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Model order reduction methods applied to neural network training
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Neural networks have emerged as powerful and versatile tools in the field of deep learning. As the complexity of the task
increases, so do size and architectural complexity of the network, causing compression techniques to become a focus of current
research. Parameter truncation can provide a significant reduction in memory and computational complexity. Originating from
a model order reduction framework we apply the Discrete Empirical Interpolation Method to the gradient descent training of
neural networks and analyze for important parameters. We compare our approach for various state-of-the-art neural networks
to established truncation methods. Further metrics like L2 and Cross-Entropy Loss, as well as accuracy and compression rate
are reported.
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1 Preliminaries

In this paper we want to investigate the approximation of the neural network evaluation by a reduced network, where the
truncation is obtained by applying the index selection process of the discrete empirical interpolation method (DEIM), known
from the field of model order reduction (MOR). DEIM is a hyper reduction technique used to interpolate nonlinear functions,
which accelerates repeated evaluations. This paper is structured as follows. Section 1.1 provides an introduction to projection
based MOR via the proper orthogonal decomposition (POD) method. Section 1.2 introduces the DEIM approach. Section 2
provides a brief description of neural network truncation, also known as pruning, and describes the application of DEIM in
this context. We provide a numerical example and our conclusions in Sections 3 and 4.

1.1 Projection based model order redcution

Partial differential equations (PDEs) arise in various fields of natural sciences and engineering. Since analytic solutions of
general partial differential equations can only be obtained in a small number of special cases, numerical methods for computing
an approximation to the exact solution have been developed. Generally, the state space Ω is discretized using methods like
finite elements or finite volumes into a finite subset {x1, . . . , xn} = Ωn ⊂ Ω. For examplary purposes, let Ω be the spatial
domain on which the dynamics are defined and f the nonlinearity in the PDE

∂tu = Lu+ f(u) in (0, T )× Ω, (1)

u(t, x) = 0 for (t, x) ∈ (0, T )× ∂Ω,

u(0, x) = u0(x) for x ∈ Ω

with Dirichlet boundary conditions. Utilizing for example the finite differences discretization scheme, one obtaines a system
of ordinary differential equations (ODEs)

ẏ = Ay + F (y), y(0) = y0 = (u0(x1), . . . , u0(xn))T , (2)

where A ∈ Rn×n is a constant matrix corresponding to the spatial discretization of the differential operator L and

F : Rn → Rn, y 7→ F (y) := (f(y1), ..., f(yn))T (3)

is a (nonlinear) function defined by the componentwise evaluation of f . The dimension of sytem (2) is determined by the
number of discretization points n, which is growing exponentially in the dimension of Ω. In order to numerically solve
PDE (1) the system of ODEs (2) is evolved in time. The approximate solution of the original system is then given by
u(t, xi) ≈ yi(t), i = 1, . . . , n. Clearly, for high spatial resolutions the dimension n of the disctretized systems can become
very large, which results in expensive computations and high memory complexity.
If in addition a fine time resolution is needed and the evolution equation has to be solved multiple times, e.g. for various
parameters or initial conditions, computational costs might become unreasonably high. To resolve this issue MOR techniques
have been developed, see for example [1–4]. Here, we introduce POD and DEIM.

∗ Corresponding author: e-mail jan.martin.nicolaus@uni-potsdam.de

Copyright line will be provided by the publisher



2 PAMM header will be provided by the publisher

In the POD framework one seeks to find a set of orthonormal basis vectors {v1, . . . , vr} ⊂ Rn, with r � n, such that the
true system state y(t) can be approximated in the “trial subspace” Vr = span{v1, . . . , vr}, i.e.

y(t) ≈ Vryr(t),

for some coefficient vector yr(t) ∈ Rm and Vr = [v1, . . . , vr] ∈ Rn×r. By substituting the approximation of y into equation
(2) one obtains the approximation

