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Abstract

In this paper a priori error analysis for the finite element discretization of an optimal
control problem governed by an elliptic state equation is considered. The control variable
enters the state equation as a coefficient and is subject to pointwise inequality constraints.
We derive a priori error estimates for the discretization error in the control variable and
confirm our theoretical results by numerical examples.
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1. Introduction

In this paper we present a priori error analysis for the finite element discretization
of an optimal control problem with an elliptic equation. The control variable enters the
state equation as a coefficient. We consider the following optimal control problem for
the state u and the control q involving pointwise control constraints:

Minimize J(q, u) =
1
2

∫
Ω

(u− ud)2dx+
α

2

∫
Ω

(q − qd)2dx, s.t.

−∆u+ qu = f in Ω,

u = 0 on ∂Ω,

with 0 < a ≤ q ≤ b a.e. in Ω.

(P)

A precise formulation including a function analytical setting is given in the next
section. Since q enters the state equation as a coefficient, we can also interpret the
problem as a parameter estimation problem.
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On the one hand there are only few publications dealing with error estimates for dis-
tributed parameter identification problems governed by elliptic partial differential equa-
tions, see [2, 11, 16, 17, 25, 26, 27, 28]. However, the problems considered there are quite
different to the optimal control problem under consideration.

On the other hand there are a lot of publications dealing with a priori estimates
for optimal control problems, see for elliptic problems, e.g., [1, 3, 7, 8, 9, 14, 24] and
for parabolic problems, e.g., [21, 22, 23]. In these publications the error ‖q̄ − q̄h‖L2(Ω)

between the solution q̄ of a continuous problem and the solution q̄h of the discretized one is
analyzed. However, in all these publications the control variable enters the state equation
on the right-hand side or is part of the boundary condition. In [1, 9] the convergence
order ‖q̄ − q̄h‖L2(Ω) = O(h) was shown using a cellwise constant discretization of the
control variable. For the finite element discretization of the control by (bi-/tri-)linear
H1-conforming elements, the convergence order O(h

3
2 ) was verified, see, e.g., [3]. There

are two approaches to prove O(h2)-convergence for the error in the control variable in the
presence of control constraints, see [14, 24]. In [14] a variational approach is proposed
without explicitly discretizing the control variable and in [24] a post-processing step
is used to obtain the desired order of convergence. In [22, 23] similar estimates were
established for parabolic equations.

The main purpose of this paper is to analyze the error ‖q̄−q̄h‖L2(Ω) with respect to the
discretization parameter h. The variable q̄ stands for a fixed locally optimal control of (P)
and q̄h is an associate one of (Ph) being an approximate optimal control problem which
we obtain by a standard finite element discretization. The solution of the state equation
depends nonlinearly on the control variable. Therefore, we cannot guarantee uniqueness
of the solution of the optimization problem and hence, we concentrate on locally optimal
controls. They are the natural results of numerical optimization algorithms. For a given
locally optimal control q̄ of (P) we prove that there exists a sequence (q̄h)h>0 of locally
optimal controls of (Ph) converging to q̄. For a semilinear elliptic control problem in
which the control enters the state equation on the right hand side and not as a coefficient
this issue has been studied in [8].

In the absence of inequality constraints the regularity of q̄ is restricted only by the
regularity of the domain Ω and by the regularity of the data f, ud, qd. However, the
presence of control constraints leads to a stronger restriction on the regularity of q̄, which
often yields a reduction of the order of convergence of the finite element discretization.

We will prove the following convergence behaviour, when discretizing the state vari-
able by continuous cellwise (bi-/tri-)linear finite elements:

• O(h)-convergence when discretizing the control variable by cellwise constants. This
is a generalization of [9] and [23].

• O(h
3
2 )-convergence when discretizing the control variable by (bi-/tri-)linear finite

elements. This is a generalization of [8] and [23].

• O(h2)-convergence when discretizing the control variable by cellwise constants and
applying a post-processing step. This is a generalization of [24] and [23].

