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Abstract

In this paper, we are dealing with Ekeland’s variational principle for vector opti-
mization problems with variable ordering structures. Many generalizations of Ekeland’s
variational principle for vector optimization problems with fixed ordering structures
are given in recent books and papers. Recently, certain variational principles for ap-
proximate solutions of vector optimization problems with variable ordering structures
are derived in the literature. Here, using nonlinear scalarization techniques, we give
some new generalizations of Ekeland’s variational principle for approximate minimiz-
ers and nondominated solutions of vector optimization problems with variable ordering
structures. These generalizations can be used for deriving necessary conditions for ap-
proximate solutions of vector optimization problems with variable ordering structures.

Keywords. Nonconvex vector optimization, Variable ordering structures, Approximate
solutions, Ekeland’s variational principle.

Mathematics subject classifications (MSC 2000): 90C29, 90C30,90C46,90C48.

1 Introduction

Ekeland’s variational principle is one of the most important results in nonlinear analysis.
It is an assertion concerning the existence of an exact solution of a perturbed problem in
a neighborhood of an approximate solution of the original problem without convexity and
without compactness assumptions. It is a useful tool in order to drive necessary conditions
for approximate solutions of problems in optimization, optimal control theory, game theory,
nonlinear equations and dynamical systems. Generalizations of Ekeland’s variational prin-
ciple for vector optimization problems with fixed ordering structures have been extensively
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studied by many authors in the literature, see, e.g. [1] and references therein. Some gen-
eralizations of Ekeland’s variational principle for approximately minimal solutions of vector
optimization problems with variable ordering structures for both solid and nonsolid cases
are given in [2, 3], see [3–14, 16] for an introduction to vector optimization problems with
variable ordering structures and some recent works in this subject. In the following, we in-
troduce concepts for approximately optimal solutions of vector optimization problems with
variable ordering structures. These concepts are generalizations of the concept of ε-efficiency
for vector optimization problems with fixed ordering structure by Loridan [17].

In the following we impose the following assumptions:

Assumption (A1). Y is a Hausdorff topological linear space, ε ≥ 0, k0 ∈ Y \{0} and
C : Y ⇒ Y is a set-valued map where C(y) is a proper, pointed (C(y)∩−C(y) = {0}), solid
(intC(y) �= ∅) and closed set which satisfies C(y) + [0,+∞[k0 ⊆ C(y) for all y ∈ Y .

Additionally to (A1), we impose the following assumptions in certain cases.

(A2) X is a real complete metric space, Ω is a closed subset of X and f : Ω → Y is a
vector-valued function.

(A3) B : Y ⇒ Y is a cone-valued map such that C(y) + (B(y)\{0}) ⊆ intC(y) and
k0 ∈ intB(y) for all y ∈ Y .

(A4) For all y ∈ Y , C(y) + C(y) ⊆ C(y).

Under the assumptions (A1)− (A2), we consider the following vector optimization problem
with respect to a variable ordering structure given by C : Y ⇒ Y :

εk0 −Min(f,Ω, C(·)), (VVOP)

where εk0-minimality stands for three different kinds of concepts for approximate solutions;
see [14, 15].

In [14,15], it is shown that the sets of different kinds of approximate solutions do coincide in
vector optimization problems with fixed ordering structures but not in vector optimization
problems with variable ordering structures.

In this paper we establish new Ekeland’s variational principles for two kinds of solutions,
named approximate minimizers and approximately nondominated solutions, by using a non-
linear scalarization technique in Sections 4 and 5. Our technique is based on the nonlinear
scalarization technique used in [18] for vector optimization problems with fixed ordering
structure. In the third section, we give some properties of the nonlinear scalarization func-
tional defined by Chen, et al. in [4] which is a generalization of functional defined by Tammer
and Weidner in [19]. In Section 4, we establish a new Ekeland’s variational principle for
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εk0-minimizers and Section 5 is devoted to results related to approximately nondominated
solutions of vector optimization problems with variable ordering structures.

2 Preliminaries

Let S be a nonempty subset of Hausdorff linear topological space Y . We denote the topolog-
ical interior of the set S by intS, clS denotes the topological closure, bdS the topological
boundary of S, conv S denotes the convex hull of a set S and R = R ∪ {±∞}. A set C is
called a cone iff λc ∈ C for all λ ≥ 0 and c ∈ C. A nonempty set C ⊆ Y is said to be
convex if λc1 + (1 − λ)c2 ∈ C for all c1, c2 ∈ C and 0 ≤ λ ≤ 1. A set C ⊆ Y is said to be
solid iff intC �= ∅ and a set C ⊆ Y is proper iff ∅ �= C �= Y. See [20–23] for basic definitions
and solution concepts for vector optimization problems and [19,24–26] for some scalarization
methods for solving vector optimization problems with respect to a fix ordering and some
properties of these scalarization methods.
One of the important tools which will be used in this paper is the following nonlinear scalar-
ization functional which is an extension of the nonlinear separating functional (see Tammer
andWeidner [19]). Let Y be a Hausdorff linear topological space, k0 ∈ Y \{0} and C : Y ⇒ Y
be a cone-valued map. Chen and Yang in [4] assumed that for all y ∈ Y , C(y) is a closed,
solid and convex cone and for each y, z ∈ Y , defined ξ(z, y) : Y × Y → R as following:

ξ(z, y) := inf{t ∈ R | z ∈ tk0 − C(y)}, (1)

i.e., if ξ(z, y) = t, then z ∈ tk0 − C(y).

Obviously, we can see that if C = C(y) for all y ∈ Y and z = y, then ξ coincides with the
nonlinear separating functional θ(z) := inf{t ∈ R | z ∈ tk0 − C} discussed in [19].

In [4], authors showed that the functional (1) is well-defined and lower bounded [4, Propo-
sition 2.1]. Furthermore, in [4, Lemma 2.3], they proved the following theorem under the
assumptions that C(y) is a closed, solid and convex cone for all y ∈ Y . The proof for the gen-
eral case where C(y) (y ∈ Y ) is not supposed be a cone can be found in [27, Theorem 4.2.7].

Theorem 2.1. Let assumptions (A1) and (A3) be fulfilled. Then the following assertions
hold for all y, z ∈ Y and t ∈ R:

ξ(z, y) > t ⇔ z /∈ tk0 − C(y), (2)

ξ(z, y) � t ⇔ z /∈ tk0 − intC(y), (3)

ξ(z, y) = t ⇔ z ∈ tk0 − bdC(y), (4)

ξ(z, y) � t ⇔ z ∈ tk0 − C(y), (5)
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ξ(z, y) < t ⇔ z ∈ tk0 − intC(y). (6)

Now, we recall one of the most important results in nonlinear analysis given by Ekeland [28]
in 1972.

Theorem 2.2. [28] Let X be a complete metric space, and g : X → R ∪ {+∞} be a lower
semicontinuous function, not identical to +∞, and bounded from below on a closed set Ω in
X. Let ε > 0 be given, and x ∈ Ω such that g(x) ≤ infx∈Ω g(x) + ε. Then there exists an
element xε ∈ dom g ∩ Ω such that

(i) g(xε) ≤ g(x) ≤ infx∈Ω g(x) + ε,

(ii) d(xε, x) ≤
√
ε,

(iii) g(x) +
√
εd(x, xε) > g(xε), ∀x ∈ Ω \ {xε}.

Remark 2.3. [28] (Strong form of Ekeland’s variational principle). Theorem 2.2 is
known as the weak version of Ekeland’s variational principle since we can find an element
xε ∈ dom g ∩ Ω which satisfies, in addition to (i)–(iii), the following condition

(i′) g(xε) +
√
εd(x, xε) ≤ g(x).

Obviously, (i′) implies (i) and (ii).

Extensions of Theorem 2.2 for approximately minimal solutions (see Definition 2.4) for vector
optimization problems with variable ordering structures are given in the papers [2, 3]. We
will recall such a type of variational principle for (VVOP) using the solution concept given
in the following definition.

