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Scalarization of approximate solutions of
vector optimization problem with
variable order structure based on

nonlinear scalarization

Behnam Soleimani∗ and Christiane Tammer∗∗

Abstract

Approximate minimizer, approximate nondominated and approximate min-
imal solutions of vector optimization problems with respect to the variable
order structure are defined in [36]. Here we characterize these solution con-
cepts by a nonlinear scalarization method by means of nonlinear functionals.
In the case of exact solutions, specially in variable order case, authors use
cone or pointed convex cone valued map for domination but here we will use
just set-valued map without any cone or pointed convex cone assumptions.
This set-valued map associates a set with certain properties to each element
of the image space and present a characterization of approximate minimal,
minimizer and nondominated solutions by using this scalarization method.
In the last section, we will give an extension of Ekeland’s theorem for vector
optimization problem with variable order structure.

Key Words: Vector optimization, variable order structure, approximate solu-
tion, Ekeland’s variational principle.

Mathematics subject classifications (MSC 2000): 90C29, 90C30,90C48,90C59.

1 Introduction

Vector optimization problems are useful and have many applications in economics
theory, engineering design, management science and many other fields. For having
an order in vector optimization problem, normally authors use a partial ordering
by a nontrivial cone C in the image space. In 1974, Yu [40] defined a definition of
optimal element of vector optimization with respect to the variable order structure
named nondominated elements. A nondominated element is an element which is not
dominated by other point with respect to the associated set to this other point by
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a set-valued map. Also, Chen, Huang and Yang [5, 9, 6] introduced another kind of
optimal element which is called minimal. An minimal point is a candidate element
which is not dominated by other point with respect to the associated set to this
candidate point by a set-valued map. From the definitions, it is obvious to see that
in nondominated element, we use a set associate to the other points but in minimal
element, an ordering set is set associate to the minimal point. Some properties of
these points can be found in [5, 9, 6, 14, 15, 25, 40]. Here, we also discuss about
minimizers [9]. A minimizer is an element which is not dominated by another point
with respect to the any set. Recently, we can see applications of vector optimization
problem with respect to the variable order structure in decision making problems
and some other areas [13]. Here, we will not discuss about exact solutions but
approximate solutions and we know that exact solutions are special case of approxi-
mate solutions and our result can be used for exact solutions. Approximate solutions
are a kind of solutions which we use for solving a optimization problems. We know
that we need compactness assumption to have a exact solution. Also, we know that
under the weak assumptions and without compactness condition, we need to make
approximate solutions and we can have these solutions without any compactness
assumptions. Also, if we apply numerical algorithms for solving optimization prob-
lem, then these algorithms usually generate approximate solutions which are close
to the theoretical solutions. Several authors wrote about different approximate so-
lutions with respect to the fixed order structure. See [24, 29, 31, 33, 37, 38, 39] for
different definitions, concepts and properties of these elements. Also, Gutiérrez ,
Jiménez and Novo in [22] introduce a new concept of approximate solution of vector
optimization problem and they unified some different concepts of approximate solu-
tions with respect to the fixed order structure. But in this paper and [35], we deal
with approximate nondominated, approximate minimal and approximate minimiz-
ers with respect to the variable order structure. Here, we use a set valued map which
associate a set to the each element of the image space. By this ordering, we can
define different kind of approximate elements like εk0-nondominated, εk0-minimizer
and εk0-minimal elements. In the case of fixed order structure all these definitions
coincide and there is no difference between these elements. After showing some
properties of approximate elements, we will define a nonlinear scalarization method
for characterizing the approximate elements with respect variable order structure.
We characterize approximate elements via this nonlinear scalarization method. We
will not use convex hypothesis or cone here and our results are general and appli-
cable for more general sets. In fact, we will use sets with some properties instead
of cone for defining variable order and will not restrict ourself to the cone for order
structure. The scalarization method is based on the suitable nonlinear functionals
on the image space. Later, we will give an extension of Ekeland’s theorem for vector
optimization problem with variable order structure. Application of Ekeland’s vari-
ational principle can be seen in economics, control theory, game theory, nonsmooth
analysis and many others.
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2 Preliminaries

Let Y be a linear topological space. A set C ⊆ Y is called a cone if λc ∈ C for all
λ ≥ 0 and c ∈ C. The set C is said to be pointed if C ∩ (−C) ⊆ {0}. Let Ω be
a nonempty subset of linear topological space Y , we denote the topological interior
of the set Ω by int (Ω), cl (Ω) denotes the topological closure, ∂Ω the topological
boundary of Ω, Cone (Ω) the cone generated by Ω and conv (Ω) denotes the convex
hull of a set Ω. A nonempty set C ⊂ R

m is said to be convex if λc1 + (1− λ)c2 ∈ C
for all c1, c2 ∈ C and 0 ≤ λ ≤ 1. A set C ⊂ Y is said to be solid if int(C) 	= ∅
and a set C ⊂ Y is a proper set if ∅ 	= C 	= Y. See [19, 20, 28] for basic definitions
and concepts for vector optimization. Also, see [17, 18, 34] for some scalarization
methods for solving vector optimization with respect to the fix ordering and some
properties of these scalarization methods.

Also, suppose that C : Y ⇒ Y is a set valued map where C(y) is a closed set
with 0 ∈ ∂C(y) for every y ∈ Y . We define three different following domination
relations: for y1, y2, y3 ∈ Y

y1 ≤1 y
2 if y2 ∈ y1 + (C(y1)\{0}), (1)

y1 ≤2 y
2 if y2 ∈ y1 + (C(y2)\{0}), (2)

y1 ≤3 y
2 if y2 ∈ y1 + (C(y3)\{0}). (3)

If C(y1) = C(y2) = C(y3) for all y1, y2, y3 ∈ Y , then these three domination re-
lations are same and problem reduces to the optimization with standard domination
structure.

3 Different concepts of approximate solutions with

variable order

Suppose that ε ≥ 0 and k0 ∈ Y \{0}. We define εk0-nondominated, εk0-minimal
and εk0-minimizers with respect to variable order structure. Furthermore, we define
weakly (strongly) εk0-minimal (nondominated) elements and weakly (strongly) εk0-
minimizers. For sure there is no difference between εk0-nondominated, εk0-minimal
elements and εk0-minimizers in the case of fixed order structure. This statement
is also true for weakly (strongly) εk0-optimal elements. In this section, we show
that this statement can not be true in variable order structure and all these three
definitions define different elements. This will be shown by several examples. In the
following, we suppose that Y is a linear topological space.

Assumption (A1). Let Y be a linear topological space and Ω ⊂ Y . Suppose
that C : Y ⇒ Y is a set valued map where C(y) is a closed set with 0 ∈ ∂C(y). We
assume that k0 ∈ Y \{0} such that C(y) + [0,∞)k0 ⊆ C(y) for all y ∈ Ω and ε ≥ 0.

We define the first concept of approximate solution of variable order structure
based on the domination relation (1). More details and properties of these points
are given in [36].
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Definition 3.1. Let Assumption (A1) holds.

1. yε ∈ Ω is said to be an εk0-nondominated element of Ω with respect to the
ordering map C : Y ⇒ Y if

∀y ∈ Ω : (yε − εk0 − (C(y)\{0})) ∩ {y} = ∅.

2. Suppose that int C(y) 	= ∅ for all y ∈ Ω. yε ∈ Ω is said to be a weakly εk0-
nondominated element of Ω with respect to the ordering map C : Y ⇒ Y
if

∀y ∈ Ω : (yε − εk0 − int C(y)) ∩ {y} = ∅.
3. yε ∈ Ω is said to be a strongly εk0-nondominated element of Ω with respect to

the ordering map C : Y ⇒ Y if

∀y ∈ Ω : yε − εk0 ∈ y − C(y).

If ε = 0, then all these definitions coincide with the usual definitions of non-
dominated points (see [15, 40]). We denote the set of εk0-nondominated, weakly
εk0-nondominated and strongly εk0-nondominated elements by εk0-N(Ω, C), εk0-
WN(Ω, C) and εk0-SN(Ω, C) respectively.

Now, we define the second concept of approximate solution of variable order
structure based on the domination relation (2). More details and properties of these
points are given in [36].

Definition 3.2. Let Assumption (A1) holds.

1. yε ∈ Ω is said to be an εk0-minimal element of Ω with respect to the ordering
map C : Y ⇒ Y if

(yε − εk0 − (C(yε)\{0})) ∩ Ω = ∅.

