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Application of a vector-valued Ekeland-type
variational principle for deriving optimality
conditions

G. Isac and C. Tammer

Abstract In order to show necessary conditions for approximate solutions of vector-
valued optimization problems in general spaces we introduce an axiomatic approach
for a scalarization scheme. Several examples illustrate this scalarization scheme.
Using an Ekeland-type variational principle by Isac [12] and suitable scalarization
techniques we prove the optimality conditions under different assumptions concern-
ing the ordering cone and under certain differentiability assumptions for the objec-
tive function.

1 Introduction

The aim of our paper is to present necessary conditions for approximate solutions
of vector-valued optimization problems in Banach spaces using an Ekeland-type
variational principle by Isac [12] under different differentiability properties of the
objective function. In the proofs of the assertions a nonlinear scalarization tech-
nique plays an important role. We will use an axiomatic approach for the scalariza-
tion scheme. In order to apply the variational principle in partially ordered spaces
one needs additional assumptions for the ordering cone. Furthermore, the differen-
tiability properties require certain assumptions concerning the ordering cone and
the objective function. So a discussion of corresponding ordering and topological
assumptions is important for our assertions.

In this paper we will be mainly concerned with the following vector minimization
problem ( VP) given as
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V−min f (x), subject to x∈ S,

where(X,d) is a complete metric space andY is a locally convex space,S⊆ X,
K ⊂Y is a proper (i.e.,{0} 6= K, K 6= Y) pointed closed convex cone which induces
a partial order onY (i.e., y1 ≤K y2 ⇐⇒ y2 ∈ y1 + K (y1,y2 ∈ Y)), f : S→ Y.
We describe the solution concepts for the vector optimization problem (VP) with
respect to the ordering coneK in Section 3.

In order to show necessary optimality conditions for the problem (VP) using an
Ekeland-type variational principle and differential calculus one needs certain as-
sumptions concerning the spaces, the ordering cone and the objective function. In
the assertions of our paper we suppose some of the following assumptions with
respect to the spaces:

(Aspace1) (X,d) is a complete metric space andY is a locally convex space.
(Aspace2) X andY are Banach spaces.
(Aspace3) X is an Asplund space andY = Rn.

Remark 1.A Banach spaceX is said to be an Asplund space (cf. Phelps [23, Def.
1.22]) if every continuous convex function defined on a non-empty open convex
subsetD of X is Fŕechet differentiable at each point of some denseGδ subset of
D. If the dual spaceX∗ of the Banach spaceX is separable, thenX is an Asplund
space. Every reflexive Banach space is an Asplund space. The sequence spacec0,
and furthermore, the spacesl p, Lp[0,1] for 1 < p < ∞ are examples for Asplund
spaces. The spacel1 is not an Asplund space.

Concerning the objective function we have different assumptions with respect to
the derivatives (see Section 5) that we will use:

(Amap1) The vector-valued directional derivativeD f (x,h) of f : X →Y at x∈ X
in directionh∈ X exists for allx,h∈ X (cf. Definition 8).

(Amap2) f : X →Y is strictly differentiable atx∈ X (cf. Definition 7).
(Amap3) f : X →Y is locally Lipschitz atx∈ X (cf. Definition 4).

Furthermore, in order to apply an Ekeland-type variational principle (see Theorem
1) we suppose that(X,d) andY fulfill (Aspace1), considerf : X →Y and formulate
the following assumption(Amap4) with respect to a closed normal (cf. Definition 1)
coneK ⊂Y andk0 ∈ K \{0}:
(Amap4) For everyu∈ X and for every real numberα > 0 the set{

x∈ X | f (x)− f (u)+k0
αd(u,x) ∈ −K

}
is closed.

Most of our results are related to the non-convex case, however under certain con-
vexity assumptions we get stronger results. Consider the proper pointed closed con-
vex coneK in Y and a non-empty convex subsetSof X. The functionf : S→Y is
called convex if for allx1,x2 ∈ X and for allλ ∈ [0,1] holds

f (λx1 +(1−λ )x2) ∈ λ f (x1)+(1−λ ) f (x2)−K.
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(Amap5) The functionf : S→Y is convex.

Our paper is organized as follows: In Section 2 we give an overview on cone
properties that are important for deriving existence results in infinite dimensional
spaces. Especially, we give several examples in general spaces for cones having the
Daniell property and for cones with non-empty interior. Solution concepts for vector
optimization problems and an Ekeland-type variational principle by Isac [12] under
the assumptions(Aspace1) and (Amap4) are presented in Section 3. An axiomatic
scalarization scheme that is important for deriving optimality conditions is intro-
duced in Section 4. We present several examples for scalarizing functionals having
some of the properties supposed in the scalarization scheme. In Section 5 we recall
differentiability properties of vector-valued functions. We show necessary optimal-
ity conditions for vector optimization problems under assumptions(Aspace2) and
(Amap4) in Section 6. For the case of vector optimization problems where a Lipschitz
objective function takes its values in a finite dimensional space we prove necessary
conditions for approximate solutions in Section 7 under assumptions(Aspace3) and
(Amap3) using the subdifferential calculus by Mordukhovich [18].

2 Properties of cones

In the following we give a survey of some properties of cones in ordered topological
spaces; they are compiled in this way in order to make the choice ofY as made in
Section 5 plausible.

In order to prove existence results for solutions of optimization problems in in-
finite dimensional spaces where the solution concept is given by a partial order
induced by a closed pointed and convex cone one needs additional assumptions
concerning the connections between topology and order (cf. Isac [11]).

First, we recall some corresponding cone properties (that the cone is normal,
well-based, nuclear, Daniell property), compare Peressini [22], Isac [11], Isac,
Bulavsky, Kalashnikov [14], Jahn [17], Hyers, Isac, Rassias [16], Göpfert, Riahi,
Tammer, Zalinescu [9]. In many important cases the ordering cone has not such a
property, for instance the usual ordering cone in the space of continuous functions
has not a bounded base and the Daniell property is not given. In Figure 1 we give
an overview on such additional cone properties and corresponding relations for the
case thatY is a Banach space,C andK are proper convex cones inY. As usual, we
denote by

K∗ := {y∗ ∈Y∗ | y∗(y)≥ 0∀y∈ K}

the continuous dual cone ofK, and by

K# := {y∗ ∈ K∗ | y∗(y) > 0 ∀y∈ K \{0}}

the quasi-interior ofK∗.