Definition 2.4. Let assumptions (A1) and (A2) be fulfilled and consider (VVOP).

1. xε ∈ Ω is said to be an εk0-minimal solution of (VVOP) with respect to the ordering
map C : Y ⇒ Y iff

(f(xε)− εk0 − (C(f(xε))\{0})) ∩ f(Ω) = ∅.

2. Let intC(f(xε)) �= ∅. xε ∈ Ω is said to be a weakly εk0-minimal solution of (VVOP)
with respect to the ordering map C : Y ⇒ Y iff

(f(xε)− εk0 − intC(f(xε))) ∩ f(Ω) = ∅.

When ε = 0, Definition 2.4 coincides with the usual definition of (weakly) minimal solutions;
see, e.g. [6, 12]. We denote the sets of εk0-minimal and weakly εk0-minimal solutions by
εk0-M(Ω, f, C) and εk0-WM(Ω, f, C), respectively. Variational principles for approximately
minimal solutions of vector optimization problems with variable orderings structures are
given in [2, 3, 29].
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Theorem 2.5. [2] Consider problem (VVOP), let x ∈ Ω be an approximately minimal
solution of (VVOP) and set y := f(x). Assume that in addition to (A1) the following
conditions hold:

(i) C := C(y) is a proper, closed, pointed, and solid set satisfying Rk0 − C = Y .

(ii) There exists a cone-valued mapping B : Y ⇒ Y such that k0 ∈ intB with B := B(y),
C +B \ {0} ⊂ intC, and B(f(x)) ⊂ B for all x ∈ Ω with ‖x− x‖ ≤ √

ε.

(iii) f is bounded from below over Ω with respect to y ∈ Y and C, i.e., f(Ω) ⊆ y + C.

(vi) f is (k0, C)-lower semicontinuous over Ω, i.e., M(t) :=
{
u ∈ Ω | f(u) ∈ t·k0 − C

}
is

closed in X for all t ∈ R.

Then, there exists an element xε ∈ dom f ∩ Ω such that

1. xε ∈ εk0−M(Ω, f, B), i.e.,
(
f(xε)− εk0 − B(f(xε)) \ {0}

) ∩ f(Ω) = ∅,
2. ‖xε − x‖ ≤ √

ε,

3. xε ∈ M(Ω, fεk0 , B), where fεk0(x) := f(x) +
√
ε‖x− xε‖k0.

In order to show the closedness of subsets of topological spaces, we will use Moore-Smith-
sequences {xa}a∈A where A is an index set which is more general than N. For more details
see Zeidler [30].

Definition 2.6. 1. A set A is called directed, if there is a ≤-relation defined on certain
pairs (a, b) with a, b ∈ A, such that for all elements of A:

(i) a ≤ a (reflexivity),

(ii) if a ≤ b and b ≤ c, then a ≤ c (transivity),

(iii) for a, b ∈ A there exists an element d ∈ A such that a ≤ d and b ≤ d.

2. Let X be a topological space and A a directed set. A Moore-Smith-sequence (M-S-
sequence) {xa}a∈A is given by a map that assigns to each a ∈ A an element xa ∈ X.

Remark 2.7. Let X be a Hausdorff topological space. Every sequence {xn}, n ∈ N, is a M-
S-sequence. The convergence for M-S-sequences is defined analogously to the convergence for
sequences {xn}, n ∈ N. The limit of an M-S-sequence is unique. A set S ⊂ X is closed, if it
is M-S-sequentially closed. The point x belongs to the closure clS, if there is a M-S-sequence
{xa}a∈A in S such that xa → x.

In the following section, we prove some properties of our scalarizing functional and these
properties will be used in the next section in order to characterize approximately optimal
solutions of vector optimization problems with variable ordering structures and later for
the proof of variational principles of vector optimization problems with variable ordering
structures.
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3 Properties of Nonlinear Scalarization Functionals

In this section, we will prove that the scalarizing functional defined in (1) is lower semi-
continuous, subadditive, positively homogenous, monotone and continuous in the case that
some assumptions hold. These properties are important for us and they will be used in the
next sections in order to show generalizations of Ekeland’s variational principle for vector
optimization problems with variable ordering structures.

Lemma 3.1. Let assumption (A1) be fulfilled, z, y ∈ Y and ξ(z, y) = t1. Then for any
t2 ≥ t1,

z ∈ t2k
0 − C(y).

Proof. By C(y) + [0,+∞[k0 ⊆ C(y), z ∈ t1k
0 − C(y) and t2 − t1 ≥ 0, we can write

z ∈ t1k
0 − C(y) = t2k

0 − [(t2 − t1)k
0 + C(y)] ⊆ t2k

0 − C(y)

and this completes the proof.

In the following theorems, we show that our scalarizing functional defined in (1) is finite-
valued and positively homogenous under some assumptions. These theorem was proven by
Göpfert et. al. for the case of fixed ordering; see [21, Theorem 2.3.1].

Theorem 3.2. Let the assumptions (A1) and (A3) be fulfilled. Then the functional ξ(·, y)
is finite-valued for all fixed elements y ∈ Y .

Proof. Assumption (A3) and [21, Proposition 2.3.4] implies that C(y) does not contain lines
parallel to k0. Now, suppose that ξ(z, y) = −∞, then by Lemma 3.1, for any t > −∞, we
have z ∈ tk0 − C(y) and {tk0 − z | t ∈ R} ⊂ C(y) and this means that there exists y ∈ Y
such that C(y) contains a line parallel to k0 and this leads to a contradiction.

Theorem 3.3. Let assumptions (A1) and (A3) be fulfilled. For each fixed element y ∈ Y ,
ξ(·, y) defined by (1) is positively homogeneous if and only if C(y) is a cone.

Proof. Assume that λ ≥ 0, then for any y ∈ Y , we have

ξ(λz, y) = inf {t ∈ R | λz ∈ tk0 − C(y)}.

First we consider λ = 0 and prove ξ(0, y) = 0. By C(y) + [0,+∞[k0 ⊆ C(y) and the
pointedness of C(y) for all y ∈ Y , we have t0 = ξ(0, y) ≤ 0. If t0 < 0, then by (1), we get
t0k

0 ∈ C(y)\{0}. Also 0 ∈ bdC(y) and C(y) + [0,+∞[k0 ⊂ C(y) for all y ∈ Y , we get
−t0k

0 ∈ C(y) and this implies t0k
0 ∈ C(y)\{0} ∩ (−C(y)). But this is a contradiction to

the pointedness of C(y) in assumption (A1) and therefore t0 = 0 and ξ(0, y) = 0. Now, we
consider the case λ > 0. Since C(y) is a cone, we have C(y) = λC(y) and

ξ(λz, y) = inf{t ∈ R | λz ∈ tk0 − λC(y)} = λ inf{ t
λ
∈ R | z ∈ t

λ
k0 − C(y)},
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so by t′ = t
λ
, we can write

ξ(λz, y) = λ inf{t′ ∈ R | z ∈ t′k0 − C(y)} = λξ(z, y).

Now, assume that ξ(·, y) is positively homogenous and take c1 ∈ C(y). Obviously, 0 ∈ C(y)
and by (5) of Theorem 2.1, ξ(−c1, z) ≤ 0. Taking into account that ξ(·, y) is positively
homogeneous, we obtain

ξ(−λc1, z) ≤ λξ(−c1, z) ≤ 0.

Again by (5) of Theorem 2.1, λc1 ∈ C(y) and λC(y) ⊆ C(y).

Now, suppose that c1 ∈ C(y), then by (5) of Theorem 2.1

ξ(−c1, y) ≤ 0 ⇒ λξ(−c1

λ
, y) ≤ 0.

By λ > 0, we get c1

λ
∈ C(y) and c1 ∈ λC(y) and this implies C(y) ⊆ λC(y). Hence,

C(y) = λC(y) for any λ > 0, y ∈ Y and C(y) is a cone.