2. Suppose that int C(yε) 	= ∅. yε ∈ Ω is said to be a weakly εk0-minimal element
of Ω with respect to the ordering map C : Y ⇒ Y if

(yε − εk0 − int C(yε)) ∩ Ω = ∅.

3. yε ∈ Ω is said to be a strongly εk0-minimal element of Ω with respect to the
ordering map C : Y ⇒ Y if

∀y ∈ Ω : yε − εk0 ∈ y − C(yε).

If ε = 0, then all these definitions coincide with the usual definitions of minimal
points (see [15, 25]). We denote the set of εk0-minimal, weakly εk0-minimal and
strongly εk0-minimal elements by εk0-M(Ω, C), εk0-WM(Ω, C) and εk0-SM(Ω, C)
respectively.

Now we define εk0-minimizers based on the domination relation (3). More details
and properties of these points are given in [36].
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Definition 3.3. Let Assumption (A1) holds.

1. yε ∈ Ω is said to be an εk0-minimizer of Ω with respect to the ordering map
C : Y ⇒ Y if

∀y, y1 ∈ Ω : (yε − εk0 − (C(y)\{0})) ∩ {y1} = ∅.

2. Suppose that int C(y) 	= ∅ for all y ∈ Ω. yε ∈ Ω is said to be a weakly εk0-
minimizer of Ω with respect to the ordering map C : Y ⇒ Y if

∀y, y1 ∈ Ω : (yε − εk0 − int C(y)) ∩ {y1} = ∅.

3. yε ∈ Ω is said to be a strongly εk0-minimizer of Ω with respect to the ordering
map C : Y ⇒ Y if

∀y1, y2 ∈ Ω : yε − εk0 ∈ y1 − C(y2).

If ε = 0, then these definitions are the definitions of the exact minimizer, weakly
minimizer and strongly minimizer elements and coincide with Definition 1.11 [9]. We
denote the set of εk0-minimizers, weakly εk0-minimizers and strongly εk0-minimizers
by εk0-MZ(Ω, C), εk0-WMZ(Ω, C) and εk0-SMZ(Ω, C) respectively.

(0, 1)T

(1,0)T

(1, ε)T

(ε, 1)T

Ω
(y1, y2)

(y′1, y
′
2)

(y1, y2)− εk0 − C(y1, y2)

(y′1, y
′
2)− εk0 − C(y′1, y

′
2)

Set εk0-N(Ω, C), εk0-M(Ω, C) and εk0-MZ(Ω, C).

Figure 1: Example 3.4 where the set of εk0-N(Ω, C), εk0-MZ(Ω, C) and εk0-M(Ω, C)
of Ω coincide.

Example 3.4. Let ε = 1
100

and k0 = (1, 0)T . Also, suppose that

Ω = {(y1, y2)| {(y1 + y2 ≥ 1)} ∩ {0 ≤ y1, y2 ≤ 1}}
and

C(y1, y2) =

{
R

2
+ if y1 = 0

Cone conv{(1, 0)T , (y1, y2)} otherwise.
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It is easy to see that cl C(y) + [0,∞)k0 ⊆ cl C(y) for all y ∈ Ω. Then {(y1, y2) ∈
Ω| y1 + y2 ≤ 1 + 1

100
} are εk0-nondominated, εk0-minimizer and also εk0-minimal

elements and the sets of all these points coincide (see Figure 1).

In the case of fixed order structure, εk0-nondominated (weakly εk0-nondominated)
elements, εk0-minimizer (weakly εk0-minimizer) and εk0-minimal (weakly εk0-minimal)
elements coincide but the following examples shows that this is not true when we
are talking about variable order structure.

Example 3.5. Let ε = 1
100

and k0 = (1, 0)T . Also suppose that

Ω = {(y1, y2)| 0 ≤ y1, y2 ≤ 1} .
and

C(y1, y2) =

{ {(d1, d2) ∈ R
2| d1 ≥ 0, d2 ≤ 0} if y1 = 0

Cone conv{(1, 0)T , (y1, y2)} otherwise.

It is easy to see that cl C(y) + [0,∞)k0 ⊆ cl C(y) for all y ∈ Ω. Then {(y1, y2) ∈
Ω| y1 ≤ ε} is the set of εk0-minimal points but just the elements of the set {(y1, y2) ∈
Ω| y1 < ε}⋃{(ε, 1)T} are εk0-nondominated and εk0-minimizers (see Figure 2).

(y1, y2)

(y′1, y
′
2)

(0, 1)T

(1, 0)T(ε, 0)T

(ε, 1)T

(y1, y2)− εk0 − C(y1, y2)

(y′1, y
′
2)− εk0 − C(y′1, y

′
2)

Set of εk0- M(Ω, C).Also set of εk0- N(Ω, C) and εk0- MZ(Ω, C) except line y1 = ε

Ω

Figure 2: Example 3.5 where there exists an εk0-minimal element of the set Ω which
is not εk0-minimizer and εk0-nondominated element.

Example 3.6. Let ε = 1
100

and k0 = (1, 1)T . Also suppose that

Ω =
{
(y1, y2) ∈ R

2| {y1 + y2 ≥ −1} ∩ {y1 ≤ 0, y2 ≤ 0}}
and

C(y1, y2) =

{ {(d1, d2) ∈ R
2| d2 ≥ 0, d1 + d2 ≥ −1} for (y1, y2) = (−1, 0)T

R
2
+ otherwise.
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It is easy to see that cl C(y) + [0,∞)k0 ⊆ cl C(y) for all y ∈ Ω. Then {(y1, y2) ∈
Ω | y1+ y2 ≤ − 98

100
, y1 	= −1} is the set of εk0-minimal elements, but (−1, 0)T is not

minimal. However (−1, 0)T is an εk0-nondominated point and {(y1, y2) ∈ Ω| y1+y2 ≤
− 98

100
} is the set of all εk0-nondominated elements. Obviously, (−1, 0)T is not a εk0-

minimizer and {(y1, y2) ∈ Ω| − 1 < y2 ≤ −1 + ε} is the set of εk0-minimizers (see
Figure 3).

(−1, 0)T

(0,−1)T

(−1, 0)T − εk0 − C(−1, 0)T

(y1, y2)− εk0 − C(y1, y2)

(0,− 98
100)

T − εk0 − C(0,− 98
100)

T

(−98
100 , 0)

T

(−98
100 , 0)

T

Ω

Figure 3: Example 3.6 where (−1, 0)T is an εk0-nondominated of the set Ω, but it
is neither εk0-minimizer nor εk0-minimal element.

In the following example, we show that there are some points which are εk0-
nondominated and also εk0-minimal but they are not εk0-minimizers.

Example 3.7. Let ε = 1
100

and k0 = (0, 1)T . Also suppose that

Ω =
{
(y1, y2) ∈ R

2
+| {y1 + y2 ≥ 2} ∩ {y1 ≥ 0, 0 ≤ y2 ≤ 2}} .

and

C(y1, y2) =

{ {(d1, d2) ∈ R
2| d1 ≤ 0, d2 ≥ 0} for (y1, y2) = (4, 2)T

R
2
+ otherwise.

It is easy to see that cl C(y) + [0,∞)k0 ⊆ cl C(y) for all y ∈ Ω. Then {(y1, y2) ∈
Ω | y1 + y2 ≤ 2 + ε} is the set of εk0-minimal and εk0-nondominated points. But
only points of the set

{
(y1, y2) ∈ Ω| y2 < ε = 1

100

}
are εk0-minimizer. This shows

that there are some points which are both εk0-nondominated and εk0-minimal but
not εk0-minimizer (see Figure 4).
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(0, 2)T
(ε, 2)T

(y1, y2)

(y′1, y
′
2)

(ȳ1, ȳ2)

(y1, y2)− εk0 − C(y1, y2)

(y′1, y
′
2)− εk0 − C(4, 2)T

(ȳ1, ȳ2)− εk0 − C(4, 2)T

Ω

(2, 0)T (2 + ε, 0)T

The set of εk0-M(Ω, C) and εk0-N(Ω, C) elements

The set of εk0-MZ(Ω, C)

Figure 4: Example 3.7 where there exists an element which is both εk0-nondominated
and εk0-minimal but not εk0-minimizer.