4 G. Isac and C. Tammer

In order to study connections betweentopologyandorder we say that a non-
empty subsetA of the linear spaceY is full with respect to the convex coneK ⊂Y
if

A = (A+K)∩ (A−K).

Definition 1. Let (Y,τ) be a topological linear space and letK ⊂ Y be a convex
cone. ThenK is called normal (relative toτ) if the origin 0∈Y has a neighborhood
base formed byfull sets w.r.t.K.

Definition 2. Let Y be a Hausdorff topological vector space andK ⊂ Y a proper
convex cone.

(i) K is called basedif there exists a convex setB, such that K = R+B and
0 /∈ cl B.
(ii) K is called well-based if there exists a bounded convex setB, such that
K = R+B and 0/∈ cl B.
(iii) Let the topology ofY be defined by a familyP of seminorms.K is called
supernormal or nuclear if for each p ∈ P there existsy∗ ∈ Y∗, such that
p(y)≤ 〈y,y∗〉 for all y∈ K; it holdsy∗ ∈ K∗ in this case.
(iv) K is said to be Daniell if any non increasing net having a lower bound
converges to its infimum.

K well-based
K=cl K, Y=Rn

⇐= K pointed~w� Y normed
~ww

K nuclear =⇒ K normalww� K complete

K Daniell ⇐= K compact base.

Fig. 1 Cone properties.

Now, we give a few examples of Daniell cones.

Example 1.First, we recall the following result (cf. Peressini [22], Proposition 3.1,
p. 90, 91): If{xα}α∈A is a net which is increasing (decreasing) in a topological
vector space(Y,τ) ordered by a closed convex coneK and if x0 is a cluster point
of {xα}, then x0 = supα∈Axα (x0 = infα∈Axα ). We recall that a convex cone is
regular if any decreasing (increasing) net which has a lower bound (upper bound) is
convergent. By the result, cited above we have that any regular cone is Daniell.

Example 2.If (Y, || · ||) is a Banach lattice, that isY is a Banach space, vector lattice
and the norm is absolute, i.e.,||x||= || |x| || for anyx∈Y, then the coneY+ = {y∈
Y | y≥ 0} is Daniell if Y has weakly compact intervals.

Example 3.Finally, a convex cone with a weakly compact base is a Daniell cone.
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Proposition 1. (Isac [11]):
Let (Y,P) be an Hausdorff locally convex space and K⊂ Y a proper convex

cone. Then
K well-based=⇒ K nuclear =⇒ K normal.

If Y is a normed space, then

K nuclear =⇒ K well-based.

Remark 2.Among the classical Banach spaces their usual positive cones are well-
based only inl1 and L1(Ω), but l1 is not an Asplund space.

Relations between supernormal (nuclear) cones, Pareto efficiency and geometrical
aspects of Ekeland’s principle are derived by Isac, Bulavsky and Kalashnikov [14].

Let Y be a topological vector space overR. Assume(Y,K) is at the same time a
vector lattice with the lattice operationsx 7→ x+, x 7→ x−, x 7→ |x|, (x,y) 7→ sup{x,y}
and(x,y) 7→ inf{x,y}.

Definition 3. A setA⊂ Y is calledsolid, if x∈ A and|y| ≤ |x| impliesy∈ A. The
spaceY is called locally solid, if it possesses a neighborhood of 0 consisting of solid
sets.

Lemma 1 ([26]). The following properties are equivalent:

(i) Y is locally solid.
(ii) K is normal, and the lattice operations are continuous.

In order to derive optimality conditions in general spaces (cf. Section 6) there is
often the assumption that the (natural) ordering cone has a non-empty interior. Now,
we give some examples of convex cones with non-empty interior.

Example 4.Any closed convex coneK in the Euclidean space(Rn,〈·, ·〉) such that
K is self-adjoint (i.e.,K = K∗∗) has a non-empty interior.

Example 5.We consider the space of continuous functionsC[a,b] with the norm
||x||= sup{|x(t)| | t ∈ [a,b]}. The cone of positive functions inC[a,b]

KC[a,b] := {x∈C[a,b] | x(t)≥ 0∀t ∈ [a,b]}

has a non-empty interior.

Example 6.Let Y = l2(N,R) with the well-known structure of a Hilbert space. The
convex cone

Kl2 := {x = {xi}i≥0 | x0 ≥ 0 and
∞

∑
i=1

x2
i ≤ x2

0}

has a non-empty interior
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int Kl2 := {x = {xi}i≥0 | x0 > 0 and
∞

∑
i=1

x2
i < x2

0}.

Example 7.Let l∞ be the space of bounded sequences of real numbers, equipped
with the norm||x||= supn∈N{|xn|}. The cone

Kl∞ := {x = {xn}n∈N | xn ≥ 0 for anyn∈ N}

has a non-empty interior (cf. Peressini [22], p. 186).

Example 8.Let C1[a,b] be the real vector space formed by all real continuously
differentiable functions defined on[a,b] (a,b∈ R,a < b), equipped with the norm

|| f ||1 := {
∫ b

a
( f (t))2dt +

∫ b

a
( f ′(t))2dt}1/2

for any f ∈C1[a,b]. Using a Sobolev’s imbedding theorem, we can show that the
natural ordering cone

KC1 := { f ∈C1[a,b] | f ≥ 0}

has a non-empty interior. The proof is based on some technical details (cf. Da Silva
[4]).

Example 9.About the locally convex spaces, we put in evidence the following re-
sult. If (Y,τ) is a real locally convex space, then for every closed convex coneK ⊂Y,
with non-empty interior, there exists a continuous norm|| · || onY such thatK has a
non-empty interior in the normed space(Y, || · ||).

Furthermore, in order to show optimality conditions one has sometimes both
assumptions: that the ordering cone has a non-empty interior and has the Daniell
property. So it is important to ask for examples in infinite dimensional spaces, where
the ordering cone has both properties.

Example 10.(see Jahn [17]) Consider the real linear spaceL∞(Ω) of all (equiva-
lence classes of) essentially bounded functionsf : Ω → R ( /0 6= Ω ⊂ Rn) equipped
with the norm|| · ||L∞(Ω) given by

|| f ||L∞(Ω) := ess sup
x∈Ω

{| f (x)|} for all f ∈ L∞(Ω).

The ordering cone

KL∞(Ω) := { f ∈ L∞(Ω) | f (x)≥ 0 almost everywhere onΩ}

has a non-empty interior and is weak∗ Daniell.
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3 An Ekeland-type variational principle for vector optimization
problems

Concerning the vector optimization problem (VP) we use the following (approxi-
mate) solution concepts: Assume(Aspace1). Let us considerA⊂Y, a pointed closed
convex coneK ⊂Y, ε ≥ 0 andk0 ∈ K \{0}.