To the knowledge of the authors, this is the first publication providing such estimates
for the optimal control problem under consideration.
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The paper is organized as follows: In Section 2 we formulate the optimal control
problem in its functional analytic setting and recall some theoretical results concern-
ing existence, uniqueness and regularity. In Section 3 we describe the finite element
discretization of the optimal control problem. In Section 4 we prove some auxiliary esti-
mates. In Section 5 we give explicit orders of convergence of the error ‖q̄− q̄h‖L2(Ω) and
in Section 6 we confirm the theoretical results by some numerical examples.

2. Optimal Control Problem

In this section we briefly discuss the precise formulation of the optimization prob-
lem under consideration. Furthermore, we recall some theoretical results on existence,
uniqueness, and regularity of optimal solutions as well as optimality conditions.

Let Ω ⊂ Rd, d ∈ {2, 3}, be a convex polygonal domain. Here and in what follows,
we employ the usual notion of Lebesgue, Sobolev, and Hölder spaces and we introduce
the following notation: For inner products and norms on L2(Ω) we use

(v, w) = (v, w)L2(Ω) and ‖v‖ = ‖v‖L2(Ω).

In addition, let ‖ · ‖m,p denote the norm on Wm,p(Ω) and ‖ · ‖p the norm on Lp(Ω) for
1 ≤ m <∞, m ∈ N, and 1 ≤ p ≤ ∞. Finally, let C > 0 be a generic constant.

To formulate the optimal control problem we introduce the set Qad collecting the
inequality constraints as

Qad = {q ∈ L2(Ω) : a ≤ q ≤ b a.e. in Ω},

where the bounds a, b ∈ R fulfill 0 < a < b. With the cost functional J : Qad×H1
0 (Ω)→

R+
0 the weak formulation of the optimal control problem is given by:

min
q∈Qad, u∈H1

0 (Ω)
J(q, u) =

1
2
‖u− ud‖2 +

α

2
‖q − qd‖2, (2.1a)

subject to

(∇u,∇ϕ) + (qu, ϕ) = (f, ϕ) ∀ϕ ∈ H1
0 (Ω) (2.1b)

for some α > 0.
Throughout this paper we make the following assumption:

Assumption 2.1. Let ud, f ∈ Lp(Ω) for some p > d and qd ∈ H2(Ω) ∩W 1,∞(Ω).

From standard arguments for elliptic equations we obtain the following proposition:

Proposition 2.2. For every q ∈ L2(Ω), q ≥ 0, the state equation (2.1b) admits a unique
solution u ∈ H1

0 (Ω) and the following a priori estimate holds:

‖∇u‖ ≤ C‖f‖.

Moreover, for q, p ∈ L2(Ω), q ≥ 0, g ∈ H1
0 (Ω) let u ∈ H1

0 (Ω) be the unique solution of

(∇u,∇ϕ) + (qu, ϕ) = (pg, ϕ) ∀ϕ ∈ H1
0 (Ω).

Then the following estimate holds:

‖∇u‖ ≤ C‖∇g‖‖p‖.
3



Proposition 2.2 ensures the existence of a unique control-to-state mapping

S : W → H1
0 (Ω), q 7→ S(q),

where S(q) is the solution of (2.1b) and W ⊃ Qad is defined by

W = {q ∈ L∞(Ω) : ∃c > 0 : q > c > 0 a.e. in Ω}.

By means of this mapping we introduce the reduced cost functional

j : W → R+
0 ,

q 7→ J(q, S(q)).

Hence, the optimal control problem (2.1) can be equivalently reformulated as

min
q∈Qad

j(q).

From the form of the state equation (2.1b) we deduce the nonlinearity of the operator S
and hence, the reduced functional j need not to be convex, although the functional J is
convex.

In the next proposition we show, that the optimal control problem (2.1) admits a
solution.

Proposition 2.3. There exists a solution (q̄, ū) ∈ L2(Ω)×H1
0 (Ω) of problem (2.1).

The proof follows standard techniques, we refer, e.g., to [20, 31].
Since we cannot guarantee uniqueness of a solution of (2.1), we consider locally op-

timal solutions. Therefore, we use the following standard definition:

Definition 2.4 (Local solution). A control q̄ ∈ Qad is called a local solution of (2.1),
if there exists ε > 0, such that for all q ∈ Qad with ‖q − q̄‖ < ε

j(q) ≥ j(q̄)

holds.

