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Abstract. We consider high-dimensional asset price models that are reduced in their dimen-
sion in order to reduce the complexity of the problem or the effect of the curse of dimensionality
in the context of option pricing. We apply model order reduction (MOR) to obtain a reduced
system. MOR has been previously studied for asymptotically stable controlled stochastic systems
with zero initial conditions. However, stochastic differential equations modeling price processes
are uncontrolled, have non-zero initial states and are often unstable. Therefore, we extend MOR
schemes and combine ideas of techniques known for deterministic systems. This leads to a method
providing a good pathwise approximation. After explaining the reduction procedure, the error of
the approximation is analyzed and the performance of the algorithm is shown conducting several
numerical experiments. Within the numerics section, the benefit of the algorithm in the context
of option pricing is pointed out.
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1. Introduction. In finance we often encounter high-dimensional models, since
the underlying markets are usually high-dimensional. For instance, in equity, take
all stocks comprising the S & P 500 index (SPX). Fixed income markets exhibit
a myriad of different relevant interest rates. All these are, obviously, only small
snapshots of even larger markets. Of course, in many situations, we are only in-
terested in a tiny fraction of these markets, which can be adequately modeled by a
low-dimensional stochastic process. Moreover, if we are interested in derivatives on
SPX, for example, then we may just model the index itself, disregarding the fine
structure. On the other hand, if we consider a larger portfolio, this may not be
possible without introducing inconsistencies in the model.

From a numerical perspective, high-dimensional models pose severe difficulties.
Indeed, many traditional computational tools suffer from the curse of dimensional-
ity, which essentially states that the computational work required to compute the
relevant quantity of interest up to a prescribed error tolerance grows exponentially
in the dimension n of the model. Most methods for discretizing partial differen-
tial equations (such as finite element and finite difference methods) suffer from the
curse of dimensionality, as do Fourier based methods. Even many deterministic
sampling methods (i.e., tree methods, quasi Monte Carlo) suffer from the curse of
dimensionality in one way or another.1 The notable exception is, of course, Monte
Carlo simulation.

One way to overcome the numerical burden in high-dimensional models is Model
order reduction (MOR) [1, 2, 9]. MOR is a technique in numerical analysis in
order to construct low dimensional surrogate models that allow to approximate
the quantity of interest with the desired accuracy. As MOR takes the specific
quantity of interest into account, reduced models for different options will generally
be different. (The specific method introduced later will, however, not depend, e.g.,
on the specific strike price.)
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To fix ideas, suppose that we are given an n dimensional stochastic volatil-
ity model with asset price processes S(t) ∈ Rn and the corresponding stochastic
variance processes v – which will be one-dimensional in our numerical examples.
Consider an option with payoff g(CS), where C ∈ Rp×n and g : Rp → R possibly
non-linear, where we assume that p � n. For instance, we have p = 1 for basket
options. Our goal is to construct a Markov process x̃ taking values in Rñ – with
ñ� n – and a matrix C1 ∈ Rp×ñ such that the processes CS and C1x̃ are close in
L2. This usually ensures a good approximation of the payoff, i.e., g(CS) ≈ g(C1x̃).
In this paper, we present a general strategy for identifying such processes x̃. We
also provide numerical evidence of successful MOR in several financial applications,
in the sense that relative errors of the order of 10−4 are regularly achieved with
very small ñ even when n ≥ 100. It should be noted here that we only propose
a MOR technique for the asset process S in this paper, but not for the variance
process v. This is due to the generally non-linear dynamics of the variance pro-
cess, which would require more complicated MOR strategies and will be explored
in future work.

Before explaining the MOR strategy in detail, some conclusions can already be
made based on the fundamental idea. First note that MOR should not be confused
with Markovian projection, see [11, 17]. The underlying problem is, of course, that
the process CS itself is a natural candidate for a reduced model, but it generally
lacks the Markov property. There is, however, a Markov process x̂ taking values in
Rp such that CS(t) and x̂(t) have the same distribution for every t. This means
that European option prices based on x̂ correspond exactly to the prices in the
full model. The coefficients of x̂ are, however, not trivial to obtain. Nonetheless,
there has been continuous interest in the financial community in applications of
Markovian projections, see, for instance, [18] and [3] for two recent examples.

In contrast, the surrogate model x̃ is often easier to construct than the Marko-
vian projection x̂. Moreover, our construction provides that x̃ is close to CS on
path-space, which directly allows the application to American option pricing. This
comes at the price of being only an approximation, though. Moreover, MOR may
provide good low dimensional surrogate models even in situations when there is no
natural low-dimensional intermediate process, i.e., when p ≈ n as of above.

Remark 1. Generally, the surrogate model x̃ does not have any specific finan-
cial interpretation. Hence, its only justification is the approximation quality with
respect to the quantity of interest.

Outline of the paper. After setting the stage in Section 2, we introduce tech-
niques to provide quantitative estimates of “importance” of projections of the state
for the dynamics of the process in Section 3. These quantitative estimates are then
used in Section 4 to identify especially efficient reduced models. We continue to pro-
vide error bounds in Section 5. Numerical experiments are reported in Section 6,
followed by concluding remarks in Section 7. Some general definitions and technical
proofs are presented in an appendix.

2. Setting and covariance functions. Let W = (W1, . . . ,Wq)
T

be an Rq-
valued with mean zero Wiener process with covariance matrix K = (kij), i.e.,
E[W (t)WT (t)] = Kt for t ∈ [0, T ], where T > 0 is the terminal time. Suppose
that W and all stochastic process appearing in this paper are defined on a filtered
probability space

(
Ω,F, (Ft)t∈[0,T ],P

)
2. In addition, we assume W to be (Ft)t∈[0,T ]-

adapted and the increments W (t+ h)−W (t) to be independent of Ft for t, h ≥ 0.

2(Ft)t∈[0,T ] shall be right continuous and complete.
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We consider the following large-scale Heston type model:

dx(t) = Ax(t)dt+

q∑

i=1

√
v(t)Nix(t)dWi(t), x(0) = x0 = Bz, (2.1a)

y(t) = Cx(t), t ∈ [0, T ], (2.1b)

where A,Ni ∈ Rn×n and C ∈ Rp×n. Moreover, the set of initial conditions, in which
we are interested, is spanned by the columns of a matrix B ∈ Rn×m, i.e., there is a
vector z ∈ Rm such that x0 = Bz. This assumption allows to construct a reduced-
order system that performs well for several initial states. However, there are many
financial applications, where only a single x0 is of interest. Then, we have B = x0

and z = 1. The scalar (Ft)t∈[0,T ]-adapted stochastic process (v(t))t∈[0,T ] is non-
negative, P-a.s. bounded from above by a constant c > 0 and called variance process.
The variance process is assumed to be bounded for theoretical considerations below.
Practically, boundedness is less relevant. The state dimension n is assumed to be
large and the quantity of interest y is rather low-dimensional, i.e., p� n.

Below, the dependence of the state variable on x0 is sometimes indicated by
writing x(t;x0), t ∈ [0, T ], for the solution to (2.1a). Furthermore, we write M1 ≤
M2 for two symmetric matrices M1 and M2 if M2 − M1 is symmetric positive
semidefinite. In order to identity the important states in system (2.1), the covariance
function and an upper bound for the covariance will be of interest. Therefore, we
formulate the following lemmas.

