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Application of a vector-valued Ekeland-type
variational principle for deriving optimality
conditions

G. Isac and C. Tammer

Abstract In order to show necessary conditions for approximate solutions of vector-
valued optimization problems in general spaces we introduce an axiomatic approach
for a scalarization scheme. Several examples illustrate this scalarization scheme.
Using an Ekeland-type variational principle by Isac [12] and suitable scalarization
techniques we prove the optimality conditions under different assumptions concern-
ing the ordering cone and under certain differentiability assumptions for the objec-
tive function.

1 Introduction

The aim of our paper is to present necessary conditions for approximate solutions
of vector-valued optimization problems in Banach spaces using an Ekeland-type
variational principle by Isac [12] under different differentiability properties of the
objective function. In the proofs of the assertions a nonlinear scalarization tech-
nique plays an important role. We will use an axiomatic approach for the scalariza-
tion scheme. In order to apply the variational principle in partially ordered spaces
one needs additional assumptions for the ordering cone. Furthermore, the differen-
tiability properties require certain assumptions concerning the ordering cone and
the objective function. So a discussion of corresponding ordering and topological
assumptions is important for our assertions.

In this paper we will be mainly concerned with the following vector minimization
problem ( VP) given as
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V —minf(x), subjectto xeS

where(X,d) is a complete metric space aldis a locally convex space& C X,

K CY is aproper (i.e.{0} # K, K #Y) pointed closed convex cone which induces
a partial order oY (i.e.,yt <k Y <=y ey +K (yLy?€Y)), f:S—Y.

We describe the solution concepts for the vector optimization problem (VP) with
respect to the ordering coein Section 3.

In order to show necessary optimality conditions for the problem (VP) using an
Ekeland-type variational principle and differential calculus one needs certain as-
sumptions concerning the spaces, the ordering cone and the objective function. In
the assertions of our paper we suppose some of the following assumptions with
respect to the spaces:

(Aspacdl) (X, d) is a complete metric space a¥ds a locally convex space.
(Aspac) X andY are Banach spaces.
(Aspaca3) X is an Asplund space anti=R".

Remark 1A Banach spac& is said to be an Asplund space (cf. Phelps [23, Def.
1.22]) if every continuous convex function defined on a non-empty open convex
subsetD of X is Fréchet differentiable at each point of some de@gesubset of

D. If the dual spac&* of the Banach spac¥ is separable, theK is an Asplund
space. Every reflexive Banach space is an Asplund space. The sequenceyspace
and furthermore, the spacty LP[0,1] for 1 < p < o are examples for Asplund
spaces. The spatkis not an Asplund space.

Concerning the objective function we have different assumptions with respect to
the derivatives (see Section 5) that we will use:

(Amapl) The vector-valued directional derivatiif (x,h) of f : X —Y atxe X
in directionh € X exists for allx, h € X (cf. Definition 8).

(Amap2) T :X —Yis strictly differentiable ak € X (cf. Definition 7).

(Amap3)  f:X — Y islocally Lipschitz a € X (cf. Definition 4).

Furthermore, in order to apply an Ekeland-type variational principle (see Theorem
1) we suppose thdi,d) andY fulfill (Aspacel), considerf : X — Y and formulate

the following assumptioiAmad) with respect to a closed normal (cf. Definition 1)
coneK C Y andk® € K\ {0}:

(Amap#) For everyu € X and for every real number > 0 the set
{xeX| f(x)—f(u)+Kad(ux) e -K}

is closed.

Most of our results are related to the non-convex case, however under certain con-
vexity assumptions we get stronger results. Consider the proper pointed closed con-
vex coneK in'Y and a non-empty convex subseof X. The functionf : S— Y is

called convex if for alk!,x? € X and for allA € [0, 1] holds

fFAXE+(1—A)x®) e AT (xY) +(1—-1)F(x%) —K.
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(Amapd)  The functionf : S— Y is convex.

Our paper is organized as follows: In Section 2 we give an overview on cone
properties that are important for deriving existence results in infinite dimensional
spaces. Especially, we give several examples in general spaces for cones having the
Daniell property and for cones with non-empty interior. Solution concepts for vector
optimization problems and an Ekeland-type variational principle by Isac [12] under
the assumption$Aspacel) and (Amapd) are presented in Section 3. An axiomatic
scalarization scheme that is important for deriving optimality conditions is intro-
duced in Section 4. We present several examples for scalarizing functionals having
some of the properties supposed in the scalarization scheme. In Section 5 we recall
differentiability properties of vector-valued functions. We show necessary optimal-
ity conditions for vector optimization problems under assumptigRgac2) and
(Amag#) in Section 6. For the case of vector optimization problems where a Lipschitz
objective function takes its values in a finite dimensional space we prove necessary
conditions for approximate solutions in Section 7 under assumpti®fscs3) and
(Amap3) using the subdifferential calculus by Mordukhovich [18].

2 Properties of cones

In the following we give a survey of some properties of cones in ordered topological
spaces; they are compiled in this way in order to make the choi¥easfmade in
Section 5 plausible.

In order to prove existence results for solutions of optimization problems in in-
finite dimensional spaces where the solution concept is given by a partial order
induced by a closed pointed and convex cone one needs additional assumptions
concerning the connections between topology and order (cf. Isac [11]).

