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ABSTRACT

Holonomic constraints restrict the configuration of a multibody system to a subset of the configuration

space. They imply so called hidden constraints at the level of velocity coordinates that may formally be

obtained from time derivatives of the original holonomic constraints. A numerical solution that satisfies

hidden constraints as well as the original constraint equations may be obtained considering both types of

constraints simultaneously in each time step (stabilized index-2 formulation) or using projection techniques.

Both approaches are well established in the time integration of differential-algebraic equations. Recently,

we have introduced a generalized-α Lie group time integration method for the stabilized index-2 formula-

tion that achieves second order convergence for all solution components. In the present paper, we show that

a separate velocity projection would be less favourable since it may result in an order reduction and in large

transient errors after each projection step. This undesired numerical behaviour is analysed by a one-step er-

ror recursion that considers the coupled error propagation in differential and algebraic solution components.

This one-step error recursion has been used before to prove second order convergence for the application

of generalized-α methods to constrained systems. As a technical detail, we discuss the extension of these

results from symmetric, positive definite mass matrices to the rank deficient case.

1 INTRODUCTION

Backward differentiation formulae (BDF) and Newmark type methods are the most popular classes of time

integration methods in industrial multibody system simulation [4, 17]. They do not share the favourable

nonlinear stability properties of variational integrators and structure-preserving integrators in the long-term

integration of conservative systems but prove to be very efficient in the application to multibody system

models with dissipative terms resulting, e.g., from friction forces or control structures. BDF gain much

efficiency from a variable step size, variable order implementation that allows to adapt time step size and

order to the solution behaviour [6]. In the application to flexible multibody systems with nonlinear flexible

components, the large amount of algorithmic damping may be considered as a potential drawback of BDF

methods since all higher frequency solution components are strongly damped in the step size range of

practical interest.

For this problem class, Newmark type methods like the generalized-α method of Chung and Hulbert [11]

offer more flexibility since the damping properties for high frequency modes in linear systems may be

controlled by appropriate algorithmic parameters. For these methods, the order of convergence is limited to

two but in a method of lines framework this order barrier does typically not result in strong limitations of the

time step size since the error of space discretization has to be considered anyway. For constrained systems,

the direct application of Newmark type methods to the constrained equations of motion proves to be quite

popular because of its straightforward implementation in existing large scale simulation tools [10, 17, 22],

see also [5]. Index reduction techniques [6, 13, 16] that are a quasi-standard for BDF solvers in industrial

multibody system simulation [4] have been proposed as well for Newmark type methods [20, 21], see

also [3], but implementations without index reduction still dominate in industrial simulation tools [17, 22].

§submitted for publication
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An extension of generalized-α methods to mechanical systems that have a configuration space with Lie

group structure has been proposed in [8]. It relies again on the direct time discretization of the constrained

equations of motion. On the Lie group, these constrained systems form a differential-algebraic equation

(DAE) that may be studied analytically by an extension of classical DAE theory [6, 19]. Holonomic con-

straints result in a Lie group DAE of index three. As in classical DAE theory, they imply (hidden) constraints

at the level of velocity coordinates that are obtained by differentiation w.r.t. time t, see [6, 13].

Inspired by numerically observed large transient errors and spurious oscillations of the constraint forces in

the Lie group time integration of a heavy top benchmark problem [7], we have studied the error propagation

in generalized-α methods for index-3 DAEs on Lie groups in great detail [2, 3, 9]. A one-step error recursion

for the algebraic solution components shows that starting values being consistent with the hidden constraints

at velocity level may result in order reduction and in a large oscillating first order error term that is damped

out rapidly after a short transient phase. These numerical problems could be avoided by perturbed starting

values or by the simultaneous consideration of original and hidden constraints in the stabilized index-2

formulation of the equations of motion [3].

In the present paper, we recall basic aspects of the generalized-α Lie group method (Section 2) and use

recently obtained convergence results to study the influence of velocity projections on the accuracy of the

numerical solution (Section 3). In contrast to known error estimates for projection techniques in DAE time

integration [12, 19], we observe an order reduction if the direct time discretization of the index-3 DAE is

combined with separate projection steps to get a numerical solution that satisfies the hidden constraints at

velocity level. The extension of this error analysis to multibody system models with rank deficient mass

matrix is discussed in Section 4.

2 THE GENERALIZED-α LIE GROUP TIME INTEGRATION METHOD

In the Lie group setting, the configuration space G of a multibody system forms a k-dimensional manifold

with Lie group structure. For a constrained system with mass matrix M and force vector g, the generalized

coordinates q ∈ G are solutions of the Lie group DAE

q̇ = DLq(e) · ṽ , (1a)

M(q)v̇ = −g(q,v, t)−B�(q)λ , (1b)

Φ(q) = 0 (1c)

with the velocity vector v ∈ R
k and an invertible linear mapping (̃•) : Rk → TeG, v �→ ṽ. Here, e ∈ G

is the identity element and TqG denotes the tangent space of G at point q ∈ G, see [8, 9] for a more

detailed discussion. The tangent space TeG =: g is also known as the Lie algebra corresponding to Lie

group G. It is mapped bijectively to TqG by the directional derivative DLq(e) of the left translation map

Lq : G → G, y �→ q ◦ y evaluated at e. Here, symbol “◦” stands for the group operation in G.