The subadditivity of the scalarizing functional is important for us and we need this property
in the next section for the characterization of approximate minimizers and approximately
nondominated solutions. Furthermore, subadditivity is an important property for deriving
a variational principle for vector optimization problems with a variable ordering structures.

Theorem 3.4. Let assumptions (A1), (A3) be fulfilled and y ∈ Y be fixed. Then the func-
tional ξ(·, y) defined by (1) is subadditive if and only if (A4) holds, i.e., C(y)+C(y) ⊆ C(y).

Proof. Assume that C(y) + C(y) ⊆ C(y) for y ∈ Y . Let z1, z2 ∈ Y and t1, t2 ∈ R such that
ξ(z1, y) = t1 and ξ(z2, y) = t2. By (5) of Theorem 2.1

ξ(z1, y) = t1 ⇒ z1 ∈ t1k
0 − C(y). (7)

ξ(z2, y) = t2 ⇒ z2 ∈ t2k
0 − C(y). (8)

By (7), (8) and the inclusion C(y) + C(y) ⊆ C(y) in assumption (A4) , we get

z1 + z2 ∈ (t1 + t2)k
0 − (C(y) + C(y)) ⊆ (t1 + t2)k

0 − C(y).

Again, by (5) of Theorem 2.1, ξ(z1 + z2, y) ≤ t1 + t2 = ξ(z1, y) + ξ(z2, y).

Now, we prove C(y) +C(y) ⊆ C(y) assuming that ξ(·, y) is subadditive. Take c1, c2 ∈ C(y).
By (5) of Theorem 2.1 and c1, c2 ∈ C(y), we get ξ(−c1, y) ≤ 0 and ξ(−c2, y) ≤ 0. Taking
into account that ξ(·, y) is subadditive, we obtain

ξ(−c1 − c2, y) ≤ ξ(−c1, y) + ξ(−c2, y) ≤ 0.

Again by (5), we get c1 + c2 ∈ C(y) and this completes our proof.
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In the following theorem we show that our scalarizing functional ξ(·, y) defined by (1) is
convex.

Definition 3.5. Suppose that x is a linear space. A functional h : X → R is convex if its
epigraph is a convex set.

Theorem 3.6. Let assumptions (A1) and (A3) be fulfilled. For all fixed y ∈ Y , ξ(·, y) is
convex if and only if C(y) is a convex set.

Proof. Assume that y ∈ Y is fixed, λ ∈ [0, 1] and z1, z2 ∈ Y such that ξ(z1, y) = t1 and
ξ(z2, y) = t2. By (5) of Theorem 2.1, z1 ∈ t1k

0 − C(y) and z2 ∈ t2k
0 − C(y) and since C(y)

is a convex set, we can write,

λz1 + (1− λ)z2 ∈ λt1k
0 + (1− λ)t2k

0 − (λC(y) + (1− λ)C(y))

⊆ (λt1 + (1− λ)t2)k
0 − C(y).

Therefore
ξ(λz1 + (1− λ)z2, y) ≤ λξ(z1, y) + (1− λ)ξ(z2, y),

and this means that ξ(·, y) is convex.

Now, suppose that ξ(·, y) is convex for all y ∈ Y , c1, c2 ∈ C(y) and λ ∈]0, 1[. By c1, c2 ∈ C(y)
and (5), we get ξ(−c1, y) ≤ 0 and ξ(−c2, y) ≤ 0. By convexity of ξ(·, y), we obtain

ξ(−(λc1 + (1− λ)c2), y) ≤ λξ(−c1, y) + (1− λ)ξ(−c2, y) ≤ 0.

Again by (5), we get λc1 + (1− λ)c2 ∈ C(y) and C(y) is convex.

In the following theorem we are dealing with Moore-Smith-sequences (see Definition 2.6) in
order to show the closedness of certain level sets.

Definition 3.7. Suppose that x is a linear space. A functional h : X → R is lower semi-
continuous if its epigraph is closed.

Lemma 3.8. Let Y be a topological space and let θ : Y → R. The following conditions are
equivalent.

1. The functional θ is lower semicontinuous on Y .

2. For any t ∈ R, the set {y ∈ Y | θω(y) > t} is an open set in Y .

3. For any t ∈ R, the set {y ∈ Y | θω(y) ≤ t} is a closed set in Y .

Proof. See [31, Theorem 7.1.1].

Theorem 3.9. Let assumptions (A1) and (A3) be fulfilled and y ∈ Y be fixed. Then the
functional ξ(·, y) defined by (1) is continuous.
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Proof. 10 : Suppose that Y is a metric space. We prove that ξ(·, y) is upper and lower
semicontinuous for all y ∈ Y . First we show that the functional ξ(·, y) for fixed y ∈ Y is
lower semicontinuous and for this we prove that for any t ∈ R,

St := {z ∈ Y | ξ(z, y) ≤ t}

is a closed set. Suppose {zn}n∈N is a sequence with zn → z0, zn ∈ St and ξ(zn, y) ≤ t. By
(5),

zn ∈ tk0 − C(y) ⇒ tk0 − zn ∈ C(y).

Since C(y) is a closed set, the limit point of the sequence tk0 − zn → tk0 − z0 belongs to
C(y) and z0 ∈ tk0 − C(y) and again by (5), we get ξ(z0, y) ≤ t. This means that St is a
closed set for any t ∈ R and ξ(·, y) is lower semicontinuous for any y ∈ Y . Now, we show
that ξ(·, y) is upper semicontinuous for all y ∈ Y and for any t ∈ R,

St := {z1 ∈ Y | ξ(z1, y) ≥ t}

is a closed set. Suppose that zn → z0 is a sequence and zn ∈ St. By zn ∈ St, we get
ξ(zn, y) ≥ t and by (5), we have

zn /∈ tk0 − intC(y) ⇒ tk0 − zn /∈ intC(y) ⇒ tk0 − zn ∈ (intC(y))c.

Since intC(y) is an open set, its complement (intC(y))c is a closed set and includes all the
limit points. Therefore tk0 − z0 ∈ (intC(y))c and this means

tk0 − z0 /∈ intC(y) ⇒ z0 /∈ tk0 − intC(y).

Again by (5), we get ξ(z0, y) ≥ t and this implies that St is a closed set and ξ(·, y) is upper
semicontinuous. Since ξ(·, y) is also lower semicontinuous, ξ(·, y) is continuous.
20 : The same arguments as in 10 can be used for Moore-Smith-sequences in Hausdorff
topological linear spaces.

Theorem 3.10. Let assumptions (A1) and (A3) be fulfilled. Then we get the following
properties of ξ:

1. ξ(z + tk0, y) = ξ(z, y) + t ∀y ∈ Y, ∀t ∈ R, ∀z ∈ Y.

2. ξ(·, y) is strictly B-monotone if and only if C(y) + B(y)\{0} ⊆ C(y) for each y ∈ Y.

Proof. See Theorem 3.8 of [3].

The following nonconvex separation theorem will be used in the next section for our proofs;
see [21, Theorem 2.3.6] for vector optimization problems with fixed ordering structures.
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Theorem 3.11. Suppose that assumptions (A1) and (A3) be fulfilled, S ⊆ Y a nonempty
set and for each y ∈ Y , S ∩ (− intC(y)) = ∅. Then for all y ∈ Y , ξ(·, y) defined by (1) is a
proper continuous functional and

ξ(−z, y) < 0 ≤ ξ(s, y) ∀y ∈ Y, ∀z ∈ intC(y), ∀s ∈ S.

Proof. By Theorem 3.2 and Theorem 3.9, ξ(·, y) is proper and continuous. Also obviously
by (6), − intC(y) = {z ∈ Y | ξ(z, y) < 0}. By S ∩ (− intC(y)) = ∅ for all y ∈ Y , we get

ξ(−z, y) < 0 ≤ ξ(s, y) ∀y ∈ Y, ∀z ∈ intC(y), ∀s ∈ S

and this completes the proof.