First, we recall some corresponding cone properties (that the cone is normal,
well-based, nuclear, Daniell property), compare Peressini [22], Isac [11], Isac,
Bulavsky, Kalashnikov [14], Jahn [17], Hyers, Isac, Rassias [16pfért, Riahi,
Tammer, Zalinescu [9]. In many important cases the ordering cone has not such a
property, for instance the usual ordering cone in the space of continuous functions
has not a bounded base and the Daniell property is not given. In Figure 1 we give
an overview on such additional cone properties and corresponding relations for the
case thaY is a Banach spac€ andK are proper convex cones Yh As usual, we
denote by

K':={y eY"|y(y) =0vyeK}

the continuous dual cone &f, and by

K¥:={y" eK* | y*(y) > 0Vy e K\ {0}}

the quasi-interior oK*.
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In order to study connections betwegapologyand order we say that a non-
empty subsef of the linear spac¥ is full with respect to the convex coteC Y
if
A= (A+K)n(A-K).
Definition 1. Let (Y, 7) be a topological linear space and KtC Y be a convex
cone. TherK is called normal (relative tot) if the origin Oc Y has a neighborhood
base formed bjull sets w.r.tK.

Definition 2. Let Y be a Hausdorff topological vector space atd- Y a proper
convex cone.

() K is called basedif there exists a convex s&, such thatK = R, B and
0¢clB.

(i) K is called well-basedif there exists a bounded convex $tsuch that
K =R,;Band 0¢ cl B.

(i) Let the topology ofY be defined by a family?” of seminormsK is called
supernormal or nuclear if for each p € & there existyy* € Y*, such that
p(y) < (y,y*) for ally € K; it holdsy* € K* in this case.

(iv) K is said to be Daniell if any non increasing net having a lower bound
converges to its infimum.

K=cl K, Y=R"
K well-based <=

ﬂ Y normed ﬂ

K pointed

K nuclear = K normal
ﬂ K complete
K Daniell — K compact base.

Fig. 1 Cone properties.

Now, we give a few examples of Daniell cones.

Example 1First, we recall the following result (cf. Peressini [22], Proposition 3.1,

p. 90, 91): If{Xq }aca is @ net which is increasing (decreasing) in a topological
vector spaceY, ) ordered by a closed convex coKeand if g is a cluster point

of {Xq}, thenXo = supcaXa (X0 = infeeaXq). We recall that a convex cone is
regular if any decreasing (increasing) net which has a lower bound (upper bound) is
convergent. By the result, cited above we have that any regular cone is Daniell.

Example 2If (Y, || -]]) is a Banach lattice, that ¥is a Banach space, vector lattice
and the norm is absolute, i.¢)x|| = || |x| || for anyx € Y, then the con¥, = {y €
Y |y > 0} is Daniell if Y has weakly compact intervals.

Example 3Finally, a convex cone with a weakly compact base is a Daniell cone.
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Proposition 1. (Isac [11]):
Let (Y, #) be an Hausdorff locally convex space andKY a proper convex
cone. Then
K well-based= K nuclear = K normal

If Y is a normed space, then
K nuclear = K well-based

Remark 2 Among the classical Banach spaces their usual positive cones are well-
based only inlt and L1(Q), butl! is not an Asplund space.

Relations between supernormal (nuclear) cones, Pareto efficiency and geometrical
aspects of Ekeland’s principle are derived by Isac, Bulavsky and Kalashnikov [14].

LetY be a topological vector space over Assume(Y,K) is at the same time a
vector lattice with the lattice operatiors— X+, X — X, X — [X|, (X,y) — sup{x,y}
and(x,y) — inf{x,y}.

Definition 3. A setA C Y is calledsolid, if x € Aand|y| < |x| impliesy € A. The
spaceY is called locally solid, if it possesses a neighborhood of 0 consisting of solid
sets.

Lemma 1 ([26]). The following properties are equivalent:

(i) Y islocally solid.
(i) Kisnormal, and the lattice operations are continuous.

In order to derive optimality conditions in general spaces (cf. Section 6) there is
often the assumption that the (natural) ordering cone has a non-empty interior. Now,
we give some examples of convex cones with hon-empty interior.

Example 4Any closed convex conK in the Euclidean spac®", (-,-)) such that
K is self-adjoint (i.e.K = K**) has a non-empty interior.

Example 5We consider the space of continuous functi@ia, b] with the norm
[IX|]| = sup{|x(t)| | t € [a,b]}. The cone of positive functions @[a, b]

Kefap = {x€Cla,b] | x(t) > 0Vt € [a,b]}
has a non-empty interior.

Example 6LetY = I2(N,R) with the well-known structure of a Hilbert space. The
convex cone

Kj2 := {x= {x}iz0 | X0 > O and Z&Z <5}
i=

has a non-empty interior
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int K2 := {x={X }i>0 | Xo > 0 and Z\X'Z <%}
i=

Example 7Let I* be the space of bounded sequences of real numbers, equipped
with the norm||X|| = sug,n{|Xa|}. The cone

Kie := {X= {Xn}nen | X2 > O for anyn € N}
has a non-empty interior (cf. Peressini [22], p. 186).

Example 8Let C'[a,b] be the real vector space formed by all real continuously
differentiable functions defined dm,b] (a,b € R,a < b), equipped with the norm

Il = ([ 1o Pdes [

for any f € Cl[a,b]. Using a Sobolev’s imbedding theorem, we can show that the
natural ordering cone
Kot :={f eCl[a,b] | f >0}

has a non-empty interior. The proof is based on some technical details (cf. Da Silva

[4])-

Example 9 About the locally convex spaces, we put in evidence the following re-
sult. If (Y, 7) is a real locally convex space, then for every closed convex kan¥/,

with non-empty interior, there exists a continuous nofnj onY such thaK has a
non-empty interior in the normed spacé||-||).