From Proposition 2.3 we immediately obtain the existence of a local solution of the
optimal control problem (2.1).

In what follows we need certain differentiation properties of the mappings S and j.
Therefore, we introduce the following type of differentiability which we call Q-differ-
entiability. Let X,Y, Z be Banach spaces.

Definition 2.5 (Q-differentiability). Let Q ⊂ X be a convex set and T : Q → Y .
Then T is called to be Q-differentiable in q ∈ Q with respect to Q, if there exists a
mapping T ′Q(q) ∈ L(X,Y ), such that for all p ∈ Q holds

‖T (q + p− q)− T (q)− T ′Q(q)(p− q)‖Y
‖p− q‖X

→ 0 (‖p− q‖X → 0).

In the following we omit the index Q and write T ′ = T ′Q.
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Remark 2.6. Let Q ⊂ X be a convex set. Assume, T : Q → Y is Q-differentiable in
q ∈ Q with respect to Q and G : Y → Z Fréchet-differentiable in T (q) ∈ Y . Then
G ◦ T is Q-differentiable in q ∈ Q with respect to Q and the chain rule holds. Moreover,
Q-differentiable functions satisfy the product rule.

By a straightforward calculation we verify the next proposition.

Lemma 2.7. The control-to-state operator S : Qad → H1
0 (Ω) is infinitely Q-differentiable

in all q ∈ Qad with respect to Qad. Moreover, j : Qad → R+
0 is also at least three times

Q-differentiable in all q ∈ Qad with respect to Qad.

Remark 2.8. The operators S and j are not Fréchet-differentiable with respect to the
L2(Ω)–topology. However, since we do not want to use the so-called two-norm discrep-
ancy, see also Remark 2.25, we need more than directional differentiability in all q ∈ Qad

in the directions p− q for p ∈ Qad. Therefore, we have introduced the Q-differentiability
which also implies directional differentiability in all q ∈ Qad in the directions p − q for
p ∈ Qad.

Nevertheless, later we will use Fréchet-differentiability of S and j with respect to the
L∞(Ω)–topology to derive error estimates. Hence, we need the next lemma.

Lemma 2.9. The operator S belongs to C∞(W,H1
0 (Ω)) with respect to the L∞(Ω)-

topology and its derivatives have the following properties for all directions p1, p2, p3 ∈
L∞(Ω):

(i) S′(q)(p1) ∈ H1
0 (Ω) is the solution v of

(∇v,∇ϕ) + (qv, ϕ) = −(p1S(q), ϕ) ∀ϕ ∈ H1
0 (Ω). (2.2)

(ii) S′′(q)(p1, p2) ∈ H1
0 (Ω) is the solution w of

(∇w,∇ϕ) + (qw, ϕ) = −(p2S
′(q)(p1), ϕ)− (p1S

′(q)(p2), ϕ) ∀ϕ ∈ H1
0 (Ω). (2.3)

(iii) S′′′(q)(p1, p2, p3) ∈ H1
0 (Ω) is the solution y of

(∇y,∇ϕ) + (qy, ϕ) = −(p3S
′′(q)(p1, p2), ϕ)− (p2S

′′(q)(p1, p3), ϕ)

− (p1S
′′(q)(p2, p3), ϕ) ∀ϕ ∈ H1

0 (Ω).

Moreover, j : W → R+
0 is at least three times Fréchet-differentiable.

The proof follows by a direct calculation.
Using directional-differentiability of j in q ∈ Qad in the directions p − q for p ∈ Qad

we can formulate the necessary optimality condition for a local solution:

Proposition 2.10. Let q̄ ∈ Qad be a local solution of (2.1). Then the following inequal-
ity holds:

j′(q̄)(p− q̄) ≥ 0 ∀p ∈ Qad. (2.4)
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For a standard proof we refer, e.g., to [20].
For given q ∈ Qad let z ∈ H1

