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Chapter 1

State-of-the-art numerical schemes for solving rough
differential equations

M. Redmann and J. Werner
In this chapter, we give an introduction to rough paths. Subsequently,
we consider various approaches to solve rough differential equations nu-
merically, discuss advantages as well as drawbacks of each individual
scheme and compare their performance in numerical experiments.
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1. Introduction

The use of stochastic differential equations (SDEs) as a sophisticated math-
ematical tool for modeling real life applications has grown in popularity
since involving uncertainties is more realistic. However, often it is not
possible to determine SDE solutions in an analytically closed form. There-
fore, numerical schemes are important tools to approximate their solutions.
There are different classes of numerical methods to solve SDEs, the most
popular ones are Taylor schemes namely the Euler-Maruyama and the Mil-
stein scheme but also Runge-Kutta methods, see [1–5], and even some ap-
proaches from Lie theory see [6–8] have been proposed. In practise the
implementation of all these techniques are limited to low strong approxima-
tion orders, since high order schemes suffer from the inability to efficiently
calculate the involved iterated integrals. This makes the implementation of
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high order schemes efficient only in special cases.
A deterministic (or pathwise) approach to SDEs is given by the rough
path theory invented by Lyons. In this case, the driver is a more gen-
eral Hölder continuous function instead of a continuous semimartingale.
Rough differential equations (RDEs) are driven by objects which can be
interpreted as vectors of iterated integrals and therefore make higher order
numerical methods interesting again. While the most studied numerical
schemes available for RDEs are of Taylor-type [9, 10], there is few liter-
ature on Runge-Kutta-type schemes [11]. Many of these approaches rely
on the availability of iterated integrals which are usually not known an-
alytically. Therefore, methods using only path information of the driver
have been considered [11–13] for a simpler implementation. However, they
are restricted to low orders of convergence. Also the Lie theory approach,
namely the Log-ODE method [14–17] is studied extensively which builds
upon Taylor schemes involving iterated integrals. Unfortunately, Taylor
methods rely on nested derivatives, which are expensive to compute mak-
ing them inefficient in, e.g., large-scale settings. We aim to modify the
Lie theory ansatz and exploit the advantage of Runge-Kutta schemes in
this context which have lower computation cost since they are derivative
free. The contribution of this chapter is to introduce a new Runge-Kutta-
Log-ODE method which is based on a new Runge-Kutta scheme that is
an extension of a Runge-Kutta ansatz from SDE theory [1]. Both new
techniques have a considerably reduced computational effort compared to
their well-known Taylor counterparts and explicitly depend on second order
iterated integrals. In particular, this explicit dependence is an advantage
compared to the class of methods used in [11]. In this work, the focus is
rather on applying the new approaches and testing their theoretical proper-
ties in numerical experiments. Therefore, it can be seen as a good starting
point for further theoretical studies of new methods with high potential.
This chapter is structured as follows. In Section 2, we introduce the
basics of rough path theory and describe RDEs. Section 3 contains an
overview on various numerical schemes including our new proposed ap-
proach. We conclude with Section 4 conducting numerical experiments for
high-dimensional RDEs and providing a discussion on the performance of
each method.
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2. Foundation of rough path theory

First we introduce essentials of the rough path theory like the tensor algebra
and signatures.

Definition 1 ( [16] Definition A.1). We say that T (Rk) :=
⊕∞

i=0(Rk)⊗i

is the tensor algebra of Rk and T ((Rk)) = {a = (a0, a1, . . .) : an ∈
(Rk)⊗n ∀n ≥ 0} is the set of formal series of tensors of Rk. Similarly, we de-
fine the truncated tensor algebra TN (Rk) := R⊕Rk⊕(Rk)⊗2⊕· · ·⊕(Rk)⊗N

for N ∈ N. Moreover, T (Rk), T ((Rk)) and TN (Rk) can be endowed with
the operations of addition and multiplication.
Given a = (a0, a1, . . .) and b = (b0, b1, . . .), we have

a + b = (a0 + b0, a1 + b1, . . .),

a ⊗ b = (c0, c1, . . .),
(1)

where for n ≥ 0 the n-th term cn ∈ (Rk)⊗n can be written using the usual
tensor product as

cn :=

n∑
i=0

ai ⊗ bn−i.

In rough path theory, we consider two parameter functions with values in
TN (Rk). Instead of choosing two arbitrary parameters in [0, T ] it is often
useful to order the parameters via the simplex ∆T := {(s, t) ∈ [0, T ]2 : s <

t}. We follow this approach notation-wise.