Furthermore, in order to show optimality conditions one has sometimes both
assumptions: that the ordering cone has a non-empty interior and has the Daniell
property. Soitis important to ask for examples in infinite dimensional spaces, where
the ordering cone has both properties.

Example 10(see Jahn [17]) Consider the real linear spagéQ) of all (equiva-
lence classes of) essentially bounded functibn®2 — R (0 £ Q c R") equipped
with the norm| - ||, (@) given by

[ l]L.() :=esssup|f(x)[} forall f € Lo(£2).
xeQ

The ordering cone
Ki.(@) = 1{f € Lu(2) | f(x) > 0 almost everywhere o2 }

has a non-empty interior and is wédBaniell.
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3 An Ekeland-type variational principle for vector optimization
problems

Concerning the vector optimization problem (VP) we use the following (approxi-
mate) solution concepts: Assurt®pacel). Let us consideA C Y, a pointed closed
convex con&K C Y, € > 0 andk® € K\ {0}.

e Apointyp € Ais said to be amk®-minimal point of A with respect to Kf there
exists no other point€ Asuch thay—yo € —ek®— (K '\ {0} ). We denote this by
yo € ek —E f f(A K), whereek® — E f f(A K) is the set ofk® -minimal points
of Awith respect to the ordering coie A pointxo € Sis called arek? -efficient
point of (VP), if f(xo) € ek’ —Eff(f(S),K). Is xp € San ek® -efficient point
of (VP) with € = 0 we say thatx is an efficient point of (VP) and we write
f(x0) € ETf(f(S),K).

e Apointyp € Ais said to be ark® -properly minimal element of A with respect
to K, if there is a closed normal cofeC Y with K\ {0} C int B such thatyp €
ek? — Eff(A,B). The set ofek® -properly minimal elements ok with respect
to K is denoted byek® — pE f f(A,K). A point xo € Sis called arek® -properly
efficientpoint for (VP), if f (xo) € ek® —E f f(f(S),B) whereBis a closed normal
cone withK \ {0} C intB. Is xo € S an ek® -properly efficient point of (VP)
with € = 0 we say thatx is a properly efficient point of (VP) and we write
f(x0) € pETf(f(9),K).

We will apply a vector-valued variational principle of Ekeland’s type in order
to show necessary conditions for approximately efficient solutions of the vector
optimization problem (VP). There are many vector-valued variants of Ekeland’s
variational principle (and equivalent assertions) with different assumptions concern-
ing the ordering cone ilY and concerning the properties of the objective function
f: X =Y (cf. [12], [13], [19], [27], [28]). Here we recall the variational principle
by Isac [12, Theorems 4 and 7], [16, Theorem 8.4] that is shown for the case that the
ordering con& in 'Y is normal without assuming that the interiortofs non-empty.

Theorem 1. (Isac [12]) AssuméAspacd), K is a closed normal conek K\ {0}.
Furthermore, suppose that for: %X — Y the assumptio(Amap4) with respect to K
and K is fulfilled. If e > Ois an arbitrary real number andg« X is an element with
f(x0) <k f(x)+ek®forall x € X then there existsx X such that fx¢) <x f(xo),
d (e, %) < v/€ and, moreover,

f()+KVEd (X, %) <k f(Xe) = X=Xe. 1)

Remark 3The assertion (1) in Theorem 1 means tkais an efficient element of
the perturbed objective functiohy g0 () := f () + k0\/ed (x,xe ) with respect tK,
ie., f\/gko(Xg) S Eff(f\/gko(X),K)
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4 Nonlinear scalarization scheme

In order to prove optimality conditions we will introduce an axiomatic approach for
scalarization by means of (in general nonlinear) functionals. We consider a linear
topological spac®, a proper seK C Y and a scalarizing functiona : Y — IRU

{+} having some of the following properties:

(Apl) The functional is K-monotone, i.ey,weY,ycw—K implies¢ (y) <
@ (W).

(Ap1’)  The functionalg is strictly K-monotone, i.,ey,we Y,y e w— (K\ {0})
implies ¢ (y) < ¢ (w).

(Ap2) The functionalp is convex.

(Ap2) The functionalp is sublinear.

(Ap2")  The functionalp is linear.

(Ap3) The functionalp enjoys the translation property

VseR,WyeY: ¢(y+sk) =o(y)+s. )

(Ap4) The functionalp is lower continuous.
(Ap4’)  The functionalp is continuous.

Examples for functionals satisfying the axioms given above are listed in the fol-
lowing:

Example 11Assume thaB is a closed proper subset ¥fandK C Y is a proper
set withB+ K C B. Let k% € Y\ {0} such thatB + [0,+)k? C B. Consider the
functional := @g o : Y — IRU {0}, defined by

o(y):=inf{tcR|yectk’—B}. (3)
We use the convention inf@ +co. Then it holds donp = IRK® —

If B=K is a proper closed convex cone akitlc int K the functional (3) fulfills
(ApD), (Ag2), (Ag3) and(Agd).

Moreover, ifB is a proper closed convex subsetYofwith B+ (K \ {0}) C int B,
B does not contain lines parallel t§ (i.e.,Vy €Y, 3t e R : y+tk® ¢ D) and
RK® —B =Y the functional (3) is finite-valued and fulfill®,1'), (Ap2), (Ap3) and
(Ap4). These properties of the functional (3) are shown in [9, Theorem 2.3.1].