• A point y0 ∈ A is said to be anεk0-minimal point of A with respect to K, if there
exists no other pointy∈A such thaty−y0∈−εk0−(K \{0}). We denote this by
y0 ∈ εk0−E f f(A,K), whereεk0−E f f(A,K) is the set ofεk0 -minimal points
of A with respect to the ordering coneK. A point x0 ∈ S is called anεk0 -efficient
point of (VP), if f (x0) ∈ εk0−E f f( f (S),K). Is x0 ∈ S an εk0 -efficient point
of (VP) with ε = 0 we say thatx0 is an efficient point of (VP) and we write
f (x0) ∈ E f f( f (S),K).

• A point y0 ∈ A is said to be anεk0 -properly minimal element of A with respect
to K, if there is a closed normal coneB⊂Y with K \{0} ⊂ int B such thaty0 ∈
εk0−E f f(A,B). The set ofεk0 -properly minimal elements ofA with respect
to K is denoted byεk0− pE f f(A,K). A point x0 ∈ S is called anεk0 -properly
efficientpoint for (VP), if f (x0)∈ εk0−E f f( f (S),B) whereB is a closed normal
cone withK \ {0} ⊂ int B. Is x0 ∈ S an εk0 -properly efficient point of (VP)
with ε = 0 we say thatx0 is a properly efficient point of (VP) and we write
f (x0) ∈ pE f f( f (S),K).

We will apply a vector-valued variational principle of Ekeland’s type in order
to show necessary conditions for approximately efficient solutions of the vector
optimization problem (VP). There are many vector-valued variants of Ekeland’s
variational principle (and equivalent assertions) with different assumptions concern-
ing the ordering cone inY and concerning the properties of the objective function
f : X →Y (cf. [12], [13], [19], [27], [28]). Here we recall the variational principle
by Isac [12, Theorems 4 and 7], [16, Theorem 8.4] that is shown for the case that the
ordering coneK in Y is normal without assuming that the interior ofK is non-empty.

Theorem 1. (Isac [12]) Assume(Aspace1), K is a closed normal cone, k0 ∈ K\{0}.
Furthermore, suppose that for f: X →Y the assumption(Amap4) with respect to K
and k0 is fulfilled. If ε > 0 is an arbitrary real number and x0 ∈X is an element with
f (x0)≤K f (x)+εk0 for all x ∈X then there exists xε ∈X such that f(xε)≤K f (x0),
d(xε ,x0)≤

√
ε and, moreover,

f (x)+k0√
εd(x,xε)≤K f (xε) =⇒ x = xε . (1)

Remark 3.The assertion (1) in Theorem 1 means thatxε is an efficient element of
the perturbed objective functionf√εk0(x) := f (x)+k0√εd(x,xε) with respect toK,
i.e., f√εk0(xε) ∈ E f f( f√εk0(X),K).
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4 Nonlinear scalarization scheme

In order to prove optimality conditions we will introduce an axiomatic approach for
scalarization by means of (in general nonlinear) functionals. We consider a linear
topological spaceY, a proper setK ⊂Y and a scalarizing functionalϕ : Y → IR∪
{±∞} having some of the following properties:

(Aϕ1) The functionalϕ is K-monotone, i.e.,y,w∈Y, y∈ w−K impliesϕ (y)≤
ϕ (w).

(Aϕ1′) The functionalϕ is strictly K-monotone, i.e.,y,w∈Y, y∈ w− (K \ {0})
impliesϕ (y) < ϕ (w).

(Aϕ2) The functionalϕ is convex.
(Aϕ2′) The functionalϕ is sublinear.
(Aϕ2′′) The functionalϕ is linear.
(Aϕ3) The functionalϕ enjoys the translation property

∀s∈ IR, ∀y∈Y : ϕ
(
y+sk0) = ϕ (y)+s. (2)

(Aϕ4) The functionalϕ is lower continuous.
(Aϕ4′) The functionalϕ is continuous.

Examples for functionals satisfying the axioms given above are listed in the fol-
lowing:

Example 11.Assume thatB is a closed proper subset ofY andK ⊂ Y is a proper
set withB+ K ⊂ B. Let k0 ∈ Y \ {0} such thatB+ [0,+∞)k0 ⊂ B. Consider the
functionalϕ := ϕB,k0 : Y → IR∪{±∞}, defined by

ϕ (y) := inf
{

t ∈ IR | y∈ tk0−B
}

. (3)

We use the convention inf /0= +∞. Then it holds domϕ = IRk0−B.

If B = K is a proper closed convex cone andk0 ∈ int K the functional (3) fulfills
(Aϕ1), (Aϕ2′), (Aϕ3) and(Aϕ4′).
Moreover, ifB is a proper closed convex subset ofY with B+ (K \ {0}) ⊂ int B,
B does not contain lines parallel tok0 (i.e., ∀y ∈ Y, ∃t ∈ R : y+ tk0 /∈ D) and
Rk0−B=Y the functional (3) is finite-valued and fulfills(Aϕ1′), (Aϕ2), (Aϕ3) and
(Aϕ4). These properties of the functional (3) are shown in [9, Theorem 2.3.1].

Example 12.The scalarizing functional by Pascoletti and Serafini [21] for a vector
optimization problem (VP)

V− min
x∈S⊂IRn

f (x) = ( f1(x), ..., fm(x))T

(whereY = IRm, K = IRm
+, Sconvex andfi : S→R convex for alli = 1, ...,m) given

by
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min t (4)

subject to the constraints

f (x) ∈ a+ tr−K,

x∈ S, t ∈ R,

(with parametersa∈ Rm andr ∈ int Rm
+) satisfies the axioms(Aϕ1), (Aϕ2), (Aϕ3),

(Aϕ4′) (cf. [9, Theorem 2.3.1]).

Example 13.The following functional was introduced by Hiriart-Urruty [15]: As-
sume thatY is a normed space. For a non-empty setA ⊂ Y, A 6= Y, the ori-
ented distance function∆A : Y → R is given as∆A(y) = dA(y)− dY\A(y) (where
dA(y) = inf{||a− y|| | a∈ A} is the distance function to a setA). It is well known
that this function has the following properties (see [29, Proposition 3.2]):
(i) ∆A is Lipschitzian of rank 1.
(ii) If A is convex, then∆A is convex and ifA is a cone, then∆A is positively homo-
geneous.
(iii) Assume thatA is a closed convex cone. Ify1,y2 ∈ Y with y1− y2 ∈ A, then
∆A(y1)≤ ∆A(y2).