In [36], approximate solutions with respect to variable order structure are studied
with more details. Relation between different kind of approximate solutions, relation
between exact and approximate solution with variable order structure and properties
of approximate solution with variable order are discussed in [36].

4 Scalarization via Nonlinear Functionals

In this section, we present a scalarization method with the help of nonlinear func-
tionals. This scalarization was introduced by Tammer and Weinder [17] in 1983
and one year later by Pascoletti-Serafini [34] in 1984. Some generalization of this
scalarization method for variable order structure where the ordering map is pointed,
closed convex cone-valued can be found in [9, 10, 11, 16]. Here, we give a gener-
alization of Tammer-Weinder functional without any cone or convexity assumption
and we use it for characterization of all our three different approximate solutions.
In fact, our ordering map is just a set-valued map with some properties. For sure,
our scalarization also works in the case that map is cone and convex cone valued.

Assumption (A2). Let k0 ∈ Y \{0} and C : Y ⇒ Y be a set-valued map
where C(y) is a proper, closed set with 0 ∈ ∂C(y), C(y) + (0,∞)k0 ⊆ int C(y) for
all y ∈ Y .

For y ∈ Y , we define a functional θy : Ω → R in the following way

θy(y
1) := inf{t ∈ R | y1 ∈ tk0 − C(y)}. (4)
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Eichfelder [16] used the following generalization of Tammer-Weidner functional:

ψ(y) := inf{t ∈ R | y ∈ tk0 − C(y)} (5)

for characterization of exact nondominate and minimal solutions where C(y) is
pointed closed convex cone for all y ∈ Y . Note that in (5), pointed closed con-
vex cone C(y) is the cone which associated to the same y but for the functional
in (4), C(y) is independent from y1. Chen, Huang and Yang [9], Chen and Yang
[10], Chen, Yang and Yu [11] used the following generalization of Tammer-Weidner
functional:

ζ(y, z) := inf{t ∈ R | z ∈ tk(y)− C(y)} (6)

for characterization of exact nondominate and minimal solutions where C(y) is
pointed closed convex cone for all y ∈ Y and k(y) ∈ int C(y). Chen and Yang
[10] proved similar result to Theorem 4.5. Chen, Yang and Yu [11] proved that if
C : Y ⇒ Y is linear set-valued map and if C(y) is pointed closed convex cone for
all y ∈ Y , then the functional (6) is subadditive in second variable. Chen, Huang
and Yang [9] proved that if C : Y ⇒ Y is continuous set-valued map and if C(y) is
pointed closed convex cone for all y ∈ Y , then the functional (6) is lower semicontin-
uous and homogenous in second variable. We begin this section with the following
lemma.

Lemma 4.1. Let Assumption (A2) holds, y1, y2 ∈ Y and suppose that θy2(y
1) = t1,

then for any t2 > t1, the following holds:

y1 ∈ t2k
0 − C(y2). (7)

Proof. By C(y) + (0,∞)k0 ⊆ int C(y), y1 ∈ t1k
0 − C(y2) and t2 − t1 > 0, we

can write:

y1 ∈ t1k
0 − C(y2) = t2k

0 − [(t2 − t1)k
0 + C(y2)] ⊆ t2k

0 − C(y2). �

Two important properties which we need to show for our scalarizing functional
are well-define and properness. In the following two theorems, we will show these
properties. First, we show that under some assumptions, our scalarizing functional
is proper.

Theorem 4.2. The functional θy defined in (4) is proper for any y ∈ Y if and only
if for any y ∈ Y , C(y) does not contain any line parallel to k0, i.e.

∀y1, y2 ∈ Y, ∃t ∈ R : y1 /∈ tk0 − C(y2).

Proof. Suppose that θy2(y
1) = −∞, then by Lemma 4.1, for any t > −∞, we

have y1 ∈ tk0−C(y2) and {tk0−y1 | t ∈ R} ⊂ C(y2) and this means that there exists
y2 ∈ Y such that C(y2) contains a line parallel to k0 and this leads to contradiction.
Obviously, if there exists a parallel line to k0, then {tk0 − y1 | t ∈ R} ⊂ C(y2) for
any t and θy2(y

1) = −∞ �.
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Now we show that our scalarizing functional is well-defined. For showing this
property, we need to assume some assumptions. The following theorem shows us if
just one of the assumptions (1), (2) or (3) holds, then our functional is well-defined.

Theorem 4.3. Let Assumption (A2) holds. If one of the following properties hold
for each y ∈ Ω, then θy : Ω → R in (4) is well-defined.

1. C(y) does not contain any parallel line to k0.

2. C(y) is pointed.

3. There exists a cone D ⊆ Y such that k0 ∈ int D and C(y)+ int D ⊆ int C(y).

Proof.

1. For any y1, y2 ∈ Y , let S = {t ∈ R | y1 ∈ tk0 − C(y2)}. We just need to
prove that this set is closed and it is bounded from below. Since C(y) does
not contain any parallel line to k0, then by Theorem 4.2, we know that there
is t1 ∈ R such that y1 /∈ t1k

0 − C(y2). Also by Lemma 4.1, we know that for
any t2 < t1, y

2 /∈ t2k
0 −C(y2), otherwise since t2 < t1 then y1 ∈ t1k

0 −C(y2).
Therefore S is bounded from below. Now, we prove that S is closed. Suppose
that tn ∈ S is a sequence such that tn → t. Since tn ∈ S, then

y1 ∈ tnk
0 − C(y2) ⇒ tnk

0 − y1 ∈ C(y2).

Since C(y2) is closed for all y ∈ Y , then the limit point tk0 − y1 ∈ C(y2) and
this implies that S is closed and proof is done.

2. Pointedness of C(y) implies that C(y) does not contain any parallel line to k0

and the rest of proof is similar.

3. By Proposition 2.3.4 of [19], we know that C(y) does not contain any parallel
line to k0 and the rest of proof is exactly same as part 1. �

In the special case that C(x) is pointed convex cone we have the following corol-
lary [10].

Corollary 4.4. Suppose that C(y) is a convex cone for all y ∈ Y in Theorem 4.3
and k0 ∈ ⋂

y∈Y int C(y), then θy is well-defined.

Proof. Obviously, when C(y) is a convex cone, then by C(y) = D and part 3
of Theorem 4.3, we have C(y) + int C(y) ⊆ int C(y) and similar to proof of part 1
of Theorem 4.3, θy is well-defined. �

The following theorem shows some important properties of the functional θy
in (4) and we will use it to prove other properties of our scalarizing functional like
subadditivity, monotonicity and other theorems in the next sections. In the following
theorem, we give some properties of our scalarizing functional. Also, see Chen and
Yang [10] for the case that C is pointed, convex cone-valued map.
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Theorem 4.5. Let Assumption (A2) holds. For any y1, y2 ∈ Y , we have the fol-
lowing properties concerning θy2,

1. θy2(y
1) < t ⇔ y1 ∈ tk0 − int C(y2).

2. θy2(y
1) ≤ t ⇔ y1 ∈ tk0 − cl C(y2).

3. θy2(y
1) = t ⇔ y1 ∈ tk0 − ∂C(y2).

4. θy2(y
1) ≥ t ⇔ y1 /∈ tk0 − int C(y2).

5. θy2(y
1) > t ⇔ y1 /∈ tk0 − C(y2).

Proof.

1. Suppose that θy2(y
1) < t, then there exists γ > 0 such that θy2(y

1) + γ = t.
By definition of θy2(y

1), we can write

y1 ∈ θy2(y
1)k0 − C(y2) ⇒ θy2(y

1)k0 + γk0 − y1 ∈ C(y2) + γk0.

By the assumption C(y) + (0,∞)k0 ⊆ int C(y) for any y ∈ Y , we have
tk0 − y1 ∈ int C(y2).

Now suppose that y1 ∈ tk0 − int C(y2), therefore there exists c1 ∈ int C(y2)
such that

y1 = tk0 − c1. (8)

Since c1 ∈ int C(y2), then there exists γ > 0 such that c1 − γk0 ∈ C(y2). By
this and (8):

y1 = (t− γ)k0 − (c1 − γk0) ⇒ y1 ∈ (t− γ)k0 − C(y2).

Hence θy2(y
1) ≤ (t− γ) < t.

2. Suppose that θy2(y
1) ≤ t, then θy2(y

1) = t or θy2(y
1) < t. In the case of

θy2(y
1) < t, by part 1:

y1 ∈ tk0 − int C(y2) ⇒ y1 ∈ tk0 − C(y2).