Example 12The scalarizing functional by Pascoletti and Serafini [21] for a vector
optimization problem (VP)

V- min f(x) = (fi(x),..., fm(X))T

(whereY = IR™, K = IRT, Sconvex andf; : S— R convex for alli = 1,...,m) given
by
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min t 4
subject to the constraints
f(x) e a+tr —K,
XxXeSteR,

(with parameters € R™ andr € int RT) satisfies the axiom@Ay1), (Ap2), (Ap3),
(Ap4) (cf. [9, Theorem 2.3.1]).

Example 13The following functional was introduced by Hiriart-Urruty [15]: As-
sume thatY is a normed space. For a non-empty et Y, A #Y, the ori-
ented distance functioda : Y — R is given asAa(y) = da(y) — dy\a(y) (where
da(y) = inf{||a—Yy]|| | a € A} is the distance function to a s4j. It is well known
that this function has the following properties (see [29, Proposition 3.2]):
(i) Aa is Lipschitzian of rank 1.
(i) If Ais convex, themp is convex and ifA is a cone, thera is positively homo-
geneous.
(iif) Assume thatA is a closed convex cone. ¥i,y> € Y with y; —y» € A then
Ap(Y1) < Aa(Yz2)-

The functionalAa satisfies the axioméA,1), (Ay2), (Ay4') if Ais a closed
convex cone.

Example 14Certain nonlinear functionals are used in financial mathematics in or-
der to express a risk measure (for example a valuation of risky investments) with
respect to an acceptance gt Y. Artzner, Delbean, Eber and Heath [1] (com-
pare Heyde [10]) introduced coherent risk measures. Risk measures are functionals
u:Y — RU{xo}, whereY is a vector space of random variables. In the papers
by Artzner, Delbean, Eber and Heath [1] and Rockafellar, Uryasev and Zabarankin
[24] the following properties of coherent risk measuneare supposed:

(P1) p(y+tk%) = u(y) —t,

(P2) u(0) =0andu(Ay) =Apu(y) forally e Y andA > 0,

(P3) u(y* +y%) < u(yh) +u(y?) forally,y? €,

(P4) u(yh) < pu(y?) if yt > y2.

The sublevel sdt, (0) =: B of u to the level 0 is a convex cone and corresponds
to the acceptance set. It can be shown that a coherent risk measure admits a repre-
sentation as
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u(y) =inf{t e R | y+tk® € B}. (5)

It can be seen that a coherent risk measure can be identified with the functional
P (—Y) (see (3)) by
Pgro(y) = 1(-Y).

We get corresponding propertig&, 1), (Ay2'), (A,3) for the functionalu (—y) like
in Example 11 for the functionapg 0 depending from the properties of the &gt
i.e., of the acceptance s8in Mathematical Finance.

Examples for coherent risk measures aredbeditional value at risk (cf. [7],
Section 4.4, Definition 4.43) and theorst-case risk measurgcf. Example 16).

Example 15(Value at Risk) Let Q2 be a fixed set of scenarios. A financial position
is described by a mapping: 2 — R andx belongs to a given clasg” of finan-

cial positions. Assume that” is the linear space of bounded measurable functions
containing the constants on some measurable s@gaca). Furthermore, leP be

a probability measure off2,A). A positionx is considered to be acceptable if the
probability of a loss is bounded by a given legeE (0,1), i.e., if Plx< 0] <A.The
corresponding monetary risk measM@R, , defined by

V@R, (x) == inf{me R | P(m+x < 0) <A}

is calledValue at RiskV @R, is the smallest amount of capital which, if added to
x and invested in the risk-free asset, keeps the probability of a negative outcome
below the levell.

V@R, is positively homogeneous but in general it is not convex (@finfrer and
Schied [7], Example 4.11), this means thag2) and(A,2') are not fulfilled.

Example 16(Worst-case risk measurg Consider thavorst-case risk measupg,ax
defined by
Pmax(X) := — inf x(w) forall xe 2",
weQ

whereQ is a fixed set of scenarios,: 2 — R andx belongs to a given clasg”

of financial positions. Assume that™ is the linear space of bounded measurable
functions containing the constants on some measurable 6a@¢). The value
pPmax(X) is the least upper bound for the potential loss which occur in any scenario.
Pmaxis a coherent risk measure (cBlimer and Schied [7], Example 4.8) such that
we get the properties mentioned in Example 14.

5 Differentiability properties of vector-valued functions

In this section we suppose that assumpti@gpace) is fulfilled and considerf :

X — Y. Furthermore, assume th&tC Y is a proper pointed closed convex cone.
First of all, we introduce a concept of a vector-valued local Lipschitz property

forf: X =Y.
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Definition 4 ([26]). f : X — Y is calledlocally Lipschitz at x € X, if there is a
functionP : X x R — K such that

f(u+th) — f(u)

. <P(he) VYueU(xe), te(0) (6)

for all sufficiently smalle > 0. Therein,P is supposed to be continuoushnand
limy_oP(h,&) =0 for eache > 0.

This property is a basis for the definition of a directional derivative, which fol-
lows the idea of the Clarke directional derivative of real-valued functions. First, we
recall Clarke’s generalized directional derivative:

Definition 5 ([3]). Let X be a Banach space and febe Lipschitz near a given point
x and letv be any other vector iX. A mappingf° : X — Y defined by

f°(x,v) ;= lim sup—]c Y+t = 1y)
10 y—x t

is called Clarke’s generalized directional derivativef adt x in directionv.

Definition 6. Clarke’s tangent cone (contingent cone) is defined by
7(8x) :={heX]|ds(x,h) =0},

whereds(x) := inf{|ly—X|| | y € S} is the distance function to a non-empty set
Sc X, X is a Banach space amd: X.

