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Abstract

We develop in this article a geometric approach to duality in Multiple Objective Linear
Programming. This approach is based on a very old idea, the duality of polytopes, which
can be traced back to the old Greeks. We show that there is an inclusion reversing one-to-one
map between the minimal faces of the image of the primal objective and the maximal faces
of the image of the dual objective map.

1 Introduction

Duality for multiple objective linear programs seems to have its origin in 70th, see e.g. Kornbluth
[13], Roedder [17], Isermann [9, 10] and Brumelle [2]. More recent expositions are Jahn [11, 12],
Luc [15] and Göpfert and Nehse [4], where also nonlinear problems are considered.

As noticed in [4, p. 64], the practical relevance of vectorial duality theory is quite low in
comparison with the relevance of duality in scalar optimization. Moreover, in the linear case
there occured some difficulties, such as a duality gap in the case b = 0 (where b is the right-hand
side of the inequality constraints). In [6], this duality gap could be closed by using a set-valued
approach. In [14, 7, 8], this set-valued approach is revisited from a lattice theoretic point of
view. The aim of these papers is to work in an appropriate complete lattice in order to have a
duality theory which can be formulated along the lines of the scalar duality theory. In particular,
the infimum and supremum can be used to define solutions. Another goal (especially in [8]) is
to have a ”simple” dual problem. This means, the dual problem should be at least not more
complicated than the primal problem.

Nevertheless, in all the mentioned references there is a basic difference to the present article.
Instead of speaking about strong duality if the optimal values of a pair of dual optimization
problems are equal, we deal with a duality relation between the polyhedral image set of the
primal problem and the polyhedral image of the dual problem, which is similar to duality of
polytopes (see Figure 1).

It is well-known from the theory of convex polytopes (see e.g. [5]) that two polytopes P and
P∗ in Rq are said to be dual to each other provided there exists a one-to-one mapping Ψ between
the set of all faces of P and the set of all faces of P∗ such that Ψ is inclusion-reversing, i.e., faces
F1 and F2 of P satisfy F1 ⊆ F2 if and only if the faces Ψ(F1) and Ψ(F2) satisfy Ψ(F1) ⊇ Ψ(F2)
[5].

Denoting by P and D the images of the objective functions of our given problem (P) and its
dual problem (D), respectively, we show that there is an inclusion reversing one-to-one map Ψ
between the set of all K-maximal proper faces of D and the set of all weakly C-minimal proper
faces of P, where K and C are appropriate ordering cones. With the aid of such a map Ψ we
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Figure 1: Example of a pair of dual polytopes in R3.

can compute the weakly C-minimal faces of P whenever we know the K-maximal faces of D
and vice versa. In particular, we are given by Ψ a one-to-one correspondence between weakly
C-minimal vertices (facets) of P and K-maximal facets (vertices) of D. It is worth to mention
that there is a connection between the lattice theoretic duality in [8] and the geometric duality
in the present article. This is shortly discussed in the end of Section 3.

In a forthcoming paper [3] we give an application of geometric duality, a dual variant of
Benson’s outer approximation algorithm [1].

2 Preliminaries

Let A ⊆ Rq and let C ⊆ Rq be a closed convex cone. Denoting by ri C the relative interior of C,
we set

MinCA := {y ∈ A | ({y} − ri C) ∩ A = ∅} and MaxCA := Min(−C)A.

In the following we consider two special ordering cones, namely

C := R
q
+ and K := R+ · (0, 0, . . . , 0, 1)T = {y ∈ Rq | y1 = · · · = yq−1 = 0, yq ≥ 0} .

For the choice C = C we obtain the set of weakly C-minimal elements of A, given by

MinCA :=
{

y ∈ A | ({y} − int R
q
+) ∩ A = ∅

}

.

In case of C = K we get the set of K-maximal elements of A, namely

MaxKA := {y ∈ A | ({y} +K \ {0}) ∩ A = ∅} .

