Klausur: Mathematik I für Chemiker und Biochemiker 1. Februar 2013 Nr. Vorname: Name: 1 Studienrichtung: Matrikelnummer: Aufgabe 2 3 4 5 gesamt

Hinweise: Bearbeitungszeit ist von 10^{15} Uhr bis 12^{00} Uhr. Zugelassene Hilfsmittel sind: Taschenrechner, Mitschriften aus Vorlesungen und Übungen, das Skript zur Vorlesung und ein Tafelwerk mit nicht mehr als ca. 250 Seiten. Die Ergebnisse werden unter Angabe der untenstehenden persönlichen Klausurnummer in StudIP bekannt gegeben.

Punkte

Aufgabe 1 (4 Punkte)

Sei $f(z) = 1/\overline{z}$.

- (a) Bestimmen Sie Real- und Imaginärteil von f(2-i).
- (b) Bestimmen Sie Betrag und Argument (also die exponentielle Darstellung) von $f(3e^{\frac{\pi}{2}i})$.

Aufgabe 2 (4 Punkte)

Bestimmen Sie die folgenden Grenzwerte:

(a)
$$\lim_{x \to 3} \frac{\ln(\sqrt{x}) - \ln(\sqrt{3})}{x - 3}$$
, (b) $\lim_{x \to 0} \frac{\tan x}{xe^{x+1} - \sin(2x)}$.

(b)
$$\lim_{x \to 0} \frac{\tan x}{xe^{x+1} - \sin(2x)}$$

Aufgabe 3

(4 Punkte + 2 Zusatzpunkte)

Sei $f(x) = (x+1)e^{-x^2}$. Bestimmen Sie die Nullstellen von f(x) und f'(x).

Zusatz: Berechnen Sie $\int_0^2 f(x) dx$ näherungsweise mit der Fassregel.

Aufgabe 4 (4 Punkte)

Sei $x(t)=\frac{4}{3}t^{\frac{3}{2}}$ und $y(t)=\frac{1}{2}t^2-t$. Berechnen Sie die Länge der Kurve (x(t),y(t)) für $0\leq t\leq 2$.

Aufgabe 5 (4 Punkte)

Lösen Sie die Differentialgleichung

$$y'(t) = \frac{16 \cdot t}{3 \cdot \sqrt{y}}, \quad y(0) = 0$$

mittels Trennung der Variablen.

Abschneiden und mitnehmen