Now suppose that θy2(y
1) = t and there exists a sequence tn → t such that

t < tn and θy2(y
1) < tn. By part 1,

y1 ∈ tnk
0 − int C(y2) ⇒ tnk

0 − y1 ∈ C(y2).

By tnk
0 − y1 → tk0 − y1 and since C(y2) is a closed set, then tk0 − y1 ∈ C(y2)

and y1 ∈ tk0 − C(y2).

Now suppose y1 ∈ tk0 − C(y2), then obviously from definition θy2(y
1) ≤ t.
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3. Suppose that θy2(y
1) = t, then y1 ∈ tk0 − C(y2) and this means y1 ∈ tk0 −

∂C(y2) or y1 ∈ tk0 − int C(y2). If y1 ∈ tk0 − ∂C(y2), then we are done. But
suppose that y1 ∈ tk0 − int C(y2), then by part 1, θy2(y

1) < t and this is
contradiction to our assumption.

Now suppose that y1 ∈ tk0 − ∂C(y2), then obviously y1 ∈ tk0 − C(y2) and
θy2(y

1) ≤ t. If θy2(y
1) 	= t, then θy2(y

1) < t and by part 1, y1 ∈ tk0− int C(y2)
which is contradiction to our assumption.

4. This follows from part 1.

5. This follows from part 2. �

In the following, we will prove some important properties of our scalarization
functional. In fact, we prove that our scalarizing functional is lower semicontin-
uous, subadditive, homogenous, monotone and continuous in the case that some
assumptions hold. These properties are important for us and we will use them in
the next sections and later they will help us to write a generalization of variational
principle for vector optimization with variable order structure. First, we show lower
semicontinuity.

Theorem 4.6. Let Assumption (A2) holds, then θz in (4) is lower semicontinuous
for any z ∈ Y .

Proof. We need to show that for any t ∈ R, the set

St = {y ∈ Y | θz(y) ≤ t}
is a closed set. For this, we suppose that yn → y0 is a sequence and yn ∈ St. We
show that the limit point of this sequence belongs to the set St and this proves that
St is a closed set. Since yn ∈ St, then θz(y

n) ≤ t. Now by part 2 of Theorem 4.5, we
have,

yn ∈ tk0 − C(z) ⇒ tk0 − yn ∈ C(z).

Since C(z) is a closed set, then the limit point of the sequence tk0−yn → tk0−y0

also belongs to C(z) and y0 ∈ tk0 − C(z) and by part 2 of Theorem 4.5, we can
write θz(y

0) ≤ t. This means that St is a closed set for any t ∈ R and θz is lower
semicontinuous for any z ∈ Y . �

Theorem 4.7. Let Assumption (A2) holds. For each y ∈ Ω, θy in (4) is homoge-
neous if and only if C(y) is a cone.

Proof. Suppose that λ > 0, then for any y1, y2 ∈ Y , we have:

θy2(λy
1) = inf {t ∈ R | λy1 ∈ tk0 − C(y2)}.

Since C is a cone, we have C(y2) = λC(y2) and

θy2(λy
1) = inf{t ∈ R | λy1 ∈ tk0 − λC(y2)} = λ inf{ t

λ
∈ R | y1 ∈ t

λ
k0 − C(y2)},
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so by t′ = t
λ
, we can write:

θy2(λy
1) = λ inf{t′ ∈ R | y1 ∈ t′k0 − C(y2)} = λθy2(y

1).

Now assume that θy is homogenous and take y1 ∈ C(y). Obviously 0 ∈ C(y)
and by part 2 of Theorem 4.5, θy(−y1) ≤ 0. Since θy is homogeneous, we obtain

θy(−λy1) ≤ λθy(−y1) ≤ 0.

Again by part 2 of Theorem 4.5, −λy1 ∈ C(y) and λC(y) ⊆ C(y). Now suppose
that y1 ∈ C(y), then by part 2 of Theorem 4.5

θy(−y1) ≤ 0 ⇒ λθy2(−y1

λ
) ≤ 0.

By λ > 0, we get y1

λ
∈ C(y) and y1 ∈ λC(y) and this implies C(y) ⊆ λC(y). Hence,

C(y) = λC(y) for any λ > 0 and y ∈ Y and C is a cone. �

Subadditivity of the scalarizing functional is one of important properties. We
need this property in the next section for the characterization of approximate non-
dominated, minimal and minimizers. Also, subadditivity is a important property for
the writing variational principle for vector optimization with variable order struc-
ture.

Theorem 4.8. Let Assumption (A2) holds. θy in (4) is subadditive if and only if
C(y) + C(y) ⊆ C(y) for all y ∈ Y.

Proof. Suppose that C(y)+C(y) ⊆ C(y) for all y ∈ Y and take y1, y2 ∈ Y . Let
t1, t2 ∈ R, then by part 2 of Theorem 4.5

θy(y
1) = t1 ⇒ y1 ∈ t1k

0 − C(y). (9)

θy(y
2) = t2 ⇒ y2 ∈ t2k

0 − C(y). (10)

By (9), (10) and since C(y) + C(y) ⊆ C(y), we can write:

y1 + y2 ∈ (t1 + t2)k
0 − (C(y) + C(y)) ⊆ (t1 + t2)k

0 − C(y).

By part 2 of Theorem 4.5, θy(y
1 + y2) ≤ t1 + t2 = θy(y

1) + θy(y
2).

Now assume that θy is subadditive. We show that C(y) + C(y) ⊆ C(y). Take
y1, y2 ∈ C(y). By part 2 of Theorem 4.5 and y1 ∈ C(y), then θy(−y1) ≤ 0 and by
y2 ∈ C(y), then θy(−y2) ≤ 0. Since θy is subadditive, we obtain

θy(−y1 − y2) ≤ θy(−y1) + θy(−y2) ≤ 0.

Again by part 2 of Theorem 4.5, −y1−y2 ∈ C(y) and this proofs that C(y)+C(y) ⊆
C(y). �
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For sure, there are a lot of new things about variable order structure and one of
the important things is how to define the convexity of the functional with respect
to the ordering map. In the vector optimization problem with fixed order structure,
convexity of the functional is equal to the convexity of the epigraph, i.e. the scalar-
izing functional is convex if and only if its epigraph is convex. But unfortunately,
for the definitions of convexity for variable order structure in literature, this is not
true and convexity of epigraph does not imply a convex functional. See [9] for more
details about convexity in variable order structure but still there exist no unified
definition of convexity in variable order structure and relation between the convex-
ity of epigraph and convexity of the functional is not known yet. We say that our
functional θy : Ω → R is convex if for all y1, y2 ∈ Y and 0 < λ < 1 the following
inequality holds,

θy(λy
1 + (1− λ)y2)) ≤ λθy(y) + (1− λ)θy(y

2).

Theorem 4.9. Let Assumption (A2) holds. For all y ∈ Ω, θy is convex if and only
if C(y) be a convex cone for each y ∈ Ω.

Proof. Suppose that λ ∈ [0, 1], y1, y2 ∈ Y such that θy(y
1) = t1 and θy(y

2) = t2.
By part 2 of Theorem 4.5, y1 ∈ t1k

0 − C(y) and y2 ∈ t2k
0 − C(y) and since C is a

convex cone, we can write,

λy1 + (1− λ)y2 ∈ λt1k
0 + (1− λ)t2k

0 − (C(y) + C(y))

⊆ (λt1 + (1− λ)t2)k
0 − C(y).

Therefore
θy(λy

1 + (1− λ)y2)) ≤ λθy(y) + (1− λ)θy(y
2),

this means that θy is convex.

Now suppose that θy is convex, y1, y2 ∈ C(y) and λ ∈ (0, 1). By y1, y2 ∈ C(y)
and part 2 of Theorem 4.5, θy(y

1) ≤ 0 and θy(y
2) ≤ 0 and by convexity of θy, we

can write
θy(λy

1 + (1− λy2)) ≤ λθy(y
1) + (1− λ)θy(y

2) ≤ 0.

Therefore, by part 2 of Theorem 4.5, λy1+(1−λy2) ∈ C(y) and C(y) is convex.
�

Last theorem of this section is about the monotonicity of our scalarizing func-
tional. In this theorem, we will prove some monotonicity properties of our scalariza-
tion functional and these properties will be used in the next section for characteri-
zation of approximate optimal points of vector optimization problem with variable
order structure and also in the last section about variational principle of vector
optimization with variable order structure.