In the last theorem of this section, we recall some monotonicity properties of our scalariza-
tion functional and these properties will be used in the next section in order to character-
ize approximately optimal solutions of vector optimization problems with variable ordering
structures and later for the proof of variational principle of vector optimization problems
with variable ordering structures; see Theorem 2.3.1 of [21] for the case of fixed ordering
case. First we recall definition of monotonicity.

Definition 3.12. Suppose that Y is a Hausdorff linear topological space, D : Y ⇒ Y is a set-
valued map. We say that ξ(·, y) is a monotone functionalin z with respect to the set-valued
map D : Y ⇒ Y if for fixed y ∈ Y and all z1, z2 ∈ Y

z1 ∈ z2 +D(y)\{0} implies ξ(z1, y) � ξ(z2, y).

Also, we say ξ(·, y) is strictly D-monotone, if for fixed y ∈ Y and all z1, z2 ∈ Y

z1 ∈ z2 +D(y)\{0} implies ξ(z1, y) > ξ(z2, y).

Theorem 3.13. Let assumptions (A1) and (A3) be fulfilled, the functional ξ : Y × Y → R
is strictly monotone with respect to the set-valued map B : Y ⇒ Y in the first variable, i.e.,
if for z1, z2 ∈ Y , z1 ∈ z2 + intB(y), then ξ(z1, y) > ξ(z2, y).

Proof. By Theorem 3.2, the functional ξ is finite-valued. Let z1, z2 ∈ Y , z1 ∈ z2 + intB(y)
and t1 := ξ(z1, y). By Theorem 2.1, we have

z2 ∈ z1 − intB(y) ⊆ (t1k
0 − C(y))− intB(y).

Now, by assumption (A3) we get C(y)) + intB(y) ⊂ intC(y) and z2 ∈ z1 − intC(y). Again
by Theorem 2.1 we have ξ(z1, y) < t1 = ξ(z1, y) and this completes the proof.
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4 Variational Principles for εk0-Minimizer of (VVOP)

In this section, we give an extension of Ekeland’s theorem for εk0-minimizers of vector
optimization problems with variable ordering structures. It is important to emphasize that
there is no difference between εk0-minimizers, εk0-nondominated and εk0-minimal solutions
in the case of fixed ordering structures. The reader can find many examples illustrating that
this statement is in general not true in the case of variable ordering structure in [6, 7, 14].
First, we introduce the concept of approximate minimizers of vector optimization problems
with variable ordering structures and in order to prove the main theorem of this section, we
prove the following lemmas.
We already introduced the first solution concept concerning approximately minimal solution
of vector optimization problems with variable ordering structures in Definition 2.4. Now, we
introduce the second solution concept as follows:

Definition 4.1. Let assumptions (A1) and (A2) be fulfilled and consider (VVOP).

1. xε ∈ Ω is said to be an εk0-minimizer of the problem (VVOP) with respect to the
ordering map C : Y ⇒ Y iff

∀x, x1 ∈ Ω : (f(xε)− εk0 − (C(f(x))\{0})) ∩ {f(x1)} = ∅.

2. Let intC(f(x)) �= ∅ for all x ∈ Ω. xε ∈ Ω is said to be a weak εk0- minimizer of
(VVOP) with respect to the ordering map C : Y ⇒ Y iff

∀x, x1 ∈ Ω : (f(xε)− εk0 − intC(f(x))) ∩ {f(x1)} = ∅.

We denote the sets of εk0-minimizers and weak εk0-minimizers by εk0-MZ(Ω, f, C) and εk0-
WMZ(Ω, f, C) respectively. If ε = 0, then these definitions are the definitions of the exact
and weak minimizers. More details and properties of these points are given in [14, 15].

Example 4.2. Let ε = 1
100

and k0 = (1, 0)T . Also suppose that

Ω =
{
(y1, y2) ∈ R2 | y1 + y2 ≥ −1, y1 ≤ 0, y2 ≤ 0

}
and

C(y1, y2) =

{ {(d1, d2) ∈ R2 | d1 ≥ 0, d2 ≤ 0}, for (−1, 0)T

R2
+, otherwise.

Then {(y1, y2) ∈ Ω | y1 + y2 ≤ −1 + ε} is the set of εk0-minimal elements but just the ele-
ments of the set

{(y1, y2) ∈ Ω | y1 < −1 + ε} ∪ {(−1 + ε, 0)}
are εk0-nondominated and εk0-minimizers (see Fig. 1).

11



−1 −1 + ε

−1

−1 + ε

Ω

(y1, y2)

(y1, y2)− εk0 − C(y1, y2)

(−1, 0)− εk0 − C(−1, 0)

(0,−1)− εk0 − C(0,−1)

(−1 + ε,−ε)

εk0-N(Ω, C) and εk0-MZ(Ω, C) points

εk0-minimal points

Figure 1: Example 4.2 where there exists an εk0-minimal element of Ω which is neither
εk0-nondominated element nor εk0-minimizer.

Lemma 4.3. Let assumptions (A1)–(A3) be fulfilled and consider the problem (VVOP). If
xε ∈ εk0-MZ(Ω, f, C), then for each element ω ∈ f(Ω), there exists a continuous functional
ξ(·, ω) : Y → R which is strictly B-monotone in the sense of Definition 3.12 and

∀x ∈ Ω, ω ∈ f(Ω) : ξ(f(xε), ω) � ξ(f(x) + εk0, ω).

Moreover if (A4) holds, then for each ω ∈ f(Ω), ξ(·, ω) is subadditive on Y and

∀x ∈ Ω, ω ∈ f(Ω) : ξ(f(xε), ω) � ξ(f(x), ω) + ξ(εk0, ω).

Proof. Suppose that k0 ∈ Y \{0}, ε > 0 and xε ∈ εk0-MZ(Ω, f, C). This means for all
ω ∈ f(Ω), (f(xε)− εk0 − C(ω)\{0}) ∩ f(Ω) = ∅ and therefore

∀ω ∈ f(Ω) : (f(xε)− C(ω)\{0}) ∩ (f(Ω) + εk0) = ∅.
We apply Theorem 3.11 to the sets (f(xε)−C(ω)\{0}) and f(Ω)+εk0. Taking into account
(A3) and applying Theorem 3.11 and Theorem 3.13 , we get desired functionals ξ : Y ×Y →
R. Therefore for any fixed ω ∈ f(Ω), there exist a continuous functional ξ(·, ω) : Y → R
such that

ξ(f(xε), ω) � ξ(f(Ω) + εk0, ω).

Now, if (A4) holds, then ξ(·, ω) is subadditive for all ω ∈ f(Ω) and

ξ(f(xε), ω) � ξ(f(Ω), ω) + ξ(εk0, ω)
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and the proof is complete.

The following lemma gives some properties of functionals in Lemma 4.3 and these properties
will be used later in the proof of other lemmata and our main theorem about an extension of
Ekeland’s theorem for εk0-minimizers of vector optimization problems with variable ordering
structures.

Lemma 4.4. Let assumptions (A1)–(A3) be fulfilled, then for each fixed ω ∈ f(Ω), the
functional ξ(·, ω) : Y → R in (1) has the following properties:

1. ξ(k0, ω) = 1.

2. ξ(0, ω) = 0.

3. ξ(εk0, ω) = ε and ξ(−εk0, ω) = −ξ(εk0, ω) = −ε.

Proof. 1. By definition of the separating functional ξ(·, ω) in (1), for each ω ∈ f(Ω),

ξ(y, ω) = inf{t | y ∈ tk0 − C(ω)}.

By pointedness of C(ω), (A3) and [21, Proposition 2.3.4], we get 0 ∈ bdC(ω) and
k0 ∈ k0 − bdC(ω) for all ω ∈ f(Ω). Therefore by (4), we get ξ(k0, ω) = 1.