Vryr ≈ AVryr + F (Vryr). (4)

To restore equality, the residual Vryr −AVryr − F (Vryr) is “tested” against an r dimensional “test subspace”Wr ⊂ Rn.
In more detail, the Petrov-Galerkin conditions

WT
r (Vryr −AVryr − F (Vryr)) = 0, Wr = [w1, . . . , wr] ∈ Rn×r (5)

are enforced, where the subspace Wr is spanned by the orthonormal columns of Wr. From the Petrov-Galerkin conditions
(5) we obtain

WT
r Vryr = WT

r AVryr + WT
r F (Vryr) or Erẏr = Aryr + WT

r F (Vryr) (6)

by redefining Er := WT
r Vr ∈ Rr×r and Ar := WT

r AVr ∈ Rr×r. The resulting reduced order model (ROM) (6) is a
system consisting of r � n variables and equations. If the r is sufficiently small compared to the dimension n of the full
order model (FOM), the time required to obtain an approximation of the PDE solution (1) can be reduced significantly. Often
it is convenient to choose the Galerkin projection Wr = Vr, which leads to Er = Ir.
While it is possible to project the linear system dynamics onto a smaller subspace using POD, the nonlinear part of equation
(6) remains to be evaluated on n components. Since F might not be explicitly known, precomputing WT

r F (Vr·) is likely not
possible. The reduction given by POD can therefore generally not accelerate the computation of the costly nonlinear term.
Utilising DEIM (see [5]), introduced in the next section, it suffices to compute F on only k � n inputs and interpolate the
output of the remaining components.

1.2 The Discrete Empirical Interpolation Method

As stated previously, the nonlinear function WT
r F (Vr·) of the projected system dynamics (6) is generally not precomputable.

Due to the structure of the nonlinear function F , given by the componentwise evaluation of f , cf. (3), the computational
complexity of an evaluation of F is O(nα), where α is the complexity of a single evaluation of f . Reducing the complexity
of F therefore corresponds to either decreasing the number of components f is evaluated at or decreasing α. DEIM [5] finds
a set of k � n indices {i1, . . . , ik} ⊂ {1, . . . , n} and constructs a linear interpolation of the form

F (y) =

f(y1)
...

f(yn)

 ≈ Q

f(yi1)
...

f(yik)

 .
For ease of notation we will denote the simultaneous evaluation of the nonlinear function f on the components index by
{i1, . . . , ik} with F ([y1, . . . , yk]T ) = [f(yi1), . . . , f(yik)]T . Defining P ∈ Rn×k as a row selection matrix, s.t. PT y =
[yi1 , . . . , yik ]T , the linear interpolation of F (y) can be written as

F (y) ≈ QF (PT y). (7)

Here Q ∈ Rn×k is the interpolation matrix corresponding index selection {i1, . . . , ik}. Consequently, the costly function
f only has to be evaluated at k � n components in each time step. Combined with the complexity of the matrix-vector
multiplication of the linear interpolation one obtaines O(nk + kα) as computational complexity.
In more detail, the DEIM approach approximates the image space Im(F ) ⊂ Rn by a linear subspace Uk ⊂ Rn with dimension
dim(Uk) = k � n. If Uk is spanned by orthonormal vectors {u1, . . . , uk} the evaluation of F (y) can be approximated by a
linear combination of these basis vectors

F (y) ≈ Ukc(y), (8)

where Uk = [u1, . . . , uk] ∈ Rn×k. The coefficients c(y) ∈ Rk can be uniquely determined by selecting k rows in the
following way. The index subset {i1, . . . , ik} is iteratively constructed by selecting the index ij in the j-th iteration where the
interpolation error of the basis vector uj is maximal. The selection of the interpolation components PT y of y in (7) is achieved
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by collecting standard basis vectors ei ∈ Rn into a matrix P = [ei1 , . . . , eik ] ∈ Rn×k, which allows to require exactness in
(8), e.g.