Lemma 2.1. The matrix-valued function E
[
x(t;x0)xT (t;x0)

]
, t ∈ [0, T ], is a

solution to

Ẋ(t) ≤ AX(t) +X(t)AT + c

q∑

i,j=1

NiX(t)NT
j kij , X(0) = x0x

T
0 , (2.2)

where kij is the ijth entry of the covariance matrix K.
Proof. The proof is given in Appendix B.1.

We denote the solution to (2.1a) by xc if the process v is replaced by its upper bound
c (v ≡ c). We call (2.1) Black Scholes model in case the volatility is constant. The
covariance function of xc can be derived through the identity given in the following
lemma.

Lemma 2.2. The matrix-valued function E
[
xc(t;x0)xTc (t;x0)

]
, t ∈ [0, T ], sat-

isfies

Ẋc(t) = AXc(t) +Xc(t)A
T + c

q∑

i,j=1

NiXc(t)N
T
j kij , Xc(0) = x0x

T
0 , (2.3)

Proof. The statement of this lemma is a special case of [25, Lemma 2.1]
We now formulate a Gronwall type lemma for matrix differential inequalities involv-
ing resolvent positive operators. We refer to Appendix A for a definition of these
operators.

Lemma 2.3. Suppose that L is a resolvent positive operator on the space of
symmetric matrices. Let the matrix-valued function X(t) ≥ 0, t ∈ [0, T ], satisfy

Ẋ(t) ≤ L(X(t)) (2.4)

and let Z(t) ≥ 0, t ∈ [0, T ], be the solution to the matrix differential equation

Ż(t) = L(Z(t)). (2.5)

If X(0) ≤ Z(0), we have that X(t) ≤ Z(t) for all t ∈ [0, T ].
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Proof. The proof of this theorem for a special resolvent positive operator is given
in [26, Lemma 3.3]. In order to render this paper as self-contained as possible, the
proof is stated in Appendix B.2 using the same arguments.
Lemma 2.3 together with Lemmas 2.1 and 2.2 implies that

E
[
x(t;x0)xT (t;x0)

]
≤ E

[
xc(t;x0)xTc (t;x0)

]
, (2.6)

since L(X) := AX + XAT + c
∑q
i,j=1NiXN

T
j kij defines a resolvent positive op-

erator on the space of symmetric matrices, see Appendix A. This means that the
covariance function of a suitable Black Scholes model dominates the one of a Heston
model in case the volatility function is bounded.

Remark 2. We can use the same approach if we allow for a different volatility
vi (i = 1, . . . , q) in every summand of the diffusion in (2.1a). Then, boundedness
has to be understood in a more general sense, i.e., we need the existence of a positive
semidefinite matrix C = (cij)i,j=1,...,q such that

(
v

1
2
1 (t), . . . , v

1
2
q (t)

)T (
v

1
2
1 (t), . . . , v

1
2
q (t)

)
≤ C

for all t ∈ [0, T ]. The operator L in Lemma 2.1 then becomes L(X) = AX +
XAT +

∑q
i,j=1NiXN

T
j cijkij. The associated Black Scholes model that guarantees

the identity as in Lemma 2.2, is given by setting vi ≡ 1 and replacing the Wiener
process with covariance matrix K by a Wiener process with covariance K◦C, where
·◦· denotes the component-wise product of two matrices. Notice that K◦C is positive
semidefinite again due to Schur’s product theorem [30].

3. Characterization of dominant states. We are interested in the domi-
nant subspace of system (2.1) meaning that we aim to identify states that are less
important in both equation (2.1a) and (2.1b). Those can be neglected in the system
dynamics, leading us to an approximation of the system in a lower dimension.

The objects that we choose to identify unimportant states are related to ma-
trices that are used in deterministic control theory. In linear deterministic control
systems, the so-called reachability Gramian characterizes the minimal energy that
is needed to steer a system from zero to some desired state at time T . Moreover,
the observability Gramian determines the energy that is caused by the observations
of an unknown initial state on the time interval [0, T ], see, e.g., [1]. Consequently,
these Gramians can be used to identify states that require a large amount of energy
to be reached and states that produce only very little observation energy. Those
are less relevant in a control system.

We use these ideas and extend them to the stochastic uncontrolled framework
considered here. The matrices identifying the dominant subspaces of system (2.1)
will also be called Gramians due to the link between the concepts.

3.1. Dominant subspaces of (2.1a). We introduce the fundamental solu-
tion to (2.1a) as an Rn×n-valued stochastic process Φ solving

Φ(t) = I +

∫ t

0

AΦ(s)ds+

q∑

i=1

∫ t

0

√
v(s)NiΦ(s)dWi(s), t ∈ [0, T ]. (3.1)

If v ≡ c, the fundamental solution is denoted by Φc. It is not hard to see that the
solution to (2.1a) is given by

x(t;x0) = Φ(t)x0 = Φ(t)Bz, (3.2)

because we assumed that the initial state is spanned by the columns of B. Below,
〈·, ·〉2 denotes the Euclidean inner product and ‖·‖22 is the corresponding norm.
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Based on (3.2), let us now identify the states in (2.1a) that play a minor role.
We obtain

E |〈x(t;x0), x̃〉2|2 = E |〈Φ(t)Bz, x̃〉2|2 = E
∣∣〈z,BTΦT (t)x̃〉2

∣∣2

≤ x̃TE
[
Φ(t)BBTΦT (t)

]
x̃ ‖z‖22 (3.3)

for a given vector x̃ ∈ Rn and using Cauchy’s inequality. Since E
[
Φ(t)BBTΦT (t)

]

might not be available from the computational point of view, we find an estimate
based on Φc in the following proposition.

Proposition 3.1. Let Φ be the fundamental solution to (2.1a) and suppose
that Φc is the fundamental solution to (2.1a) for the special case v ≡ c. Then, we
have

E
[
Φ(t)BBTΦT (t)

]
≤ E

[
Φc(t)BB

TΦTc (t)
]
.

Proof. We denote the ith column of the matrix B by bi, allowing us to write
Φ(t)B =

[
x(t; b1), . . . , x(t; bm)

]
. Hence, we have

E
[
Φ(t)BBTΦT (t)

]
=

m∑

k=1

E
[
x(t; bk)xT (t; bk)

]
. (3.4)

Applying (2.6) to (3.4) yields

E
[
Φ(t)BBTΦT (t)

]
≤

m∑

k=1

E
[
xc(t; bk)xTc (t; bk)

]
= E

[
Φc(t)BB

TΦTc (t)
]
.

This concludes the proof.
Combining (3.3) with Proposition 3.1, we find

E |〈x(t;x0), x̃〉2|2 ≤ x̃TF (t)x̃ ‖z‖22 , (3.5)

where F (t) := E
[
Φc(t)BB

TΦTc (t)
]
. We define PT :=

∫ T
0
F (t)dt and call PT (time-

limited) reachability Gramian. Integrating both sides of (3.5) over [0, T ] yields

∫ T

0

E |〈x(t;x0), x̃〉2|2 dt ≤ x̃TPT x̃ ‖z‖22 . (3.6)

Consequently, the Gramian PT characterizes the relevant subspaces as we see in the
next proposition.