2. By (4) and 0 ∈ bdC(ω) for all ω ∈ f(Ω), we get ξ(0, ω) = 0 for all ω ∈ f(Ω).

3. By the first part of Theorem 3.10, we know that for all y ∈ Y , t ∈ R, ω ∈ f(Ω) the
following equation holds:

ξ(y + tk0, ω) = ξ(y, ω) + t,

therefore ξ(0 + εk0, ω) = ξ(0, ω) + ε and by the second part ξ(εk0, ω) = ε. Proofs of
other parts are similar.

Lemma 4.5. Let X be a complete metric space, Ω ⊂ X, xε ∈ Ω, Y be a Hausdorff topological
linear space, ε ≥ 0 and k0 ∈ Y \{0}. Let f : X → Y be a vector-valued function with
dom f �= ∅, B : Y ⇒ Y be a cone-valued map where k0 ∈ B(y) for all y ∈ Y .
(i) Furthermore, suppose that for any ω ∈ f(Ω) and for a strictly B-monotone (in the
sense of Definition 3.12), continuous, subadditive functional ξ(·, ω) : Y → R the following
inequality holds

∀x ∈ Ω, ω ∈ f(Ω) : ξ(f(xε), ω) � ξ(f(x), ω)− ξ(−εk0, ω).

Then there is a set-valued map C : Y ⇒ Y such that clC(ω) + (B(ω)\{0}) ⊆ C(ω) and
B(ω)\{0} ⊆ C(ω) for all ω ∈ f(Ω) and xε ∈ εk0-WMZ(Ω, f, C).
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Proof. For each ω ∈ f(Ω), we define C(ω) and functional ξ̂(·, ω) : Y → R as follows,

C(ω) := {y ∈ Y | ξ(−y + f(xε)− εk0, ω) < ξ(f(xε)− εk0, ω)}, (9)

ξ̂(y, ω) := ξ(y + f(xε)− εk0, ω). (10)

By (10) and (i) and since ξ(·, ω) is subadditive for all ω ∈ f(Ω), we get

ξ̂(f(Ω) + εk0 − f(xε), ω) = ξ(f(Ω), ω) �
ξ(f(xε), ω) + ξ(−εk0, ω) �
ξ(f(xε)− εk0, ω) = ξ̂(0, ω).

Now, by (9) and (10), we get

ξ̂(−C(ω), ω) = ξ(−C(ω) + f(xε)− εk0, ω) < ξ(f(xε)− εk0, ω) = ξ̂(0, ω),

therefore for each ω ∈ f(Ω),

(− intC(ω)) ∩ (f(Ω) + εk0 − f(xε)) = ∅ =⇒ (f(xε)− εk0 − intC(ω)) ∩ f(Ω) = ∅.

Now, we show that clC(ω)+(B(ω)\{0}) ⊆ C(ω). Choose y ∈ clC(ω) and b ∈ y+B(ω)\{0}.
Since ξ̂(·, ω) is strictly B-monotone and y ∈ clC(ω) ⊆ {y | ξ̂(−y, ω) � ξ̂(0, ω)}, we have

ξ̂(−b, ω) < ξ̂(−y, ω) � ξ̂(0, ω).

Therefore b ∈ C(ω) and clC(ω) + (B(ω)\{0}) ⊆ C(ω). Now, by 0 ∈ clC(ω), we get
B(ω)\{0} ⊆ C(ω). Furthermore by the inclusion clC(ω) + (B(ω)\{0}) ⊆ C(ω) and the
assumption k0 ∈ B(ω), we get C(ω) + εk0 ⊆ C(ω).

In the following, we introduce the concept of functions that are bounded from below on a
set with respect variable ordering structures. Suppose the map C : Y ⇒ Y is the ordering
map which for any x ∈ Ω assigns C(f(x)).

Definition 4.6. Let X be a complete metric space, Y be a Hausdorff topological linear space
and C : Y ⇒ Y be a set-valued map. We say that f : X → Y is bounded from below over
Ω with respect to the set-valued map C if for any y ∈ f(Ω) there exists y0 ∈ Y such that
f(Ω) ⊆ y0 + C(y).

Lemma 4.7. Let assumptions (A1)− (A3) be fulfilled. Suppose f : X → Y is bounded from
below over Ω with respect to C in the sense of Definition 4.6, then ξ(·, y)◦f is bounded below
for all y ∈ f(Ω).

Proof. By Definition 4.6, we know that there exists y0 ∈ Y such that f(Ω) ⊂ y0 + C(y) for
all y ∈ f(Ω). By the first part of [21, Proposition 2.3.4], there exists t̂ such

t̂k0 − y0 /∈ C(y). (11)
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Assume there exist y ∈ f(Ω) and x ∈ Ω such that ξ(f(x), y) < t̂ and ξ(·, y)◦f is not bounded
from below. Taking into account that f is bounded from below, there exists c1 ∈ C(y) such
that f(x) = y0 + c1. By ξ(f(x), y) < t̂, Lemma 3.1 and Theorem 2.1, we have

f(x) ∈ t̂k0 − C(y) =⇒ y0 + c1 ∈ t̂k0 − C(y) =⇒ y0 ∈ t̂k0 − (C(y) + c1).

By C(y)+c1 ⊆ C(y), we get y0 ∈ t̂k0−C(y) which is a contradiction to (11). This completes
the proof and ξ(·, y) ◦ f is bounded below for all y ∈ f(Ω).

Note that in many Ekeland-type results in the literature; see, e.g. [29, 32, 33] and the refer-
ences therein, the function f is assumed to be C-level-closed, known also as C-lower semi-
continuous and C-semicontinuous [34, Definition 2.4], where C is a fixed ordering cone of the
ordered image space. Therefore we introduce the following concepts of lower semicontinuity
concerning variable ordering structures.

Definition 4.8. Consider problem (VVOP), x ∈ Ω ∩ dom f , y := f(x) and C := C(y) is
fixed. The function f is (k0, C)-lower semicontinuous over Ω iff the sets

M(t) :=
{
x ∈ Ω| f(x) ∈ tk0 − C

}
are closed for all t ∈ R.

Definition 4.9. We say that f : X → Y is lower semicontinuous with respect to the ordering
map C : Y ⇒ Y , k0 ∈ Y \{0} and Ω ⊆ X (for short (k0, C,Ω)-lsc ), if

MX
(ω,t) := {x ∈ Ω | f(x) ∈ tk0 − clC(ω)}

is a closed set for all ω ∈ f(Ω) and each t ∈ R.

If C = C(ω1) = C(ω2) is a fixed set, then Definition 4.9 coincides with the definition in [18].
Moreover, if Y = R, then our definition coincide with the standard definition of lower
semicontinuity. In order to prove the main theorem of this section, first we have to prove
the following lemmata.

Lemma 4.10. Let C : Y ⇒ Y be a set-valued map and assumptions (A1)− (A3) be ful-
filled. For each fixed ω ∈ f(Ω), consider the functional ξ(·, ω) defined by (1). If the function
f : X → Y in (VVOP) is (k0, C,Ω)-lsc, then (ξ(·, ω) ◦ f)(·) = ξ(f(·), ω) is a lower semicon-
tinuous functional for each ω ∈ f(Ω).

Proof. Since the function f : X → Y is (k0, C,Ω)-lsc, the set

MX
(ω,t) = {x ∈ Ω | f(x) ∈ tk0 − C(ω)}

is closed for all ω ∈ f(Ω) and t ∈ R. Now, consider the set MY
(ω,t) := tk0 − C(ω) ⊆ Y . By

(A3) and Theorem 3.9, we know that ξ(·, ω) : Y → (−∞,∞) is a continuous functional for
each ω ∈ f(Ω) and by Theorem 2.1, we get

MY
(ω,t) = tk0 − C(ω) = {y ∈ Y | y ∈ tk0 − C(ω)} =

{y ∈ Y | ξ(y, ω) � ξ(tk0, ω)} = {y ∈ Y | ξ(y, ω) � t} =: MY
(ξ(·,ω),t)
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for each ω ∈ f(Ω) and t ∈ R. This means for all ω ∈ f(Ω) and t ∈ R,

MX
(ξ(·,ω),t) = {x ∈ Ω | ξ(f(x), ω) � t} =

{x ∈ Ω | f(x) ∈ MY
(ξ(·,ω),t)} = {x ∈ Ω | f(x) ∈ MY

(ω,t)} = MX
(ω,t)

is a closed set and ξ(·, ω) ◦ f is lower semicontinuous for all ω ∈ f(Ω).