PTF (y) = PTUkc(y).

Since PTUk is invertible, the unique solution is given by c(y) = (PTUk)−1PTF (y), resulting in

F (y) ≈ Uk(PTUk)−1PTF (y).

Defining Q = Uk(PTUk)−1 and utilising the componentwise structure of F , approximation (7) is obtained.
The advatage of utilizing DEIM in conjunction with POD, is that no additional computations required, if the subspaces Vr and
Uk are constructed in the following way. First, singular value decompositions (SVD) of the snapshot matrices

X :=
[
y(t1), . . . , y(ts)

]
= VXSXWT

X and F :=
[
F (y(t1)), . . . , F (y(ts))

]
= VFSFWT

F

of the system state and the evaluation of F at observation times t1, . . . , ts are computed. Let l1, l2 be the ranks of X and
F, respectively, then the matrices of left singular vectors are given by the orthonormal columns of the matrices VX =
[v1, . . . , vl1 ] ∈ Rn×l1 and VF = [v̂1, . . . , v̂l2 ] ∈ Rn×ll . The right singular vectors form the orthonormal columns of the ma-
trices WX ∈ Rn×l1 and WF ∈ Rn×ll . The singular values are contained in the diagonal matrices SX = diag(σX,1, . . . σX,l1)
and SF = diag(σF,1, . . . σF,l2) in decreasing order. The projection matrices Vr and Uk are then constructed by taking the r
and k leading singular vectors Vr = [v1, . . . , vr] and Uk = [v̂1, . . . , v̂k]. The neglected singular values can be used to bound
the error of the interpolation by the DEIM Algorithm.

2 Neural network pruning

Neural networks are a powerful class of models used in a wide range of applications, e.g. classification tasks, pattern recog-
nition, simulation or surrogate modelling. Since these models often require a high number of parameters for complex tasks
and therefore large amounts of computational power and memory, various approaches have been developed to address the
computational challenges. These so called “Pruning” methods aim to remove parameters or even entire structures, e.g. filters
in a convolutional layer, while trying to preserve the overall quality of predictions.
Training a neural network consists of finding sets of weights W and biases b, such that a given Loss function L(W, b), for
example the following L2 Loss

L(W, b) :=
∑

(x,y)∈(X×Y)

||N(x,W, b)− y||22,

based on the Euclidean norm || · ||2 is minimized, where N(x,W, b) is used to indicate the evaluation of the described neural
network architecture with weights W and biases b on the input data x ∈ X , the target output data is denoted by y ∈ Y .
Originating in the setting of optimization, the gradient descend method serves as the basis for more sophisticated optimization
algorithms, like BFGS or the Adam optimizer Given a set of parameters p(n) = vec(W (n), b(n)) ∈ Rnp at the n-th gradient
descend training step, an update is performed according to

p(n+1) = p(n) − η∇pL(p(n)), (9)

where η > 0 is called the learning rate. In the context of ODEs equation (9) can be regarded as an Euler discretization of the
gradient flow

ṗ = −∇pL(p), (10)

with stepize η > 0. Generally, the gradient flow (10) does not contain an immediatly accessible linear component,

Algorithm 1 Pruning after training

p← initialize network
p← train until convergence criterion is reached
for i = 1 : NumPruningIterations do
s(p)← score p
M ← construct mask from s(p)
p← fine tune p ◦M

end for

causing the POD approximation (6)

ṗr = −WT
r ∇pL(Vrpr).

not to be precomputable, which leads us to the use of the
hyper reduction technique DEIM, described in Section 1.2.
However, since the evaluation of a neural networkN is inex-
tricably linked to its structure, performing an intrusive trun-
cation method like POD or DEIM is infeasible. If the objec-
tive is to obtain a ROM, that can be treated again as a neural
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network, an approach is to identify an “important” set of parameters pi1 , ..., pik , sparsifying the model accordingly by defining
a mask M ∈ {0, 1}np , s.t.