Proposition 3.1. Let x(·;x0) be the solution to (2.1a) with initial state x0 =
Bz, i.e., it is spanned by the columns of B. Then, it holds that

x(t;x0) ∈ imPT P⊗ dt-a.s. on Ω× [0, T ].

Proof. If x̃ ∈ kerPT , then the left-side of (3.6) is zero, which implies that
〈x(t;x0), x̃〉2 = 0 P⊗ dt-a.s. Since PT is symmetric positive semidefinite, this yields
the claim.
Thus, the states that are not in imPT are not important in equation (2.1a). How-
ever, it is also important to identify the states that play a minor role. Therefore, we
turn our attention to states that lie in imPT but that are nevertheless less impor-
tant. We can choose an orthonormal basis of eigenvectors (pk)k=1,...,n of PT with
associated eigenvalues (λk)k=1,...,n. Then, the following representation

x(t;x0) =

n∑

k=1

〈x(t;x0), pk〉2 pk
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holds. Setting x̃ = pk in (3.6) leads to

∫ T

0

E |〈x(t;x0), pk〉2|2 dt ≤ λk ‖z‖22 . (3.7)

Consequently, x(t;x0) is small in the direction of pk if λk is small. Hence, states
with a large component in the direction of such a pk are less relevant. This means
that that eigenspaces of PT corresponding to small eigenvalues λk play a minor role
in the system dynamics.

Remark 3. PT is related to the Gramian used in [4]. However, they choose
limT→∞ PT in some asymptotically stable deterministic setting , i.e., Ni = 0 and
λ(A) ⊂ C−, where λ(·) denotes the spectrum of a matrix. In the stochastic case

the respective stability condition were E ‖xc(t;x0)‖22 → 0 for t → ∞ and all initial
conditions x0 (mean square asymptotic stability), see, e.g., [12, 19, 25]. Stability is
not assumed in this paper such that limT→∞ PT does not exist in general. Moreover,
the motivation to use the reachability Gramian PT is different from the motivation
given in [4].
We conclude this section by a discussion on how to compute PT which allows to
identify redundant information in the system. Using the representation of F in (3.4)
and applying Lemma 2.2 to every summand of its right-side, we see that F satisfies

Ḟ (t) = AF (t) + F (t)AT + c

q∑

i,j=1

NiF (t)NT
j kij , F (0) = BBT . (3.8)

Integrating both sides of (3.8) yields

F (T )−BBT = APT + PTA
T + c

q∑

i,j=1

NiPTN
T
j kij . (3.9)

This means that the large-scale generalized Lyapunov equation (3.9) needs to be
solved to derive PT . This can be done also in a large-scale setting for a given
left-side. However, the left-side of (3.9) depends on F (T ), a matrix that needs to
be computed beforehand. For dimensions n of a few hundreds, this can be done
directly by vectorizing (3.8). Defining f(t) := vec(F (t)), we then obtain

ḟ(t) = Kf(t), f(0) = vec(BBT ), (3.10)

where vec(·) is the vectorization of a matrix, · ⊗ · denotes the Kronecker product of
two matrices and

K := I ⊗A+A⊗ I + c

q∑

i,j=1

Ni ⊗Njkij .

Consequently, deriving F (T ) relies on the efficient computation of a matrix expo-
nential, since

f(T ) = eKT vec(BBT ). (3.11)

A discussion on how to determine a matrix exponential efficiently can be found
in [21] and references therein. However, we need to assume that 0 6∈ λ(K). This
guarantees a unique solution of (3.9) which we suppose to have below. If system
(2.1) were mean square asymptotically stable in the spirit of Remark 3, then we
could take T → ∞ in (3.9) and F (T ) would disappear in the limit which makes
the computation of the (infinite) reachability Gramian much simpler. Such type
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of (infinite) reachability Gramians are, e.g., used to characterize reachability en-
ergies in mean square asymptotically stable controlled stochastic systems having
time-invariant coefficients [10, 25], a setting that differs significantly from the one
considered here.

More advanced approaches need to be used to solve for F (T ) if n is very large.
There are relevant examples in which F (T ) and hence PT can be derived explicitly
as we will see in Section 6.

3.2. Dominant subspace of (2.1b). We now characterize the importance
of an initial state x0 in the output equation. The initial condition is not relevant
if the corresponding output y(·;x0) has zero energy and is of low relevance if the
output energy is small, since those initial states barely contribute to the quantity
of interest. We begin with an estimate for y based on the result of Section 2.

Proposition 3.2. Suppose that y is given by (2.1b) and let us assume that
yc is the output associated with the solution to the solution of (2.1a) if v ≡ c, i.e.,
yc(t) = Cxc(t). Then, we have

E
∫ T

0

‖y(t)‖22 dt ≤ E
∫ T

0

‖yc(t)‖22 dt. (3.12)

Proof. We use the linearity of the trace to obtain

E
∫ T

0

‖y(t)‖22 dt = E
∫ T

0

tr(Cx(t)xT (t)CT )dt =

∫ T

0

tr(CE[x(t)xT (t)]CT )dt.

Using that (2.6) is preserved when the trace is applied yields

E
∫ T

0

‖y(t)‖22 dt ≤
∫ T

0

tr(CE[xc(t)x
T
c (t)]CT )dt = E

∫ T

0

‖yc(t)‖22 dt

which concludes the proof of this proposition.
Now, the goal is to find a bound for the energy of yc. Therefore, we introduce QT
as the solution to

G(T )− CTC = ATQT +QTA+ c

q∑

i,j=1

NT
i QTNjkij , (3.13)

an equation that can be solved for large n once the left-side is given. We refer to
QT as the observability Gramian since it characterizes the observation energy as we
will see below. G(t), t ∈ [0, T ], entering in (3.13) satisfies

Ġ(t) = ATG(t) +G(t)A+ c

q∑

i,j=1

NT
i G(t)Njkij , G(0) = CTC, (3.14)

i.e., QT =
∫ T

0
G(s)ds. Notice that if n is not too large, G(T ) can be computed

analogously to (3.11) meaning that g(T ) := vec(G(T )) is given by

g(T ) = eK
TT vec(CTC).

Below, we distinguish between two cases. We first discuss the case in which the
system matrices commute.
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Commuting matrices. We find a representation for QT and subsequently an
energy estimate for yc in case all the matrices in (2.1a) commute. For that purpose,
we establish the following result.

Proposition 3.2. Let us assume that all matrices A,N1, . . . , Nq commute.
Hence, we have that these matrices commute with the fundamental solution Φc,
i.e.,

AΦc(t) = Φc(t)A and NiΦc(t) = Φc(t)Ni (3.15)

for all t ∈ [0, T ] and i = 1, . . . , q.

Proof. These identities hold since the left and the right-sides satisfy the same
different equation, e.g., one can multiply (3.1) with A from the left to obtain the
equation for AΦc and with A from the right to get the one for ΦcA. Since all system
matrices commute, the equations coincide. Similarly, one finds the indents for the
matrices Ni.
The example considered in Section 6 satisfies the assumption of Proposition 3.2.
Furthermore, notice that in the deterministic case (Ni = 0), we have Φc(t) = eAt

and hence (3.15) is always given. Based on Proposition 3.2, a representation of QT
can be found.