The m holonomic constraints (1c) are coupled to the dynamical equations (1b) by Lagrange multipliers

λ(t) ∈ R
m and by the matrix B(q) ∈ R

m×k that represents the constraint gradients in the sense that

DΦ(q) · (DLq(e) · w̃
)
= B(q)w , (w ∈ R

k ) (2)

with DΦ(q) · (DLq(e) · w̃
)

denoting the directional derivative of Φ : G → R
m evaluated at q ∈ G in the

direction DLq(e) · w̃ ∈ TqG. It is assumed that B(q) has full rank m ≤ k and that the mass matrix M(q)
is symmetric, positive definite. Systems with rank deficient mass matrix are considered in Section 4 below.

For simplicity, we restrict ourselves to scleronomic constraints (1c) throughout the present paper. All results

remain, however, valid as well in the case of rheonomic constraints Φ(q, t) = 0 that depend explicitly on

time t.

Readers who are not familiar with the Lie group setting might for the moment abstract from many technical

details considering the special case of a linear configuration space G = R
k with vector valued elements

q ∈ R
k that will be denoted by boldface letters throughout this presentation. In linear spaces, the kinematic

relations (1a) are simplified to q̇ = v and the constraint matrix B(q) is given by the Jacobian (∂Φ/∂q)(q) .
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The most straightforward approach to the time integration of constrained systems relies on a direct time

discretization of the equations of motion in their original form (1). In linear spaces, the discretization of the

kinematic equations (1a) is based on the Taylor expansion q(t+ h) = q(t) + hv(t) + h2

2 v̇(t) +O(h3),
(h → 0 ), that is in the Lie group setting generalized to

q(t+ h) = q(t) ◦ exp(hṽ(t) + h2

2
˜̇v(t) +O(h3)

)
, (h → 0 )

with the exponential map exp : g → G. For matrix Lie groups G, this exponential map is formally given

by its series expansion exp(w̃) =
∑

i w̃
i/i!. As proposed in [8], we consider a generalized-α Lie group

method that updates the numerical solution (qn,vn,an,λn) in time step tn → tn + h according to

qn+1 = qn ◦ exp(hΔ̃qn) , (3a)

Δqn = vn + (0.5− β)han + βhan+1 , (3b)

vn+1 = vn + (1− γ)han + γhan+1 , (3c)

(1− αm)an+1 + αman = (1− αf )v̇n+1 + αf v̇n (3d)

with vectors v̇n+1, λn+1 satisfying the equilibrium conditions

M(qn+1)v̇n+1 = −g(qn+1,vn+1, tn+1)−B�(qn+1)λn+1 , (3e)

Φ(qn+1) = 0 . (3f)

In linear spaces, the update formula (3a) for the position coordinates is simplified to qn+1 = qn + hΔqn .

Method (3) is characterized by algorithmic parameters αm, αf , β and γ that are typically selected based on

the linear stability analysis for generalized-α methods in linear spaces according to Chung and Hulbert [11].

Throughout the paper, we suppose that the order condition γ = 1/2−Δα with Δα := αm − αf is satisfied

to guarantee a local truncation error of size O(h3) for unconstrained systems in linear spaces.

3 ORDER REDUCTION CAUSED BY VELOCITY PROJECTION

In the 1990’s, the DAE aspects of constrained systems (1) in linear spaces were studied in great detail, see,

e.g., [19] for a compact summary. Generalizing these classical results to the Lie group setting in (1), we get

hidden constraints at the level of velocity coordinates differentiating (1c) w.r.t. t :

0 =
d

dt
Φ(q(t)) = DΦ(q(t)) · q̇(t) = DΦ(q) · (DLq(e) · ṽ

)
= B(q)v , (4)

see (2). For a second differentiation step that results in hidden constraints

0 =
d

dt

(
B(q(t))v(t)

)
=

d

dt
Θ
(
q(t),v(t)

)
= B(q)v̇ + Z(q)

(
v,v

)
. (5)

at the level of acceleration coordinates, we consider the directional partial derivative of function Θ(q, z) :=
B(q)z w.r.t. q ∈ G that may be represented by a bilinear form Z(q) : Rk × R

k → R
m with

DqΘ(q, z) · (DLq(e) · w̃
)
= Z(q)(z,w) , ( z,w ∈ R

k ) ,

see [3]. In linear spaces, Z(q) is given by the curvature terms (∂2Φ/∂q2)(q).

The generalized-α time integration method (3) discretizes the equations of motion (1) directly, i.e., with-

out considering any hidden constraints. An alternative to this approach are DAE time integration methods

that are based on index reduction before time discretization and use hidden constraints like (4) and (5).