For the convenience of the reader, we recall some facts concerning the facial structure of
polyhedral sets [18]. Let A ⊆ Rq be a convex set. A convex subset F ⊆ A is called a face of A if

(

y1, y2 ∈ A, λ ∈ (0, 1), λy1 + (1 − λ)y2 ∈ F
)

⇒ y1, y2 ∈ F .

A face F of A is called proper if ∅ 6= F 6= A. A set E ⊆ A is called an exposed face of A if there
are c ∈ Rq and γ ∈ R such that A ⊆

{

y ∈ Rq | cT y ≥ γ
}

and E =
{

y ∈ Rq | cT y = γ
}

∩ A. The
proper (r − 1)-dimensional faces of an r-dimensional polyhedral set A are called facets of A. A
point y ∈ A is called a vertex of A if {y} is a face of A. Let A be a polyhedral set in Rq. Then
A has a finite number of faces, each of which is exposed and a polyhedral set. Every proper face
of A is the intersection of those facets of A that contain it, and the relative boundary of A is
the union of all the facets of A. If A has a nonempty face of dimension s, then A has faces of
all dimensions from s to dimA (see [18], Theorem 3.2.2).
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If intA 6= ∅ then A is a q-dimensional polyhedral set, hence the facets of A are the (q − 1)-
dimensional faces of A, i.e., the maximal (w.r.t. inclusion) proper faces. A subset F ⊆ A is a
proper face if and only if it is a proper exposed face, i.e., there is a supporting hyperplane H to
A such that F = H∩A. We call a hyperplane H :=

{

y ∈ Rq | cT y = γ
}

(i.e., c 6= 0) supporting
to A if

∀y ∈ A : cT y ≥ γ ∧ ∃y0 ∈ A : cT y0 = γ.

3 Main result

Throughout the article, let m,n, q ∈ N and A ∈ Rm×n,M ∈ Rq×n, b ∈ Rm be given and let the
ordering cones C and K be defined as above. Further we set k = (1, . . . , 1)T ∈ Rq. We consider
the following vector optimization problem

(P) MinCM [X ], X := {x ∈ Rn | Ax ≥ b} ,

We define a dual linear objective function by D : Rm × Rq → Rq, D(u, c) :=
(

c1, ..., cq−1, b
Tu
)T

and consider the following dual vector optimization problem

(D) MaxKD[U ], U :=
{

(u, c) ∈ Rm × Rq | (u, c) ≥ 0, ATu = MT c, kT c = 1
}

.

It is our goal to show a duality relation between the sets

P := M [X ] + C = {y ∈ Rq | ∃x ∈ X : y ∈ {Mx} + C } and
D := D [U ] −K = {y ∈ Rq | ∃(u, c) ∈ U : y ∈ {D(u, c)} −K } .

To this end we construct an inclusion reversing one-to-one map Ψ between the K-maximal
proper faces of D and the weakly C-minimal proper faces of P.

Consider the coupling function ϕ : Rq × Rq → R, defined by

ϕ(y, v) :=

q−1
∑

i=1

yivi + yq(1 −

q−1
∑

i=1

vi) − vq.

Note that ϕ(·, v) and ϕ(y, ·) are affine. Choosing the values of the primal and dual objective
function as arguments, we just get

ϕ(Mx,D(u, c)) = cTMx− bTu. (1)

The coupling function ϕ is used to define the following two set-valued maps

H : Rq
⇉ Rq, H(v) := {y ∈ Rq | ϕ(y, v) = 0} ,

H∗ : Rq
⇉ Rq, H∗(y) := {v ∈ Rq | ϕ(y, v) = 0} .

Of course, H(v) and H∗(y) are hyperplanes in Rq for all v, y ∈ Rq. Using the notation

c(v) :=

(

v1, . . . , vq−1, 1 −

q−1
∑

i=1

vi

)T

and c∗(y) :=
(

y1 − yq, . . . , yq−1 − yq,−1
)T

it is easy to see that

H(v) =
{

y ∈ Rq | c(v)T y = vq

}

and H∗(y) =
{

v ∈ Rq | c∗(y)T v = −yq

}

.