Proposition 3.3. Under the assumptions of Proposition 3.2, we have

QT =

∫ T

0

E
[
ΦTc (t)CTCΦc(t)

]
dt.

Proof. We apply Ito’s product rule to ΦTc (t)CTCΦc(t) and take the correlation
of the noise processes into account. This yields

d
(
ΦTc (t)CTCΦc(t)

)

= d
(
ΦTc (t)

)
CTCΦc(t) + ΦTc (t)CTCd (Φc(t)) + d

(
ΦTc (t)

)
CTCd (Φc(t))

= d
(
ΦTc (t)

)
CTCΦc(t) + ΦTc (t)CTCd (Φc(t)) + c

q∑

i,j=1

ΦTc (t)NT
i C

TCNjkijΦc(t)dt.

Above, we plug in (3.1) for the case when v ≡ c and take the expected value on
both sides. Hence, using that the Ito integral has mean zero, we have

d
(
E
[
ΦTc (t)CTCΦc(t)

])

= E


ΦTc (t)


ATCTC + CTCA+ c

q∑

i,j=1

NT
i C

TCNjkij


Φc(t)


 dt.

Due to (3.15) we see that E
[
ΦTc (t)CTCΦc(t)

]
, t ∈ [0, T ], solves (3.14) and thus

QT =
∫ T

0
E
[
ΦTc (t)CTCΦc(t)

]
dt.

Inequality (3.12) and Proposition 3.3 now imply that

E
∫ T

0

‖y(t)‖22 dt ≤ E
∫ T

0

‖CΦc(t)x0‖22 dt = xT0 QTx0. (3.16)

Initial states that are spanned by eigenvectors of QT belonging to the small eigen-
values lead to a small right-side in (3.16) and consequently yield a small output y.
Hence, we know that eigenspaces of QT corresponding to the small eigenvalues are
less relevant in (2.1b).
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General case. We find another bound on the energy of yc and hence also for y
in the general case.

Proposition 3.4. If y is the quantity of interest in system (2.1) and QT the
solution of (3.13), then

E
∫ T

0

‖y(t)‖22 dt ≤ xT0 QTx0 + R(T ), (3.17)

where R(T ) := E
∫ T

0
xTc (t;x0)G(T )xc(t;x0)dt − E

[
xTc (T ;x0)QTxc(T ;x0)

]
with G

solving (3.14).
Proof. We make use of

E
[
xTc (T ;x0)QTxc(T ;x0)

]
= tr(QTE

[
xc(T ;x0)xTc (T ;x0)

]
). (3.18)

We obtain from Lemma 2.2 that

QTE
[
xc(T ;x0)xTc (T ;x0)

]
= QTx0x

T
0 + E

∫ T

0

QTAxc(t;x0)xTc (t;x0)dt

+ E
∫ T

0

QTxc(t;x0)xTc (t;x0)AT dt

+ c

q∑

i,j=1

E
∫ T

0

QTNixc(t;x0)xTc (t;x0)NT
j kijdt.

Using properties of the trace, (3.18) becomes

E
[
xTc (T ;x0)QTxc(T ;x0)

]

= xT0 QTx0 + E
∫ T

0

xTc (t;x0)


ATQT +QTA+ c

q∑

i,j=1

NT
i QTNjqij


xc(t;x0)ds.

We insert equation (3.13) into the above identity to get

E
[
xTc (T ;x0)QTxc(T ;x0)

]
= xT0 QTx0 + E

∫ T

0

xTc (t;x0)(G(T )− CTC)xc(t;x0)dt

= xT0 QTx0 − E
∫ T

0

‖yc(t)‖22 dt+ E
∫ T

0

xTc (t;x0)G(T )xc(t;x0)dt (3.19)

This, together with (3.12), gives us the result.
Assuming that the remainder term R(T ) is not too large, the same conclusions as
below (3.16) can be made. The eigenspaces that belong to the small eigenvalues
of QT are unimportant. If the system is mean square asymptotic stable, then
Q∞ := limT→∞QT exists and R(T )→ 0 as T →∞. Taking the limit of T →∞ in
(3.17) would then lead to a characterization of the output energy by Q∞ without a
remainder term. Q∞ is also easier to determine than QT since it solves (3.13) with
G(T ) = 0. Energy estimates based on Q∞ are shown in [6, 10, 25] if the variance v
is constant.

We can also get to a more explicit bound by applying Gronwall’s lemma to

(3.19) if QT is regular. Defining α(T ) := xT0 QTx0−E
∫ T

0
‖yc(t)‖22 dt (3.19) becomes

E
[∥∥∥Q

1
2

Txc(t;x0)
∥∥∥

2

2

]
= α(T ) + E

∫ T

0

∥∥∥G 1
2 (T )xc(t;x0)

∥∥∥
2

2
dt

≤ α(T ) + kTE
∫ T

0

∥∥∥Q
1
2

Txc(t;x0)
∥∥∥

2

2
dt
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where kT :=
∥∥∥G 1

2 (T )Q
− 1

2

T

∥∥∥
2

2
. Gronwall’s lemma leads to

0 ≤ E
[∥∥∥Q

1
2

Txc(t;x0)
∥∥∥

2

2

]
≤ α(T ) + E

∫ T

0

α(t)kT ekT (T−t) dt.

With a few more steps, we find

E
∫ T

0

‖y(t)‖22 dt ≤ xT0 QTx0 ekTT ,

but this bound can not be expected to be tight.

4. State-space transformation and reduced-order model. Balancing re-
lated MOR like balanced truncation were initially invented for controlled linear de-
terministic systems that are asymptotically stable and have zero initial states [23].
Balanced truncation has been extended to stochastic systems with similar proper-
ties [6, 10]. Subsequently, this scheme was studied for deterministic and stochastic
systems with non-zero initial conditions [4, 5]. However, all these methods are re-
stricted to stable systems. A method for deterministic equations called time-limited
balanced truncation aiming to create a good reduced system on a finite time interval
only was introduced in [15]. As pointed out in [21], this method has some potential
in the context of unstable systems.

The method explained below is a combination of all the methods mentioned
above. It follows the same concept which is simultaneously diagonalizing system
Gramians. Here, the Gramians are PT and QT solving (3.9) and (3.13), respectively.
We have shown the relevance of these Gramians in Section 3. Diagonalizing both PT
and QT means that we create a system in which the important states in equations
(2.1a) and (2.1b) are the same. Hence, the unimportant ones can be easily identified
and thus truncated.

The unimportant ones can then be easily truncated.

Let S ∈ Rn×n be a regular matrix. We do a coordinate transformation by
introducing

x̂(t) = Sx(t).

Based on (2.1) the associated system is

dx̂(t) = Âx̂(t)dt+

q∑

i=1

√
v(t)N̂ix(t)dWi(t), x̂(0) = Sx0 = SBz, (4.1a)

y(t) = Ĉx̂(t), t ∈ [0, T ], (4.1b)

where Â = SAS−1, B̂ = SB, Ĉ = CS−1 and N̂i = SNiS
−1. Notice that the

quantity of interest does not change with this transformation. However, the matrices
characterizing the importance of states in (4.1a) and (4.1b) are different ones. For
the transformed system (4.1), these become

P̂T = SPTS
T and Q̂T = S−TQTS

−1.