If the original constraints (1c) are simply substituted by (4) or by (5), we get the index-2 formulation or

the index-1 formulation of the equations of motion [19]. In contrast to the numerical solution qn+1 in the

generalized-α method (3) that remains for all time steps tn → tn+1 = tn + h in the constraint manifold

M := { q ∈ G : Φ(q) = 0 }, see (3f), there is no guarantee that the holonomic constraints (1c) are exactly

satisfied by numerical solutions qn+1 for index reduced formulations. We observe a linear (index-2 for-

mulation) or quadratic (index-1 formulation) drift-off effect, i.e., ‖Φ(qn)‖ grows like c2(tn − t0) or like

c1(tn − t0)
2, respectively.
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Figure 1: Heavy top benchmark [9, 17], generalized-α method (3) with h = 1.0× 10−3 s (left plot) and

h = 5.0× 10−4 s (right plot): First component of the residual in hidden constraints (4). Velocity projection

at t = t∗ = 0.7 s.

To avoid this constraint violation in index reduced formulations, the numerical solution qn+1 is projected

onto M before continuing time integration with the next time step tn+1 → tn+2, see [12, 19]. In the Lie

group setting, the classical projection step qn+1 → qn+1 + dqn+1 with dqn+1 ∈ R
k denoting the solution

of the constrained minimization problem min { ‖dq‖ : Φ(qn+1 + dq) = 0 } may be generalized to

qn+1 �→ qn+1 ◦ exp(d̃qn+1) with dqn+1 := argmin { ‖dq‖ : Φ
(
qn+1 ◦ exp(d̃q)

)
= 0 } , (6)

see also the work of Terze et al. [23] on projection techniques in the Lie group context. The velocity vector

vn+1 should be projected to the tangential space TqM at q = qn+1 ◦ exp(d̃qn+1), see (6), by

vn+1 �→ vn+1 + dvn+1 with dvn+1 := argmin { ‖dv‖ : B(q)(vn+1 + dv) = 0 } . (7)

The combination of index reduction and projection techniques is well established in DAE time integration

of higher index systems [19]. The extra errors being introduced by the projection of qn+1, vn+1 to M and

TqM according to (6) and (7) remain in the size of discretization errors and do not deteriorate the order of

convergence. This result follows from the observation that q(t) ∈ M and v(t) ∈ Tq(t)M, ( t ≥ t0 ), such

that after one time step the numerical solution qn+1, vn+1 of a method with local error O(hp+1) is always

O(hp+1)-close to the manifold and to its tangential space. Therefore, the increments dqn+1, dvn+1 in the

projection steps (6) and (7) remain in the size of the local error O(hp+1), see [19, Section VII.2].

The drift-off effect is typical of index reduced formulations and does not affect the generalized-α method (3)

that discretizes the original Lie group index-3 DAE directly resulting in Φ(qn+1) = 0, see (3f). In the hid-

den constraints at velocity level, we observe a residual of size ‖B(qn+1)vn+1‖ = O(h2) that corresponds

to the global error of order two for the numerical solution qn+1, vn+1. To illustrate this numerical effect,

we apply (3) with algorithmic parameters according to [11] and a damping ratio at infinity of ρ∞ = 0.9 to

the heavy top benchmark problem [8, 9, 17]. The equations of motion and all model parameters are given

in the appendix below. The equations are formulated in the Lie group R
3 × SO(3) with m = 3 holonomic

constraints that result in 3 hidden constraints at velocity level. Fig. 1 shows one component of the constraint

residual B(q)v vs. t for time step sizes h = h0 = 10−3 s (left plot) and h = h0/2 (right plot). Up to a

discontinuity at t∗ = 0.7 s (that will be discussed in more detail below) the constraint residual oscillates

smoothly with an amplitude that is decreased by a factor of 22 = 4 if the step size is reduced by a factor

of 2.

Despite these rather large residuals in the hidden constraints (4), the generalized-α method (3) with reason-

able starting values [3] converges with order p = 2 in all solution components. For the Lagrange multipli-

ers λ, this is illustrated by the dashed line in the right plot of Fig. 2 that has slope +2 in double logarithmic

scale. After impacts in the mechanical system and after step size changes it would, however, be quite natural

to enforce zero constraint residuals (4) by a projection of vn+1 to the tangential space Tqn+1
M according

to (7) with ‖dv‖ := (dv�M(q)dv)1/2 and q = qn+1, i.e., we substitute vn+1 at t = tn+1 by its projection

v∗
n+1 :=

(
Ik − [M−1B�(BM−1B�)−1B](qn+1)

)
vn+1

4
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Figure 2: Heavy top benchmark [9, 17], generalized-α method (3), Velocity projection at t = t∗ = 0.7 s.

Left plot: Numerical solution λn for h = 1.0× 10−3 s, t ∈ [0.65 s, 0.8 s], Right plot: Maximum of the norm

of global errors in λ in a time interval that contains t∗ (solid line) and in the subinterval [0, t∗) (dashed line).

onto the tangential space TqM at q = qn+1, see also [15, 19] for a more detailed discussion of velocity

projection in DAE time integration.

Taking into account the positive convergence results for the combination of index reduction and projec-

tion techniques that were discussed above, we might expect that such a velocity projection does also not

deteriorate the second order convergence of the generalized-α method (3).