This cone can be described also in the following way:
T(SX) :={he X|[V{Xn}nen €S X0 — X, V{tn}nen € (0,4), t, — 0

H{hn}neN g X hn — h7 Xn+tnhn € SVne N}
Furthermore, we study strictly differentiable mappings:

Definition 7 ([3]). f : X — Y is called strictly differentiable ax € X if there is
a linear continuous mappinDsf(x) : X — Y such that for each € X, for each
sequencéty }nen C IR, and for each sequeng®, }nen € X with X, — xandt, — 0
the following holds

Dsf (x)(h) = lim f (X0 +tah) — (Xn)

n—oo tn ’

provided the convergence is uniform foin compact sets.

Remark 4If f is Lipschitz neax the convergence is uniform férin compact sets.
Definition 7 is a certain "Hadamard type strict derivative”.

Definition 8 ([26]). We define the vector-valued directional derivativé(x, h) of f
atx € X in directionhe X by Df(x,-) : X =Y,
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Df(x,h) :=lim sup M
€10 ycu (xe), te(0,e) t

Remark 5In the following we assume that certain directional derivatives exist. In
order to have sufficient conditions for the existence of the directional derivative
one can suppose thtis a Daniell locally convex vector lattice arfdis locally
Lipschitz.

Using the vector-valued directional derivative we introduce the subdifferential of
f:X—=Y:

Definition 9. The subdifferential of : X — Y at the pointx € X is defined by
df(x):={L e Z(X,Y)|L(h) <k Df(x,h) Yhe X},

where.Z(X,Y) denotes the space of linear continuous operators ¥dmY.

Under certain conditions on a dBtC Y, we can conclude from the derivatives
being an element db that certain differential quotients are element®ais well:

Lemma 2 ([26]). Let DC Y be such that

() intD#0
(i) intD—K cintD.

Assume D(x, h) € int D for x,h € X. Then there is a real numbe(h) > 0 such that

f(u-+th) — f(u)

t cintD  YueU(xe(h), t e (0,e(h)). 7)

What is more, also with small perturbations of the directicem estimation for
the differential quotient can be given.

Lemma 3. Assume that " Y satisfies the conditior($) and (ii) from Lemma 2,
x,h € X. Moreover, suppose that f is locally Lipschitz at X, the vector-valued
directional derivative Dfx, h) exists and D{x,h) € int D. Then, for each neigh-
borhood V oDinY satisfying Dfx,h) +V C int D there is a real numbeg(h) >0
and a neighborhood Uof h such that

f(u+th') — f(u)

t eDf(xh)+V-K VueU(xe(h)), W eU’, te (0eh).

(8)

In particular this implies

f(u-+th') — f(u)
t

Proof: There is a neighborhodd C Y of 0 such thaD f (x,h) +V C int D. Without
loss of generality, we assuriveto be solid.

Choose a solid neighborhod of 0 such thav’ + V' c V; furthermore, choose
& > 0 such that

€intD  VYueU(x,e(h)), eU’ te(0,e(h)). (9)
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wp T fW
ueU (x,&g), te(0,&9) t
flurth) ()
t

€ Df(x,h)+V’, hence (10)

€ Df(x,h) +V'—K (11)
YueU(x, &), t € (0,€p).

Finally, fix U’ € % (h) such that for each’ € U’ holds
P(h/ —h, 80) S V/,

with P being the function corresponding to (6). Now, defir) := min{ <, ﬁ%u}.
For eachu € U(x,e(h)) and eaclt € (0,e) we haveu+th € u(x,&). Hence, the

vector-valued local Lipschitz property éfyields for thesas andt

f(u+th)— f(u+th) <p

t (W —h,&) €V’ (12)

The solidity ofV’ now leads to

f(u+th)— f(u+th)

n eV (13)

For eactuc U (x,e(h)), t € (0,e(h)) andh € U’ we thus have derived

f(u+th)—f(u)  f(u+th)—f(u) N f(u+th)— f(u+th)
t t t
eDf(x,h)+V/'—K eV’
c Df(x,h)+V —K Cint D.

O

Lemma 4. Assume that gX — Y is sublinear and f X — Y convex. Then it holds:
(i) Dg(x,h) <g(h) forall x € X and all he X.

(i) Dg(0,h) =g(h) forall h € X.

(i)  If(x)=dDFf(x,-)(0).

Proof: (i). By the sublinearity ofy we have for allk,h € X andt € (0,1)

g(u+th) < g(u)+g(th), also
glu+th ~gw) _gth) _

t t
the last equality holds becaugds positively homogeneous. Consequently, it fol-
lows that
SURcU (x¢), te(0.e) w < g(h) for € < 1. For the limes (which is guaranteed
to exist) this implies
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im s JUFN-oW

<g(h).
€10 ycu(xe), te(0,e) t

(i) For x = 0 the supremum is attainedwat= 0.

(iii) Set = Df(x,-). Thend'is subadditive and positively homogeneous (cf. Staib
[26, Lemma 1.2.6]. HencB§(0, h) = §(h) by (ii). Thus,D§(0,h) = Df(x,h) holds
according to the definition af, and the assertion follows.

O

In Section 7 we will show necessary conditions for approximately efficient el-
ements of a vector optimization problem using the Mordukhovich subdifferential.
Here we recall the corresponding definition.

Definition 10. [18] Let Sbe a non-empty subset ®fand leta > 0. Givenx € cl S
the non-empty set

NE(Sx) = 4% e X limsup XY =X <
y—xyes |[Y=X|

is called the set of cheta-normals toSatx. Whena = 0, then the above set is a
cone, called the set of Echet normals and denoted Ky (S x).
Letxp € ¢l S. The non-empty cone

NL(S, %) = limsupNF, (S x)
X—Xg,0t]0

is called the limiting normal cone or the Mordukhovich normal con8 &bxo.