The functional∆A satisfies the axioms(Aϕ1), (Aϕ2), (Aϕ4′) if A is a closed
convex cone.

Example 14.Certain nonlinear functionals are used in financial mathematics in or-
der to express a risk measure (for example a valuation of risky investments) with
respect to an acceptance setB⊂ Y. Artzner, Delbean, Eber and Heath [1] (com-
pare Heyde [10]) introduced coherent risk measures. Risk measures are functionals
µ : Y → R∪{±∞}, whereY is a vector space of random variables. In the papers
by Artzner, Delbean, Eber and Heath [1] and Rockafellar, Uryasev and Zabarankin
[24] the following properties of coherent risk measuresµ are supposed:

(P1) µ(y+ tk0) = µ(y)− t,

(P2) µ(0) = 0 andµ(λy) = λ µ(y) for all y∈Y andλ > 0,

(P3) µ(y1 +y2)≤ µ(y1)+ µ(y2) for all y1,y2 ∈Y,

(P4) µ(y1)≤ µ(y2) if y1 ≥ y2.

The sublevel setLµ(0) =: B of µ to the level 0 is a convex cone and corresponds
to the acceptance set. It can be shown that a coherent risk measure admits a repre-
sentation as
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µ(y) = inf{t ∈ R | y+ tk0 ∈ B}. (5)

It can be seen that a coherent risk measure can be identified with the functional
ϕB,k0(−y) (see (3)) by

ϕB,k0(y) = µ(−y).

We get corresponding properties(Aϕ1), (Aϕ2′), (Aϕ3) for the functionalµ(−y) like
in Example 11 for the functionalϕB,k0 depending from the properties of the setB,
i.e., of the acceptance setB in Mathematical Finance.

Examples for coherent risk measures are theconditional value at risk (cf. [7],
Section 4.4, Definition 4.43) and theworst-case risk measure(cf. Example 16).

Example 15.(Value at Risk) Let Ω be a fixed set of scenarios. A financial position
is described by a mappingx : Ω → R andx belongs to a given classX of finan-
cial positions. Assume thatX is the linear space of bounded measurable functions
containing the constants on some measurable space(Ω ,A). Furthermore, letP be
a probability measure on(Ω ,A). A positionx is considered to be acceptable if the
probability of a loss is bounded by a given levelλ ∈ (0,1), i.e., if P[x< 0]≤ λ . The
corresponding monetary risk measureV@Rλ , defined by

V@Rλ (x) := inf{m∈ R | P(m+x < 0)≤ λ}

is calledValue at Risk. V@Rλ is the smallest amount of capital which, if added to
x and invested in the risk-free asset, keeps the probability of a negative outcome
below the levelλ .

V@Rλ is positively homogeneous but in general it is not convex (cf. Föllmer and
Schied [7], Example 4.11), this means that(Aϕ2) and(Aϕ2′) are not fulfilled.

Example 16.(Worst-case risk measure) Consider theworst-case risk measureρmax

defined by
ρmax(x) :=− inf

w∈Ω
x(w) for all x∈X ,

whereΩ is a fixed set of scenarios,x : Ω → R andx belongs to a given classX
of financial positions. Assume thatX is the linear space of bounded measurable
functions containing the constants on some measurable space(Ω ,A). The value
ρmax(x) is the least upper bound for the potential loss which occur in any scenario.
ρmax is a coherent risk measure (cf. Föllmer and Schied [7], Example 4.8) such that
we get the properties mentioned in Example 14.

5 Differentiability properties of vector-valued functions

In this section we suppose that assumption(Aspace2) is fulfilled and considerf :
X →Y. Furthermore, assume thatK ⊂Y is a proper pointed closed convex cone.

First of all, we introduce a concept of a vector-valued local Lipschitz property
for f : X →Y.
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Definition 4 ([26]). f : X → Y is called locally Lipschitz at x ∈ X, if there is a
functionP : X×R→ K such that∣∣∣ f (u+ th)− f (u)

t

∣∣∣≤ P(h,ε) ∀u∈U(x,ε), t ∈ (0,ε) (6)

for all sufficiently smallε > 0. Therein,P is supposed to be continuous inh, and
limh→0P(h,ε) = 0 for eachε > 0.

This property is a basis for the definition of a directional derivative, which fol-
lows the idea of the Clarke directional derivative of real-valued functions. First, we
recall Clarke’s generalized directional derivative:

Definition 5 ([3]). Let X be a Banach space and letf be Lipschitz near a given point
x and letv be any other vector inX. A mapping f ◦ : X →Y defined by

f ◦(x,v) := lim
t↓0

sup
y→x

f (y+ tv)− f (y)
t

is called Clarke’s generalized directional derivative off atx in directionv.

Definition 6. Clarke’s tangent cone (contingent cone) is defined by

T (S,x) := {h∈ X | d◦S(x,h) = 0},

wheredS(x) := inf{||y− x|| | y ∈ S} is the distance function to a non-empty set
S⊂ X, X is a Banach space andx∈ X.

This cone can be described also in the following way:

T (S,x) := {h∈ X | ∀{xn}n∈N ⊆ S, xn → x,∀{tn}n∈N ∈ (0,+∞), tn → 0

∃{hn}n∈N ⊆ X : hn → h, xn + tnhn ∈ S∀n∈ N}.

Furthermore, we study strictly differentiable mappings:

Definition 7 ([3]). f : X → Y is called strictly differentiable atx ∈ X if there is
a linear continuous mappingDSf (x) : X → Y such that for eachh ∈ X, for each
sequence{tn}n∈IN ⊆ IR+ and for each sequence{xn}n∈IN ∈X with xn→ x andtn→ 0
the following holds

DSf (x)(h) = lim
n→∞

f (xn + tnh)− f (xn)
tn

,

provided the convergence is uniform forh in compact sets.

Remark 4.If f is Lipschitz nearx the convergence is uniform forh in compact sets.
Definition 7 is a certain ”Hadamard type strict derivative”.

Definition 8 ([26]). We define the vector-valued directional derivativeD f (x,h) of f
atx∈ X in directionh∈ X by D f (x, ·) : X →Y,
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D f (x,h) := lim
ε↓0

sup
u∈U(x,ε), t∈(0,ε)

f (u+ th)− f (u)
t

.