Obviously, the set-valued maps H and H∗ are injective. The map H is now used to define the
function Ψ : 2R

q

→ 2R
q

,

Ψ(F∗) :=
⋂

v∈F∗

H(v) ∩ P.

It follows the main result which shows that Ψ is a duality map between P and D.

3



Theorem 1. Ψ is an inclusion reversing one-to-one map between the set of all K-maximal

proper faces of D and the set of all weakly C-minimal proper faces of P and the inverse map is

given by

Ψ−1(F) =
⋂

y∈F

H∗(y) ∩ D. (2)

Moreover, for every K-maximal proper face F∗ of D it holds dimF∗ + dim Ψ(F∗) = q − 1.

The proof of this theorem is given in the last section.
Let us consider an important special case. Vertices as well as facets are actually the most

important faces from the point of view of applications. Therefore we extract some corresponding
conclusions from the above theorem.

Corollary 1. The following statements are equivalent.

(i) v is a K-maximal vertex of D.

(ii) H(v) ∩ P is a weakly C-minimal (q − 1)-dimensional facet of P.

Moreover, if F is a weakly C-minimal (q − 1)-dimensional facet of P, there is some uniquely

defined point v ∈ Rq such that F = H(v) ∩ P.

Proof. (i) ⇒ (ii). Since H(v) ∩ P = Ψ({v}), Theorem 1 implies that H(v) ∩ P is a weakly C-
minimal proper face of P. Theorem 1 also implies that dim(H(v)∩P) = q−1−dim {v} = q−1.

(ii) ⇒ (i). Let H(v)∩P be a weakly C-minimal (q−1)-dimensional facet of P. By Theorem
1, Ψ−1(H(v)∩P) is a K-maximal vertex of D, denoted by v̄. It follows that Ψ◦Ψ−1(H(v)∩P) =
Ψ({v̄}) and hence H(v) ∩ P = H(v̄) ∩ P implying H(v) = H(v̄) as dim(H(v) ∩ P) = q − 1. The
mapping H being injective implies v = v̄.

To show the last statement, let F be a weakly C-minimal (q − 1)-dimensional facet of P.
Hence Ψ−1(F) is a K-maximal vertex of D, denoted by v. It follows that F = Ψ ◦ Ψ−1(F) =
Ψ({v}) = H(v)∩P. By dim(H(v)∩P) = q− 1 and H being injective, v is uniquely defined.

Corollary 2. The following statements are equivalent.

(i) y is a weakly C-minimal vertex of P.

(ii) H∗(y) ∩ D is a K-maximal (q − 1)-dimensional facet of D.

Moreover, if F∗ is a K-maximal (q − 1)-dimensional facet of D, there is some uniquely defined

point y ∈ Rq such that F∗ = H∗(y) ∩ D.

Proof. (i) ⇒ (ii). Let y be a weakly C-minimal vertex of P. By Theorem 1, the set F∗ :=
Ψ−1({y}) = H∗(y) ∩ D is a K-maximal face of D. From Theorem 1 we also conclude that
dimF∗ = q − 1 − dim {y} = q − 1. Thus F∗ is a facet of D.

(ii) ⇒ (i). Let H∗(y) ∩ D be a K-maximal (q − 1)-dimensional facet of D. By Theorem 1
Ψ(H∗(y)∩D) is a weakly C-minimal vertex of P, denoted by ȳ. It follows that Ψ−1 ◦Ψ(H∗(y)∩
D) = Ψ−1({ȳ}) and hence H∗(y) ∩ D = H∗(ȳ) ∩ D. Since dim(H∗(y) ∩ D) = q − 1 and H∗ is
injective, we get y = ȳ.

To show the last statement, let F∗ be a K-maximal (q − 1)-dimensional facet of D. Hence
Ψ(F∗) is a C-minimal vertex of P, denoted by y. It follows that F∗ = Ψ−1◦Ψ(F∗) = Ψ−1({y}) =
H∗(y) ∩ D. By dim(H∗(y) ∩ D) = q − 1 and H∗ being injective, y is uniquely defined.