Definition 11. [18] Let f : X — RU{+»} be a given proper function ang €
domf. The set

aLf(x) = {X" € X*: (x*,—1) € N_(epif, (X0, T (x0)) }

is called the limiting subdifferential or the Mordukhovich subdifferentiaf aft xo.
If xo ¢ domf, then we seby_f(xp) = 0.

Remark 61f f : X — RU{+} is convex, ther)| f(x) coincides with the Fenchel
subdifferential f (x).

6 Necessary optimality conditions for vector optimization
problems in general spaces based on directional derivatives

In this section we derive necessary conditions for approximate solutions of the vec-
tor optimization problem (VP). Under the assumption that the ordering &one



Title Suppressed Due to Excessive Length 15

has a non-empty interior we show in Theorem 2 necessary conditions for approxi-
mately efficient elements of (VP). Furthermore, in Theorem 3 we derive necessary
conditions for approximately efficient points of (VP) without the assumption that
intK # 0. Heree > 0 andk® € K \ {0} are fixed arbitrarily and represent an admis-
sible error of the approximate solutions.

Lemma 5. Suppose that K Y is a pointed closed convex cone withK # 0. Fix
an arbitrary ¢> 0, K € int K and set D= —ck’ —K. Then it holdsnt D—K c int D.

Proof: Fix an arbitraryy € int D — K. This meang/ = y; — y» with certainy; €
int D andy, € K, where agairy; = —ck® — y3 with anys € int K. Hence we have
y=—cko— (y2+y3). Now, by the convexity oK we concludgy, +ys) € int K and
consequently € int D.

U

Theorem 2.Consider the vector optimization problem (VP). Suppose that X
is a closed normal cone, int ¥ 0 and ¥ € K\ {0}. AssumgAspace), (Amapl),

and (Amagé) with respect to K and% Furthermore, suppose thatSX is closed. If
€ > 0is an arbitrary real number andoxc S is an element with(kg) <k f(x) 4 &k?

for all x € S then there exists an elemeptxS with f(x) <k f(xo) and

M) xo—x| < V&

(i) Df(xe,h) ¢ —/eko||h|| —int K for allh € .7 (S Xe).

(i) CcC J(Sxe), Cis aconvex cone, implies the existence*of K*, y* # 0,
satisfying

y* o Df(xe,h) > —/e y*(K°) for allh € C with ||h|| = 1.

(iv) AssuméAmap5) and S= X. For C as above there is an elementeyK* \ {0}
such that

0cy odf(xe)" —C'+ ey (K)B.

(whered is the usual convex subdifferential anQ*Bs the unit ball in X ).
If the order intervals in Y are weakly compact, there holds even

0ey 0df(x)—C* + ey (K)BY..

Proof: The assumptionfAspace), (Amapd) and thatk is a closed normal cone
are fulfilled. Furthermore, sincgis a closed set in a Banach space it is a complete
metric space endowed with the distance given by the norm such that the assumptions
of Theorem 1 are fulfilled. Choose € S according to Theorem 1; this directly
implies (i).
(i) Furthermore, for the element € Sthe following holds

frao(Xe) €EFF(F go[S,K), where f go(x):=f(X)+vek|x— x|
taking into account Theorem 1. This means

F00+ Ve =] & F(x) K\ {0}  vxes
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Fixanh e 7 (S x¢). Then there are sequendgs— h, t, | 0 such thak, +tyhy €
S. For these we have

f(Xe +tahn) + V&Kot | n|| — f(xe) ¢ —K\ {0},

hence
f(Xe +tahn) — f(Xe)

tn
Assume novD f (xe,h) € —/ek?||h|| —int K; this means

Df (xe,h) = —v/eK’||hl| — y1

¢ —/ek?||hn[ — K\ {0}. (14)

with any; € int K.

Choose an neighborhodd of 0 inY in such a way thay; + 2V C int K. Ac-
cording to Lemma 3 withD := —/ek%||h|| — K there is a numbeg(h) > 0 and a
neighborhood)’ of h, such that (in particular, with = x.) it holds

Fixe +th') — (%)
t

€ Df(Xe,h) +V —K = =&k |h|| —y1 +V —K

forallt € (0,e(h)) andh’ € U’. For sufficiently large indices this implies

f(Xe +tahn) — f
( 3 nt:) (XS) e —\/EkO”hH—yl—‘rV—K

Finally, choosen large enough to satisfy
—Vek|h|| = —Vek|ha|| + v withav, €V,
which is possible because lf — h. This, however, means

f(Xe +thhn) — F(Xe)

" € —Vek||hy|| —y1+2V —K Cint D,
n

cint D

contradicting (14).

(iii) Let B° denote the unit ball irX. The setDf(x,CNB%) + K is convex.
Since—+/ek%||h|| —int K > —/ek? —int K for elementsh with ||h|| < 1, we have
(Df(%,CNBY%) +K) N (—/ekd —int K) = 0 by (i ); this means

[(Df(xg,CmB°)+\/Ek°+K n—int K = 0.

By a separation argument we find an elemgnge Y* with y* £ 0 and an € R
satisfying
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yi(y) =B  vyeDf(x,CNB%+ ek’ +K (15)
yi(y) < B Yy e —int K. (16)
Since 0c cl int (—K) = —K, from (16) follows tha3 > 0.
Now assume thay*(y) > 0 for an elemeny € —int K. For a certain positive mul-
tiplecy € —int K of y this implies y*(cy) > 8, contradicting (16). Hencey*(y) <0

for eachy € —int K; this inequality even holds for eaghe —cl int K because of
the continuity ofy*. This meany* € K*\ {0}.