The test results in Fig. 1 and in the left plot of Fig. 2 show, however, that a velocity projection at tn∗ =
t∗ = 0.7 s results in oscillating constraint residuals and in spurious oscillations of large amplitude in the

numerical solution λn that are damped out after about 100 time steps. Furthermore, we observe an order

reduction for the Langrange multipliers λ that is illustrated by a solid line of slope +1 in the right plot of

Fig. 2. This plot shows in terms of relative errors ‖λ(tn)− λn‖/‖λn‖ the maximum of the norm of global

errors in components λ for t < t∗ (i.e., without velocity projection, dashed line) and for t ∈ [0, 1] (i.e., with

velocity projection at t = t∗, solid line). The maximum of global errors in [0, 1] is dominated by the large

error terms in the transient phase after the velocity projection at t = t∗.

The undesired numerical results reflect a coupled one-step recursion for the scaled constraint residuals

B(qn)vn/h and the global errors in components λ and B(q)a that is given by

En+1 =
(
(T−1

+ T0)⊗ Im
)
En +O(h2) with En :=

⎛⎜⎜⎝
1

h
B(qn)vn + hB

(
q(tn)

)
r(tn) + ζn

[BM−1B�]
(
q(tn)

)(
λ(tn)− λn

)
B
(
q(tn)

)(
v̇(tn +Δαh)− an

)
⎞⎟⎟⎠ (8)

with r̃(t) =
(
2(1− 6β − 3Δα)˜̈v(t) + ṽ(t)˜̇v(t)− ˜̇v(t)ṽ(t))/12 and a vector ζn = O(h2) that depends in

a complicated way on the global error in the position coordinates q and vanishes on initialization [3]. The

Kronecker product (T−1
+ T0)⊗ Im is composed of matrices

T+ :=

⎛⎝ 0 0 −β
1 0 −γ
0 1− αf 1− αm

⎞⎠ , T0 :=

⎛⎝ 1 0 0.5− β
1 0 1− γ
0 −αf −αm

⎞⎠
and the identity matrix Im. For algorithmic parameters αm, αf , β and γ according to Chung and Hul-

bert [11], the spectral radius of the iteration matrix in (8) is given by �(T−1
+ T0) = ρ∞ with ρ∞ ∈ [0, 1]

denoting the damping ratio at infinity.

Without any projection steps, the constraint residuals B(qn)vn for the generalized-α method (3) are of size

O(h2), see Fig. 1. The scaled constraint residuals B(qn)vn/h in the first component of En compensate the

first order error term hB(q(t))r(t), see (8), and result in En = O(h2) if ρ∞ < 1 and the starting values v0,

a0 are defined such that E0 = O(h2), see [3].

The velocity projection at t∗ = tn∗ = 0.7 s eliminates the constraint residual B(qn)vn at n = n∗. There-
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fore, the compensation of term hB(q(t∗))r(t∗) in the first component of En∗ is now missing and we get

an additional first order error term
(
(T−1

+ T0)
n−n∗ ⊗ Im

)
En∗ for all n ≥ n∗ that results in order reduction

for components λ. Analysing ‖(T−1
+ T0)

n̄‖ by a transformation to Jordan canonical form, see [3], we get

the error bound ‖λ(tn)− λn‖ ≤ C
(
n̄2ρn̄∞h+ h2

)
with n̄ := n− n∗ ≥ 0 and a suitable constant C > 0.

4 RANK DEFICIENT MASS MATRICES

To prove the convergence of generalized-α methods in the constrained case, we studied the coupled error

propagation in differential and algebraic solution components and supposed that the symmetric mass matrix

M(q) ∈ R
k×k is positive definite and the constraint Jacobian B(q) ∈ R

m×k with m ≤ k has full rank along

the solution [1, 3, 9]. With these assumptions, the dynamical equations in (1) and the hidden constraints (5)

at the level of acceleration coordinates may be summarized in a system of k +m linear equations(
M(q) B�(q)
B(q) 0

)(
v̇

λ

)
=

( −g(q,v, t)

−Z(q)
(
v,v

) )
(9)

that is solved straightforwardly:

v̇ = −(
I−M−1B�(BM−1B�)−1B

)
M−1g −M−1B�(BM−1B�)−1Z , (10a)

λ = −(BM−1B�)−1BM−1g + (BM−1B�)−1Z . (10b)

The formal differentiation of (10b) w.r.t. t yields λ̇ = λ̇(q,v, t) and proves that (1) forms an index-3 DAE,

see, e.g., the corresponding index analysis for the equations of motion in linear spaces in [19].

This index analysis may be generalized to a certain class of constrained systems (1) with rank deficient, i.e.

singular mass matrix M(q), see [14, 17]. Following the presentation in [17, Section 10.2], we multiply the

second block row of (9) by B�(q) and add the resulting equation to the first block row to get an equivalent

system (9) with M, g being substituted by

M∗ := M+B�B , g∗ := g +B�Z .

For symmetric, positive semi-definite mass matrices M(q), matrix M∗(q) is positive definite (and therefore

also non-singular) if and only if M(q) is positive definite at the null space of B(q) since the two conditions

ξ�Mξ ≥ 0, ( ξ ∈ R
k ), and ξ�Mξ > 0, ( ξ ∈ R

k \ {0} with Bξ = 0 ), are equivalent to

ξ�M∗ξ = ξ�(M+B�B)ξ = ξ�Mξ + ‖Bξ‖22 > 0 , ( ξ ∈ R
k \ {0} ) .