Remark. In [8] we developed a duality theory based on a lattice theoretic approach. The dual
problem (D) in the present article is related to the set-valued dual problem in [8]. Indeed,
both problems have the same constraints, given by U . The set-valued objective map of the
dual problem in [8] can be expressed by the objective function of (D) as (u, c) 7→ H(D(u, c)).
Moreover, (u, c) being a weakly efficient solution for the dual problem (LD) in [8] is equivalent
to D(u, c) being a K-maximal point of D.
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4 Examples

The geometric duality is illustrated by the following two examples.

Example 1. Consider problem (P) with the following data

M =

(

1 0
0 1

)

, A =









0 -1
2 1
1 1
1 2









, b =









-4
4
3
4









.

The set D can be easily calculated as D = co
{

(1
3 ,

4
3)T , (1

2 ,
3
2)T , (2

3 ,
4
3)T , (1, 0)T

}

−K, where coA
denotes the convex hull of a set A (see Figure 2).

P

1

2

3

4

1 2 3 4

y2

y1 v1

v2

D

1

2

1

Figure 2: The three weakly C-minimal vertices of P correspond to the three K-maximal facets
of D and the four weakly C-minimal facets of P correspond to the four K-maximal vertices of
D.

Example 2. Consider problem (P) with the following data

M =





1 0 0
0 1 0
0 0 1



 , A =









1 1 1
-1 -1 1
-1 1 -1
1 -1 -1









, b =









1
-1
-1
-1









.

An easy computation shows that D = co
{

(0, 0, 0)T , (1, 0, 0)T , (0, 1, 0)T , (1
3 ,

1
3 ,

1
3)T
}

− K (see
Figure 3).

5 Proof of the main result

The proof of the main result is based on several auxiliary assertions, which are given below. The
following pairs of dual scalar linear optimization problems, depending on parameters v, y ∈ Rq,
play an important role in the following considerations.
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y1

y2

y3

v1

v2

v3

P D

1

1
1

1

1

1

3

Figure 3: The three weakly C-minimal vertices of P correspond to the three K-maximal facets
of D, the six weakly C-minimal edges of P correspond to the six K-maximal edges of D and the
four weakly C-minimal facets of P correspond to the four K-maximal vertices of D.

(P1(v)) min
x∈X

c(v)TMx X := {x ∈ Rn | Ax ≥ b}

(D1(v)) max
u∈T (v)

bTu T (v) :=
{

u ∈ Rm | u ≥ 0, ATu = MT c(v)
}

(P2(y)) min
x∈S(y)

z S(y) := {(x, z) ∈ Rn × R | Ax ≥ b, Mx− kz ≤ y}

(D2(y)) max
(u,c)∈U

(bTu− yT c) U :=
{

(u, c) ∈ Rm × Rq | (u, c) ≥ 0, ATu = MT c, kT c = 1
}

Note that with the above notation it holds

D =
{

v ∈ Rq | c(v) ≥ 0,∃u ∈ T (v) : bTu ≥ vq

}

. (3)

We start with a characterization of weakly C-minimal points of P.

Lemma 1. The following three statements are equivalent.

(i) y0 ∈ MinC P.

(ii) there is some x0 ∈ Rn such that (x0, 0) solves (P2(y
0)).

(iii) there is some (u0, c0) ∈ U with bTu0 = y0T
c0 solving (D2(y

0)).

Proof. (ii)⇒(i). If (x0, 0) solves (P2(y
0)) then x0 ∈ X and Mx0 ≤ y0 hence y0 ∈ P. Assume

that there is some y ∈ P (i.e., there is some x ∈ X with Mx ≤ y) with y < y0 then there is
some z < 0 such that y ≤ y0 + kz, whence Mx− kz ≤ y− kz ≤ y0. Thus we have (x, z) ∈ S(y0)
where z < 0. This contradicts the optimality of (x0, 0).