We now are ready to present an extension of Ekeland’s theorem for εk0-minimizers of vector
optimization problem (VVOP) with a variable ordering structure.

Theorem 4.11. Consider the problem (VVOP) and let x ∈ εk0-MZ(Ω, f, C). Impose in
addition to (A1)–(A4) the following assumptions:

(A5) f is (k0, C,Ω)-lower semicontinuous over Ω in the sense of Definition 4.9.

(A6) f is bounded from below over Ω with respect to C in the sense of Definition 4.6.

Then there exists an element xε ∈ dom f ∩ Ω such that

1. xε ∈ εk0-WMZ(Ω, f, B),

2. d(x, xε) �
√
ε,

3. xε ∈ WMZ(Ω, fεk0 , B) with fεk0(x) = f(x) +
√
εd(x, xε)k

0. (12)

Proof. Let x ∈ εk0-MZ(Ω, f, C). By the definition of εk0-minimizers (Definition 4.1), we get

∀ω ∈ f(Ω) : (f(x)− εk0 − C(ω)\{0}) ∩ f(Ω) = ∅.
Now, suppose that f := f − f(x), then we have

∀ω ∈ f(Ω) : (f(x)− εk0 − C(ω)\{0}) ∩ f(Ω) = ∅.
By (A4), Lemma 4.3 and 4.4, for all fixed ω ∈ f(Ω), the functional ξ(·, ω) : Y → R in (1) is
a strictly B-monotone, continuous and subadditive functional such that

∀x ∈ Ω : ξ(f(x), ω) � ξ(f(x), ω) + ξ(εk0, ω) = ξ(f(x), ω) + ε.

This means that for all ω ∈ f(Ω),

ξ(f(x), ω) � inf
x∈Ω

ξ(f(x), ω) + ε, ε > 0.

Observe that the validity of (A5)–(A6) ensures (k0, C,Ω)-lower semicontinuity and the
boundedness from below of f and f . By Lemma 4.10, Lemma 4.7, Theorem 2.2 and Re-
mark 2.3, there exists xε ∈ Ω such that for all ω ∈ f(Ω),

1. ξ(f(xε), ω) � ξ(f(x), ω) � infx∈Ω ξ(f(x), ω) + ε, (13)
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2. d(xε, x) �
√
ε,

3. for all x, ω ∈ Ω : ξ(f(xε), ω) � ξ(f(x), ω) +
√
εd(x, xε), (14)

4. ξ(f(xε), ω) +
√
εd(x, xε) ≤ ξ(f(x), ω). (15)

By Lemma 4.4 and (13), for all x ∈ Ω, ω ∈ f(Ω), we get

ξ(f(xε), ω) � infx∈Ω ξ(f(x), ω) + ε �
ξ(f(x), ω) + ξ(εk0, ω) = ξ(f(x), ω)− ξ(−εk0, ω).

By Lemma 4.5, assumption (A3) and f = f − f(x), we get

(f(xε)− εk0 − intB(ω)\{0}) ∩ f(Ω) = ∅.
This implies that xε ∈ εk0-WMZ(Ω, f, B). Now, we prove (12) and for this, suppose that
there exist elements x, ω ∈ Ω such that

f(x) ∈ f(xε)−
√
εd(x, xε)k

0 − intB(ω)

=⇒ f(x) ∈ f(xε)−
√
εd(x, xε)k

0 − intB(ω).

Since for all fixed ω ∈ f(Ω), ξ(·, ω) is a strictly B-monotone continuous subadditive func-
tional, we have

ξ(f(x, ω)) < ξ(f(xε)−
√
εd(x, xε)k

0, ω) � ξ(f(xε), ω) + ξ(−√
εd(x, xε)k

0, ω).

Now, by Lemma 4.4, we get

ξ(−√
εd(x, xε)k

0, ω) = −√
εd(x, xε) =⇒ ξ(f(xε), ω) > ξ(f(x), ω) +

√
εd(x, xε),

but this yields a contradiction because of (14).

In the special case that C : Y ⇒ Y is a solid, closed, pointed and convex cone-valued map,
we have the following corollary.

Corollary 4.12. Suppose that C : Y ⇒ Y is a cone-valued map where C(ω) is a closed
solid convex cone for all ω ∈ f(Ω), k0 ∈ ⋂

ω∈f(Ω) intC(ω) and ε > 0. Consider the problem

(VVOP) and let x ∈ εk0-MZ(Ω, f, C). Impose the following assumptions:

(A5) f is (k0, C,Ω)-lower semicontinuous over Ω in the sense of Definition 4.9.

(A6) f is bounded from below over Ω with respect to C in the sense of Definition 4.6.

Then there exists an element xε ∈ Ω such that

1. xε ∈ εk0-WMZ(Ω, f, C),

2. d(x, xε) �
√
ε,
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3. xε ∈ WMZ(Ω, fεk0 , C) with fεk0(x) = f(x) +
√
εd(x, xε)k

0.

Because of the relationships between approximate minimizers and weak approximate min-
imizers, the results in this section hold for approximate minimizers of vector optimization
problems with variable ordering structures too. In the case of fixed ordering structure, we get
very well known variational principle for vector optimization problems with fixed ordering
structures; see [18, 35, 36].

5 Variational principles for εk0-Nondominated Solutions

In this section, we introduce the third solution concept for vector optimization problems with
variable ordering structures called approximately nondominated solution (see Definition 5.1)
and we will give an extension of Ekeland’s theorem for εk0-nondominated solutions of vector
optimization problems with variable ordering structures. It is important to emphasize that
there is no difference between εk0-minimizers and εk0-nondominated solutions in the case of
fixed ordering structure. The reader can find many examples illustrating that this statement
is in general not true in the case of variable ordering structure in [6, 7, 14]. Variational
principles for nondominated solutions of vector optimization problems with variable ordering
structures are already shown in [2, Theorem 4.7] in a scalar form. In difference to this papers
we will show the variational principle in a vector-valued form.

Definition 5.1. Let assumptions (A1)− (A2) be fulfilled and consider problem (VVOP).

1. xε ∈ Ω is said to be an εk0-nondominated solution of the problem (VVOP) with respect
to the ordering map C : Y ⇒ Y iff

∀x ∈ Ω : (f(xε)− εk0 − (C(f(x))\{0})) ∩ {f(x)} = ∅.

2. Let intC(f(x)) �= ∅ for all x ∈ Ω. xε ∈ Ω is said to be a weakly εk0-nondominated
solution of (VVOP) with respect to the ordering map C : Y ⇒ Y iff

∀x ∈ Ω : (f(xε)− εk0 − intC(f(x))) ∩ {f(x)} = ∅.

Sets of εk0-nondominated and weakly εk0-nondominated solutions will be denoted by εk0-
N(Ω, f, C) and εk0-WN(Ω, f, C) respectively. If ε = 0, then all these definitions coincide
with the usual definitions of nondominated solutions [6, 16].

Example 5.2. Let ε = 1
100

and k0 = (1, 0)T . Also suppose that

Ω =
{
(y1, y2) ∈ R2 | y1 + y2 ≥ −1, y1 ≤ 0, y2 ≤ 0

}
and

C(y1, y2) =

{ {(d1, d2) ∈ R2 | d2 ≥ 0, d1 + d2 ≥ 0}, for (y1, y2) = (0, 0)
R2

+, otherwise.
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Then
{
(y1, y2) ∈ Ω | y1 + y2 ≤ − 99

100

}
is the set of εk0-minimal and εk0-nondominated points.

