient solutions).

7.2. Comparative analysis of our algorithms for Jahn’s test problem

As test problem for our numerical experiments we will consider a particular vector
optimization problem of type (22), known in the literature for being difficult to solve
(see Jahn [3, Ex 2]).
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Example 7.1 (Jahn’s test problem). Consider the feasible set S ⊆ R2 of all points
x = (x1, x2) ∈ R2 that satisfy the following constraints

−1.5 ≤ x1 ≤ 1

0 ≤ x2 ≤ 2.25

x21 − x2 ≤ 0

x1 + 2x2 − 3 ≤ 0.

Define the objective function f : S → R2 for all x = (x1, x2) ∈ S by

f(x) = (f1(x), f2(x)) := (−x1, x1 + x22 − cos(50x1)).

The set S is illustrated in Figure 3 (color light grey) while the outcome set f(S) is
illustrated in Figure 4 (color light grey).

In the following two sections, 7.2.1 and 7.2.2, we will study this problem when
K = R2

+ is the standard ordering cone, and when K = U+ is a polyhedral ordering
cone, respectively.

We start our analysis by applying Algorithm 8 to Jahn’s test problem, where B0 :=
[−1.5, 1] × [0, 2.25], while the sets MIN(f(S̃0) | K), MIN(f(S̃i) | K), i ∈ Il, and
MIN (T | K), are computed by means of Algorithm 4 with:
• ϕ := ϕλ, λ = (1, 1), when K = R2

+ (in Section 7.2.1)
• ϕ := ϕλα = ηα, α = (1, 1), when K = U+ (in Section 7.2.2).

Then, we use the sets S̃0, S̃1, . . . , S̃l as input data for the following algorithm.

Algorithm 9: Procedure ∗
Input: The sets S̃0, S̃1, . . . , S̃l.
T ← MIN(f(S̃0) | K);
for t← 1 to l do

T ← T ∪MIN(f(S̃t) | K);
end

T̃ ← MIN(T | K);

Output: The set T̃ (representing an approximation of the set MIN(f(S) | K)).

Within Algorithm 9 all the sets MIN(f(S̃0) | K), MIN(f(S̃i) | K), i ∈ Il, and
MIN (T | K) are computed by the same algorithm, corresponding to the Procedure ∗
indicated in Table 1 (within Section 7.2.1) and Table 3 (within Section 7.2.2) .

We mention that our comparative analysis is based on numerical results obtained
by implementing the algorithms in MATLAB 2016a on a Core i5-7200U 2x 2.50GHz
CPU, 16GB ram computer.

7.2.1. Jahn’s test problem when K is the standard ordering cone

In this subsection we consider the standard ordering cone K = R2
+. We analyse twelve

different procedures, as listed in Table 1. Among them, Procedures III-VIII use linear
sorting functions of type ϕ = ϕλ : R2 → R, λ ∈ intR2

+, given by (10), while the
Procedures IX - XII use nonlinear sorting functions of type ϕ = ϕV,c0,w0 : R2 → R,
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given by (17), where V ⊆ R2, c0 := (1, 1) and w0 := (0, 0). All considered sorting
functions are strongly R2

+-increasing, in view of Propositions 5.1 and 5.11.

Proc.∗ Alg. Presorting Sorting after for. iter. Parameters

I 1 - - -
II 3 - - -

III 4 ϕ := ϕλ - λ = (1, 2)
IV 5 - ϕ := ϕλ λ = (1, 2)
V 4 ϕ := ϕλ - λ = (1, 1)
VI 5 - ϕ := ϕλ λ = (1, 1)
VII 4 ϕ := ϕλ - λ = (2, 1)
VIII 5 - ϕ := ϕλ λ = (2, 1)

IX 4 ϕ := ϕV,c0,w0 - V = {(1, 2), (2, 1)}
X 5 - ϕ := ϕV,c0,w0 V = {(1, 2), (2, 1)}
XI 4 ϕ := ϕV,c0,w0 - V = {(1, 3), (2.5, 2.5), (3, 1)}
XII 5 - ϕ := ϕV,c0,w0 V = {(1, 3), (2.5, 2.5), (3, 1)}

Table 1. Procedures applied for Jahn’s test problem when K = R2
+ is the standard ordering cone.

For convenience let us denote by B̃ := B̃1 ∪ B̃2 ∪ . . . ∪ B̃l the set of all randomly
generated points, hence S̃ = B̃ ∩ S. Also, denote by #5K

the number of pairwise

comparisons with respect to the ordering relation 5K .
In what follows we will analyse the computational results obtained by applying

Algorithm 9 for Jahn’s test problem.