This condition guarantees that any non-zero velocity being compatible with the hidden constraints (4) results

in a positive contribution to the system’s kinetic energy [14].

For non-singular M∗(q), the modified system (9) may be solved w.r.t. v̇ and λ resulting in (10) with M, g
being substituted by M∗(q), g∗(q,v, t) and the DAE index of (1) is – as before – bounded by three since

λ̇ = λ̇(q,v, t) is obtained by differentiation of (10b) w.r.t. t. A more detailed analysis shows, however, that

the DAE index of (1) may be less than three if M(q) is rank deficient (and positive definite at kerB(q) ). As

a (pathological) example, we consider equations of motion (1) in a linear space with linear constraints (1c),

i.e., G = R
k, Φ(q) = Bq . If mass matrix M and force vector g vanish identically and the constraint

matrix is square and non-singular (m = k, kerB = {0} ), then (1) is given by

q̇ = v , 0 = −B�λ , Bq = 0 . (11)

Differentiating −B�λ = 0 once and Bq = 0 twice w.r.t. t, we get ordinary differential equations for q, v
and λ, i.e., the differentiation index of DAE (11) is two [19].

The convergence analysis for generalized-α methods in [1, 3, 9] that is tailored to index-3 DAEs fails in the

application to lower index systems like (11). A more refined structural analysis is necessary to separate in

the rank deficient case the components of λ that are linearly dependent on v̇, see (9), from the ones that are

completely defined by (q,v, t):

6



Assumption 1. Consider equations of motion (1) with a symmetric, positive semi-definite mass matrix

M(q) ∈ R
k×k of constant rank r := rankM(q) ≤ k that is positive definite at the null space of the con-

straint matrix B(q) ∈ R
m×k. We assume that B(q) has full rank m along the solution and that the 2× 2

block matrix at the left hand side of (9) may be transformed to

⎛⎝ M(q) B�(q)

B(q) 0

⎞⎠ =

⎛⎝ U(q) 0

0 Q(q)

⎞⎠
⎛⎜⎜⎜⎝

0 0 0 Ik−r

0 Λ̄(q) B̄�(q) 0

0 B̄(q) 0 0

Ik−r 0 0 0

⎞⎟⎟⎟⎠
⎛⎝ U�(q) 0

0 Q�(q)

⎞⎠
with non-singular matrices U(q) ∈ R

k×k, Q(q) ∈ R
m×m and a 4× 4 block matrix with square diagonal

blocks of size k − r, r, m− (k − r) and k − r. The diagonal block Λ̄(q) ∈ R
r×r is non-singular since

r = rankM(q) = rank Λ̄(q) and the off-diagonal block B̄(q) ∈ R
(m−(k−r))×r has full rank m− (k − r)

since m = rankB(q) = rank B̄(q) + rank Ik−r. The matrix decomposition is assumed to be smooth in the

sense that U(q), Q(q), Λ̄(q) and B̄(q) are continuously differentiable w.r.t. q ∈ G.

This structural assumption is motivated by the observation that for constant matrices M, B, the existence

of such a transformation is always guaranteed if B has full rank and M is symmetric, positive semi-definite

and furthermore positive definite at the null space of B:

Lemma 1. Let matrices M ∈ R
k×k and B ∈ R

m×k be constant with rankM = r ≤ k and rankB = m.
If M is symmetric, positive semi-definite and

Bξ = 0 ⇒ ξ�Mξ > 0 (12)

for all vectors ξ ∈ R
k \ {0} then there are non-singular matrices U ∈ R

k×k and Q ∈ R
m×m such that

(
M B�

B 0

)
=

(
U 0

0 Q

)⎛⎜⎜⎜⎝
0 0 0 Ik−r

0 Λ̄ B̄� 0

0 B̄ 0 0

Ik−r 0 0 0

⎞⎟⎟⎟⎠
(

U� 0

0 Q�

)
(13)

with a non-singular matrix Λ̄ ∈ R
r×r and a matrix B̄ ∈ R

(m−(k−r))×r that has full rank m− (k − r) .

Proof. In R
k, there is an orthonormal basis of eigenvectors ui, ( i = 1, . . . , k ), of the symmetric mass

matrix M ∈ R
k×k such that the first k − r eigenvectors u1, . . . ,uk−r span the null space of M, i.e., the

eigenspace corresponding to the zero eigenvalues μ1, . . . , μk−r . Summarizing the eigenvectors in matrices
¯̄U :=

(
u1, . . . ,uk−r

) ∈ R
k×(k−r) and Ū :=

(
u(k−r)+1, . . . ,uk

) ∈ R
k×r, we get M¯̄U = 0k×(k−r)

and MŪ = ŪΛ̄ with a non-singular diagonal matrix Λ̄ := diag (μ(k−r)+1, . . . , μk ) ∈ R
r×r containing

the non-vanishing eigenvalues of M.