In the following we exploit (15):
Lethe C, ||h|| = 1. Withy € Df (xe,h) +/ek® +v (v € K arbitrary) we also have
y*(y) > 0. Hence
y* (D (Xe, h) + ek’ +v) > 0;

in particular, withv = 0 we get
y oDf(xe,h) > Ve y (k).
(iv). ForC as in(iii ) choosey* € K* according tq(iii ); this is,
y*oDf(xe,h) > —e y (K)||h]

for all h € C. Definep(h) := y* o Df(xe, h) + /€ y*(k%)||h|| for h € C and the sets
S andS in X x R by

Si = epi(p),
S ={(ha)eXxR: heC, a<0}.

Both S as well asS; is convex. Furthermore, we have &t # 0 and intS NS, = 0.
By a separation argument we conclude the existence ¢k'an*) € (X x R)* =
X* xR, (X*,a*) # 0 andf € R satisfying

(x,a)(ha) =B ¥ha)es, (17)
(x,a)(ha)<B  Wha)eS. (18)

With (0,0) € S NS we deducgd =0, and(0, @) € int S for o > 0 yieldsa* > 0.
Settinga = 0in (17) leads toj% € C*. Using (18) this yields
X*
—o*

(h) <y oDf(xe,h) + Vel hll y* (k).

Sincey* € K*, y* oD f(X¢, h) is a convex function if; this is passed on to the whole
right side of the above inequality. Hence, we have

x*
—o*

€ I(y oDf(xe, ) + Vel - [l y*(k))(0)
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with the usual convex subdifferential Subdifferential calculus further yields

x*
_a*

€ d(y' oDf(xe,))(0)+a(Vell ||y (K))(0)
C y 0dDF(xe,))0)" + ey (K)BY..

By Lemma 4 (iii), under convexity assumptions concernfnthis implies

x*
—o*

ey odf(xe)” +vey (K)B..

This yields
Ocy odf(xe) +vey (kK)B% —C*.

Regarding the formula when the order intervals are weakly compact: We have to
show thaty* o d f (X¢) is weakly closed. This follows by an argumentation along the
lines of [2, Theorem 6.3] for convex operators.

O

Remark 7The assertions in Theorem 2 are corrections of corresponding results in
[26, Theorem 2.2.1] and an extension of the results in [26, Theorem 2.2.1] to ap-
proximate solutions.

Using a closed normal cor@C Y with K\ {0} C int B like in the concept of
proper efficiency we can drop the strong assumptioiigt @ or the ordering cone
K in Y. We will show a necessary condition under the assumptionftiastrictly
differentiable using the abstract nonlinear scalarizing scheme and Clarke’s strict
derivativeDsf (x) of f atx € X.

Theorem 3.Consider the vector optimization problem (VP) witk=SX assuming
(Aspac®), (Amap?). Let KC Y be a pointed closed convex con®ckK \ {0} and

B C Y a closed normal cone with X{0} C int B. We suppose thgfmna) with
respect to B andis fulfilled. If ¢ > 0 is an arbitrary real number and there exists
an element x€ X such that fxo) <g f(x) +¢k® for all x € X then there is an
element x € X with f(x.) <g f(Xo) such that

(M) lxo—xl < e
(i)  There exists’ye K¥ such that

[ly* o Dsf (xe)||: < Ve.

Proof: Considerxy € X such thatf(xg) <g f(x) + €k® for all x € X, whereB

is a closed normal cone witk \ {0} C int B. Because 0fAspace) (this implies
(Aspacél)) and (Amap?) with respect tdB and k° the assumptions of Theorem 1 are
fulfilled.

According to Theorem 1 we get the existence of an elemgrt X such that(i)
holds. Furthermore, fox. the following holdsf(x.) € E f f(f z0(X),B), where
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f a0 (X) == f(X) + e x—xe |-
This means

£+ Ve X —xel| & f(xe) — (B\{0})  ¥xeX,
ie.,
£ ¢ f(xe) — VeKlx—xel| - (B\{0})  WxeX. (19)

Consider the functional (3) and takey) := ¢g(y — f(X¢)). ForB, K and KO the
assumptions in Example 11 are fulfilled and so we get the propghigk) with
respect taK, (Ay2) and(Ay4') for ¢. Assume that there existse X such that

o(f(x) +Velx—xe|| < o(f(x)) =0.
Then there exists< —/€[|x— Xe|| with f(x) — f(x.) € tk® — B and so
f(%) € f(xe) = Ve|[x—xXe [k = (B+ (— Ve[ x—Xe[| ~)K)
C f(Xe) — Ve[ x—xe[[K*—int B
C (%) — Ve[x—xe [ — (B\{0}),
a contradiction to (19). So we get
O(F(x) > o(F(xe) — VE[x—Xe|  ¥xeX.

Because 0fA,2) and(A,4') we get that the scalarizing functionglis locally
Lipschitz. Furthermoref is supposed to be a strictly differentiable mapping and so
locally Lipschitz. Hence the compositiano f is locally Lipschitz such that we can
use Clarke's generalized directional derivatjyeo f)°.

Consider now fon € IN, t, > 0, X:= X¢ +tphy with h, € U (U is a neighborhood
of h e X) and|/h|| = 1. For these we have

(p(f(xg—i-tnhrt]:) —000e)) - g

(20)

Taking the limits fort, — 0 andh, — hwe get for Clarke’s generalized directional
derivative
(pof)°(x.h) > —ve VheXwith ||h]=1.