Remark 5.In the following we assume that certain directional derivatives exist. In
order to have sufficient conditions for the existence of the directional derivative
one can suppose thatY is a Daniell locally convex vector lattice andf is locally
Lipschitz.

Using the vector-valued directional derivative we introduce the subdifferential of
f : X →Y:

Definition 9. The subdifferential off : X →Y at the pointx∈ X is defined by

∂ f (x) := {L ∈L (X,Y) | L(h)≤K D f (x,h) ∀h∈ X},

whereL (X,Y) denotes the space of linear continuous operators fromX to Y.

Under certain conditions on a setD ⊂ Y, we can conclude from the derivatives
being an element ofD that certain differential quotients are elements ofD as well:

Lemma 2 ([26]). Let D⊂Y be such that

(i) int D 6= /0
(ii) int D−K ⊂ int D.

Assume D f(x,h)∈ int D for x,h∈X. Then there is a real numberε(h) > 0 such that

f (u+ th)− f (u)
t

∈ int D ∀u∈U(x,ε(h)), t ∈ (0,ε(h)). (7)

What is more, also with small perturbations of the directionh an estimation for
the differential quotient can be given.

Lemma 3. Assume that D⊂ Y satisfies the conditions(i) and (ii) from Lemma 2,
x,h∈ X. Moreover, suppose that f is locally Lipschitz at x∈ X, the vector-valued
directional derivative D f(x,h) exists and D f(x,h) ∈ int D. Then, for each neigh-
borhood V of0 in Y satisfying D f(x,h)+V ⊂ int D there is a real numberε(h) > 0
and a neighborhood U′ of h such that

f (u+ th′)− f (u)
t

∈ D f (x,h)+V−K ∀u∈U(x,ε(h)), h′ ∈U ′, t ∈ (0,ε(h)).
(8)

In particular this implies

f (u+ th′)− f (u)
t

∈ int D ∀u∈U(x,ε(h)), h′ ∈U ′, t ∈ (0,ε(h)). (9)

Proof: There is a neighborhoodV ⊂Y of 0 such thatD f (x,h)+V ⊂ int D. Without
loss of generality, we assumeV to be solid.

Choose a solid neighborhoodV ′ of 0 such thatV ′+V ′ ⊂V; furthermore, choose
ε0 > 0 such that
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sup
u∈U(x,ε0), t∈(0,ε0)

f (u+ th)− f (u)
t

∈ D f (x,h)+V ′, hence (10)

f (u+ th)− f (u)
t

∈ D f (x,h)+V ′−K (11)

∀u∈U(x,ε0), t ∈ (0,ε0).

Finally, fix U ′ ∈U (h) such that for eachh′ ∈U ′ holds

P(h′−h,ε0) ∈V ′,

with P being the function corresponding to (6). Now, defineε(h) := min{ ε0
2 , ε0

2‖h‖}.
For eachu ∈ U(x,ε(h)) and eacht ∈ (0,ε) we haveu+ th ∈ u(x,ε0). Hence, the
vector-valued local Lipschitz property off yields for theseu andt∣∣∣ f (u+ th′)− f (u+ th)

t

∣∣∣≤ P(h′−h,ε0) ∈V ′. (12)

The solidity ofV ′ now leads to

f (u+ th′)− f (u+ th)
t

∈V ′. (13)

For eachu∈U(x,ε(h)), t ∈ (0,ε(h)) andh′ ∈U ′ we thus have derived

f (u+ th′)− f (u)
t

=
f (u+ th)− f (u)

t︸ ︷︷ ︸
∈D f (x,h)+V ′−K

+
f (u+ th′)− f (u+ th)

t︸ ︷︷ ︸
∈V ′

⊂ D f (x,h)+V−K ⊂ int D.

�

Lemma 4. Assume that g: X →Y is sublinear and f: X →Y convex. Then it holds:

(i) Dg(x,h)≤ g(h) for all x ∈ X and all h∈ X.
(ii) Dg(0,h) = g(h) for all h ∈ X.
(iii) ∂ f (x) = ∂D f (x, ·)(0).

Proof: (i). By the sublinearity ofg we have for allx,h∈ X andt ∈ (0,1)

g(u+ th) ≤ g(u)+g(th), also

g(u+ th)−g(u)
t

≤ g(th)
t

= g(h);

the last equality holds becauseg is positively homogeneous. Consequently, it fol-
lows that
supu∈U(x,ε), t∈(0,ε)

g(u+th)−g(u)
t ≤ g(h) for ε < 1. For the limes (which is guaranteed

to exist) this implies
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lim
ε↓0

sup
u∈U(x,ε), t∈(0,ε)

g(u+ th)−g(u)
t

≤ g(h).

(ii) For x = 0 the supremum is attained atu = 0.

(iii) Set ĝ = D f (x, ·). Thenĝ is subadditive and positively homogeneous (cf. Staib
[26, Lemma 1.2.6]. HenceDĝ(0,h) = ĝ(h) by (ii). Thus,Dĝ(0,h) = D f (x,h) holds
according to the definition of ˆg, and the assertion follows.

�

In Section 7 we will show necessary conditions for approximately efficient el-
ements of a vector optimization problem using the Mordukhovich subdifferential.
Here we recall the corresponding definition.

Definition 10. [18] Let Sbe a non-empty subset ofX and letα ≥ 0. Givenx∈ cl S
the non-empty set

NF
α (S,x) =

{
x∗ ∈ X∗ : limsup

y→x,y∈S

〈x∗,y−x〉
‖y−x‖

≤ α

}

is called the set of Fréchetα-normals toSatx. Whenα = 0, then the above set is a
cone, called the set of Fréchet normals and denoted byNF(S,x).
Let x0 ∈ cl S. The non-empty cone

NL(S,x0) = limsup
x→x0,α↓0

NF
α (S,x)

is called the limiting normal cone or the Mordukhovich normal cone toSatx0.

Definition 11. [18] Let f : X → R∪ {±∞} be a given proper function andx0 ∈
domf . The set

∂L f (x0) = {x∗ ∈ X∗ : (x∗,−1) ∈ NL(epif ,(x0, f (x0))}

is called the limiting subdifferential or the Mordukhovich subdifferential off atx0.
If x0 6∈ domf , then we set∂L f (x0) = /0.

Remark 6.If f : X → R∪{±∞} is convex, then∂L f (x) coincides with the Fenchel
subdifferential∂ f (x).