(i)⇒(ii). If y0 ∈ MinC P then there exists some x0 ∈ X with Mx0 ≤ y0, i.e., (x0, 0) ∈ S(y0).
Assume that there is some (x, z) ∈ S(y0) with z < 0. Let y := y0 + zk then y < y0 and
Mx ≤ y0 + kz = y, i.e., y ∈ P. This contradicts y0 being weakly C-minimal.

(ii)⇔(iii). By duality of (P2(y
0)) and (D2(y

0)).
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Lemma 2. Every K-maximal proper face of D contains a vertex.

Proof. Let F∗ be a K-maximal proper face of D. It suffices to show that F∗ contains no lines
([16], Cor. 18.5.3.). Assume on the contrary that F∗ contains a line, i.e., there are v̄ ∈ F∗

and ψ ∈ Rq \ {0} such that v̄ + λψ ∈ F∗ for all λ ∈ R. Since for every v ∈ F∗ ⊆ D it holds
v1 ≥ 0, . . . , vq−1 ≥ 0 we have ψ1 = · · · = ψq−1 = 0. Thus, ψ 6= 0 implies K ⊆ {λψ | λ ∈ R}. We
get {v̄} +K ⊆ F∗, contradicting the K-maximality of F∗.

Lemma 3. Consider a hyperplane H∗ :=
{

v ∈ Rq | c∗T v = γ
}

. Then the following statements

are equivalent.

(i) H∗ is a supporting hyperplane to D such that H∗ ∩ D is K-maximal.

(ii) H∗ is a supporting hyperplane to D[U ] and c∗q < 0.

Proof. (i) ⇒ (ii). If H∗ is a supporting hyperplane to D, then there is some v0 ∈ D with
c∗T v0 = γ and for v ∈ D it holds c∗T v ≥ γ. By definition of D we have v̄ := v0 − eq ∈ D
(eq = (0, ..., 0, 1)T ), implying that c∗q ≤ 0. Since c∗q = 0 would imply v̄ ∈ H∗ ∩ D and v0 ∈
(v̄ +K \ {0}) ∩ D, contradicting the maximality of H∗ ∩ D, we conclude c∗q < 0. As v0 ∈ D,

there are v1 ∈ D[U ] ⊆ D and z ≥ 0 such that v0 = v1 − eqz. Hence c∗T v1 = c∗T v0 + c∗qz ≤ γ.

This implies c∗T v1 = γ. Therefore H∗ is a supporting hyperplane to D[U ].
(ii) ⇒ (i). If H∗ is a supporting hyperplane to D[U ] then there is some v0 ∈ D[U ] with

c∗T v0 = γ and for all v ∈ D[U ] it holds c∗T v ≥ γ. Since c∗q < 0, it follows that c∗T v ≥ γ for all

v ∈ D[U ] −K = D. By v0 ∈ D and c∗T v0 = γ we conclude that H∗ is a supporting hyperplane
to D.

In order to show that H∗ ∩ D is K-maximal, let v0 ∈ H∗ ∩ D be given. Hence, c∗T v0 = γ.
For every v ∈ v0 +K \ {0} it holds c∗T v < γ, because of c∗q < 0. Since c∗T v ≥ γ for all v ∈ D,
we obtain (v0 +K \ {0}) ∩ D = ∅.

Lemma 4. Let y ∈ Rq. The following statements are equivalent.

(i) y is a weakly C-minimal point of P.

(ii) H∗(y) ∩ D is a K-maximal proper face of D.

Moreover, for every K-maximal proper face F∗ of D there exists some y ∈ Rq such that F∗ =
H∗(y) ∩ D.

Proof. By Lemma 1, (i) is equivalent to

(iii) There exists some (u0, c0) ∈ U with yT c0 = bTu0 solving (D2(y)).

Taking into account (1), we see that (iii) is equivalent to

(iv) ϕ(y, v) ≥ 0 for all v ∈ D[U ] and there exists some v0 ∈ D[U ] with ϕ(y, v0) = 0.