The column vectors of B¯̄U ∈ R
m×(k−r) are linearly independent since otherwise there would be a vector

ζ ∈ R
k−r with ζ �= 0 and 0 = (B¯̄U)ζ = B( ¯̄Uζ). For this vector ζ, we could use assumption (12) with

ξ := ¯̄Uζ �= 0 to get ( ¯̄Uζ)�M( ¯̄Uζ) > 0 which contradicts the fact that ( ¯̄Uζ)�M( ¯̄Uζ) = ζ�( ¯̄U�M¯̄U)ζ

and kerM = span ¯̄U, i.e., M¯̄U = 0. Because of rankB¯̄U = k − r ≤ m, there is a QR factorization

B¯̄U = ¯̄Q

( ¯̄R
0

)
with an orthogonal matrix ¯̄Q ∈ R

m×m and a non-singular matrix ¯̄R ∈ R
(k−r)×(k−r), see, e.g., [18]. Since

Q := ¯̄Q

(
0 ¯̄R

Im−(k−r) 0

)
⇒ B¯̄U = Q

(
0

Ik−r

)
, Q−1B¯̄U =

(
0

Ik−r

)
, (14)

we consider also in matrix Q−1BŪ ∈ R
m×r the last k − r rows separately from the remaining ones:(

B̄
¯̄B

)
:= Q−1BŪ ⇒ BŪ = Q

(
B̄
¯̄B

)
(15)
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with B̄ ∈ R
(m−(k−r))×r and ¯̄B ∈ R

(k−r)×r. Summarizing (14) and (15), we get an expression for the

matrix product B
( ¯̄U, Ū

) ∈ R
m×k that may be used to express the constraint matrix B ∈ R

m×k in terms

of the matrices Q, B̄, ¯̄B and the inverse of the orthogonal matrix
( ¯̄U Ū

) ∈ R
k×k :

B = Q

(
0 B̄

Ik−r
¯̄B

)( ¯̄U Ū
)−1

= Q

(
0 B̄

Ik−r
¯̄B

)(
¯̄U�

Ū�

)

= Q

(
0 B̄

Ik−r 0

)(
Ik−r

¯̄B

0 Ir

)(
¯̄U�

Ū�

)
= Q

(
0 B̄

Ik−r 0

)
U�

with the non-singular matrix

U :=
( ¯̄U Ū

)( Ik−r 0
¯̄B� Ir

)
∈ R

k×k

that transforms the upper left block of the 2× 2 matrix at the left hand side of (13) according to

U

(
0 0

0 Λ̄

)
U� =

( ¯̄U Ū
)( Ik−r 0

¯̄B� Ir

)(
0 0

0 Λ̄

)(
Ik−r

¯̄B

0 Ir

)(
¯̄U�

Ū�

)

=
( ¯̄U Ū

)( 0 0

0 Λ̄

)(
¯̄U�

Ū�

)
=

(
0 ŪΛ̄

)( ¯̄U�

Ū�

)
= M

( ¯̄U Ū
)( ¯̄U�

Ū�

)
= M .

To complete the proof, we observe that the third block row of the non-singular 4× 4 block matrix in (13)

contains only one non-zero block. Therefore, this block has to have full rank: rank B̄ = m− (k − r) .

The block structure of the decomposition according to Assumption 1 allows to decouple the dynamical

equations (1b) by left multiplication with matrix U−1(q). Splitting the vectors v̇, g and λ in (1b) such that

U�(q) v̇ =

(
¯̇̄v
¯̇v

)
, U−1(q)g =

(
¯̄g

ḡ

)
, Q�(q)λ =

(
λ̄
¯̄λ

)
, (16)

the decoupled equations may be written as

0 = −¯̄g(q,v, t)− ¯̄λ , (17a)

Λ̄(q)¯̇v = −ḡ(q,v, t)− B̄�(q)λ̄ . (17b)

In (17), the algebraic components ¯̄λ ∈ R
k−r are explicitly defined as a function of the differential solution

components q and v. This structure is typical of index-1 DAEs and allows to bound the global error in ¯̄λ
directly in terms of the global errors in components q and v. Using the notation of [3, 9], we define

these global errors e
(•)
n for all solution components from linear spaces by (•)(tn) = (•)n + e

(•)
n and use

q(tn) = qn ◦ exp(ẽqn) to define the global error in components q ∈ G. Then we get from (17a) and from

the corresponding equation for the numerical solution at t = tn+1, see (3e), the error estimate

‖e¯̄λ
n+1‖ = O(1)(‖eqn+1‖+ ‖evn+1‖) . (18)

The global errors in the algebraic solution components ¯̇v ∈ R
r and λ̄ ∈ R

m−(k−r) may be studied following

the convergence analysis in [1, 3, 9] since the coefficient Λ̄ ∈ R
r×r of ¯̇v is symmetric and positive definite

and the reduced constraint matrix B̄ ∈ R
(m−(k−r))×r has full rank m− (k − r) . Using notations

P̄(q) := I− [Λ̄
−1

B̄�S̄−1B̄](q) with S̄(q) := [B̄Λ̄
−1

B̄�](q)

and e
(C •)
n := C(q(tn))e

(•)
n for any matrix valued function C = C(q), see [3], we get error estimates

eP̄
¯̇v

n+1 = O(1)(‖eqn+1‖+ ‖evn+1‖+ h‖eλ̄n+1‖) , (19a)

eB̄
¯̇v

n+1 + eS̄λ̄n+1 = O(1)(‖eqn+1‖+ ‖evn+1‖+ h‖eλ̄n+1‖) (19b)
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from (17b) and from the corresponding equation for the numerical solution at t = tn+1, see (3e). Note, that

the left hand side of (19a) does not contain a term eλ̄n+1 since P̄(q)Λ̄
−1

(q)B̄�(q) ≡ 0.