p̃i := (p ◦M)i =

{
pi , i ∈ {i1, . . . , ik}
0 , else

,

where ◦ denotes the Hadamard product, and using f(x, p̃) as an approximation of f(x, p). Such methods are referred to
as “pruning” [6]. Current methods prune a network at initialization or after training. Pruning at initialization [7] selects
parameters after the network is initialised, but before the actual training occurs. In contrast, for pruning after training [8] a
network is trained until convergence in a first step. Next, the parameters p are scored by computing a saliencency function
S : Rnp → Rnp and truncated, i.e. fixed to the value of 0, if their score is below a selected threshold. Subsequently fine
tuning of the network is performed, which means that the network is again trained until convergence to allow recovery. This
procedure is repeated until the desired compression is achieved. The authors of [8] summarize the “pruning after training”
method by Algorithm 1.

Common baseline methods for benchmarking [8] are magnitude pruning (MP) and gradient magnitude pruning (GMP),
with saliency functions componentwise given by

SMP
i (p) = |pi| and SGMP

i (p) = |pi · ∂piL(p)|. (11)

Another reference method is random pruning (RP), in which in each pruning pass a fixed number of randomly chosen weights
are removed. We propose to precompute the order in which the weights are pruned by utilization of the DEIM index selection
procedure. By defining the nonlinear function F as the gradient of the Loss

F (p) = −∇pL(p), F : Rnp → Rnp (12)

we can obtain basis functions of the image of F by training the neural network for s steps and collecting the corresponding
states into a snapshot matrix F and its singular value decomposition

F =
[
F (p(1)), . . . , F (p(s))

]
=
[
−∇pL(p(1)), . . . ,−∇pL(p(s))

]
= USVT . (13)

In contrast to Section 1.2 a non-truncated SVD of F is performed to obtain a reordering {pi1 , . . . , pin} of all parameter
components {p1, . . . , pnp

}. Subsequently, the index selection process of DEIM is performed to obtain {i1, . . . , in}.

3 Comparison to baseline methods
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Fig. 1: Subdivision of [−4, 4]×[−20, 20] into M1,M2,M3,M4.

In our numerical experiment a fully connect feedforward neu-
ral network with 4 layers, containing 20 neurons each with lo-
gistic sigmoid activation functions and four output neurons, is
investigated. The total number of network parameters is hence
np = 984. The network was trained on the simple classifica-
tion task to assign the label ei ∈ R4 to the point (x1, x2) if
(x1, x2) ∈ Mi. The network was trained using gradient de-
scent over s = 104 epochs a training set consisting of 100 ran-
domly chosen datapoints and the standard L2 Loss. To con-
struct the snapshot matrix F from equation (13), all gradients
F (p(i)) = −∇pL(p(i))), i = 1, . . . , s were collected during
the training. To allow a better exploration of the image space of
F , nasa additional gradients from na short training trajectories,
each consisting of sa gradient descend steps, were included.

The snapshot matrix F, as constructed by Algorithm 2, there-
fore consists of np rows and s + nasa columns. We compare
our approach for na ∈ {0, 10, 100} and sa = 10 to the baseline
methods mentioned in the previous section, cf. eq. (11). The
experiment is set up as follows. First, Algorithm 2 is performed
with na = 100, returning the nonlinear snapshot matrix F100. From F100 the submatrices F0 and F10, consisting of the first
s and s + 10sa columns are extracted. These submatrices correspond to the choice na = 0 and na = 10, respectively. For
each matrix F0,F10 and F100 the first np left singular vectors are computed. Subsequently the index selection process of the
DEIM Algorithm is performed on each set of singular vectors, cf. equation (13) at the end of the previous section and [5].
Afterwards Algorithm 3, an extension of Algorithm 1, is performed. After the training of the randomly initialized network
has converged, each pruning method is performed according to the second part of Algorithm 1. For each pruning method the
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L2 Loss, Top1 accuracy, i.e. the ratio of correct predictions to total number of predictions, are reported. In addition we report
the Cross-Entropy Loss−