The above relation is obtained by multiplying (3.8) with S from the left and with
ST . Moreover, (3.14) needs to be multiplied with S−T from the left and with S−1

from the right.

We now choose S such that P̂T = Q̂T = ΣT = diag(σ1, . . . , σn), where σ1 ≥
. . . ≥ σn > 0 are called Hankel singular values (HSVs) and given by σi =

√
λi(PTQT ),

where λi(·) denotes the ith eigenvalue of the matrix and i = 1, . . . , n. Such a system
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is called balanced. A transformation like this always exists if PT , QT > 0. It is,
together with its inverse, derived the following way:

S = Σ
− 1

2

T UTLTQ and S−1 = KPV Σ
− 1

2

T .

The above matrices are computed from factorizations PT = KPK
T
P and QT =

LQL
T
Q as well as from the singular value decomposition of KT

PLQ = V ΣUT .

In a balanced system, it is easy to identify the unimportant states. They are
the ones corresponding to the small HSVs of the system and represented by x2 given
by the partition of the balanced state variable

x̂(t) = Sx(t) =
[
x1(t)
x2(t)

]
,

where x1(t) ∈ Rñ represents the relevant states in the system dynamics. Further-
more, we partition the balanced realization as follows:

SAS−1 =
[
A11 A12

A21 A22

]
, SB =

[
B1

B2

]
, CS−1 = [C1 C2 ] , SNiS

−1 =
[
Ni,11 Ni,12

Ni,21 Ni,22

]
,

where A11 ∈ Rñ×ñ etc. With this, system (4.1) becomes

[
dx1

dx2

]
=
[
A11 A12

A21 A22

]
[ x1
x2

] dt+

q∑

i=1

√
v
[
Ni,11 Ni,12

Ni,21 Ni,22

]
[ x1
x2

] dWi, x̂(0) =
[
B1

B2

]
z, (4.2)

y(t) = [C1 C2 ]
[
x1(t)
x2(t)

]
, t ∈ [0, T ]. (4.3)

The time dependence is omitted in (4.2) to shorten the notation. The reduced
system of dimension ñ � n is now obtained by neglecting x2, i.e., the second line
in (4.2) is truncated the remaining x2 variables are set zero in both the first line of
(4.2) and in (4.3). The reduced-order model then is

dx̃(t) = A11x̃(t)dt+

q∑

i=1

√
v(t)Ni,11x̃(t)dWi(t), x̃(0) = B1z, (4.4a)

ỹ(t) = C1x̃(t), t ∈ [0, T ]. (4.4b)

where A11, Ni,11 ∈ Rñ×ñ, B1 ∈ Rñ×m and C1 ∈ Rp×ñ.

5. Error bound analysis. We introduce an error system by combining (2.1a)
and (4.4a) with an output equation that represents the error between (2.1b) and
(4.4b). The error system is

dxe(t) = Aexe(t)dt+

q∑

i=1

√
v(t)Ne

i x
e(t)dWi(t), xe(0) = Bez,

ye(t) = Cexe(t), t ∈ [0, T ],

(5.1)

where the error state xe and the error matrices (Ae, Be, Ce, Ne
i ) are

xe = [ xx̃ ] , Ae =
[
A 0
0 A11

]
, Be =

[
B
B1

]
, Ce = [C −C1 ] , Ne

i =
[
Ni 0
0 Ni,11

]
. (5.2)

Let us again assume that an index c indicates that v in (5.1) is replaced by c. We
obtain

E
∫ T

0

‖ye(t)‖22 dt ≤ E
∫ T

0

‖yec(t)‖22 dt
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the same way as in (3.12). Based on the fundamental solution Φe (or Φec), the
quantity of interest given a constant volatility function, is represented by yec(t) =
CeΦec(t)B

ez. Plugging this into the above inequality yields

E
∫ T

0

‖ye(t)‖22 dt ≤E
∫ T

0

‖CeΦec(t)Bez‖22 dt ≤ E
∫ T

0

‖CeΦec(t)Be‖2F dt ‖z‖
2
2

= tr(CeP eT (Ce)T ) ‖z‖22 , (5.3)

where we set P eT :=
∫ T

0
F e(t)dt with F e(t) = Φec(t)B

e(Be)T (Φec)
T (t). Analogue to

(3.8), F e solves

Ḟ e(t) = AeF e(t) + F e(t)(Ae)T + c

q∑

i,j=1

Ne
i F

e(t)(Ne
j )T kij , F e(0) = Be(Be)T .

(5.4)

We partition the solution to (5.4) as follows

F e(t) =
[
F11(t) F12(t)

FT
12(t) F22(t)

]
(5.5)

and see that F11(t) = F (t) solving (3.8) as well as F12(t) = F̄ (t) and F22(t) = F̃ (t)
that are the solutions to

˙̄F (t) = AF̄ (t) + F̄ (t)AT11 + c

q∑

i,j=1

NiF̄ (t)NT
j,11kij , F̄ (0) = BBT1 (5.6)

˙̃F (t) = A11F̃ (t) + F̃ (t)AT11 + c

q∑

i,j=1

Ni,11F̃ (t)NT
j,11kij , F̃ (0) = B1B

T
1 (5.7)

using the partitions in (5.2). From (5.3) and (5.5), we obtain

E
∫ T

0

‖y(t)− ỹ(t)‖22 dt = E
∫ T

0

‖ye(t)‖22 dt

≤
(

tr(CPTC
T )− 2 tr(CP̄TC

T
1 ) + tr(C1P̃TC

T
1 )
)
‖z‖22 , (5.8)

where P̄T :=
∫ T

0
F̄ (t)dt and P̃T :=

∫ T
0
F̃ (t)dt. By Integrating both (5.6) and (5.7),

the equations for these two matrices are

F̄ (T )−BBT1 = AP̄T + P̄TA
T
11 + c

q∑

i,j=1

NiP̄TN
T
j,11kij , (5.9)

F̃ (T )−B1B
T
1 = A11P̃T + P̃TA

T
11 + c

q∑

i,j=1

Ni,11P̃TN
T
j,11kij . (5.10)

Since PT is already known from the balancing procedure explained in Section 4, the
bound for the absolute output error in (5.8) requires only the computation of P̄T
and P̃T . Since the reduced dimension ñ is rather small, the corresponding equations
(5.9) and (5.10) can often be solved directly through vectorization. Hence, we have

vec(F̄ (T ))− vec(BBT1 ) = K̄ vec(P̄T ),

vec(F̃ (T ))− vec(B1B
T
1 ) = K̃ vec(P̃T )
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with F̄ (T ) = eK̄T vec(BBT1 ) and F̃ (T ) = eK̃T vec(B1B
T
1 ), where

K̄ :=


In ⊗A11 +A⊗ Iñ + c

q∑

i,j=1

Ni ⊗Nj,11kij


 ,

K̃ :=


Iñ ⊗A11 +A11 ⊗ Iñ + c

q∑

i,j=1

Ni,11 ⊗Nj,11kij


 .