Definition 2 ( [16] Definition A.2). The signature S·,·(X) : ∆T →
T ((Rk)) of a path X : [0, T ] → Rk of bounded variation over the interval
[s, t] is defined as the following collection of iterated (Riemann-Stieltjes)
integrals:

Ss,t(X) :=
(
1, X

(1)
s,t , X

(2)
s,t , · · ·

)
∈ T ((Rk)),

where for n ≥ 1,

X
(n)
s,t :=

∫
· · ·

∫
s<u1<···<un<t

dXu1
⊗ · · · ⊗ dXun

∈ (Rk)⊗n.

Similarly, we can define the depth-N (or truncated) signature of the path
X on [s, t] as

SN
s,t(X) :=

(
1, X

(1)
s,t , · · · , X

(N)
s,t

)
∈ TN (Rk),

Definition 3. We define πn : T
N (Rk) → (Rk)⊗n as the projection map

onto (Rk)⊗n for n = 0, 1, . . . , N .
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Next we introduce a suitable norm for signatures and later also rough
paths.

Definition 4. Let X : ∆T → T bpc(Rk) where b·c denotes the floor function.
For p ≥ 1 we introduce the p-variation norm

‖X‖p-var := max
1≤n≤bpc

sup
D

( ∑
ti∈D

‖πn(Xti,ti+1
)‖

p
n

)n
p

and the induced p-variation metric between to continuous paths Z1 and Z2

with values in T bpc(Rk) as

dp(Z1,Z2) := max
1≤n≤bpc

sup
D

( ∑
ti∈D

∥∥πn(Z1
ti,ti+1

)− πn(Z2
ti,ti+1

)
∥∥ p

n

)n
p

,

where the supremum is taken over all partitions D of [0, T ] and the norms
‖ · ‖ must satisfy

‖a⊗ b‖ ≤ C‖a‖‖b‖,

for a ∈ (Rk)⊗n, b ∈ (Rk)⊗m and a constant C ≥ 0. For example, we can
take ‖·‖ to be the projective or injective tensor norms (see Propositions 2.1
and 3.1 in [18]). Additionally, we define a metric for the two cases p = 0

and p = ∞ the following way:

d∞;[0,T ](Z1,Z2) := sup
t∈[0,T ]

d(Z1
0,t,Z2

0,t)

d0;[0,T ](Z1,Z2) := sup
0≤s<t≤T

d(Z1
s,t,Z2

s,t),

where d is the so-called Carnot–Caratheodory metric (see Theorem 7.32
[10]).

Next, we consider important objects of rough path theory, namely geometric
p-rough paths.

Definition 5 ( [16] Theorem B.1). For p ≥ 1, we say X : ∆T → T bpc(Rk)

is a geometric p-rough path if X is a continuous path in the tensor algebra
T bpc(Rn) and there exists a sequence (xn) of continuous finite variation
paths xn : [0, T ] → Rk whose truncated signatures converge to X in the p

variation metric:

dp
(
Sbpc(xn),X

)
→ 0, (2)

as n → ∞.
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The following identity, known as Chen’s relation, tells us precisely how to
“patch together” rough paths over adjacent intervals.

Lemma 1. If X is a geometric p-rough path, then

Xs,t = Xs,u ⊗ Xu,t (3)

holds for 0 ≤ s < u < t ≤ T .

Proof. In [10, Theorem 7.11] this statement is proven for Sbpc(xn) instead
of X (see (2)). A careful passage to the limit concludes the proof.

If not stated otherwise from now on we will always assume p ≥ 1.

Example 1. Assume that X = W·(ω) : [0, T ] → Rk is a path of a stan-
dard Brownian motion W . Since the paths of W are almost surely of finite
p-variation for p > 2, we need to make sense of W in X = (W,W) taking
values in T 2(Rk). The two most common approaches are to define W via Itô
or Stratonovich integrals. Notice that the construction of this second order
information is not path-wise, although rough analysis is a path-wise ansatz.
While the approach with Itô integrals leads to a non geometric rough path,
the approach via Stratonovich integrals indeed results in a random geomet-
ric p-rough path X = (W,WStrat), where for a path W·(ω) : [0, T ] → Rk

WStrat
s,t (ω) =

(∫ t

s

Ws,u ⊗ ◦dWu

)
(ω)

is based on a Stratonovich integral. A potential smooth approximation in
(2) is the well-known Wong-Zakai approximation [19].

Since we now have the definition of a rough path as a potential driver, the
aim is to consider rough differential equations (RDEs) and to construct a
solution concept.
We start by introducing a smoothness notion for the vector fields.