6 Necessary optimality conditions for vector optimization
problems in general spaces based on directional derivatives

In this section we derive necessary conditions for approximate solutions of the vec-
tor optimization problem (VP). Under the assumption that the ordering coneK
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has a non-empty interior we show in Theorem 2 necessary conditions for approxi-
mately efficient elements of (VP). Furthermore, in Theorem 3 we derive necessary
conditions for approximately efficient points of (VP) without the assumption that
int K 6= /0. Hereε > 0 andk0 ∈ K \{0} are fixed arbitrarily and represent an admis-
sible error of the approximate solutions.

Lemma 5. Suppose that K⊂Y is a pointed closed convex cone withint K 6= /0. Fix
an arbitrary c> 0, k0∈ int K and set D=−ck0−K. Then it holdsint D−K ⊂ int D.

Proof: Fix an arbitraryy ∈ int D−K. This meansy = y1− y2 with certainy1 ∈
int D andy2 ∈ K, where againy1 = −ck0− y3 with any3 ∈ int K. Hence we have
y=−ck0−(y2+y3). Now, by the convexity ofK we conclude(y2+y3)∈ int K and
consequentlyy∈ int D.

�

Theorem 2.Consider the vector optimization problem (VP). Suppose that K⊂ Y
is a closed normal cone, int K6= /0 and k0 ∈ K \ {0}. Assume(Aspace2), (Amap1),
and(Amap4) with respect to K and k0. Furthermore, suppose that S⊆ X is closed. If
ε > 0 is an arbitrary real number and x0∈S is an element with f(x0)≤K f (x)+εk0

for all x ∈ S then there exists an element xε ∈ S with f(xε)≤K f (x0) and

(i) ‖x0−xε‖ ≤
√

ε;
(ii) D f (xε ,h) /∈ −

√
εk0‖h‖− int K for all h ∈T (S,xε).

(iii) C⊂ T (S,xε), C is a convex cone, implies the existence of y∗ ∈ K∗, y∗ 6= 0,
satisfying

y∗ ◦D f (xε ,h)≥−
√

ε y∗(k0) for all h ∈C with‖h‖= 1.

(iv) Assume(Amap5) and S= X. For C as above there is an element y∗ ∈ K∗ \{0}
such that

0∈ y∗ ◦∂ f (xε)
w∗ −C∗+

√
ε y∗(k0)B0

X∗

(where∂ is the usual convex subdifferential and B0
X∗ is the unit ball in X∗ ).

If the order intervals in Y are weakly compact, there holds even

0∈ y∗ ◦∂ f (xε)−C∗+
√

ε y∗(k0)B0
X∗ .

Proof: The assumptions(Aspace2), (Amap4) and thatK is a closed normal cone
are fulfilled. Furthermore, sinceS is a closed set in a Banach space it is a complete
metric space endowed with the distance given by the norm such that the assumptions
of Theorem 1 are fulfilled. Choosexε ∈ S according to Theorem 1; this directly
implies(i).
(ii) Furthermore, for the elementxε ∈ S the following holds

f√εk0(xε) ∈ E f f( f√εk0[S],K), where f√εk0(x) := f (x)+
√

εk0‖x−xε‖

taking into account Theorem 1. This means

f (x)+
√

εk0‖x−xε‖ /∈ f (xε)−K \{0} ∀x∈ S.
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Fix anh∈T (S,xε). Then there are sequenceshn→ h, tn ↓ 0 such thatxε +tnhn∈
S. For these we have

f (xε + tnhn)+
√

εk0tn‖hn‖− f (xε) /∈ −K \{0},

hence
f (xε + tnhn)− f (xε)

tn
/∈ −

√
εk0‖hn‖−K \{0}. (14)

Assume nowD f (xε ,h) ∈ −
√

εk0‖h‖− int K; this means

D f (xε ,h) =−
√

εk0‖h‖−y1

with any1 ∈ int K.
Choose an neighborhoodV of 0 in Y in such a way thaty1 + 2V ⊂ int K. Ac-

cording to Lemma 3 withD := −
√

εk0‖h‖−K there is a numberε(h) > 0 and a
neighborhoodU ′ of h, such that (in particular, withu = xε ) it holds

f (xε + th′)− f (xε)
t

∈ D f (xε ,h)+V−K =−
√

εk0‖h‖−y1 +V−K

for all t ∈ (0,ε(h)) andh′ ∈U ′. For sufficiently large indicesn this implies

f (xε + tnhn)− f (xε)
tn

∈ −
√

εk0‖h‖−y1 +V−K.

Finally, choosen large enough to satisfy

−
√

εk0‖h‖=−
√

εk0‖hn‖+vn with avn ∈V,

which is possible because ofhn → h. This, however, means

f (xε + tnhn)− f (xε)
tn

∈ −
√

εk0‖hn‖−y1 +2V︸ ︷︷ ︸
⊂int D

−K ⊂ int D,

contradicting (14).

(iii) Let B0 denote the unit ball inX. The setD f (xε ,C∩B0) + K is convex.
Since−

√
εk0‖h‖− int K ⊃ −

√
εk0− int K for elementsh with ‖h‖ ≤ 1, we have

(D f (xε ,C∩B0)+K)∩ (−
√

εk0− int K) = /0 by (ii); this means[
(D f (xε ,C∩B0)+

√
εk0 +K

]
∩− int K = /0.

By a separation argument we find an elementy∗ ∈ Y∗ with y∗ 6= 0 and anβ ∈ R
satisfying
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y∗(y) ≥ β ∀y∈ D f (xε ,C∩B0)+
√

εk0 +K (15)

y∗(y) < β ∀y∈ − int K. (16)

Since 0∈ cl int (−K) =−K, from (16) follows thatβ ≥ 0.

Now assume thaty∗(y) > 0 for an elementy∈− int K. For a certain positive mul-
tiple cy∈− int K of y this impliesy∗(cy) > β , contradicting (16). Hence,y∗(y)≤ 0
for eachy∈ − int K; this inequality even holds for eachy∈ −cl int K because of
the continuity ofy∗. This meansy∗ ∈ K∗ \{0}.

In the following we exploit (15):
Let h∈C, ‖h‖ = 1. With y∈ D f (xε ,h)+

√
εk0 + v (v∈ K arbitrary) we also have

y∗(y)≥ 0. Hence
y∗(D f (xε ,h)+

√
εk0 +v)≥ 0;

in particular, withv = 0 we get

y∗ ◦D f (xε ,h)≥−
√

ε y∗(k0).