Finally, the algebraic solution components ¯̇̄v ∈ R
k−r do not appear at all in the decoupled equations (17).

Therefore, the global error analysis for these components can not be based on the dynamical equations (1b)

and their time discrete counterpart (3e).

As in [3, 9], we define the global error ean by v̇(tn +Δαh) = an + ean with Δα = αm − αf to get in (3d)

a local truncation error of size O(h2). The splitting of U�(q)v̇ in components ¯̇̄v, ¯̇v, see (16), and the

linear relation between components a and v̇ suggests to split U�(
q(tn)

)
ean ∈ R

k as well into components

e¯̄an ∈ R
k−r and eān ∈ R

r to get

(1− αm)eP̄ā
n+1 + αmeP̄ā

n = O(1)(εn + εn+1) +O(h2) , (20a)

(1− αm)eB̄ā
n+1 + αmeB̄ā

n + (1− αf )e
S̄λ̄
n+1 + αfe

S̄λ̄
n = O(1)(εn + εn+1) +O(h2) , (20b)

see (3d) and (19) and [3, Lemma 5]. The terms εn, εn+1 in the right hand side of (20) summarize higher

order error terms, εn := ‖eqn‖+ ‖evn‖+ h‖ean‖+ h‖eλn‖.

To estimate error components in normal direction to the constraint manifold M = { q ∈ G : Φ(q) = 0 },

we studied in [3] time discrete approximations of the hidden constraints (5) to prove

0 = B
(
q(tn)

)
Δhe

q
n + Z

(
q(tn)

)(
eqn,v(tn)

)
+O(h)(‖eqn‖+ ‖Δhe

q
n‖) (21)

with Δhe
q
n := (eqn+1 − eqn)/h . For rank deficient mass matrices, the vector

rBn :=
1

h

(
B
(
q(tn)

)(
Δhe

q
n − h(0.5− β)ean − hβean+1

)
+ Z

(
q(tn)

)(
eqn,v(tn)

)) ∈ R
m (22)

that was defined in [3, Section 3.5] is split into components r̄Bn ∈ R
m−(k−r) and ¯̄rBn ∈ R

k−r according to(
r̄Bn
¯̄rBn

)
:= Q−1(q(tn)) r

B
n . (23)

Taking into account the 2× 2 block structure of matrix Q−1B(U�)−1 ∈ R
m×k in Assumption 1, we get

[Q−1B]
(
q(tn)

)
ean = [Q−1B(U�)−1]

(
q(tn)

)
U�(

q(tn)
)
ean =

(
0 B̄

(
q(tn)

)
Ik−r 0

)(
e¯̄an
eān

)
. (24)

Therefore, error component r̄Bn is decoupled from e¯̄an, e¯̄an+1 in the sense that

r̄Bn + (0.5− β)eB̄ā
n + βeB̄ā

n+1 = O(1)(εn + εn+1) +O(h2) , (25a)

see (21), (22)–(24) and [3, Lemma 6]. The corresponding estimate for error component ¯̄rBn is given by

¯̄rBn + (0.5− β)e
¯̄a
n + βe

¯̄a
n+1 = O(1)(εn + εn+1) +O(h2) . (25b)

To complete the error analysis for the algebraic solution components, we follow step-by-step the analysis

in the proof of [3, Lemma 6] to get error estimates for the differences r̄Bn+1 − r̄Bn and ¯̄rBn+1 − ¯̄rBn . Taking

into account again the splitting (23) of rBn into components r̄Bn , ¯̄rBn and the 2× 2 block structure of matrix

Q−1B(U�)−1 , see (24), we obtain

r̄Bn+1 − r̄Bn = (1− γ)eB̄ā
n + γeB̄ā

n+1 +O(1)(εn + εn+1) +O(h2) , (26a)

¯̄rBn+1 − ¯̄rBn = (1− γ)e
¯̄a
n + γe

¯̄a
n+1 +O(1)(εn + εn+1) +O(h2) . (26b)

With the matrix decomposition according to Assumption 1, the leading error terms in the algebraic solution

components v̇, a and λ may be studied separately for an r-dimensional subsystem of full rank (error terms

eP̄
¯̇v

n , eB̄
¯̇v

n , eP̄ā
n , eB̄ā

n , r̄Bn , eS̄λ̄n ) and for the (k − r)-dimensional null space of M(q) (error terms e
¯̇̄v
n, e¯̄an, ¯̄rBn ,

9



Figure 3: Heavy top benchmark [8, 17].

e
¯̄λ
n). In (20), (25) and (26), the error estimates for both subsystems are coupled by higher order error terms

εn, εn+1. Note, that the two identity matrices Ik−r in Assumption 1 correspond to error terms e¯̄an and e
¯̄λ
n

without any coefficients like the matrices P̄, B̄ and S̄ in eP̄ā
n , eB̄ā

n and eS̄λ̄n .