Theorem 4.10. Let Y be a linear topological space, k0 ∈ Y \{0}, D ⊆ Y and
Assumption (A2) holds, then the following properties hold for θy in (4):
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1. θy is D-monotone ⇔ C(y) +D ⊂ C(y) for all y ∈ Y .

2. ∀ y1, y2 ∈ Y, t1 ∈ R : θy2(y
1+t1k

0) = θy2(y
1)+t1 (translation property).

Let furthermore C(y) + (0,∞)k0 ⊆ int C(y) for all y ∈ Y . Then

3. θy is continuous for all y ∈ Y .

4. If θy is proper, then θy is D-monotone ⇔ C(y) + D ⊆ C(y) ⇔ ∂C(y) +
D ⊆ C(y). Moreover, if θy is finite-valued, then θy is strictly D-monotone
⇔ C(y)\{0}+D ⊆ int C(y) ⇔ ∂(C(y)\{0}) +D ⊆ int C(y).

Proof.

1. Suppose that C(y) + D ⊂ C(y) for all y ∈ Y and y1 ≤D y2, we prove that
θy(y

1) ≤ θy(y
2) for any y ∈ Y . W.L.O.G, choose y ∈ Y arbitrarily and suppose

that θy(y
2) = t. By part 2 of Theorem 4.5

y2 ∈ tk0 − C(y). (11)

Since y1 ≤D y2, then there exists d ∈ D such that y1 + d = y2. By (11), we
can write

y2 = y1 + d ∈ tk0 − C(y) ⇒ y1 ∈ tk0 − (C(y) + d) ⊆ tk0 − C(y).

Again by part 2 of Theorem 4.5, θy(y
1) ≤ t = θy(y

2).

Now suppose that θy is D-monotone and choose d ∈ D and y1 ∈ C(y) arbi-
trarily. Since y1 ∈ C(y), then by part 2 of Theorem 4.5, θy(−y1) ≤ 0. Also,
since θy is D-monotone, then θy(−y1− d) ≤ 0 and again by part 2 of Theorem
4.5

−y1 − d ∈ −C(y) ⇒ y1 + d ∈ C(y) ∀y1 ∈ C(y), ∀d ∈ D.

Since y, y1, d were chosen arbitrarily, then C(y) +D ⊆ C(y).

2. Suppose that θy2(y
1) = t. By part 2 of Theorem 4.5,

y1 ∈ tk0 − C(y2) ⇒ y1 + t1k
0 ∈ (t+ t1)k

0 − C(y2) ⇒ θy2(y
1 + t1k

0) = t+ t1,

and this means that θy2(y
1 + t1k

0) = θy2(y
1) + t1.

3. By Theorem 4.6, we know that θy is lower semicontinuous and we just need
to prove that it is also upper semicontinuous. Therefore we need to show that
for any t ∈ R, the set

S̄t = {y1 ∈ Y | θy(y1) ≥ t}

is a closed set. For this, we suppose that yn → y0 is a sequence and yn ∈ S̄t.
We show that the limit point of this sequence belongs to the set S̄t and this
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proves that S̄t is a closed set. Since yn ∈ S̄t, then θy(y
n) ≥ t. Now by part 4

of Theorem 4.5, we have,

yn /∈ tk0 − int C(y) ⇒ tk0 − yn /∈ int C(y) ⇒ tk0 − yn ∈ (int C(y))c.

Since int C(y) is open, then the complement (int C(y))c and includes all the
limit points. Therefore tk0 − y0 ∈ (int C(y))c and this means

tk0 − y0 /∈ int C(y) ⇒ y0 /∈ tk0 − int C(y).

Again by part 4 of Theorem 4.5, we have θy(y
0) ≥ t and this implies that S̄t

is a closed set and θy is upper semicontinuous. Since θy is also lower semicon-
tinuous, then θy is continuous.

4. We prove the second part, the first part is similar.

Assume that θy is strictly D-monotone and take y1 ∈ C(y) and d ∈ D\{0}.
Since y1 ∈ C(y), then by part 2 of Theorem 4.5, θy(−y1) ≤ 0, and so, by
hypothesis θy(−y1 − d) < 0. By part 1 of Theorem 4.5

−y1 − d ∈ −int C(y) ⇒ y1 + d ∈ int C(y) ∀y1 ∈ C(y), ∀d ∈ D.

Now, suppose that ∂C(y) + (D\{0}) ⊂ int C(y) for all y ∈ Y and y1, y2 ∈ Y
with y2 − y1 ∈ D\{0}. From part 3 of Theorem 4.5 we have that y2 ∈
θy(y

2)k0 − ∂C(y), and so

y1 + d ∈ θy(y
2)k0 − ∂C(y) ⇒

y1 ∈ θy(y
2)k0 − (∂C(y) + (D\{0})) ⊂ θy(y

2)k0 − int C(y).

By part 1 of Theorem 4.5, we obtain θy(y
1) < θy(y

2). The remaining implica-
tion is obvious. �

5 Characterization of εk0-optimal elements by scalar-

ization via nonlinear functionals

In the scalarization of vector optimization problem, we replace the original vector
optimization problem with scalar-valued optimization problem to characterize the
optimal elements. In this section, we characterize εk0-optimal elements by scalar-
ization via nonlinear functionals. By this scalarization, we show that approximate
solution of original vector optimization problem is also a solution for the scalar
problem and vice versa. In the following theorem, we show that εk0-minimizer of
the set Ω is a solution of scalar optimization problem. For the scalarization, we
generalized scalarization method by Tammer and Weidner. For more details and
some properties of this scalarization method in the case of fixed order structure, see
[17, 18, 34].

Assumption (A3). Let Ω be a subset of Y , ε ≥ 0 and k0 ∈ Y \{0}. Also,
suppose that C : Y ⇒ Y is a set-valued map where C(y) is a proper, pointed, closed
and solid set with 0 ∈ ∂C(y), C(y) + (0,∞)k0 ⊆ int C(y) for any y ∈ Y .
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Theorem 5.1. Let Assumption (A3) holds.

1. If yε ∈ Ω is an εk0-minimizer of the set Ω ⊆ Y , then θy(0) ≤ θy(z− yε)+ ε for
all y, z ∈ Ω, where θy(z) = inf {t ∈ R | tk0 − z ∈ C(y)}.

2. If yε ∈ Ω is a weakly εk0-minimizer of Ω, then θy(0) ≤ θy(z − yε) + ε for all
y, z ∈ Ω.

3. If yε ∈ Ω is a strongly εk0-minimizer of Ω, then θy(0) < θy(z − yε) + ε for all
y, z ∈ Ω.

Proof.

1. Suppose that yε is an εk0-minimizer of the set Ω and there exist y, z ∈ Ω such
that θy(z − yε) + ε < θy(0) = t. First, we prove that t = 0. By part 2 of
Theorem 4.5,

θy(0) = t ⇒ tk0 − 0 ∈ C(y) ⇒ tk0 ∈ C(y), (12)

by 0 ∈ ∂C(y) for all y ∈ Ω, then t ≤ 0. Also, by 0 ∈ ∂C(y), C(y)+ [0,∞)k0 ⊆
C(y) and since C(y) is pointed, then t ≥ 0 and t = 0.

Since θy(z−yε)+ε < θy(0), then there exists γ > 0 such that θy(z−yε) = −γ−ε
and by part 2 of Theorem 4.5,

(−γ − ε)k0 + yε − z = c1 ∈ C(y) ⇒ yε − z − εk0 ∈ C(y) + γk0. (13)

By γ > 0 and C(y)+ (0,∞)k0 ⊆ int C(y), we have yε− εk0− z ∈ int C(y) and

(yε − εk0 − C(y)\{0}) ∩ Ω 	= ∅
which is contradiction to our assumption.