The running times (in seconds) and the number of pairwise comparisons needed to

compute the set T̃ = MIN(f(S̃) | R2
+) by Algorithm 9 are listed in Table 2.

Figure 3 illustrates the initial feasible set S (color lightgrey), the set S̃ (color dark-

grey), the system of boxes Bact = {B1, . . . , Bl} (color red) and the set EFF(S̃ | f,R2
+)

(color black), generated by Algorithm 8 for Jahn’s test problem (K = R2
+, #step1 =

105, #step2 = 104, #int = 30).

Figure 3. The set S (color lightgrey), the set S̃ (color darkgrey), the system of boxes Bact = {B1, . . . , B33}
(color red) and the set EFF(S̃ | f,R2

+) (color black) for Jahn’s test problem with K = R2
+.
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#step1 106 107 107

#step2 104 104 105

#int 30 30 30

|B̃| 1.260.000 10.220.000 12.200.000

|S̃| 627.047 4.758.085 5.896.073
l 26 22 22
|T | 15.786 14.832 49.596

|T̃ | 1.964 2.808 6.986

I Runtime 27,6 672,8 940,0
#5K

684510944 16.952.327.907 23.032.520.468

II Runtime 2,4 5,3 37,9
#5K

50.301.957 107.473.149 843.505.826

III Runtime 4,9 86,4 127,3
#5K

129.438.579 2.440.717.924 4.123.833.895

IV Runtime 2,8 7,8 37,7
#5K

54.701.638 117.968.982 907.403.128

V Runtime 2,8 45,6 87,6
#5K

87.408.106 1.192.388.508 2.823.993.735

VI Runtime 2,3 6,3 35,3
#5K

52.968.556 113.309.910 889.035.465

VII Runtime 2,4 28,7 72,4
#5K

67.748.612 501.887.794 2.125.652.797

VIII Runtime 2,3 6,7 35,9
#5K

52.950.686 113.172.781 888.846.269

IX Runtime 2,9 50,8 86,1
#5K

77.731.403 856.876.870 2.492.171.225

X Runtime 2,3 9,9 39,6
#5K

53.035.032 113.716.565 889.756.299

XI Runtime 2,9 40,7 86,3
#5K

77.565.368 858.921.388 2.457.803.337

XII Runtime 2,3 6,8 35,9
#5K

52.995.315 113.590.919 889.759.216

Table 2. Computational results for Jahn’s test problem with standard ordering cone K = R2
+.

The outcome sets f(S) (color lightgrey) and f(S̃) (color darkgrey) as well as the set

of minimal points T̃ = MIN(f(S̃) | R2
+) (color black) are represented in Figure 4.

By analyzing the Table 2, one can see that the running times depend essentially
on the corresponding sorting functions (listed in Table 1). More precisely, the results
produced by Algorithm 5 with a strongly R2

+-increasing sorting function (Procedures
IV, VI, VIII, X, XII) are comparable with those produced by the original Jahn-Graef-
Younes method (Procedure II). In contrast, Procedures III, V, VII, IX and XI, based
on Algorithm 4, seem to be slower than Procedure II for our test instances, since
the number of pairwise comparisons with respect to the ordering relation 5K are
higher. Naturally, all Jahn-Graef-Younes type algorithms are significantly faster than
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Figure 4. The set f(S) (color lightgrey), the set f(S̃) (color darkgrey) and the set of minimal elements

T̃ = MIN(f(S̃) | R2
+) (color black) for Jahn’s test problem with K = R2

+.

Algorithm 1 (the naive method). Notice that sometimes a procedure may be faster
than another one (in running time), even if it requires a larger number of pairwise
comparisons with respect to the ordering 5K . This is due to the different costs for the
evaluation of 5K .

7.2.2. Jahn’s test problem when K is a polyhedral ordering cone

In this section we consider a polyhedral ordering cone K = U+ where

U = {u1, u2} := {(100, 1), (−100, 1)}.

We analyze eight different procedures, as listed in Table 3. Among them, the last
six procedures use linear sorting functions as defined in Section 6. More precisely, for
any α := (α1, α2) ∈ intR2

+, we consider the function ηα : R2 → R defined by

ηα(x) := 〈α1 · u1 + α2 · u2, x〉 for all x ∈ R2,

which is strongly K-increasing, in view of Proposition 6.1.