(iv). ForC as in(iii ) choosey∗ ∈ K∗ according to(iii ); this is,

y∗ ◦D f (xε ,h)≥−
√

ε y∗(k0)‖h‖

for all h∈C. Definep(h) := y∗ ◦D f (xε ,h)+
√

ε y∗(k0)‖h‖ for h∈C and the sets
S1 andS2 in X×R by

S1 := epi(p),
S2 := {(h,α) ∈ X×R : h∈C, α ≤ 0}.

BothS1 as well asS2 is convex. Furthermore, we have intS1 6= /0 and intS1∩S2 = /0.
By a separation argument we conclude the existence of an(x∗,α∗) ∈ (X×R)∗ =
X∗×R, (x∗,α∗) 6= 0 andβ ∈ R satisfying

(x∗,α∗)(h,α) ≥ β ∀(h,α) ∈ S1, (17)

(x∗,α∗)(h,α) ≤ β ∀(h,α) ∈ S2. (18)

With (0,0) ∈ S1∩S2 we deduceβ = 0, and(0,α) ∈ int S1 for α > 0 yieldsα∗ > 0.
Settingα = 0 in (17) leads to x∗

−α∗ ∈C∗. Using (18) this yields

x∗

−α∗ (h)≤ y∗ ◦D f (xε ,h)+
√

ε‖h‖ y∗(k0).

Sincey∗ ∈K∗, y∗ ◦D f (xε ,h) is a convex function inh; this is passed on to the whole
right side of the above inequality. Hence, we have

x∗

−α∗ ∈ ∂ (y∗ ◦D f (xε , ·)+
√

ε‖ · ‖ y∗(k0))(0)
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with the usual convex subdifferential∂ . Subdifferential calculus further yields

x∗

−α∗ ∈ ∂ (y∗ ◦D f (xε , ·))(0)+∂ (
√

ε‖ · ‖ y∗(k0))(0)

⊂ y∗ ◦∂ (D f (xε , ·))(0)
w∗

+
√

ε y∗(k0)B0
X∗ .

By Lemma 4 (iii), under convexity assumptions concerningf , this implies

x∗

−α∗ ∈ y∗ ◦∂ f (xε)
w∗

+
√

ε y∗(k0)B0
X∗ .

This yields

0∈ y∗ ◦∂ f (xε)
w∗

+
√

ε y∗(k0)B0
X∗ −C∗.

Regarding the formula when the order intervals are weakly compact: We have to
show thaty∗ ◦∂ f (xε) is weakly closed. This follows by an argumentation along the
lines of [2, Theorem 6.3] for convex operators.

�

Remark 7.The assertions in Theorem 2 are corrections of corresponding results in
[26, Theorem 2.2.1] and an extension of the results in [26, Theorem 2.2.1] to ap-
proximate solutions.

Using a closed normal coneB⊂ Y with K \ {0} ⊂ int B like in the concept of
proper efficiency we can drop the strong assumption intK 6= /0 or the ordering cone
K in Y. We will show a necessary condition under the assumption thatf is strictly
differentiable using the abstract nonlinear scalarizing scheme and Clarke’s strict
derivativeDSf (x) of f atx∈ X.

Theorem 3.Consider the vector optimization problem (VP) with S= X assuming
(Aspace2), (Amap2). Let K⊂ Y be a pointed closed convex cone, k0 ∈ K \ {0} and
B⊂ Y a closed normal cone with K\ {0} ⊂ int B. We suppose that(Amap4) with
respect to B and k0 is fulfilled. If ε > 0 is an arbitrary real number and there exists
an element x0 ∈ X such that f(x0) ≤B f (x) + εk0 for all x ∈ X then there is an
element xε ∈ X with f(xε)≤B f (x0) such that

(i) ‖x0−xε‖ ≤
√

ε.
(ii) There exists y∗ ∈ K# such that

||y∗ ◦DSf (xε)||∗ ≤
√

ε.

Proof: Considerx0 ∈ X such that f (x0) ≤B f (x) + εk0 for all x ∈ X, whereB
is a closed normal cone withK \ {0} ⊂ int B. Because of(Aspace2) (this implies
(Aspace1)) and(Amap4) with respect toB andk0 the assumptions of Theorem 1 are
fulfilled.
According to Theorem 1 we get the existence of an elementxε ∈ X such that(i)
holds. Furthermore, forxε the following holds f (xε) ∈ E f f( f√εk0(X),B), where
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f√εk0(x) := f (x)+
√

εk0‖x−xε‖.
This means

f (x)+
√

εk0‖x−xε‖ /∈ f (xε)− (B\{0}) ∀x∈ X,

i.e.,
f (x) /∈ f (xε)−

√
εk0‖x−xε‖− (B\{0}) ∀x∈ X. (19)

Consider the functional (3) and takeϕ(y) := ϕB,k0(y− f (xε)). For B, K andk0 the
assumptions in Example 11 are fulfilled and so we get the properties(Aϕ1′) with
respect toK, (Aϕ2) and(Aϕ4′) for ϕ. Assume that there existsx∈ X such that

ϕ( f (x))+
√

ε‖x−xε‖< ϕ( f (xε)) = 0.

Then there existst <−
√

ε‖x−xε‖ with f (x)− f (xε) ∈ tk0−B and so

f (x) ∈ f (xε)−
√

ε‖x−xε‖k0− (B+(−
√

ε‖x−xε‖− t)k0)

⊂ f (xε)−
√

ε‖x−xε‖k0− int B

⊂ f (xε)−
√

ε‖x−xε‖k0− (B\{0}),

a contradiction to (19). So we get

ϕ( f (x))≥ ϕ( f (xε))−
√

ε‖x−xε‖ ∀x∈ X.

Because of(Aϕ2) and(Aϕ4′) we get that the scalarizing functionalϕ is locally
Lipschitz. Furthermore,f is supposed to be a strictly differentiable mapping and so
locally Lipschitz. Hence the compositionϕ ◦ f is locally Lipschitz such that we can
use Clarke‘s generalized directional derivative(ϕ ◦ f )◦.

Consider now forn∈ IN, tn > 0, x := xε + tnhn with hn ∈U (U is a neighborhood
of h∈ X) and‖h‖= 1. For these we have

ϕ( f (xε + tnhn))−ϕ( f (xε))
tn

≥−
√

ε‖hn‖. (20)

Taking the limits fortn → 0 andhn → h we get for Clarke‘s generalized directional
derivative

(ϕ ◦ f )◦(x,h)≥−
√

ε ∀h∈ X with ‖h‖= 1.

Using the chain rule given by [3] (Theorem 2.3.10 and Proposition 2.1.2) we get
that there is an elementy∗ ∈ ∂ϕ( f (xε)) such that for allh∈ X with ||h||= 1

y∗ ◦DSf (xε)(h)≥−
√

ε.