Definition 6 ( [10] Definition 10.2). A map f : E → F between two
normed spaces E, F is called γ-Lipschitz, in symbols f ∈ Lip(γ), if f

is bounded with bγc bounded Fréchet derivatives, where the last Fréchet
derivative Dbγcf is Hölder continuous with exponent γ − bγc. Then, the
following norm is finite

‖ · ‖Lip(γ) := max
0≤k≤bγc

‖Dkf‖∞ ∨ ‖Dbγcf‖(γ−bγc)-Höl.
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There are at least two concepts to define solutions of RDEs, which in our
framework are both equivalent. We start with the classical approach of
Lyons [20], which is similar to the SDE case. The idea is to define a rough
integral and subsequently introduce a differential equation involving such
an integral.

Definition 7 ( [10] Definition 10.44). Let X : ∆T → T bpc(Rk) be a
geometric p-rough path a, and f = (f1, . . . fk) be a collection of maps
fj : Rn1 → Rk. We say that Z : ∆T → T bpc(Rn1) is a rough integral of f
along X, if there exists a sequence (xn)n with xn : [0, T ] → Rk and xn is of
bounded variation such that

∀n : xn
0 = X0

lim
n→∞

d0;[0,T ](S
bpc(xn),X) = 0

sup
n

‖Sbpc(xn)‖p-var < ∞

where X = π1(X) and

lim
n→∞

d∞
(
Sbpc( ∫ f(xn

u)dxn
u

)
,Z

)
= 0.

The following results gives conditions under which the rough integral is well
defined.

Theorem 1 ( [10] Theorem 10.47). Assume that

• for f = (f1, . . . , fk), fi ∈ Lip(γ−1) with i = 1, ..., k and γ > p ≥ 1;
• X : ∆T → T bpc(Rk) is a geometric p-rough path.

Then, for all s < t ∈ [0, T ], there exists a unique rough-path integral of f

along X. The indefinite integral
∫
f(X)dX is a geometric rough path: there

exists a constant C depending only on p and γ such that for all s < t in
[0, T ],∥∥∥ ∫ f(X)dX

∥∥∥
p-var;[s,t]

≤ C‖f‖Lip(γ−1)

(
‖X‖p-var;[s,t] ∨ ‖X‖pp-var;[s,t]

)
with X = π1(X).

Below, we write Xt instead of X0,t for simplicity of the notation. Now, a
solution to the RDE

dYt = f(Yt)dXt, (4)
Y0 = y0,

aThis definition also holds in the case of weak geometric p-rough paths being a more
general concept.
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can then be defined via the integral equation

Yt = y0 +

∫ t

0

f(Ys)dXs,

where it turns out that
∫ t

0
f(Ys)dXs is well-defined as a rough integral

under suitable regularity conditions on f . Notice that we actually need
a more general notion of integrals than in Definition 7 in order to make
sense of RDEs. However, we omit this extension for a better readability
of this chapter. The other approach, which we will use in the rest of the
paper, is to define a solution as an appropriate limit of solutions to Stieltjes
differential equations.

Definition 8 ( [10] Definition 10.17). Let X : ∆T → T bpc(Rk) be a
geometric p-rough path. We say that Y ∈ C([0, T ],Rn1) is a solution to the
RDE

dYt = f(Yt)dXt,

Y0 = y0,

if there exists a sequence of (xn)n of bounded variations functions such that
limn→∞ d0;[0,T ](Sbpc(x

n),X) = 0 and sup
n

‖Sbpc(x
n)‖p-var < ∞ hold as well

as solutions Y n to the Stieltjes differential equations

dY n
t = f(Y n

t )dxn
t ,

Y n
0 = y0,

exist such that

Y n → Y uniformly on [0, T ] as n → ∞.

Remark 1. Both concepts of solutions are equivalent in our framework
(see [10] Remark 10.19). While the second concept might be more intuitive
the approach of Lyons can immediately be generalized for more general
rough paths X.

At last we give an existence and uniqueness result on the solution of RDEs.

Theorem 2 ( [10] Theorem 10.26). Assume that

• f = (f1, ..., fk) is a collection of Lip(γ)-vector fields fj : Rn → Rk

for γ > p ≥ 1;
• X : ∆T → T bpc(Rk) is a geometric p-rough path,
• y0 ∈ Rn thought of as initial conditions at time zero.
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Then, there exists a unique solution Y : [0, T ] → Rn to the RDE

dYt = f(Yt)dXt,

Y0 = y0.
(5)

A main advantage of rough path theory is that Y (y0, f,X) under the as-
sumptions is locally Lipschitz continuous in the initial value, the vector
field and the driver. This fact is used to prove the uniqueness of a solution
of (5).

Remark 2. It is possible to recover the solution of (2) as rough path Y
itself. In general we only consider the first level π1(Y) = Y of the solution.

3. Overview of numerical schemes

In this section, we present schemes that can be used in order to compute
numerical solutions to RDEs. Let X : ∆T → T bpc(Rk) be a geometric p-
rough path and f = (f1, . . . , fk) : Rn → Rn×k. We aim to approximate a
function Y : [0, T ] → Rn satisfying

dYt = f(Yt)dXt =

k∑
i=1

fi(Yt)dXi
t,

Y0 = y0.