Proc.∗ Alg. Presorting Sorting after for. iter. Parameters

I 1 - - -
II 3 - - -

III 4, 6 ϕ := ϕλα = ηα - α = (1, 2)
IV 5 , 7 - ϕ := ϕλα = ηα α = (1, 2)
V 4, 6 ϕ := ϕλα = ηα - α = (1, 1)
VI 5 , 7 - ϕ := ϕλα = ηα α = (1, 1)
VII 4, 6 ϕ := ϕλα = ηα - α = (2, 1)
VIII 5 , 7 - ϕ := ϕλα = ηα α = (2, 1)

Table 3. Procedures applied for Jahn’s test problem when K = U+ is a polyhedral ordering cone.
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Remark 17. All procedures described in Table 3 use the characterization given in
Corollary 5.5 for the pairwise comparison of points with respect to the ordering 5K .

In what follows we will analyse the computational results obtained by applying
Algorithm 9 for Jahn’s test problem.

The running times (in seconds) and the number of pairwise comparisons needed to

compute the set T̃ = MIN(f(S̃) | K) by Algorithm 9 are listed in Table 4.

#step1 105 106 106

#step2 104 104 105

#int 30 30 30

|B̃| 1.200.000 1.870.000 9.700.000

|S̃| 836.057 992.983 5.664.607
l 110 87 87
|T | 113.601 94.200 291.481

|T̃ | 42.784 45.485 154.145

I Runtime 346,1 698,5 5356,9
#5K

8.830.661.499 16.371.742.342 101.963.388.244

II Runtime 148,6 194,9 1762,2
#5K

3.429.003.410 4.111.754.987 38.244.516.704

III Runtime 93,1 160,0 1198,2
#5K

2.902.570.705 4.794.331.614 35.225.370.700

IV Runtime 122,9 178,6 1520,1
#5K

3.485.894.921 4.243.658.305 38.897.471.354

V Runtime 116,7 201,8 1451,4
#5K

2.901.559.998 4.438.000.337 35.456.839.150

VI Runtime 130,3 194,9 1638,5
#5K

3.491.033.748 4.272.269.882 38.996.647.665

VII Runtime 137,4 296,2 1697,6
#5K

3.023.916.712 5.813.641.555 36.856.821.409

VIII Runtime 138,4 196,9 1722,5
#5K

3.497.988.473 4.278.940.881 38.992.693.160

Table 4. Computational results for Jahn’s test problem with polyhedral ordering cone K = U+.

Figure 5 illustrates the set S (color lightgrey), the set S̃ (color darkgrey), the system

of boxes Bact = {B1, . . . , Bl} (color red) and the set EFF(S̃ | f,K) (color black),
generated by Algorithm 8 for Jahn’s test problem (K = U+, #step1 = 105, #step2 =

104, #int = 30). The corresponding outcome sets f(S) (color lightgrey) and f(S̃)

(color darkgrey) as well as the set of minimal elements T̃ = MIN(f(S̃) | K) (color
black) are represented in Figure 6. Notice that the set of minimal elements of f(S)
with respect to K can be analytically described by

MIN(f(S) | K) = {(−s, s+ s4 − cos(50s)) ∈ R2 | s ∈ [−1.5, 1]}.

Finally, observe that the computational results listed in Table 4 neatly show that
a pre-sorting phase can improve the performance of the original Jahn-Graef-Younes
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Figure 5. The set S (color lightgrey), the set S̃ (color darkgrey), the system of boxes Bact = {B1, . . . , B110}
(color red) and the set EFF(S̃ | f,K) (color black) for Jahn’s test problem with K = U+.

Figure 6. The set f(S) (color lightgrey), the set f(S̃) (color darkgrey) and the set of minimal elements
T̃ = MIN(f(S̃) | K) (color black) for Jahn’s test problem with K = U+.

method. In this regard Procedures III and V (based on Algorithm 6) seem to be the
best choices. Also our Algorithm 7 performs quite well within Procedures IV and VI.

8. Conclusions

We developed new algorithms for determining all minimal elements of a finite set A
with respect to a nontrivial pointed convex cone K in Rn. They are obtained from
the original Graef-Younes and Jahn-Graef-Younes methods by considering additional
sorting procedures via strongly K-increasing scalar functions.

An interesting open question is how to choose the strongly K-increasing function in
concrete applications. In what concerns the functions ϕλ, ϕV,c0,w0 and ηα considered
in Section 7, we should identify appropriate choices of the input data λ ∈ intK+,
V ⊆ Rn, c0 ∈ intK, w0 ∈ Rn, and α ∈ intRm+ . In this regard we will investigate
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location problems involving block norms, following Alzorba et al. [17].
Moreover, in a forthcoming work we aim to derive new Jahn-Graef-Younes type

methods for set optimization problems, based on this paper as well as on the works
by Eichfelder [5–7], Jahn [18], and Köbis et al. [8].
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