Using the chain rule given by [3] (Theorem 2.3.10 and Proposition 2.1.2) we get
that there is an elememgt € d(f(x¢)) such that for alh € X with ||h|| =1

y* o Dsf (xe) (h) > — V.

Taking into account the linearity @sf (x.) we get (if we replacé by —h)

y"oDsf(x)(h) < Ve
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such that

[ly* o Dsf (%e)||: < Ve.

Finally, we will showy* € K* using the propertyA,1’) with respect tK of ¢.
Let k € K\ {0}. Thus we havep(y) > ¢(y—K). Sinceg is a continuous convex
function on the Banach Spa¥eone has)¢(y) # 0 for eachy € Y. Thus we have

oY) > o(y—K) > o(y) +y' (k) vy €do(y).

This shows thag* (k) > 0 for anyk € K\ {0}. This immediately yields that* € K*.
This completes the proof.
O

For problems with restrictions we get the following result:

Theorem 4. Consider the vector optimization problem (VP) under the assumptions
(Aspac) and (Amap2). Suppose that § X is closed. Let K=Y be a pointed closed
convex cone,%e K\ {0} and BC Y a closed normal cone with {0} C int B. We
suppose thatAma4) with respect to B and%is fulfilled. If ¢ > 0 is an arbitrary

real number and there exists an elementS such that fxp) <g f(x) + ek for all

x € S then there is an element& S with f(x.) <g f(xo) such that

M) lxo—xl < e

(i) There exists'ye K¥ such that
y oDsf(xe)(h) > —ve Vhe T(Sxe) with||h]| = 1.
Proof: We follow the line of the proof of Theorem 3.
O

Remark 8 The assertions in Theorems 3 and 4 are related to the proper efficiency
of the elemenk,. Especially, (19) says that is a properly efficient point of /z0
over X with respect toK becauseB is a closed normal cone witk \ {0} C int B,

i.e., fawo(xe) € PETF(f z0(X),K). The propertyk \ {0} C int B implies in both
theorems the strong assertigne K* for the multipliery*.

Remark 91n order to derive necessary conditions & -efficient points of (VP)

(with € > 0), i.e., forxg € Swith f(xo) € ek® — Eff(f(S),K), it would be pos-

sible to use the same procedures like in the proofs of Theorems 2, 3 and 4 using
corresponding variational principles (for instance [9, Corollary 3.10.14]). The same
holds forek? -properly efficient points of (VP) (witle > 0), i.e., forxy € Swith

f(x0) € kO — pEff(f(S),K).
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7 Vector optimization problems with finite dimensional image
spaces

As seen in Theorem 2 the assumptions concerning the ordering<cforaderiving
optimality conditions in general spaces are strong. Now, we will show necessary
optimality conditions for vector optimization problems where the objective func-
tion f takes its values in a finite dimensional spd@feunder weaker assumptions.
Corresponding results are shown in [5], [6] and [20].

For a locally Lipschitz functiorf we derive Lagrangian multiplier rules for ap-
proximately efficient elements of (VP) using Mordukhovichs subdifferential calcu-
lus (see Definition 11).

Theorem 5.Consider the vector optimization problem (VP). Assume ({Agface3)
and (Amap3) are satisfied. Suppose thatSX is closed. Let KC Y be a pointed
closed convex conelk K\ {0} and BC Y a closed normal cone with K{0} C
intB. If ¢ > 0is an arbitrary real number and there exists an elemegrd $ such that
f(xo0) < f(x)+ ek for all x € S then there are elements S with f(x) <g f(Xo),
u* € K# with u*(k%) = 1 and ¥ € X* with ||x*|| < 1 such that

0 dL(u"o f)(xe) +u" (k%) vex" (xe) + Ny (S xe).

PROOF. Consider an elemen € Ssuch thatf (xg) <g f(x) +¢k? for allx€ S
whereB C Y is a closed normal cone witk \ {0} C int B. Taking into account
that (Amap3) is fulfilled for the functionf, it is continuous as well and sincis
a closed set in a Asplund space it is a complete metric space endowed with the
distance given by the norm such that the assumptions of Theorem 1 are fulfilled.
From this variational principle we get the existence of an elemertS such that
f(xe) <g f(xo). Moreover, forx. holds f(x.) € Eff(f z0(S),B) where the per-
turbed objective functiorf /0 is given by

fao(X) 1= () +KVE [x—Xe]|.
Now, applying Theorem 3.1 in [5] we can find € d¢(v) with u* € K*, u*(k%) = 1
(where the scalarizing functiop is given by (y) := @g(y — f g0 (Xe)) (cf. (3))

and has the properti¢s, 1) with respect tK, (A,2) and(A,4')) such that by the
calculation rules for Mordukhovich subdifferential

0€d(uof zo)(Xe) + Ny (SXe). (21)
Consider an element € o, (U o f z0)(Xe) involved in (21). Because of
LU0 f o) (X) = aL(u" o (F() +KVe | —xel) (%),

by use of the rule for sums and the property that Mordukhovich subdifferential co-
incides in the convex case with the Fenchel subdifferential, we get
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Xg € LU0 F)(xe) + U (K)VEd |- — el (%e)- (22)

From (21) and (22) and taking into account the calculation rule for the subdifferen-
tial of the norm it follows that there is* € X* with ||x*|| < 1 such that

0€ dL(u"o f)(%e) +U" (k) Vex (xe) +Na (SXe)).

The property* € K* follows analogously like in the proof of Theorem 3.
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