2. Proof is similar to the proof of previous part.

3. From the first part, we know that θy(0) ≤ θy(z−yε)+ε for all y, z ∈ Ω. We just
need to show that θy(0) 	= θy(z − yε) + ε for all y, z ∈ Ω and this means that
we need to show θy(z − yε) + ε 	= 0 for all y, z ∈ Ω. If yε = z and ε > 0, then
θy(z−yε) = 0 and obviously θy(z−yε)+ε 	= 0. Again, if yε = z and ε = 0, then
our assumption (θy(0) < θy(z − yε) + ε) can not be fulfilled. So we supposed
that yε 	= z. Suppose that there exist y, z ∈ Ω such that θy(z − yε) + ε = 0
then by part 2 of Theorem 4.5

yε − εk0 − z ∈ C(y). (14)

Also, by definition of strongly εk0-minimizer, for all y ∈ Ω, z ∈ Ω\{yε}, we
have

yε − εk0 ∈ z − (C(y)\{0}) ⇒ yε − εk0 − z ∈ −(C(y)\{0}). (15)

By (14) and (15), we can imply (yε− εk0−z) ∈ C(y)∩− (C(y)\{0}). But this
is contradiction to the pointedness of C(y). Therefore θy(0) 	= θy(z − yε) + ε
and θy(0) < θy(z − yε) + ε for all y, z ∈ Ω. �
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In the above theorem, we showed that each εk0-minimizer is a solution for scalar-
valued problem. Now, we show that also each solution of scalar problem is at least
a weakly εk0-minimizer.

Theorem 5.2. Let Assumption (A3) holds.

1. If yε ∈ Ω and θy(0) < θy(z−yε)+ε for all y, z ∈ Ω, then yε is an εk0-minimizer
of the set Ω.

2. If yε ∈ Ω and θy(0) ≤ θy(z − yε) + ε for all y, z ∈ Ω, then yε is a weakly
εk0-minimizer of the set Ω.

Proof.

1. Suppose that θy(0) < θy(z − yε) + ε for all y, z ∈ Ω but yε is not an εk0-
minimizer, then there exist y1, y2 ∈ Ω such that yε − εk0 ∈ y1 + C(y2)\{0}.
This means that there exists c1 ∈ C(y2) such that yε − εk0 = y1 + c1. Similar
to the proof of Theorem 5.1, θy2(0) = 0 and by part 2 of Theorem 4.5

yε − εk0 − y1 − c1 = 0 ⇒ −εk0 + yε − y1 ∈ C(y2).

By part 2 of Theorem 4.5, θy2(y
1−yε) = −ε ≤ 0 = θy2(0) which is contradiction

to our assumption.

2. Suppose that θy(0) ≤ θy(z − yε) + ε for all y, z ∈ Ω but yε is not a weakly
εk0-minimizer, then there exist y1, y2 ∈ Ω such that y1 ∈ yε − εk0 − int C(y2).
This means that there exists c1 ∈ int C(y2) such that y1 = yε − εk0 − c1.
Similar to part 1, we know that θy2(0) = 0. Since c1 ∈ int C(y2), there exists
γ > 0 such that c1 − γk0 ∈ C(y2) and

yε − y1 − (ε+ γ)k0 = c1 − γk0 ∈ C(y2).

By part 2 of Theorem 4.5, θy2(y
1 − yε) = −(γ + ε) < 0 = θy2(0) which is

contradiction to our assumption. �

By Theorems 5.3 and 5.4, we characterized approximate minimizer by scalariza-
tion via nonlinear functional methods. We can also use this method for character-
izing the approximate nondominate elements. In the following theorem, we show
that each εk0-nondomiante element of the set Ω is a solution for the scalar-valued
optimization problem.

Theorem 5.3. Let Assumption (A3) holds.

1. If yε ∈ Ω is an εk0-nondominated element of the set Ω ⊆ Y , then θz(0) ≤
θz(z − yε) + ε for all z, y ∈ Ω where θz(y) = inf {t ∈ R | tk0 − y ∈ C(z)}.

2. If yε ∈ Ω is a weakly εk0-nondominated element of Ω, then θz(0) ≤ θz(z−yε)+ε
for all z ∈ Ω.
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3. If yε ∈ Ω is a strongly εk0-nondominated element of Ω, then θz(0) < θz(z −
yε) + ε for all z ∈ Ω.

Proof.

1. Suppose that yε is an εk0-nondominated element of the set Ω and there exists
z ∈ Ω such that θz(z − yε) + ε < θz(0) = t. Similar to the proof of Theorem
5.1, t = 0 and since θz(z − yε) + ε < θz(0), then there exists γ ≥ 0 such that
θz(z − yε) = −γ − ε and by part 2 of Theorem 4.5,

(−ε−γ)k0+yε− z = c1 ∈ C(z) ⇒ yε− z− εk0 = c1+γk0 ∈ C(z)+γk0. (16)

By γ ≥ 0 and C(z)+ (0,∞)k0 ⊆ int C(z), we have yε− εk0− z ∈ int C(z) and

(yε − εk0 − C(z)\{0}) ∩ {z} 	= ∅
which is contradiction to our assumption.

2. Proof is similar to the proof of part 1.

3. By part 1, proof is similar to the proof of part 3 of Theorem 5.1.

We showed that each εk0-nondominated element of the set Ω is a solution for
scalar problem. Now, we show that also each solution of scalar-valued problem is at
least a weakly εk0-nondomiante element of the set Ω with respect to the ordering
map C : Y ⇒ Y .

Theorem 5.4. Let Assumption (A3) holds.

1. Let yε ∈ Ω and θz(0) < θz(z − yε) + ε for all z ∈ Ω, then yε is an εk0-
nondominated element of the set Ω.

2. Let yε ∈ Ω and θz(0) ≤ θz(z − yε) + ε for all z ∈ Ω, then yε is a weakly
εk0-nondominated element of the set Ω.

Proof.

1. Suppose that θz(0) < θz(z − yε) + ε for all z ∈ Ω but yε is not an εk0-
nondominated element, then there exists z ∈ Ω such that yε − εk0 ∈ z +
C(z)\{0}. This means that there exists c1 ∈ C(z)\{0} such that yε − εk0 =
z + c1. Same as previous theorems, θz(0) = 0. By part 2 of Theorem 4.5 and
yε − εk0 = z + c1, we have

yε − εk0 − z − c1 = 0 ⇒ −εk0 + yε − z ∈ C(z)\{0}.

By part 2 of Theorem 4.5, θz(z− yε) + ε ≤ 0 = θz(0) which is contradiction to
our assumption.
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2. Proof is similar to the proof of part 2 of Theorem 5.2.

In the special case when ε = 0 and C is cone-valued map where each C(y)
is pointed convex cone, Eichfelder [16] gives characterization of exact solutions of
vector optimization with variable order structure for the nondominated and minimal
points. In the following theorem, we characterize approximate minimal elements
of the set Ω with respect to the ordering map C by scalarization via nonlinear
functionals. We show that each εk0-minimal element of the set Ω is a solution for
the scalar-valued optimization problem.

Theorem 5.5. Let Assumption (A3) holds.

1. If yε ∈ Ω is an εk0-minimal element of the set Ω ⊆ Y , then θyε(0) ≤ θyε(y −
yε) + ε for all y ∈ Ω where θyε(y) = inf {t ∈ R | tk0 − y ∈ C(yε)}.

2. If yε ∈ Ω is a weakly εk0-minimal element of Ω, then θyε(0) ≤ θyε(y − yε) + ε
for all y ∈ Ω.

3. If yε ∈ Ω is a strongly εk0-minimal element of Ω, then θyε(0) < θyε(y − yε) + ε
for all y ∈ Ω.

Proof.

1. Suppose that yε is an εk0-minimal element of the set Ω and there exists y ∈ Ω
such that θyε(y−yε)+ε < θyε(0) = t. Similar to the proof of Theorem 5.1, t = 0
and since θyε(y − yε) + ε < 0, then there exists γ > 0 such that θyε(y − yε) =
−γ − ε and by part 2 of Theorem 4.5,

(−γ−ε)k0+yε−y = c1 ∈ C(yε) ⇒ yε−εk0−y = c1+γk0 ∈ C(yε)+γk0. (17)

By γ > 0 and C(yε) + (0,∞)k0 ⊆ int C(yε), we have yε − εk0 − y ∈ int C(yε)
and

(yε − εk0 − C(yε)\{0}) ∩ Ω 	= ∅
which is contradiction to our assumption.

2. Proof is similar to the part 1.

3. By part 1, proof is similar to the proof of part 3 of Theorem 5.1.

Theorem 5.5 tells us that each εk0-mimimal element of the set Ω is a solution for
scalar problem. In the following, we show that also each solution of scalar-valued
problem is at least a weakly εk0-minimal element of the set Ω with respect to the
ordering map C : Y ⇒ Y .