Taking into account the linearity ofDSf (xε) we get (if we replaceh by−h)

y∗ ◦DSf (xε)(h)≤
√

ε
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such that
||y∗ ◦DSf (xε)||∗ ≤

√
ε.

Finally, we will showy∗ ∈ K# using the property(Aϕ1′) with respect toK of ϕ.
Let k ∈ K \ {0}. Thus we haveϕ(y) > ϕ(y− k). Sinceϕ is a continuous convex
function on the Banach SpaceY one has∂ϕ(y) 6= /0 for eachy∈Y. Thus we have

ϕ(y) > ϕ(y−k)≥ ϕ(y)+y∗(−k) ∀y∗ ∈ ∂ϕ(y).

This shows thaty∗(k) > 0 for anyk∈K \{0}. This immediately yields thaty∗ ∈K#.
This completes the proof.

�

For problems with restrictions we get the following result:

Theorem 4.Consider the vector optimization problem (VP) under the assumptions
(Aspace2) and(Amap2). Suppose that S⊆ X is closed. Let K⊂Y be a pointed closed
convex cone, k0 ∈ K \{0} and B⊂Y a closed normal cone with K\{0} ⊂ int B. We
suppose that(Amap4) with respect to B and k0 is fulfilled. If ε > 0 is an arbitrary
real number and there exists an element x0 ∈S such that f(x0)≤B f (x)+εk0 for all
x∈ S then there is an element xε ∈ S with f(xε)≤B f (x0) such that

(i) ‖x0−xε‖ ≤
√

ε.
(ii) There exists y∗ ∈ K# such that

y∗ ◦DSf (xε)(h)≥−
√

ε ∀h∈T (S,xε) with ||h||= 1.

Proof: We follow the line of the proof of Theorem 3.

�

Remark 8.The assertions in Theorems 3 and 4 are related to the proper efficiency
of the elementxε . Especially, (19) says thatxε is a properly efficient point off√εk0

overX with respect toK becauseB is a closed normal cone withK \ {0} ⊂ int B,
i.e., f√εk0(xε) ∈ pE f f( f√εk0(X),K). The propertyK \ {0} ⊂ int B implies in both
theorems the strong assertiony∗ ∈ K# for the multipliery∗.

Remark 9.In order to derive necessary conditions forεk0 -efficient points of (VP)
(with ε > 0), i.e., for x0 ∈ S with f (x0) ∈ εk0−E f f( f (S),K), it would be pos-
sible to use the same procedures like in the proofs of Theorems 2, 3 and 4 using
corresponding variational principles (for instance [9, Corollary 3.10.14]). The same
holds forεk0 -properly efficient points of (VP) (withε > 0), i.e., forx0 ∈ S with
f (x0) ∈ εk0− pE f f( f (S),K).
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7 Vector optimization problems with finite dimensional image
spaces

As seen in Theorem 2 the assumptions concerning the ordering coneK for deriving
optimality conditions in general spaces are strong. Now, we will show necessary
optimality conditions for vector optimization problems where the objective func-
tion f takes its values in a finite dimensional spaceRn under weaker assumptions.
Corresponding results are shown in [5], [6] and [20].

For a locally Lipschitz functionf we derive Lagrangian multiplier rules for ap-
proximately efficient elements of (VP) using Mordukhovichs subdifferential calcu-
lus (see Definition 11).

Theorem 5.Consider the vector optimization problem (VP). Assume that(Aspace3)
and (Amap3) are satisfied. Suppose that S⊆ X is closed. Let K⊂ Y be a pointed
closed convex cone, k0 ∈ K \ {0} and B⊂Y a closed normal cone with K\ {0} ⊂
int B. If ε > 0 is an arbitrary real number and there exists an element x0∈S such that
f (x0)≤B f (x)+εk0 for all x∈S then there are elements xε ∈S with f(xε)≤B f (x0),
u∗ ∈ K# with u∗(k0) = 1 and x∗ ∈ X∗ with ‖x∗‖ ≤ 1 such that

0∈ ∂L(u∗ ◦ f )(xε)+u∗(k0)
√

εx∗(xε)+N∂L
(S,xε).

PROOF. Consider an elementx0 ∈ Ssuch thatf (x0) ≤B f (x)+ εk0 for all x∈ S
whereB ⊂ Y is a closed normal cone withK \ {0} ⊂ int B. Taking into account
that (Amap3) is fulfilled for the function f , it is continuous as well and sinceS is
a closed set in a Asplund space it is a complete metric space endowed with the
distance given by the norm such that the assumptions of Theorem 1 are fulfilled.
From this variational principle we get the existence of an elementxε ∈ Ssuch that
f (xε) ≤B f (x0). Moreover, forxε holds f (xε) ∈ E f f( f√εk0(S),B) where the per-
turbed objective functionf√εk0 is given by

f√εk0(x) := f (x)+k0√
ε ‖x−xε‖ .

Now, applying Theorem 3.1 in [5] we can findu∗ ∈ ∂ϕ(v) with u∗ ∈ K∗, u∗(k0) = 1
(where the scalarizing functionϕ is given byϕ (y) := ϕB,k0(y− f√εk0(xε)) (cf. (3))
and has the properties(Aϕ1′) with respect toK, (Aϕ2) and(Aϕ4′)) such that by the
calculation rules for Mordukhovich subdifferential

0∈ ∂L(u∗ ◦ f√εk0)(xε)+N∂L
(S,xε). (21)

Consider an elementx∗ε ∈ ∂L(u∗ ◦ f√εk0)(xε) involved in (21). Because of

∂L(u∗ ◦ f√εk0)(x) = ∂L(u∗ ◦ ( f (·)+k0√
ε ‖·−xε‖))(x),

by use of the rule for sums and the property that Mordukhovich subdifferential co-
incides in the convex case with the Fenchel subdifferential, we get
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x∗ε ∈ ∂L(u∗ ◦ f )(xε)+u∗(k0)
√

ε∂ ‖·−xε‖(xε). (22)

From (21) and (22) and taking into account the calculation rule for the subdifferen-
tial of the norm it follows that there isx∗ ∈ X∗ with ‖x∗‖ ≤ 1 such that

0∈ ∂L(u∗ ◦ f )(xε)+u∗(k0)
√

εx∗(xε)+N∂L
(S,xε)).

The propertyu∗ ∈ K# follows analogously like in the proof of Theorem 3.

�
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