(6)

Additionally, we assume that fi ∈ Lip(γ) for γ > p and i = 1, . . . , k to
ensure the existence of a unique solution according to Theorem 2.

3.1. Taylor schemes

A special case of this class of methods was first introduced in [9] and is
extensively studied in [10] in full generalityb. Notation-wise we follow the
approach of [16].

We start by motivating the origin of the Taylor schemes. Let X : [0, T ] → R
be continuously differentiable and assume that f : Rn → Rn is smooth. We
denote Df as the Jacobian of f . Now, we exploit a first order Taylor ex-
pansion of f , i.e., f(Ys) ≈ f(Ya)+Df (Ya)(Ys−Ya) in order to find a Taylor
approximation of the solution of (6) around the point a with 0 < t−a << 1.

bWhat we call Taylor schemes is there studied under the name of (step-N) Euler scheme.
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In this context, we neglect terms of higher order and get

Yt = Ya +

∫ t

a

f(Ys)dXs

≈ Ya +

∫ t

a

f(Ya) +Df (Ya)(Ys − Ya)dXs

= Ya +

∫ t

a

(
f(Ya) +Df (Ya)

∫ s

a

f(Yu)dXu

)
dXs

≈ Ya +

∫ t

a

(
f(Ya) +Df (Ya)f(Ya)

∫ s

a

dXu

)
dXs

= Ya + f(Ya)

∫ t

a

dXs +Df (Ya)f(Ya)

∫ t

a

∫ s

a

dXudXs

= Ya + f(Ya)π1(Sa,t(X)) +Df (Ya)f(Ya)π2(Sa,t(X)).

(7)

This gives a second order Taylor like expansion of the solution which in the
case of SDEs is known as the Milstein scheme. The levels of the signature
play a crucial role as polynomials on paths. Higher order Taylor expansions
result in expressions using higher order signature terms.

Indeed this connection can be made rigorous and leads to a precise def-
inition of the Taylor schemes. We start with describing the role of the
vector fields which are usually known as elementary differentials.

Definition 9 ( [16] Definition A.6). For f : Rn → Rn×k, we define
f◦m : Rn → L((Rk)⊗m,Rn) recursively for m ∈ N by

f◦0(y) := y,

f◦1(y) := f(y),

f◦m+1(y) := D(f◦m)(y)f(y),

for y ∈ Rn, where D(f◦m) denotes the Fréchet derivative of f◦m.

Now, we can describe the Taylor schemes for more general drivers and
orders covering the motivation in (7).

Definition 10 ( [16] Definition A.7). Let X : ∆T → T bpc(Rk) be a
geometric p-rough path, f ∈ CN−1(Rn) and N = bpc. The Taylor operator
and the associated RDE approximation are given by

Taylor(Ys, f,Xs,t) :=

N∑
k=0

f◦k(Ys)πk(Xs,t) ≈ Yt. (8)
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This local approximation is repeated m times on a partition D = {0 = t0 <

t1 < · · · < tm = T}. This motivates to define the numerical solution of the
N -th level Taylor method via

yN-Tay
i = Taylor(yN-Tay

i−1 , f,Xti,ti+1
), (i = 1, . . . ,m),

where yN-Tay
i ≈ Yti and yN-Tay

0 = y0.

Example 2. The reader might be familiar with these type of Taylor
schemes from SDE theory. The strong Taylor approximations in [2] are
very similar. Especially the case N = 1 is the Euler-Maruyama scheme for
rough paths and the case N = 2 is the Milstein scheme for rough paths.

We continue with results on convergence and corresponding rates. Below,
we make use of the Euclidean norm which we denote by | · | from now on.

Theorem 3 ( [10] Theorem 10.30). Assume that

• X : ∆T → T bpc(Rk) is a geometric p-rough path,
• f = (f1, ..., fk) is a collection of Lip(γ)-vector fields on Rn for
γ > p ≥ 1,

• D = {0 = t0 < t1 < · · · < tm = T} is a fixed partition of [0, T ],
where h = max

i
ti+1 − ti.

Set N := bγc ≥ bpc. Then, there exists a constant C = C(p, γ) > 0, so
that

|YT − yN-Tay
m | ≤ Chα,

where α = (N+1)
p − 1 and h is sufficiently small.

Remark 3. These convergence rates are worst case rates and in some spe-
cial cases better rates can arise. For example choose the random rough
path X = (W,WStrat) being the Stratonovich lift of a standard Brow-
nian motion W . In this case, Theorem 3 gives a convergence rate of
α = 2+1

2+ε1
− 1 = 0.5− ε2 for some arbitrary small ε1, ε2 > 0 and almost all

paths of W but from [21] we know that the Milstein scheme converges a.s.
pathwise with order 1− ε.