The four error estimates (20a), (20b), (25a) and (26a) for the r-dimensional subsystem of full rank cor-

respond one-by-one to the error estimates for the algebraic solution components that were derived in [3]

for equations of motion (1) with full-rank mass matrix M(q). The essential new results for systems with

rank-deficient mass matrix are given in (18), (25b) and (26b). Summarizing (25b) and (26b) in

‖( ¯̄T+ ⊗ Ik−r)

(
¯̄rBn+1

e¯̄an+1

)
− ( ¯̄T0 ⊗ Ik−r)

(
¯̄rBn

e¯̄an

)
‖ = O(1)(εn + εn+1) +O(h2) (27)

with
¯̄T+ =

(
0 −β
1 −γ

)
, ¯̄T0 =

(
1 0.5− β
1 1− γ

)
,

the analysis of the coupled error propagation in components eqn, evn, eP̄ā
n , eB̄ā

n , e¯̄an, r̄Bn , ¯̄rBn , eS̄λ̄n and e
¯̄λ
n

yields exactly the same convergence result as in the full rank case, see [3, Theorem 1] since the contractivity

condition �( ¯̄T−1
+

¯̄T0) < 1 is satisfied whenever γ > 1/2 and β > γ/2, see [1, Lemma 1] and [3, Lemma 8].

5 CONCLUSIONS

The recently developed one-step error recursion for generalized-α time integration methods is a powerful

tool to analyse in the constrained case the asymptotic behaviour for small time step sizes. In numerical

tests, we observed that the projection of the velocity vector onto the manifold that is defined by the hidden

constraints at the level of velocity coordinates may cause transient oscillations of large amplitude in the

Lagrange multipliers. The one-step error recursion shows that this undesired numerical behaviour is caused

by order reduction resulting from the velocity projection. Furthermore, we generalized the one-step error

recursion by a detailed structural analysis to constrained systems with a rank deficient mass matrix that is

symmetric and positive definite at the null space of the constraint matrix.

APPENDIX: HEAVY TOP BENCHMARK PROBLEM

A top that rotates in a gravity field is a classical test problem for studying and comparing different param-

eterizations of finite rotations in rigid body dynamics. As in [17], we consider a top rotating about a fixed

point, see Fig. 3. In this appendix, we follow the presentation of the heavy top benchmark problem in [3,

Section 5] using model parameters from [9, Section 7.1].

In the inertial frame, the position and orientation of the top are represented by the position x ∈ R
3 of the

center of mass and by the rotation matrix R ∈ SO(3). The set R3 × SO(3) with the composition operation(
x1, R1

) ◦ (
x2, R2

)
=

(
x1 + x2, R1R2

)
defines a 6-dimensional Lie group G ⊂ R

12 with elements q = (x,R). The kinematic relations (1a) are

given by

ẋ = u , Ṙ = RΩ̃ (28a)
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Figure 4: Heavy top benchmark: Reference solution, computed with h = 2.5× 10−5 s, see [3].

with u ∈ R
3 denoting the translational velocity in the inertial frame and a skew symmetric matrix

Ω̃ :=

⎛⎝ 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

⎞⎠ ∈ R
3×3

that represents the angular velocity Ω = (Ω1, Ω2, Ω3 )
� ∈ R

3. Vectors u and Ω are summarized in the

velocity vector v := (u�, Ω� )� ∈ R
6. In this absolute coordinate formulation, the equations of motion

are given by

mẍ− λ = mγ , (28b)

JΩ̇+Ω× JΩ+ X̃R�λ = 0 , (28c)

−x+RX = 0 . (28d)

with m denoting the mass of the top and the inertia tensor J that is defined with respect to the center of

mass. The gravity forces are given by γ ∈ R
3.

To fix the tip of the top at the origin, we introduce the position X of the center of mass in the body-fixed

frame and get the m = 3 holonomic constraints (28d). The corresponding Lagrange multipliers are given

by λ ∈ R
3. Due to these constraints, the motion is restricted to a 3-dimensional submanifold of G and we

have

M =

(
mI3 0
0 J

)
, g =

( −mγ
Ω× JΩ

)
, B =

(
−I3 −RX̃

)
.

Omitting all physical units, the model data are given by X = ( 0 , 1 , 0 )�, γ = ( 0 , 0 , −9.81 )�, m = 15.0
and J = diag ( 0.234375 , 0.46875 , 0.234375 ). The (consistent) initial values are set to x(0) = X, R(0) =

I3, u(0) = −X̃Ω(0) and Ω(0) = ( 0 , 150 , −4.61538 )�. Fig. 4 shows component x3(t) and the Lagrange

multipliers λ(t) of the reference solution that is computed by the stabilized index-2 formulation [3] using

the small time step size h = 2.5× 10−5 s.
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