Above, the identity matrices are equipped with an index indicating the respective
dimension. With (5.8) a bound for the absolute error of reducing system (2.1) was
found. However, the relative error is more interesting to be analyzed. Therefore,
we need a computable lower bound for the L2-norm of y. This task is relatively
simple because the inequality of Cauchy Schwartz yields

∫ T

0

‖E[y(t)]‖22 dt ≤ E
∫ T

0

‖y(t)‖22 dt.

Now, E[x(t)], t ∈ [0, T ], solves equation (2.1a) with c = 0 which can be seen easily
by applying the expected value to both sides of (2.1a) and by exploiting that the Ito
integrals have zero mean. We use that Φc=0(t) = eAt such that E[y(t)] = C eAtBz.
We plug this into the above estimate leading to

E
∫ T

0

‖y(t)‖22 dt ≥
∫ T

0

∥∥C eAtBz
∥∥2

2
dt = zTBTQT,0Bz, . (5.11)

where QT,0 :=
∫ T

0
eA

T t CTC eAt dt. According to Subsection 3.2, QT,0 solves (3.13)
with c = 0, i.e.,

eA
TT CTC eAT −CTC = ATQT,0 +QT,0A, (5.12)

an equation that can be solved in a large-scale setting, since there are efficient
methods to determine eAT for large n. We summarize the results of this section in

a theorem below, where we set ‖y‖2L2 := E
∫ T

0
‖y(t)‖22 dt.

Theorem 5.1. Let y be the output of the original system (2.1) and let ỹ be the
output of the reduced model (4.4). Then, the relative L2-error between y and ỹ is
bounded as follows:

‖y − ỹ‖L2

‖y‖L2

≤

(
tr(CPTC

T )− 2 tr(CP̄TC
T
1 ) + tr(C1P̃TC

T
1 )
) 1

2 ‖z‖2
(zTBTQT,0Bz)

1
2

(5.13)

where PT , P̄T , P̃T and QT,0 are the solutions to (3.9), (5.9), (5.10) and (5.12),
respectively.

Proof. The result follows from (5.8) and (5.11). The bound in Theorem 5.1
provides a good a priori error estimate, an indicator for the quality of the reduced
system. Error bounds for related methods in a deterministic framework can be
found in [16, 27, 28].

Remark 4. Notice that if we aim to reduce a Black-Scholes model with output
yc instead of a Heston model with output y, the energy ‖yc‖L2 is explicitly known
according to Section 3.2 given that A,N1, . . . , Nq commute. Then, it holds that
‖yc‖L2 = xT0 QTx0 such that we can replace QT,0 by QT in Theorem 5.1.
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6. Numerical experiments. We apply the MOR technique motivated in Sec-
tion 3 and explained in Section 4. The goal is to accurately approximate payoff
functions associated with the large asset price model (2.1a) (these are functions of
the quantity of interest in (2.1b)) by payoff functions of the reduced system (4.4).
This type of problem is of particular interest if we price European options with an
underlying high-dimensional Heston model because computational complexity can
be reduced. Moreover, since the reduced system shows good pathwise approxima-
tions, it can be of interest in the context of Bermudan options because regression
based methods [22, 31] suffer from the curse of dimensionality which makes them
inaccurate in a large-scale setting. Below, we consider a particular Heston model
(2.1) and illustrate the quality of the reduction in dependence of the covariance
matrix K of the noise process.

We consider the following linear stochastic differential equation that represents
an asset price model:

dxi(t) = rxi(t)dt+ ξi
√
v(t)xi(t)dWi(t), xi(0) = x0,i, (6.1)

where xi denotes the ith component of a price process x (i = 1, . . . , n). Moreover,
we assume that r = 0.02 is the fixed interest rate and ξi ∈ [0.2, 0.7] are volatility
parameter sampled from a uniform distribution. Now, we can rewrite equation (6.1)
in order to guarantee the form given in (2.1a). The respective matrices are

A = rI, Ni = ξieie
T
i , B = x0 and z = 1, (6.2)

where ei is the ith unit vector in Rn, q = n, and assuming that we are interested in
a single initial value x0 only. In this particular situation, the matrices A,N1, . . . , Nn
commute and are symmetric. The variance process is v(t) = min{v̄(t), c}, t ∈ [0, T ],
where v̄ is the solution to the following stochastic differential equation:

dv̄(t) = a(b− v̄(t))dt+ σ̄
√
v̄(t)dB̄(t), v(0) = v0, (6.3)

where b = 0.2 is the long run average variance, a = 0.2 is the rate characterizing the
speed of convergence of the average variance and σ̄ = 0.15 is the volatility of the
volatility process. Furthermore, B̄ is a standard Brownian motion with respect to
the filtration (Ft)t∈[0,T ] that negatively correlated with the other standard Brownian
motions Wi, i.e., E[B̄(t)Wi(t)] = ρit, where ρi < 0. The parameters ξi, a, b, σ̄ are
chosen to have an average volatility around 0.2, i.e.,

E
[√

v(t)
] 1

n

n∑

i=1

ξi ≈ 0.2.

Notice that in order to fit the theory, the process v is bounded by a constant c
since generally v̄ is unbounded. Practically, we simulate a certain number of paths
of v̄ and choose a c that represents a bound of these simulated paths such that those
coincide with the respective paths of v.

Suppose that the quantity of interest is now some one dimensional partial in-
formation y of the price process x that is the form

y(t) = Cx(t), (6.4)

where the output matrix is C = [1, 1, . . . 1]. We now determine a reduced system
(4.4). To do so, the matrices PT and QT need to be computed in order to conduct
the balancing procedure described in Section 4. Fortunately, these matrices can be
derived explicitly from (3.8) and (3.14). Plugging in (6.2) into these equations, we
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obtain

Ḟ (t) = 2rIF (t) + c

n∑

i,j=1

eie
T
i F (t)eje

T
j ξiξjkij , F (0) = x0x

T
0 ,

Ġ(t) = 2rIG(t) + c

n∑

i,j=1

eie
T
i G(t)eje

T
j ξiξjkij , G(0) = CTC.

By multiplying the above equations with eTi from the left and with ej from the
right, we can see that these equations can be solved component-wise. The entries
of F (t) = (fij)i,j=1,...n satisfy

ḟij(t) = (2r + cξiξjkij)fij(t), fij(0) = x0,ix0,j ,

such that fij(t) = ehijt x0,ix0,j , where hij := (2r + cξiξjkij). Integrating fij over
[0, T ], we find that PT = (pij)i,j=1,...n is given by

pij(t) =
ehijT −1

hij
x0,ix0,j .

Analogously, it holds that QT = (qij)i,j=1,...n is represented by

qij(t) =
ehijT −1

hij
eTi C

TCej .

Since PT and QT are given explicitly, the reduced system (4.4) with output ỹ comes
basically for free in terms of computational time. This also means that we are able
to derive a reduced model if the number of assets is very large. We investigate
the reduction quality for three different covariance matrices. First we consider a
matrix with both small and large correlations between the noise processes. We first
choose K = K0 := ττT according to [13], where τ = [τ1, τ2, . . . τn] has columns
τi generated by a vector s = (si)i=1,...,n−1 of samples si of independent uniformly
distributed random variables with values in [0.8, 1]:

τ1 =
(

1
cp(s)

)
, τ2 =

√
1− s2

1

(
0
1

cp(s2:n−1)

)
, . . . , τn =

√
1− s2

n−1

( 0
...
0
1

)
.