Theorem 5.6. Let Assumption (A3) holds.
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1. Let yε ∈ Ω and θyε(0) < θyε(y− yε)+ ε for all y ∈ Ω, then yε is an εk0-minimal
element of the set Ω.

2. Let yε ∈ Ω such that θyε(0) ≤ θyε(y − yε) + ε for all y ∈ Ω, then yε is a weakly
εk0-minimal element of the set Ω.

Proof.

1. Suppose that θyε(0) < θyε(y− yε)+ ε for all y ∈ Ω but yε is not an εk0-minimal
element, then there exists y ∈ Ω such that yε − εk0 ∈ y + C(yε)\{0}. This
means that there exists c1 ∈ C(yε) such that yε − εk0 = y + c1.

Similar to the proof of Theorem 5.1, θyε(0) = 0 and by part 2 of Theorem 4.5,

yε − εk0 − y − c1 = 0 ⇒ −εk0 + yε − y ∈ C(yε).

Again by part 2 of Theorem 4.5, θyε(y − yε) + ε ≤ 0 = θyε(0) which is contra-
diction to our assumption.

2. Proof is similar to the proof of part 2 of Theorem 5.2.

6 Vectorial Ekeland’s variational principle with

variable order structure

Several generalization of Ekeland’s variational principle for vector optimization prob-
lem with fix order structure are given in [1, 2, 3, 4, 7, 8, 21, 23, 26, 27, 30, 37]. In this
section, with the help of some lemmas, we give an extension of Ekeland’s variational
principle for vector optimization problem and minimal points with variable order
structure.

Assumption (A4). Let X be a real Banach space, S ⊆ X, ε ≥ 0 and k0 ∈
Y \{0}. Also, suppose that f : X → Y and D : X ⇒ Y is a set-valued map where
D(x) is a proper, pointed, closed and solid set with 0 ∈ ∂D(x), D(x) + (0,∞)k0 ⊆
int D(x) for any x ∈ S.

Let Assumption (A4) holds. xε ∈ S is said to be an εk0-minimal solution if

(f(xε)− εk0 −D(xε)) ∩ f(S) = ∅.
We denote the set of εk0-minimal solutions by εk0-M(S, f,D). For more detail
and properties of these points see [35, 36]. When ε = 0, this definition coincide
with the concept of minimal solution with respect to the variable ordering structure
[10, 15]. Definition of weakly εk0-minimal solutions is similar and instead of D(xε)
we use int D(xε). We denote the set of all weakly εk0-minimal solutions by εk0-
WM(S, f,D). We will study the following vector optimization problem with respect
to the variable order structure and set-valued map D : X ⇒ Y :

εk0 −Min(S, f,D). (VVOP)
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Definition 6.1. We say that f : X → Y is lower semicontinuous with respect to
the ordering map D : X ⇒ Y , k0 ∈ Y \{0} and S ⊆ X (for short (k0, D, S)-lsc ), if

MX
(ω,t) := {x ∈ S | f(x) ∈ tk0 − cl D(ω)}

is closed for all ω ∈ S and each t ∈ R.

If D = D(ω1) = D(ω2) is a fixed set, then Definition 6.1 coincides with definition
by Tammer in the page 133 of [37]. Also, if D = D(ω1) = D(ω2) is a cone, Luc [32]
mentioned the following cone continuity. f is D-semicontinuous if at any element
y ∈ Y ,

{x ∈ S | f(x) ∈ y −D}
is closed. From definition, it is easy to see that each D-semicontinuous function is
(k0, D, S)-lsc. Also, if Y = R, then our definition coincide with usual definition of
lower semicontinuity. In order to prove the main theorem of this section, we need
to have the following lemmas.

Lemma 6.2. Let D : X ⇒ Y be a set valued map and for all ω ∈ S, D(ω) be a
closed set and D(ω)+(0,∞)k0 ⊆ int D(ω). For each ω ∈ S, consider the functional
θω defined by (4). If the objective function f : X → Y in (VVOP) is a (k0, D, S)-lsc
function, then (θω ◦ f)(·) = θω(f(·)) is a lower semicontinuous functional for each
ω ∈ S.

Proof. Since the function f : X → Y is a (k0, D, S)-lower semicontinuous, then
the set

MX
(ω,t) = {x ∈ S | f(x) ∈ tk0 −D(ω)}

is closed for all ω ∈ S and t ∈ R.

Now consider that MY
(ω,t) = tk0−D(ω) ⊆ Y . By D(ω)+(0,∞)k0 ⊆ int D(ω) and

part 3 of Theorem 4.10, we know that θω : Y → (−∞,∞) is a continuous functional
for each ω ∈ S and by part 2 of Theorem 4.5, we can write

MY
(ω,t) = tk0 −D(ω) = {y ∈ Y | y ∈ tk0 −D(ω)} =

= {y ∈ Y | θω(y) � θω(tk
0)} = {y ∈ Y | θω(y) � t} := MY

(ω,θω ,t)

for each ω ∈ S and t ∈ R. By this we can write,

MX
(ω,θω ,t) = {x ∈ Ω | θω(f(x)) � t} = {x ∈ S | f(x) ∈ MY

(ω,θω ,t)} =

= {x ∈ S | f(x) ∈ MY
(ω,t)} = MX

(ω,t)

is closed for all ω ∈ S and t ∈ R. This means that each θω◦f is a lower semicontinuous
for all ω ∈ S.
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Lemma 6.3. Let Assumption (A4) holds and B : X ⇒ Y be a cone-valued map
such that for all ω ∈ S, k0 ∈ int D(ω) and D(ω) + B(ω)\{0} ⊆ D(ω). If xε ∈ εk0-
M(S, f,D), then there exists strictly B-monotone continuous functional θxε : Y →
(−∞,∞) such that

∀x ∈ S, θxε(f(xε)) � θxε(f(x) + εk0).

Moreover, if D(xε) +D(xε) ⊆ D(xε) holds, then θxε defined by (4) is subadditive
on Y and

∀x ∈ S, θxε(f(xε)) � θxε(f(x)) + θxε(εk
0).

Proof. Suppose that k0 ∈ Y \{0}, ε > 0 and xε ∈ εk0-M(S, f,D). This means
that,

(f(xε)− εk0 − (D(xε)\{0})) ∩ f(S) = ∅.
By this, obviously we can write,

(f(xε)− (D(xε)\{0})) ∩ (f(S) + εk0) = ∅.
We consider V (xε) := (f(xε)−D(xε)\{0}) and f(S)+ εk0 = U . By assumptions

on the maps D and B, we can apply theorem 2.3.6 of [19] and get desired functional.

Therefore, there exists a continuous functional θxε : Y → (−∞,∞) such that
θxε(f(xε)) � θxε(f(S) + εk0).

Now if D(xε) + D(xε) ⊆ D(xε) holds, then by Theorem 4.8, θxε is subadditive
functional and

θxε(xε) � θxε(f(S)) + θxε(εk
0). �

The following lemma gives some properties of the functional in Lemma 6.3 and
we will use these properties later in the proof of other lemmas and our main theorem
about vectorial Ekeland variational principle for minimal solutions of (VVOP).

Lemma 6.4. Let all the assumptions of Lemma 6.3 hold, then we can choose the
functional θxε defined in Lemma 6.3 in a way such that all the followings holds.

1. θxε(k
0) = 1.

2. θxε(0) = 0.

3. θxε(εk
0) = ε and θxε(−εk0) = −θxε(εk

0) = −ε.

Proof.

1. By (4), we have

θxε(y) := inf{t ∈ R | y ∈ tk0 −D(xε)}.
Also by 0 ∈ ∂D(xε), we have k

0 ∈ k0−∂D(xε). Therefore by part 3 of Theorem
4.5, we can write θω(k

0) = 1.

23



2. We know that 0 ∈ ∂D(xε), then by part 3 of Theorem 4.5, θxε(0) = 0.

3. By part 2 of Theorem 4.10, for all y ∈ Y, t ∈ R, ω ∈ S the following equation
holds.

θω(y + tk0) = θω(y) + t.

Hence θω(0 + εk0) = θω(0) + ε and θω(εk
0) = ε. Proof for others is similar. �

Lemma 6.5. Let k0 ∈ Y , ε ∈ R+, xε ∈ S and B : X ⇒ Y be a cone-valued such
that k0 ∈ int B(ω) for all ω ∈ S.