But only points of the set{
(y1, y2) ∈ Ω| y1 + y2 < − 99

100

}
are εk0-minimizers and points of{
(y1, y2) ∈ Ω| y1 + y2 = − 99

100

}

are not εk0-minimizers. This shows that there exist elements of Ω which are both εk0-
nondominated and εk0-minimal but not εk0-minimizer (see Fig. 2).

(y1, y2)− εk0 − C(0, 0)

(y1, y2)

−1 − 99
100 0

−1

− 99
100

Ω

Figure 2: Example 5.2 where there exists an element which is both εk0-nondominated and
εk0-minimal element but not εk0-minimizer.

Lemma 5.3. Let assumptions (A1)–(A3) be fulfilled and consider the problem (VVOP). If
xε ∈ εk0-N(Ω, f, C), then for every element x ∈ Ω, there exists a continuous functional
ξ(·, f(x)) : Y → R which is strictly B-monotone in the sense of Definition 3.12 and

∀x ∈ Ω : ξ(f(xε), f(x)) � ξ(f(x) + εk0, f(x)).

Moreover, if (A4) holds, then ξ(·, f(x)) is subadditive on Y for each x ∈ Ω and

∀x ∈ Ω : ξ(f(xε), f(x)) � ξ(f(x), f(x)) + ξ(εk0, f(x)).

Proof. Suppose that k0 ∈ Y \{0}, ε > 0 and xε ∈ εk0-N(Ω, f, C). This means that for all
x ∈ Ω,

(f(xε)− εk0 − C(f(x))\{0}) ∩ f(x) = ∅ ⇒ (f(xε)− C(f(x))\{0}) ∩ (f(x) + εk0) = ∅.

19



We apply Theorem 3.11 to the sets (f(xε) − C(f(x))\{0}) and f(x) + εk0. Taking into
account (A3) and Theorem 3.11, we get desired functionals ξ : Y × Y → R. Therefore for
any fixed x ∈ Ω, there exist a continuous functional ξ(·, f(x)) : Y → R such that

ξ(f(xε), f(x)) � ξ(f(x) + εk0, f(x)).

Now, if (A4) holds, then for all x ∈ Ω, ξ(·, f(x)) is subadditive and

ξ(f(xε), f(x)) � ξ(f(x), f(x)) + ξ(εk0, f(x))

and proof is complete.

The following lemma gives some properties of the functional in Lemma 5.3 and these prop-
erties will be used later in the proof of other lemmas and our main theorem about extension
of Ekeland’s theorem for εk0-nondominated solutions of vector optimization problems with
variable ordering structures.

Lemma 5.4. Let assumptions (A1)–(A3) be fulfilled, then for each fixed x ∈ Ω, the functional
ξ(·, f(x)) : Y → R in Lemma 5.3 has the following properties:

1. ξ(k0, f(x)) = 1.

2. ξ(0, f(x)) = 0.

3. ξ(εk0, f(x)) = ε and ξ(−εk0, f(x)) = −ξ(εk0, f(x)) = −ε.

Proof. The proof is similar to that of Lemma 4.4.

Lemma 5.5. Let X be a complete metric space, Ω ⊂ X, xε ∈ Ω, Y be a Hausdorff topological
linear space, ε ≥ 0, k0 ∈ Y \{0}, f : X → Y is a vector-valued function with dom f �= ∅ and
B : Y ⇒ Y be a cone-valued map where k0 ∈ B(y) for all y ∈ Y .
(j) Furthermore, suppose that for any x ∈ Ω and a strictly B-monotone (in the sense of Def-
inition 3.12), continuous, subadditive functionals ξ(·, f(x)) : Y → R the following inequality
holds

∀x ∈ Ω : ξ(f(xε), f(x)) � ξ(f(x), f(x))− ξ(−εk0, f(x)).

Then there is a set-valued map C : Y ⇒ Y such that clC(f(x)) + (B(f(x))\{0}) ⊆ C(f(x))
and B(f(x))\{0} ⊆ C(f(x)) for all x ∈ Ω and xε ∈ εk0-WN(Ω, f, C).

Proof. For each x ∈ Ω, we define C(f(x)) and functional ξ̂(·, f(x)) : Y → R as follows,

C(f(x)) := {y ∈ Y | ξ(−y + f(xε)− εk0, f(x)) < ξ(f(xε)− εk0, f(x))}, (16)

ξ̂(y, f(x)) := ξ(y + f(xε)− εk0, f(x)). (17)

By (17) and (j) and since ξ(·, f(x)) is subadditive for all x ∈ Ω, we get

ξ̂(f(x) + εk0 − f(xε), f(x)) = ξ(f(x), f(x)) �
ξ(f(xε), f(x)) + ξ(−εk0, f(x)) �
ξ(f(xε)− εk0, f(x)) = ξ̂(0, f(x)).
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Now, by (16) and (17), we have

ξ̂(−C(f(x)), f(x)) = ξ(−C(f(x)) + f(xε)− εk0, f(x)) < ξ(f(xε)− εk0, f(x)) = ξ̂(0, f(x)),

and therefore for each x ∈ Ω,

(− intC(f(x))) ∩ (f(x) + εk0 − f(xε)) = ∅ ⇒ (f(xε)− εk0 − intC(f(x))) ∩ f(x) = ∅.

Now, we show that clC(f(x)) + (B(f(x))\{0}) ⊆ C(f(x)). Choose y ∈ clC(f(x)) and
b ∈ y + B(f(x))\{0}. Because the functional ξ̂(·, f(x)) is strictly B-monotone and by
y ∈ clC(f(x)) ⊆ {y | ξ̂(−y, f(x)) � ξ̂(0, f(x))}, we get

ξ̂(−b, f(x)) < ξ̂(−y, f(x)) � ξ̂(0, f(x)).

Therefore b ∈ C(f(x)) and clC(f(x)) + (B(f(x))\{0}) ⊆ C(f(x)). Now, by 0 ∈ clC(f(x)),
we get B(f(x))\{0} ⊆ C(f(x)). Furthermore by the inclusion clC(f(x))+(B(f(x))\{0}) ⊆
C(f(x)) and the assumption k0 ∈ B(f(x)), we get C(f(x)) + εk0 ⊆ C(f(x)).

In the following theorem, we give a generalizations of the Ekeland’s variational principle for
εk0-nondominated solutions of (VVOP) provided that f : X → Y is bounded from below
and (k0, C,Ω)-lower semicontinuous.

Theorem 5.6. Consider the problem (VVOP) and let x ∈ εk0-N(Ω, f, C). Impose in addi-
tion to (A1)–(A4) the following assumptions:

(A5) f is (k0, C,Ω)-lower semicontinuous over Ω in the sense of Definition 4.9.

(A6) f is bounded from below over Ω with respect to C in the sense of Definition 4.6.

Then there exists an element xε ∈ dom f ∩ Ω such that

1. xε ∈ εk0-WN(Ω, f, B),

2. d(x, xε) �
√
ε,

3. xε ∈ WN(Ω, fεk0 , B) with fεk0(x) = f(x) +
√
εd(x, xε)k

0. (18)

Proof. Let x ∈ εk0-N(Ω, f, C), then by the definition of approximately nondominated solu-
tions (Definition 5.1), we have (f(x) − εk0 − C(f(x))\{0}) ∩ f(x) = ∅ for all x ∈ Ω. Now,
suppose that f := f − f(x), then we have

(f(x)− εk0 − C(f(x))\{0}) ∩ f(x) = ∅.