∑100
i=1 y

T
i log(qi), where log(qi) is the componentwise natural logarithm of qi, which is the softmax

rescaled output N(xi,W, b) and yi is the label corresponding to xi. The metrics are computed at the percentages of remaining
network parameters c ∈ {1, 12 ,

1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
64}. The experiment is repeated K = 128 times. To obtain the plots in Figure 2,

the sample mean and sample standard deviation are computed for each pruning method and each compression rate.

4 Conclusions and further research

Algorithm 2 Construction of nonlinear snapshot matric F

p← initialize network with random weights
F← [ ]
for i = 1 : s do

compute F (p) = −∇pL(p)
F← [F, F (p)]
p← p+ F (p)

end for
for i = 1 : na do
p← initialize network with random weights
for j = 1 : sa do

compute F (p) = −∇pL(p)
F← [F, F (p)]
p← p+ F (p)

end for
end for

We would like to point out, that the index ordering
{i1, . . . , in} is fixed before Algorithm 3 is performed and
does not depend on the weights of the neural network at
the time of pruning. Therefore, in contrast to the pruning
methods used for comparison, our approach does not adapt
to the state of the neural network during the pruning proce-
dure.
An immediate observation in Figure 2a is that the decay of
singular values of F0 is shifted by a slower initial decay,
when additional trajectories (na = 10, 100) are incorporated
into the snapshot matrix. In the case, where no additional
trajectories were incorporated (na = 0), our approach out-
performes MP for low compression rates c = 1, 12 ,

1
4 ,

1
8 and

is comparable to GMP for c = 1, 12 ,
1
4 in the Top1 accu-

racy metric with overall similar standard deviations com-
pared to the reference methods, except random pruning. The
reference method GMP outperformes all other methods for
c ≥ 1

16 . Our approach decreases over all metrics for c ≥ 1
16 ,

when using additional trajectories in the snapshot matrices
(na = 10, 100). In the case of high compression rates c = 1

32 ,
1
64 , the pruning order derived from F10 and F100 show better

scores over all metrices. Furthermore we observe a reduced standard deviation for our approach compared to the reference
methods GMP and MP by up to one order of magnitude.
The results of the reported experiments, combined with the non-adaptivity of our approach to the network state during the
pruning stage, suggest that an identification of an approximating sub network from the networks gradients is possible. Since
we only conducted our experiments for a neural network of simple structure, further research, investigating the proposed
approach for more complex structures, is needed. The decrease of standard deviation and overall comparable or better perfor-
mance for na = 100 and c = 1

64 ,
1
32 suggest the existence and identification of an “essential” or “worst-case” subnetwork. A

possible connection to the pathway decomposition of the neural tangent kernel, proposed in [7] is of interest. In addition, the
view of residual neural networks in the context of dynamical systems [9] might allow an application of other MOR techniques.

Algorithm 3 Pruning experiment

for j = 1 : K do
p← initialze network with random weights
p← train network until convergence criterion is reached
for method in PruningMethods do
p̂← p
for i = 1 : NumPruningIterations do
s(p̂)← score p̂
M ← construct mask from s(p̂)
p̂← fine tune p ◦M
compute metrics for specified compression rates

end for
end for

end for
compute empiric mean and empiric standard deviation for each metric and compression rate

Availability of data and materials

The code is available at https://github.com/JMNicolaus/InterpolationPruning
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(a) Singular values of nonlinear snapshot matrices
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Fig. 2: L2 Loss, Top1 accuracy and Cross-Entropy metrics as computed by Algorithm 3 for methods GMP,MP, RP as well as our method
for na = 0, 10, 100 and singular values of snapshot matrices F0,F10,F100
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