Statement (iv) is equivalent to

(v) H∗(y) is a supporting hyperplane to D[U ].

Regarding the fact that H∗(y) =
{

v ∈ Rq | c∗(y)T v = −yq

}

with c∗(y)q = −1 < 0, (v) is equiv-
alent to (ii) by Lemma 3.

Let F∗ be a K-maximal proper face of D. Then there exists a supporting hyperplane
H∗ :=

{

v ∈ Rq | c∗T v = γ
}

(i.e., c∗ 6= 0) to D such that F∗ = H∗ ∩ D. By Lemma 3, we have
c∗q < 0. Setting

y :=

(

γ − c∗1
c∗q

, . . . ,
γ − c∗q−1

c∗q
,
γ

c∗q

)T

we obtain H∗ = H∗(y). Hence F∗ = H∗(y) ∩ D.
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Lemma 5. Consider a hyperplane H :=
{

y ∈ Rq | cT y = γ
}

. The following statements are

equivalent.

(i) H is a supporting hyperplane to P.

(ii) c ≥ 0 and H is a supporting hyperplane to M [X ].

Proof. (i) ⇒ (ii). If H is a supporting hyperplane to P then there is some y0 ∈ P with cT y0 = γ

and for all y ∈ P it holds cT y ≥ γ. By the definition of P we have y0+w ∈ P for all w ∈ C = R
q
+,

hence cTw ≥ 0 for all w ∈ R
q
+. This implies c ≥ 0. Since y0 ∈ P, there is y1 ∈ M [X ] ⊆ P and

w ∈ C such that y0 = y1 +w. Hence cT y1 = cT y0 − cTw ≤ γ. This implies cT y1 = γ. Therefore
H is a supporting hyperplane to M [X ].

(ii) ⇒ (i). If H is a supporting hyperplane to M [X ] then there is some y0 ∈ M [X ] with
cT y0 = γ and for all y ∈ M [X ] it holds cT y ≥ γ. Since c ≥ 0, it follows that cT y ≥ γ for all
y ∈ M [X ] + R

q
+. By y0 ∈ P and cT y0 = γ we conclude that H is a supporting hyperplane to

P.

Lemma 6. Every proper face of P is weakly C-minimal.

Proof. Let F be a proper face of P. There is a supporting hyperplane H :=
{

y ∈ Rq | cT y = γ
}

(i.e., c 6= 0) to P such that F = H ∩ P. By Lemma 5 we have c ≥ 0. Let y ∈ F , then y ∈ P
implying the existence of x0 ∈ X such that Mx0 ≤ y, i.e., (x0, 0) ∈ S(y) and cT y = γ. Suppose
there are x ∈ X and z < 0 such that Mx− kz ≤ y, i.e., Mx < y. Since H =

{

y ∈ Rq | cT y = γ
}

is a supporting hyperplane to P and Mx ∈ P, we have γ ≤ cTMx < cT y = γ, a contradiction.
Hence (x, 0) solves (P2(y)). By Lemma 1 this implies that y ∈ MinC P.

Lemma 7. Let v ∈ Rq. The following statements are equivalent.

(i) v is a K-maximal point of D.

(ii) H(v) ∩ P is a weakly C-minimal proper face of P.

Moreover, for every proper face F of P there exists some v ∈ Rq such that F = H(v) ∩ P.

Proof. Taking into account (3), we conclude that (i) is equivalent to

(iii) c(v) ≥ 0 and there exists some u0 ∈ Rm solving (D1(v)) such that vq = bTu0.

By duality between (P1(v)) and (D1(v)), (iii) is equivalent to

(iv) c(v) ≥ 0 and there exists some x0 ∈ Rn solving (P1(v)) such that vq = c(v)TMx0.

Statement (iv) is equivalent to

(v) c(v) ≥ 0 and H(v) is a supporting hyperplane to M [X ].