3.2. Runge-Kutta schemes

In the theory of ordinary differential equations Runge-Kutta schemes are
preferred over the usual Taylor schemes. The reason for this is that the
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elementary differentials (see Definition 9) are expensive to compute from
a numerical perspective. The advantage of Runge-Kutta methods is that
they are derivative free.
In [11], a Runge-Kutta approach is presented that discretizes very general
RDEs with non-geometric drivers and it is shown that one can achieve an
arbitrary good rate analogous to Theorem 3 using a proper choice of the
coefficients within the numerical scheme (and given enough regularity of the
vector fields). Although this Runge-Kutta ansatz works perfectly in theory,
it has the disadvantage that the associated coefficients depend implicitly
on iterated integrals and these dependencies are hard to identify in general.
In order to overcome that the method is hard to implement, [11] presents
another approach in case the driver is geometric. In detail, the geometric
p-rough path is discretized using the lift of a piecewise linear approximation
and Runge-Kutta schemes are used to solve the arising ODEs. This leads
to schemes involving path information only. In contrast to the approach
in [11], we want to introduce Runge-Kutta schemes for RDEs with explicit
second order information. To the best knowledge of the authors, there ex-
ist no Runge-Kutta scheme for RDEs showing the dependence on higher
levels explicitly. This means that we establish a higher-order scheme that
is implementable. To do so, we exploit a Runge-Kutta scheme with ex-
plicit second order information designed for SDEs [1] and transfer it to the
much more general case of RDEs. We investigate the scheme numerically
including numerical evidence for the convergence of the scheme and an ex-
periment on the order of convergence. The theoretical analysis is beyond
the scope of this paper.

We start with defining a Runge-Kutta operator which shall replace the Tay-
lor operator in (8). The definition of the Runge-Kutta operator is based
on Section 6.1 of [1]. We specify the method by choosing fixed coefficients
for the Runge-Kutta operator, which fulfill certain order conditions in the
SDE case.

Definition 11. Let X : ∆T → T bpc(Rk) be a geometric p-rough path with
p < 3. Then, the Runge-Kutta operator and the associated RDE approxi-
mation are defined by

Yt ≈ Runge-Kutta(Ys, f,Xs,t) (9)

:= Ys +

k∑
l=1

fl(Ys)π1(Xs,t)l +

√
t− s

2

k∑
l=1

(
fl(Z

1
l )− fl(Z

2
l )
)
,
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where π1(Xs,t)l is the l-th element of π1(Xs,t) and

Z1
l = Ys +

1√
t− s

k∑
j=1

fj(Ys)π2(Xs,t)j,l,

Z2
l = Ys −

1√
t− s

k∑
j=1

fj(Ys)π2(Xs,t)j,l

with π2(X) ∈ (Rk)⊗2 ' Rk×k and π2(X)j,l is the element in the j-th row
and in the l-th column.
This local approximation is repeated m times on a partition D = {0 = t0 <

t1 < · · · < tm = T}. We define the numerical solution of the Runge-Kutta
method via

yRK
i = Runge-Kutta(yRK

i−1, f,Xti,ti+1
), (i = 1, . . . ,m),

where yRK
0 = y0. The intuition is that yRK

i ≈ Yti .

Remark 4. While the Taylor scheme is a class of numerical methods de-
pending on N ∈ N in Definition 11 we give the Runge-Kutta method for
the concrete case N = 2. In [1] the Runge-Kutta methods for SDEs are
given for N ∈ N. In future publications the authors plan to investigate this
case for RDEs too. The N = 1 Runge-Kutta scheme coincides with the
1-level Taylor method.

Remark 5. The motivation of the Taylor method (7) is based on the Taylor
series. Similar one can motivate the Runge-Kutta operator by an expansion
of the solution by the so-called B-series or Butcher series.

3.3. Log-ODE method

The method was introduced in [14], analyzed in [15] and got recent atten-
tion in [17]. Again we mainly follow the notation of [16]. The Log-ODE
method is an approach from Lie theory and therefore has the advantage
of respecting the geometry of the problem. If the solution of (6) lies in a
certain manifold than it is possible to construct an approximation via the
Log-ODE method which lies in the same manifold.

We start with introducing the basic Lie theory of rough paths.

Definition 12 ( [16] Definition A.3). For a = (a0, a1, . . .) ∈ T ((Rk))

with a0 > 0, define log(a) to be the element of T ((Rk)) given by the fol-
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lowing series:

log(a) := log(a0) +
∞∑
l=1

(−1)l

l

(
1 − a

a0

)⊗l
, (10)

where 1 = (1, 0, 0, . . .) is the unit element of T ((Rk)) and log(a0) is viewed
as log(a0)1.

