Numerical Analysis of Rough PDEs

Research Unit FOR 2402, Project P3

This research project is carried out in the framework of research unit FOR 2402 supported by the German research foundation (DFG).

Official website of the research unit.

Principal Investigators


First funding period 2016 - 2019:

  • Yue Wu (now: University of Oxford)
  • Martin Redmann (now: Martin-Luther-Universität Halle-Wittenberg)


The purpose of this project is the development of new numerical techniques for PDEs driven by (deterministic or random) rough paths. Clearly, the numerical analysis for stochastic PDEs – typically driven by finite or infinite dimensional Brownian motion or white noise – is a well-established field with a long history. On the other hand, little is known about the numerical treatment of PDEs driven by genuine rough paths, beyond the Brownian setting. In fact, even in the case of now well-understood rough ordinary differential equations there are still open questions. However, some of the techniques proposed for the theoretical analysis of rough PDEs can lead to viable approaches to their computational solution, as well.

We have identified two distinct promising techniques that we are going to explore in this project: The first is based on the application of semi-groups to rough PDEs and their approximation by Galerkin finite element methods. The second is based on Feynman-Kac representations and the numerical approximation of the underlying stochastic differential equation, combined with spatial regression. Both techniques have been used in the past to give sense to certain classes of rough PDEs, see Deya-Gubinelli-Tindel (2012) or the recent book by Friz-Hairer (2014, Chapter 12), respectively.

In this project we evolve the two approaches into new implementable numerical methods and focus on questions like error analysis and computational complexity.

Raphael Kruse
Raphael Kruse

Prof. Dr. Raphael Kruse is the head of the working group “Numerik stochastischer Differentialgleichungen” at Martin-Luther-University Halle-Wittenberg. His research interests include numerical methods and stochastic analysis for stochastic evolution equations and Monte Carlo methods.