By (A4), Lemma 5.3 and Lemma 5.4, the functional ξ(·, f(x)) : Y → R defined by (1) is
strictly B-monotone, continuous and subadditive for all fixed x ∈ Ω. Furthermore,

∀ x ∈ Ω : ξ(f(x), f(x)) � ξ(f(x), f(x)) + ξ(εk0, f(x)) = ξ(f(x), f(x)) + ε.
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This means that for all x ∈ Ω,

ξ(f(x), f(x)) � inf
x∈Ω

ξ(f(x), f(x)) + ε, ε > 0.

Observe that the validity of (A5)–(A6) ensures the boundedness from below and (k0, C,Ω)-
lower semicontinuity of f and f . By Lemma 4.10, Lemma 4.7, Theorem 2.2 and Remark 2.3,
there exists xε ∈ Ω such that for all x ∈ Ω,

1. ξ(f(xε), f(x)) � ξ(f(x), f(x)) � infx∈Ω ξ(f(x), f(x)) + ε, (19)

2. d(xε, x) �
√
ε,

3. for all x ∈ Ω: ξ(f(xε), f(x)) � ξ(f(x), f(x)) +
√
εd(x, xε). (20)

By Lemma 5.4 and (19), for all x ∈ Ω, we get

ξ(f(xε), f(x)) � inf
x∈Ω

ξ(f(x), f(x)) + ε �

ξ(f(x), f(x)) + ξ(εk0, f(x)) = ξ(f(x), f(x))− ξ(−εk0, f(x)).

Now, by Lemma 5.5, assumption (A3) and f = f − f(x),

∀x ∈ Ω : (f(xε)− εk0 − intB(f(x))) ∩ {f(x)} = ∅.
This implies that xε ∈ εk0-WN(Ω, f, B). Now, we prove (18) and for this, suppose that there
exists an element x ∈ Ω such that

f(x) ∈ f(xε)−
√
εd(x, xε)k

0 − intB(f(x))

=⇒ f(x) ∈ f(xε)−
√
εd(x, xε)k

0 − intB(f(x)).

Since for all fixed x ∈ Ω, ξ(·, f(x)) is a strictly B-monotone continuous subadditive func-
tional, we have

ξ(f(x), f(x)) < ξ(f(xε)−
√
εd(x, xε)k

0, f(x)) �
ξ(f(xε), f(x)) + ξ(−√

εd(x, xε)k
0, f(x)).

Now, by Lemma 5.4, we get

ξ(−√
εd(x, xε)k

0, f(x)) = −√
εd(x, xε)

=⇒ ξ(f(xε), f(x)) > ξ(f(x), f(x)) +
√
εd(x, xε),

but this yields a contradiction because of (20).

Note that the third condition in the variational principle in [2, Theorem 4.7] is given in
scalarized form but here this condition is in vector form. In the paper [2], the variational
principle is derived using a scalarizing functional

ϕ : Y → R : ϕ(y) := inf{t ∈ R | y ∈ tk0 − C(y)}
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defined in [6] such that it is only possible to have the third condition in a scalarized form.
However, in Theorem 5.6, the functional defined by (1) is used in order to get a stronger
result in the third part.

In the special case that C : Y ⇒ Y is a solid, closed, pointed and convex cone-valued map,
we have the following corollary.

Corollary 5.7. Let C : Y ⇒ Y be a cone-valued map where C(f(x)) is a closed solid convex
cone for all x ∈ Ω, k0 ∈ ⋂

x∈Ω intC(f(x)) and ε > 0. Consider the problem (VVOP) and
furthermore, let x ∈ εk0-N(Ω, f, C). Impose the following assumptions:

(A5) f is (k0, C,Ω)-lower semicontinuous over Ω in the sense of Definition 4.9.

(A6) f is bounded from below over Ω with respect to C in the sense of Definition 4.6.

Then there exists an element xε ∈ dom f ∩ Ω such that

1. xε ∈ εk0-WN(Ω, f, C),

2. d(x, xε) �
√
ε,

3. xε ∈ WN(Ω, fεk0 , C) with fεk0(x) = f(x) +
√
εd(x, xε)k

0.

Because of the relationships between approximately nondominated and weakly approximate
nondominated solutions, the results in this section hold for approximately nondominated
solutions of vector optimization problems with variable ordering structures too.

6 Applications for Deriving Necessary Conditions for

Approximate Solutions of (VVOP)

In this section, we use the variational principles presented in the previous sections in order
to prove necessary conditions for approximately minimizers and nondominated solutions of
(VVOP). In the whole section we will assume that (X, ‖·‖X) and (Y, ‖·‖)Y are Banach spaces
where the metric is induced by the norm and f is Gâteaux differentiable which is defined as
follows.

Definition 6.1. The Gâteaux derivative df(x, h) of f : X → Y at x ∈ Ω in the direction
h ∈ X is defined as

df(x, h) := lim
t→0

f(x+ th)− f(x)

t
.

If the limit exists for all direction h ∈ X, then one says f is Gâteaux differentiable at x.

The following theorem is the direct consequence of Theorem 4.11 if we suppose the Gâteaux
derivative of the objective function f : X → Y .
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Theorem 6.2. Let (X, ‖·‖X) and (Y, ‖·‖)Y be Banach spaces and f : X → Y be a Gâteaux
differentiable function. Let x ∈ εk0-MZ(X, f, C) be an approximately minimizer of (V V OP ).
Impose in addition to (A1)–(A4) the following assumptions:

(A5) f is (k0, C,X)-lower semicontinuous over X in the sense of Definition 4.9.

(A6) f is bounded from below over X with respect to C in the sense of Definition 4.6.

Then there exists an element xε ∈ dom f such that the following holds for all x ∈ X and all
h ∈ X with ‖h‖ = 1,

df(xε, h) /∈ −√
εk0 − intB(f(x)).

Proof. Let x ∈ εk0-MZ(X, f, C). By condition 3. in Theorem 4.11, there exists xε ∈ dom f
such that xε ∈ WMZ(X, fεk0 , B) with fεk0(x) = f(x) +

√
ε ‖x− xε‖ k0, i.e.,

∀x ∈ X : fεk0(X) ∩ (fεk0(xε)− intB(f(x))) = ∅.
This means there exists no x, x1 ∈ X such that fεk0(x1) ∈ fεk0(xε) − intB(f(x)) which
implies

�x, x1 ∈ X : f(x1) +
√
ε ‖x1 − xε‖ k0 ∈ f(xε)− intB(f(x)).

By choosing x1 = xε + th, ‖h‖ = 1 and t > 0, we get

⇒ �h ∈ X : f(xε + th) +
√
ε ‖xε + th− xε‖ k0 ∈ f(xε)− intB(f(x))

⇒ f(xε + th)− f(xε) /∈ −√
εtk0 − intB(f(x))

⇒ f(xε + th)− f(xε)

t
/∈ −√

εk0 − intB(f(x))

⇒ lim
t→0+

f(xε + th)− f(xε)

t
/∈ −√

εk0 − intB(f(x))

and this means df(xε, h) /∈ −√
εk0 − intB(f(x)) for all x ∈ X.

Similar results for approximate nondominated solutions of (V V OP ) are as following:

Theorem 6.3. Let (X, ‖·‖X) and (Y, ‖·‖)Y be Banach spaces and f : X → Y be a Gâteaux
differentiable function. Let x ∈ εk0-N(X, f, C) be an approximately nondominated solution
of (V V OP ). Impose in addition to (A1)–(A4) the following assumptions:

(A5) f is (k0, C,X)-lower semicontinuous over X in the sense of Definition 4.9.

(A6) f is bounded from below over X with respect to C in the sense of Definition 4.6.

(A7) There exists an element x̂ ∈ X such that B(f(x̂)) ⊆ B(f(x)) for all x ∈ X.

Then there exists an element xε ∈ dom f such that the following holds for all h ∈ X with
‖h‖ = 1:

df(xε, h) /∈ −√
εk0 − intB(f(x̂)).

The proof is similar to that of Theorem 6.2 using Theorem 5.6 instead of Theorem 4.11.
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