Next, we define the truncated logarithm map.

Definition 13 ( [16] Definition A.4). For a = (a0, a1, . . .) ∈ T ((Rk))

with a0 > 0, define logN (a) to be the element of TN (Rk) defined from the
logarithm map (10) as

logN (a) := PN (log(ã)),

where ã = (a0, a1, . . . , aN , 0, 0, . . .) ∈ T ((Rk)) and PN denotes the orthog-
onal projection map from T ((Rk)) onto TN (Rk).

Finally, we introduce the log-signature.

Definition 14 ( [16] Definition A.5). The log-signature of a path
X : [0, T ] → Rn of bounded variation over the interval [s, t] is defined as
LogSigs,t(X) := log(Ss,t(X)), where Ss,t(X) denotes the signature of X.
Likewise the depth-N log-signature of X is defined for each N ∈ N as
LogSigNs,t(X) := logN (SN

s,t(X))

Remark 6. While for a path X of bounded variation the signature Ss,t(X)

(and likewise SN
s,t(X)) is element of the Lie group, the log-signature

LogSigs,t(X) (and likewise LogSigNs,t(X)) is element of the Lie algebra. For
further information on the Lie theory of rough paths the authors suggest
Chapter 7 of [10].

With this definitions we are ready to introduce the Log-ODE method.

Definition 15 ( [16] Definition A.8 ). Let X : ∆T → T bpc(Rk) be a
geometric p-rough path. We consider the ODE

dz
du

= Taylor(z(u), f,LogSigNs,t(X)),

z(0) = Ys,
(11)

where u ∈ [0, 1]. Now, (11) is constructed for the purpose of approximating
the RDE solution Y in (6) at time point t in the sense that

Yt ≈ z(1).
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Remark 7. The construction of the vector fields in (11) is similar to the
Taylor methods in Definition 10. The difference is the use of the log-
signature instead of the signature.

Remark 8. The procedure of Definition 15 usually is repeated m times on
a partition D = {0 = t0 < t1 < · · · < tm = T}. We define the numerical
solution of the N -th level Log-ODE method by

yN-Log-ODE
i+1 := z(1),

where z is the solution of
dz
du

= Taylor(z(u), f,LogSigNti,ti+1
(X)),

z(0) = yN-Log-ODE
i

and yN-Log-ODE
0 = y0. Then, yN-Log-ODE

i ≈ Yti .

We continue with a result on the convergence order of the Log-ODE
method.

Theorem 4 ( [16] Theorem B.1). Assume that

• X : ∆T → T bpc(Rk) be a geometric p-rough path,
• f = (f1, ..., fk) is a collection of Lip(γ)-vector fields on Rn for
γ > p ≥ 1,

• D = {0 = t0 < t1 < · · · < tm = T} is a fixed partition of [0, T ],
where h = max

i
ti+1 − ti.

Set N := bγc ≥ bpc. Then, there exists a constant C = C(p, γ, ‖f‖Lip(γ)) >

0, so that

|YT − yN-Log-ODE
m | ≤ Chα,

where α = N+1
p − 1 and h is sufficiently small.

We see that the order of convergence for fixed N for the Log-ODE method
and the Taylor method are the same.

Remark 9. The assumptions of the above theorem ensure that the right
hand side of the ODE (11) is globally bounded and Lipschitz continuous.
The above error estimate also holds when the vector field f is linear ( [16],
Remark B.8).
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3.4. RK-Log-ODE method

On the foundation of the introduced Runge-Kutta operator the authors
propose a Log-ODE method which from now on is mentioned as the RK-
Log-ODE method. Since we only introduced the Runge-Kutta method for
N = 2 we will also only have a look at the RK-Log-ODE method for N = 2.

Definition 16. Let X : ∆T → T bpc(Rk) be a geometric p-rough path and
p < 3, N = bpc. We consider the ODE

dz
du

= Runge-Kutta(z(u), f,LogSigNs,t(X)),

z(0) = Ys,
(12)

where u ∈ [0, 1].
Now (12) is constructed for the purpose of approximating the RDE solution
Y in (6) at time point t in the sense that

Yt ≈ z(1).

Let D = {0 = t0 < t1 < · · · < tm = T} be a partition of [0, T ]. We
define the numerical solution of the RK-Log-ODE method by

yRK-Log-ODE
i+1 := z̃(1),

where z̃ is the solution of
dz̃
du

= Runge-Kutta(z̃(u), f,LogSigNti,ti+1
(X)),

z̃(0) = yRK-Log-ODE
i

and yRK-Log-ODE
0 = y0. Then, yRK-Log-ODE

i ≈ Yti .