By Lemma 5 and Lemma 6, (v) is equivalent to (ii).
To show the last conclusion, let F be a proper face of P. Hence there exists some supporting

hyperplane H :=
{

y ∈ Rq | cT y = γ
}

(i.e., c 6= 0) to P such that F = H ∩ P. By Lemma 5, we
have c ≥ 0. Without loss of generality we can assume that kT c = 1 (k = (1, . . . , 1)T ). Setting
vi := ci for i = 1, . . . , q − 1 and vq := γ, we have H = H(v). Hence F = H(v) ∩ P.

Now we are able to give the proof of our main result.

Proof of Theorem 1. (a) We show that, if F∗ is a K-maximal proper face of D, then Ψ(F∗)
is a weakly C-minimal proper face of P. By Lemma 7, H(v) ∩ P is a weakly C-minimal proper
face of P for each v ∈ F∗, hence Ψ(F∗) is a weakly C-minimal face of P. It remains to show
that Ψ(F∗) is nonempty. By Lemma 4 there is some y0 ∈ MinC P such that F∗ = H∗(y0) ∩ D,
hence y0 ∈ Ψ(F∗).
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(b) We prove that Ψ∗(F) :=
⋂

y∈F H∗(y) ∩ D is a K-maximal proper face of D if F is a
weakly C-minimal proper face of P. By Lemma 4, H∗(y) ∩ D is a K-maximal proper face of D
for each y ∈ F . Hence Ψ∗(F) is a K-maximal proper face of D if this set is nonempty. Indeed,
by Lemma 7, there is some v0 ∈ MaxK D such that F = H(v0) ∩ P implying v0 ∈ Ψ∗(F).

(c) In order to show that Ψ is a bijection and that Ψ−1(F) =
⋂

y∈F H∗(y) ∩ D =: Ψ∗(F),
we have to show the following two statements: (c1) Ψ∗(Ψ(F∗)) = F∗ for all K-maximal proper
faces F∗ of D and (c2) Ψ(Ψ∗(F)) = F for all weakly C-minimal proper faces F of P.

(c1) First we show that F∗ ⊆ Ψ∗(Ψ(F∗)). Assume the contrary, i.e., there is some v0 ∈ F∗

such that v0 6∈ Ψ∗(Ψ(F∗)). Hence there exists some y0 ∈ Ψ(F∗) such that v0 6∈ H∗(y0) ∩ D.
This implies v0 6∈ H∗(y0) since v0 ∈ D. It follows that y0 6∈ H(v0), whence y0 6∈ Ψ(F∗), a
contradiction. To show the opposite inclusion, let y0 ∈ MinC P such that F∗ = H∗(y0) ∩ D.
The existence of such a point y0 is ensured by Lemma 4. It follows that y0 ∈ Ψ(F∗). Hence
Ψ∗(Ψ(F∗)) ⊆ H∗(y0) ∩ D = F∗.

(c2) The proof works analogously using Lemma 7 instead of Lemma 4.
(d) Obviously, Ψ is inclusion reversing.
(e) It remains to prove that dimF∗ + dim Ψ(F∗) = q − 1 for all K-maximal proper faces

F∗ of D. Consider some fixed F∗ and set r := dimF∗ and s := dim Ψ(F∗). By the first part
of the proof, F := Ψ(F∗) is a weakly C-minimal face of P. Hence there exist proper faces
F ( F1 ( F2 ( · · · ( Fq−1−s (all of them being weakly C-minimal by Lemma 6) such that
dimFq−1−s = q − 1. From the properties of Ψ, we conclude that 0 ≤ dim Ψ−1(Fq−1−s) ≤
r − (q − 1 − s). Hence r + s ≥ q − 1. Since every K-maximal face of D has a vertex (Lemma
2), there are K-maximal faces F∗ ) F∗

1 ) F∗
2 ) · · · ) F∗

r such that dimF∗
r = 0. It follows that

s+ r ≤ dim Ψ(F∗
r ) ≤ q − 1. Together we have s+ r = q − 1.
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