(i) Furthermore, suppose that for strictly B-monotone , continuous, subadditive
functional θxε : Y → R the following inequality holds

∀x ∈ S, θxε(f(xε)) � θxε(f(x))− θxε(−εk0),

then xε ∈ εk0-WM(S, f,D) for some set-valued map D : X ⇒ Y such that
B(xε)\0 ⊆ D(xε), 0 ∈ cl D(xε)\D(xε), cl D(xε) + (B(xε)\{0}) ⊆ D(xε).

Proof. We define D(xε) as following,

D(xε) = {y ∈ Y | θxε(−y + f(xε)− εk0) < θxε(f(xε)− εk0)}, (18)

and functional θ̂xε(y) : Y → R with

θ̂xε(y) := θxε(y + f(xε)− εk0). (19)

By (19) and (i) and since θxε is subadditive, we have

θ̂xε(f(S)+εk0−f(xε)) = θxε(f(S)) � θxε(f(xε))+θxε(−εk0) � θxε(f(xε)−εk0) = θ̂xε(0).

Now by (18) and (19), we can write

θ̂xε(−D(xε)) = θxε(−D(xε) + f(xε)− εk0) < θxε(f(xε)− εk0) = θ̂xε(0),

therefore

(−int D(xε)) ∩ (f(S) + εk0 − f(xε)) = ∅ ⇒ (f(xε)− εk0 − int D(xε)) ∩ f(S) = ∅.
Since θxε is a strictly B-monotone functional, then B(xε)\{0} ⊆ D(xε). Now

we show that cl D(xε) + (B(xε)\{0}) ⊆ D(xε). Choose y ∈ cl D(xε) and b ∈
y +B(xε)\{0}. Since θ̂xε is strictly B-monotone and y ∈ cl D(xε) ⊆ {y | θ̂xε(−y) �
θ̂xε(0)}, then

θ̂xε(−b) < θ̂xε(−y) � θ̂xε(0).

Therefore b ∈ cl D(xε) + (B(xε)\{0}) implies b ∈ D(xε). Assumption k0 ∈
int B(xε) and cl D(xε) + (B(xε)\{0}) ⊆ D(xε) implies D(xε) + εk0 ⊆ D(xε).
Also since 0 ∈ cl (B(xε)\{0}), B(xε)\{0} ⊆ D(xε) and 0 /∈ D(xε), therefore
0 ∈ cl D(xε)\D(xε). �

The principal result of the next theorem is an extension of Ekeland’s theorem to
vector optimization problem with variable order structure. In fact, in the following
we have an extension for minimal solutions of the problem (VVOP).
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Theorem 6.6. Let Assumption (A4) holds, D(ω)+D(ω) ⊆ D(ω) for all ω ∈ S and
B : X ⇒ Y be a cone-valued map such that k0 ∈ int B(ω) and D(ω) +B(ω)\{0} ⊆
D(ω) for all ω ∈ S. Consider the problem (VVOP) and suppose that the objective
function f : X → Y is (k0, D, S)-lsc and bounded from below on the closed subset S
of X. If there exists x̄ ∈ S such that x̄ ∈ εk0-M(S, f,D) and D(ω) ⊆ D(x̄) for all
ω ∈ S, then there exists a point xε ∈ S such that the following hold,

1. xε ∈ εk0-WM(S, f, B),

2. ‖x̄− xε‖ � √
ε,

3.
xε ∈ WM(S, fεk0 , B) with fεk0(x) = f(x) +

√
ε ‖x− xε‖ k0. (20)

Proof. Suppose that x̄ ∈ S and x̄ ∈ εk0-M(S, f,D), then by the definition of
εk0-minimal solutions, we have

(f(x̄)− εk0 − (D(x̄)\{0})) ∩ f(S) = ∅.
Now suppose that f̄ := f − f(x̄), then we have

(f̄(x̄)− εk0 − (D(x̄)\{0}) ∩ f̄(S) = ∅.
By D(x̄) + D(x̄) ⊆ D(x̄), Lemma 6.3 and 6.4, it is obvious that there exists

a strictly B-monotone continuous subadditive functional θx̄ : Y → (−∞,∞) such
that

∀s ∈ S, θx̄(f̄(x̄)) � θx̄(f̄(s)) + θx̄(εk
0) = θx̄(f̄(s)) + ε.

This means that

θx̄(f̄(x̄)) � inf
s∈S

θx̄(f̄(s)) + ε, ε > 0.

By Lemma 6.2, Theorem 1 of [12] (Scalar Ekeland’s variational principle) and
since f and f̄ are (k0, D, S)-lsc and bounded from below on S, there exists a xε ∈ S
such that

1.
θx̄(f̄(xε)) � θx̄(f̄(x̄)) � inf

s∈S
θx̄(f̄(s)) + ε, (21)

2. ‖xε − x̄‖ � √
ε,

3.
for all s ∈ S, θx̄(f̄(xε)) � θx̄(f̄(s)) +

√
ε ‖s− xε‖ . (22)

By Lemma 6.4 and (21), for all s ∈ S we have

θx̄(f̄(xε)) � inf
s∈S

θx̄(f̄(s)) + ε � θx̄(f̄(s)) + θx̄(εk
0) = θx̄(f̄(s))− θx̄(−εk0).

Now by Lemma 6.5 and f̄ := f − f(x̄) and since B(xε) ⊆ D(xε) ⊆ D(x̄), we can
write

(f̄(xε)− εk0 − int B(xε)) ∩ f̄(S) = ∅.
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This implies that xε ∈ εk0-WM(S, f, B). Now we prove (20) and for this, suppose
that there exists an element s ∈ S such that

f(s) ∈ f(xε)−
√
ε ‖s− xε‖ k0 − int B(xε) ⇒

⇒ f̄(s) ∈ f̄(xε)−
√
ε ‖s− xε‖ k0 − int B(xε).

Since θx̄ is a strictly B-monotone continuous subadditive functional, then

θx̄(f̄(s)) < θx̄(f̄(xε)−
√
ε ‖s− xε‖ k0) � θx̄(f̄(xε)) + θx̄(−

√
ε ‖s− xε‖ k0).

Now by Lemma 6.4,

θx̄(−
√
ε ‖s− xε‖ k0) = −√

ε ‖s− xε‖ ⇒ θx̄(f̄(xε)) > θx̄(f̄(s)) +
√
ε ‖s− xε‖ ,

but this yields a contradiction because of (22). �

In the special case where D(ω1) = D(ω2) = D is a fixed solid convex cone for all
ω ∈ S, we can have the following corollary.

Corollary 6.7. Suppose that D : X ⇒ Y is a cone-valued map where D(ω) is a
solid convex cone for all ω ∈ S and k0 ∈ ⋂

ω∈S int D(ω). Consider the problem
(VVOP) and assume that the objective function f : X → Y is (k0, D, S)-lsc and
bounded from below on S ⊆ X and ε > 0. If x̄ ∈ εk0-M(S, f,D) and D(ω) ⊆ D(x̄)
for all ω ∈ S, then there exists a point xε ∈ S such that the following holds,

1. xε ∈ εk0-WM(S, f,D),

2. ‖x̄− xε‖ � √
ε,

3. xε ∈ WM(S, fεk0 , D) with fεk0(x) = f(x) +
√
ε ‖x− xε‖ k0.

In the special case, if D(ω1) = D(ω2) = D is fixed solid convex cone, Corollary
6.7 covers Theorem 4.1 [37], Corollary 1 [2], Theorem 5.1 [3], Theorem 2 [4], Theorem
3.1 for vector valued map [7], Theorem 2.1 [8], Theorem 3.1 [23] and Theorem 10
[27]. For sure in the case Y = R, we have the classical Ekeland variational principe
[12].

7 Conclusions

Concepts for approximate nondominate, minimal and minimizer solutions [35, 36] of
vector optimization problem with variable order structure will be used in order to de-
rive variational principles and optimality conditions for problems with variable order
structure. We have shown scalarization and variational principle for approximate
minimal solutions. In the fourth coming paper, we will derive corresponding results
for approximate minimizer and nondominate solutions and furthermore optimality
conditions for these solution concepts.
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[20] G. Göpfert, T. Riedrich and Chr. Tammer, “Angewandte Funktionalanalysis ”,
Vieweg Teubner, Wiesbaden. (2009).
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