4. Numerical examples

Before we present our results we start to outline the experiments.
Let X : ∆T → T bpc(Rk) be a geometric p-rough path and f =

(f1, . . . , fk) : Rn → Rn×k. We aim to approximate the solution Y : [0, T ] →
Rn of the RDE

dYt = f(Yt)dXt,

Y0 = y0,
(13)

where t ∈ [0, T ] with T = 1 and

(f(Yt))ij =

{
ai · cos(j · Y i

t ), j even,
ai · sin(j · Y i

t ), j odd.
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The coefficients ai ∈ R are sampled independently from a uniform distri-
bution U([−1, 1]). We solve this RDE for random initial values y0 (also
uniformly distributed on [−1, 1]n) and varying, growing dimensions n and
k.
At first we comment on the geometric p-rough path X. As the underly-
ing function we choose a path of a fractional Brownian motion (fBm) BH

with Hurst index H = 0.4, i.e., X = π1(X) = BH(ω). From analysis it is
known that a function of Hölder regularity α is of finite p-variation with
p > 1

α . Since the paths of the fBm are almost surely Hölder continuous
with α < H, X is of finite p-variation for all p > 2.5 (see [22]).
We approximate Xs,t via a sequence of (xn)n of finite variation. This is
possible by Definition 5. In [23] it is proven that the Wong-Zakai ap-
proximation, i.e., piecewise linear approximations is a possible choice in
Definition 5 for a fBm with 1

4 < H < 1
2 . Since X is of finite p-variation for

all p > 2.5 we need to compute the first N = bpc = 2 levels of the signature
or the log-signature, respectively. While the first level π1(Xs,t) is nothing
more than the increment Xs,t, the second level cannot be computed directly
and is approximated via π2(Ss,t(x

n)) which we computed directly using the
following lemma.

Lemma 2. Let xn be piecewise linear for a partition [s = τ0 < · · · < τn = t].
Then,

π2(Ss,t(x
n)) =

1

2

n∑
l=1

π1(Sτl−1,τl(x
n))⊗ π1(Sτl−1,τl(x

n))

+

n∑
l=1

l∑
i=1

π1(Sτi−1,τi(x
n))⊗ π1(Sτl−1,τl(x

n)).

Proof. The statements holds true in the case n = 1, since

∫ τl

τl−1

∫ u

τl−1

dxn
i (r)dxn

j (u) =
1

2
(xn

i (τl)− xn
i (τl−1))(x

n
j (τl)− xn

j (τl−1))

for i, j = (1, . . . , k).
The general case follows via induction over n assuming that the statement
holds true for n − 1, with Chen’s identity (3) and the arithmetic of the
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tensor algebra (1) follows that

π2(Ss,t(x
n)) = π2(Sτ0,τn−1(x

n)) + π2(Sτn−1,τn(x
n))

+ π1(Sτ0,τn−1
(xn))⊗ π1(Sτn−1,τn(x

n))

=
1

2

n−1∑
l=1

π1(Sτl−1,τl(x
n))⊗ π1(Sτl−1,τl(x

n))

+

n−1∑
l=1

l∑
i=1

π1(Sτi−1,τi(x
n))⊗ π1(Sτl−1,τl(x

n))

+
1

2
π1(Sτn−1,τn(x

n))⊗ π1(Sτn−1,τn(x
n))

+ π1(Sτ0,τn−1
(xn))⊗ π1(Sτn−1,τn(x

n))

=
1

2

n∑
l=1

π1(Sτl−1,τl(x
n))⊗ π1(Sτl−1,τl(x

n))

+

n∑
l=1

l∑
i=1

π1(Sτi−1,τi(x
n))⊗ π1(Sτl−1,τl(x

n)).

This concludes the proof.

Then, we compute the second level of the log-signature LogSigNs,t(X) via

π2(LogSigNs,t(Xs,t)) = π2(Xs,t)−
1

2
(π1(Xs,t)⊗ π1(Xs,t)).

Note that we choose a representation of LogSigNs,t(X) in terms of a basis of
the truncated tensor algebra TN (Rk) instead of a basis of the Lie algebra.
All implementations are made in Python. There are some more imple-
mentation details to clarify. The derivatives in Definitions 10 and 15 are
computed using forward automatic differentiation, where we use the func-
tion torch.func.jvp. The ODEs in Definitions 15 and 16 are solved using
a single step of the Runge-Kutta 23 scheme from scipy library with the
solve_ivp function. The underlying fBm is sampled on a partition of [0, T ]
with twice as many grid points as the partition of the numerical solutions.
For the computation of a reference solution of (13) we use Heun’s third-
order method from [11] with m = 215 grid points.