Above, we set s`:n−1 := (s`, s`+1, . . . , sn−1)T and

cp(s) := [s1, s1s2, . . . , s1s2 . . . sn−1]
T
.

Further, we study the two extreme cases of K = I (independent noise processes)
and K = 11T (perfect correlation), where 1 is an n-dimensional vector of ones.
We choose n = 100, T = 1, c = 0.6 and the initial conditions x0,i ∈ [0, 1.25] are
generated randomly, where 1 =̂ 100 Dollar. For K = K0 we choose ρi ∈ [−0.9, 0),
in case of K = I we have ρi = −0.09 and we fix ρi = −0.5 for K = 11T . In all the
numerical experiments below, 2e06 samples are generated.

6.1. Approximation error in the quantity of interest. We begin with
analyzing the error between the output of the full system y and the output of the
reduced system ỹ. The first question is how to choose the dimension ñ of system
(4.4). The HSVs, i.e., σi =

√
λi(PTQT ) are a very good indicator for a suitable

choice since the smaller σi, the less important the ith state component x̂i in the
balanced system (4.1) according to what we have derived in Section 3. We can
see these values in logarithmic scale for different covariance matrices K in Figure
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6.1. In each case, we observe that one variable dominates the dynamics meaning
that no matter how K is chosen, a scalar reduced-order model already leads to a
relatively good approximation. Moreover, we see that the reduction is expected to
be least efficient if all noise processes are independent due to a slow decay of the
HSVs. However, with perfect correlation (K = 11T ), we only have four non zero
HSVs meaning that the 100-dimensional model can be perfectly approximated by a
system of four variables. In the case of K = K0 the performance is in between the
independent and perfectly correlated scenarios. This fits to our general observation
that the higher the correlation, the better the algorithm works.

We conclude this subsection by a discussion on the error between the outputs
y and ỹ of systems (2.1) and (4.4) for this particular example. We determine the
relative L2-error and the corresponding error bound in Theorem 5.1. This bound
that is the right-side of (5.13) is denoted by EB here. The error bound is relatively
tight for the example. In most of the cases it estimates the exact error by factor of
three, see Tables 6.1, 6.2 and 6.3. As supposed from the HSVs, very good results
are obtained for very small ñ if K = 11T , compare with Figure 6.2. However, in
the situation of K = K0, a reduced-order between 4 and 10 shows a low error, too.

ñ ‖y − ỹ‖L2 / ‖y‖L2 EB

1 5.10e−03 1.55e−02
4 2.02e−03 6.18e−03
10 7.01e−04 2.17e−03
15 3.95e−04 1.23e−03
20 2.39e−04 7.46e−04
25 1.62e−04 5.06e−04
50 3.56e−05 1.13e−04

Table 6.1: Relative L2-error and error
bound for K = K0.

ñ ‖y − ỹ‖L2 / ‖y‖L2 EB

1 2.56e−03 7.79e−03
4 2.23e−03 6.79e−03
10 1.69e−03 5.12e−03
15 1.46e−03 4.42e−03
20 1.27e−03 3.84e−03
25 1.08e−03 3.28e−03
50 5.01e−04 1.51e−03

Table 6.2: Relative L2-error and error
bound for K = I.

ñ ‖y − ỹ‖L2 / ‖y‖L2 EB

1 2.40e−03 5.48e−03
2 3.25e−06 1.34e−05
3 2.94e−09 2.98e−08
4 3.76e−12 2.76e−09

Table 6.3: Relative L2-error and error
bound for K = 11T .

6.2. Approximation error in the payoff. We have seen in Section 6.1 that
the quantity of interest y of system (2.1), that we specified in (6.4), can be well
approximated by the output ỹ of the reduced system (4.4) in a path-wise sense on
some interval [0, T ]. However, it is often of interest to consider weak errors instead.
Therefore, we consider the following payoff function

f(y) = max {y −K, 0}

that plays a role in the context of European call options, where K denotes the strike
price. We compare the expected payoff Ef (y(T )) at time T with the one associated
with the reduced system, which is Ef (ỹ(T )), for K = 〈1, x0〉2 in Figure 6.3. The
relative errors in the expected payoff are larger if the correlations between the noise
processes are small. The approximation works best if K = 11T . As displayed in
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Fig. 6.1: Logarithmic HSVs of the large-
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{1, 4, 10, 15, 20, 25, 50} if K = K0, I and
for ñ = 1, 2 if K = 11T .

Figure 6.3, the error is around 5e−06 for ñ = 2 and our simulations also show an
error of 5e−13 already for ñ = 4. If smaller correlations are involved, a larger ñ
needs to be chosen. However, selecting 4 ≤ ñ ≤ 10 for K = K0 already leads to a
good estimate of the original payoff.

Looking at Table 6.4 we observe that weak error (error in the expected payoff)
is of the same or of smaller error than the strong error in Table 6.1. Moreover,
it can be seen that the approximation in the payoff is better if the strike price is
below the value of the basket 〈1, x0〉2 at time zero and it is worse if the strike price
is above 〈1, x0〉2.

So far, the weak error has not yet been analyzed concerning error bounds etc.
We believe that it requires advanced techniques to succeed in this direction.

|Ef(y)− Ef(ỹ)| / |Ef(y)|
ñ K = 0.9 〈1, x0〉2 K = 〈1, x0〉2 K = 1.1 〈1, x0〉2
1 9.54e−04 1.10e−03 1.98e−02
4 8.81e−04 6.92e−04 5.28e−03
10 2.78e−04 4.13e−04 8.80e−04
15 3.41e−05 8.63e−05 2.22e−04
20 8.62e−06 1.79e−05 2.25e−05
25 2.56e−06 7.22e−06 2.19e−05
50 1.12e−07 2.22e−07 7.09e−07

Table 6.4: Relative error in the payoff function for K = K0 and different strike
prices K.

Remark 5. We have seen a good path-wise performance of our method in Sec-
tion 6.1 and an even better approximation in the payoff in this section. Therefore,
we see the potential of pricing high-dimensional Bermudan options with the help of
MOR. Classical regression based schemes as in [22, 31] cannot accurately determine
values of Bermudan options with high-dimensional underlying asset models due to
the curse of dimensionality. However, reducing the asset price model in its dimen-
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Fig. 6.3: Logarithmic relative error expected payoff for K = 〈1, x0〉2 and different
reduced dimensions.

sion and subsequently applying the methods in [22, 31] can be promising and is an
interesting topic for further research.

7. Conclusions and outlook. In this paper, we have shown that model or-
der reduction (MOR) can be an effective technique to construct lower-dimensional
surrogate models of large-scale financial models. These surrogate models can be
tackled by higher-order computational methods than Monte Carlo simulation. We
construct a specific path-wise MOR method, and test it in a multi-dimensional
Heston model. The MOR turns out to work very well for European basket option
pricing, especially when the individual assets are strongly correlated (a very realistic
scenario). For instance, in a common Doust-type correlation regime, for n = 100
assets, a reduced model with dimension ñ = 1 was able to capture the price of
an ITM basket option up to a relative error of 10−3, whereas for an OTM option
we obtained the same error bound with ñ = 10, which is still a very significant
dimension reduction.