Now, we apply the proposed methods. Therefore, let TM denote the
2-nd level Taylor method (Definition 10), let Log-ODE denote the 2-nd
level Log-ODE method (Definition 15). Finally, let RK and RK-Log-ODE
denote the Runge-Kutta (Definition 11) resp. the Runge-Kutta-Log-ODE
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method (Definition 16). We start by an investigation of the error

E = |YT − ym|

for a partition 0 = t0 < · · · < tm = T . We analyze the error versus the num-
ber of gridpoints in log-log diagrams. The stepsize of each method equals
1
m . Figure 1 suggests that RK and RK-Log-ODE indeed converge. From

25 26 27 28 29 210 211 212

number of gridpoints m

100

10 1

10 2

Er
ro

r 

RK
TM
Log-ODE
RK-Log-ODE

25 26 27 28 29 210 211 212

number of gridpoints m

100

10 1

10 2

Er
ro

r 

RK
TM
Log-ODE
RK-Log-ODE

Figure 1. Error vs. grid points for RDE (13) with n = 2, k = 2 for 2 different paths

the convergence analysis of TM (Theorem 3) and Log-ODE (Theorem 4) we
expect to see at least an order of convergence of α = N+1

p −1 = 3
2.5−1 = 0.2.

The expected order of convergence (EOC) should theoretically neither be
perturbed by the use of ODE solvers for the ODEs (11) and (12), since they
have a way higher convergence rate of 3, nor the numerical approximation
of X because this rate, according to [23], is 2H − 0.5 = 0.3, which is also
greater than α = 0.2.
Since the development of the error suffers from the roughness of the fBm
it is not always possible to observe a clear EOC. Therefore, in Figure 2,
we average the error over 200 independent trajectories of the fBm in order
to smooth out perturbations in the EOC. Figure 2 suggests a similar con-
vergence behaviour for TM, RK, Log-ODE and RK-Log-ODE. The actual
EOC seems to be higher than the theoretical predicted worst-case rate of
0.2. The authors expect the EOC to be α = 0.3. This is natural as the
total error of the approximation would then be determined by the error of
the discretization of the rough path, i.e., Xti,ti+1

≈ S2
ti,ti+1

(xn), where this
approximation converges with a rate of 0.3. We refer to Remark 3 once
more, where a similar effect was pointed out.
We complete the section with an investigation of the effort of each method
for solving the RDE (13). In Table 1 we explore the running times for differ-
ent dimensions and fixed grid size. In Table 2 we fix the dimensions and vary
over the grid size. There are two important observations to make from the
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Figure 2. Error vs. grid points for RDE (13) with n = k = 2

Table 1. Running times of numerical schemes for RDE (13) for varying
dimensions n, k and fixed m = 28

n = 2

k = 2

n = 10

k = 10

n = 100

k = 20

n = 1000

k = 20
TM 0.25s 1.2s 3s 19s
RK 0.01s 0.1s 0.5s 1.6s
Log-ODE 1s 19s 160s 789s
RK-Log-ODE 0.08s 1.9s 12s 45s

experiments on the running time. At first the methods based on the Runge-
Kutta operator heavily outperform their Taylor counterparts, namely RK
is faster than TM and RK-Log-ODE performs better than Log-ODE. The
second observation, one could conclude the TM and RK outperform their
Log-ODE counterpart by just looking at the running time. This is not the
intention of the experiment. Usually Log-ODE (and RK-Log-ODE) is used
on a coarse grid and saves time this way, while TM (and RK) work on a
really fine partition. Since we compared all methods for the same partition
size this outcome is expected.
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Table 2. Running times of numerical schemes for RDE (13) for
varying grid points m and fixed dimensions n = 2, k = 2

m = 210 m = 212 m = 214 m = 216

TM 1.57s 6.3s 25s 101s
RK 0.09s 0.35s 1.4s 5.7s
Log-ODE 6.6s 29s 103s 415s
RK-Log-ODE 0.45s 3.6s 7.1s 28s

5. Conclusion

In the present paper two efficient Runge-Kutta approaches for potentially
high-dimensional RDEs driven by geometric p-rough paths with p < 3 are
proposed. Compared to well-known methods such as the Taylor schemes
(Definition 10) and the Log-ODE method (Definition 15) numerical evi-
dence (see Tables 1 and 2) suggests significantly reduced computational
cost for the proposed Runge-Kutta scheme (Definition 11) and the RK-
Log-ODE method (Definition 16) especially in the case of high dimensions.
While again numerical evidence (see Figures 1 and 2) indicates the same
order of convergence for all methods. A numerical analysis of the proposed
schemes is an open question as well as the generalization of the proposed
schemes to general geometric p-rough paths for p ≥ 3, which the authors
intend to tackle in the future.
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