Of course, this paper only scratches the surface of applications of MOR in fi-
nance. In particular, we identify two very relevant extensions that will be highly
beneficial in a financial context. On the one hand, consider that we have restricted
ourselves to linear dynamics and essentially linear payoff functions – in the sense
that the payoff is assumed to be a non-linear function of a low-dimensional pro-
jection of the full price process. Both restrictions can be quite relevant in finance.
Allowing non-linear dynamics opens up the possibility of including the stochastic
variance process in the model order reduction, as well as having local volatility com-
ponents. Techniques for MOR in non-linear dynamics have already been developed
in the deterministic case [7, 8, 20], and have been extended to stochastic differential
equations in some special cases [24]. General non-linear payoff functions are also
relevant in finance, think of max-call options. One strategy already available in our
framework is to choose C to be the identity matrix.

On the other hand, note that the MOR framework developed in this paper is
strong in the probabilistic sense, i.e., we try to approximate the process itself. In
many financial application, we are interested in weak approximations, i.e., we want
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to approximate the distribution of the process. As this is a much weaker concept,
even better MOR techniques are conceivable. However, developing an appropriate
framework does not seem obvious, and it is unclear how to proceed in this direction.

Appendix A. Resolvent positive operators.
Let (Hn, 〈·, ·〉F ) be the Hilbert space of symmetric n × n matrices, where

〈M1,M2〉F := tr(MT
1 M2) is the Frobenius inner product of two matrices M1 and

M2. The corresponding norm is defined by ‖M1‖2F := 〈M1,M1〉F . Moreover, let Hn
+

be the subset of symmetric positive semidefinite matrices. We now define positive
and resolvent positive operators on Hn.

Definition A.1. A linear operator L : Hn → Hn is called positive if L(Hn
+) ⊂

Hn
+. It is resolvent positive if there is an α0 ∈ R such that for all α > α0 the

operator (αI − L)−1 is positive.
The operator L(X) := AX+XAT is resolvent positive for A ∈ Rn×n which is, e.g.,
shown in [12]. Moreover, Π(X) := c

∑q
i,j=1NiXN

T
j kij is positive for Ni ∈ Rn×n by

[25, Proposition 5.3]. This implies that the generalized Lyapunov operator L+ Π is
resolvent positive. We now state an equivalent characterization for resolvent positive
operators in the following. It can be found in a more general form in [12, 14, 29].

Theorem A.2. A linear operator L : Hn → Hn is resolvent positive if and
only if 〈V1, V2〉F = 0 implies 〈LV1, V2〉F ≥ 0 for V1, V2 ∈ Hn

+.

Appendix B. Pending proofs. We prove Lemmas 2.1 and 2.3 in the following
two subsections.

B.1. Proof of Lemma 2.1. We apply Ito’s product rule to x(t)xT (t) and
obtain

d
(
x(t)xT (t)

)
= dx(t)xT (t) + x(t)dxT (t) + dx(t)dxT (t).

Inserting (2.1a) yields

dx(t)xT (t) + x(t)dxT (t) =Ax(t)xT (t)dt+

q∑

i=1

√
v(t)Nix(t)xT (t)dWi(t) (B.1)

+ x(t)xT (t)AT dt+

q∑

i=1

√
v(t)x(t)xT (t)NT

i dWi(t).

With (2.1a) and using that dWi(t)dWj(t) = kijdt, we find

dx(t)dxT (t) = v(t)

q∑

i,j=1

Nix(t)xT (t)NT
j kijdt. (B.2)

Let ei denote the ith unit vector. Then, we have

kij = eTi K
1
2 K

1
2 ej =

q∑

k=1

〈K 1
2 ei, ek〉2〈K

1
2 ej , ek〉2.

Using this fact, we obtain that

q∑

i,j=1

Nix(t)xT (t)NT
j kij =

q∑

k=1

(
q∑

i=1

Nix(t)〈K 1
2 ei, ek〉2

)


q∑

j=1

Njx(t)〈K 1
2 ej , ek〉2



T

≥ 0

is a positive semidefinite matrix. Hence, we can enlarge the right-side of (B.2) by
replacing v by its bound c. This leads to

dx(t)dxT (t) ≤ c
q∑

i,j=1

Nix(t)xT (t)NT
j kijdt. (B.3)
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We apply the expected value to both sides of (B.1) and (B.3). Since the Ito integrals
have mean zero, we have

d

dt
E
[
x(t)xT (t)

]
≤ AE

[
x(t)xT (t)

]
+ E

[
x(t)xT (t)

]
AT + c

q∑

i,j=1

NiE
[
x(t)xT (t)

]
NT
j kij ,

which concludes the proof.

B.2. Proof of Lemma 2.3. We combine (2.4) with (2.5) and obtain

Ẏ (t) ≥ L(Y (t)),

where Y := Z −X. We define the difference function D(t) := Ẏ (t) − L(Y (t)) ≥ 0
and consider the following perturbed differential equation

Ẏε(t) = L(Yε(t)) +D(t) + εI

with parameter ε ≥ 0 and initial state Yε(0) = Y (0) + εI. We see that Y0(t) = Y (t)
for all t ∈ [0, T ] since Y0 − Y solves (2.5) with initial condition zero. Since Yε
continuously depends on ε and the initial data, we have limε→0 Yε(t) = Y0(t) = Y (t)
for all t ∈ [0, T ].

We want to prove that Yε(t) is positive definite for all t and all ε > 0. To do so,
let us assume the converse, i.e., there is a ũ 6= 0 and a t̃ > 0 such that ũTYε(t̃)ũ ≤ 0.
We know that fε(u, t) := uTYε(t)u is positive at t = 0 for all u ∈ Rn \ {0} since
Y (0) ≥ 0 by assumption. Since fε is non-positive in some point (ũ, t̃) and due to
the continuity of t 7→ Yε(t), there is a point t0 ∈ (0, t̃] for which

uT0 Yε(t0)u0 = 0 and uT0 Yε(t)u0 > 0, t < t0, (B.4)

for some u0 6= 0, whereas uTYε(t0)u ≥ 0 for all other u ∈ Rn. Since L is resol-
vent positive, 0 = uT0 Yε(t0)u0 = 〈Yε(t0), u0u

T
0 〉F implies 0 ≤ 〈L(Yε(t0)), u0u

T
0 〉F =

uT0 L(Yε(t0))u0 by Theorem A.2. Hence, we have

uT0 Ẏε(t)u0

∣∣∣
t=t0

= uT0 L(Yε(t0))u0 + uT0 D(t0)u0 + ε ‖u0‖22 > 0.

Consequently, we know that there are t < t0 close to t0 for which uT0 Yε(t)u0 < 0.
This contradicts (B.4) and hence our assumption is wrong such that Yε(t) is positive
definite for all t ∈ [0, T ] and ε > 0. Taking the limit of ε → 0, we obtain Y (t) ≥ 0
for all t ∈ [0, T ] which concludes the proof.
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