0 (Ω) be the solution of the adjoint state equation

(∇ϕ,∇z) + (qϕ, z) = (u− ud, ϕ) ∀ϕ ∈ H1
0 (Ω) (2.5)

with u = S(q). Then the first directional derivative in q ∈ Qad in the direction p− q for
all p ∈ Qad of the reduced cost functional can be expressed as

j′(q)(p− q) = α(q − qd, p− q)− ((p− q)u, z). (2.6)

For the solution of the adjoint equation (2.5) for given q ∈ W ⊃ Qad we can also
introduce a control-to-adjoint-state operator:

Lemma 2.11. There exists a unique operator

Z : W → H1
0 (Ω), q 7→ Z(q),

where Z(q) is the solution of (2.5) and Z is infinitely Fréchet–differentiable.

The proof follows by the same arguments as we used to prove Proposition 2.2.
Using the projection operator P[a,b] defined on L2(Ω) by

P[a,b](v)(x) = min{b,max{a, v(x)}} a.e. in Ω for v ∈ L2(Ω)

every local solution q̄ ∈ Qad satisfying (2.4) fulfills

q̄ = P[a,b]

(
1
α
S(q̄)Z(q̄) + qd

)
. (2.7)

This can be verified by standard arguments, see, e.g., [31].
It is well known, that the projection P[a,b] : W 1,∞(Ω)→W 1,∞(Ω) is continuous.
In what follows, we provide some stability estimates and give regularity results for

the state, adjoint state, and control variable.

Proposition 2.12. Let g ∈ L2(Ω), q ∈ L∞(Ω), q ≥ 0 and let u ∈ H1
0 (Ω) be the solution

of
(∇u,∇ϕ) + (qu, ϕ) = (g, ϕ) ∀ϕ ∈ H1

0 (Ω).

Then u ∈ H2(Ω) and the following estimate holds

‖u‖2,2 ≤ C(1 + ‖q‖)‖g‖. (2.8)

Proof. For a proof we refer to [13] and standard estimation techniques.

Throughout this paper we make the following assumption.

Assumption 2.13. Let the solution of (2.1b) be in W 2,p(Ω) for some p > d and all
q ∈W .
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Remark 2.14. Due to the fact that Ω is a convex polygonal domain, for d = 2 there
exists a constant pΩ > 2, such that for all 2 < p < pΩ Assumption 2.13 is fulfilled, see
[13].

For d = 3 the domain Ω additionally has to satisfy a certain angle condition, then
there exists a constant pΩ > 3, such that for all 3 < p < pΩ Assumption 2.13 is fulfilled,
see [18].

Corollary 2.15. Let p ∈ L2(Ω), q ∈ L∞(Ω), q ≥ 0, g ∈ H2(Ω) and let y ∈ H1
0 (Ω) be

the solution of
(∇y,∇ϕ) + (qy, ϕ) = (pg, ϕ) ∀ϕ ∈ H1

0 (Ω).

Then the stability estimate

‖y‖2,2 ≤ C(1 + ‖q‖)‖g‖2,2‖p‖ (2.9)

holds.

Proof. From the stability estimation (2.8) we derive

‖y‖2,2 ≤ C(1 + ‖q‖)‖pg‖ ≤ C(1 + ‖q‖)‖g‖∞‖p‖ ≤ C(1 + ‖q‖)‖g‖2,2‖p‖.

Remark 2.16. Let q ∈ Qad and p ∈ L∞(Ω). Then we deduce from Proposition 2.2 and
Lemma 2.9 for i ∈ {1, 2, 3} using Poincaré’s inequality

‖S(i)(q)(pi)‖ ≤ C‖∇S(i)(q)(pi)‖ ≤ C‖∇S(i−1)(q)(pi−1)‖‖p‖,

and since (2.9) we have

‖S(i)(q)(pi)‖2,2 ≤ C(1 + ‖q‖)‖S(i−1)(q)(pi−1)‖2,2‖p‖,

where S(i)(q)(pi) denotes the ith-derivative of S at q i-times in the direction p and
S(0)(q)(p0) = S(q).

Accordingly, we have similar properties of Z, i.e., we have in particular

‖Z(q)‖ ≤ C‖∇Z(q)‖ ≤ C(‖f‖+ ‖ud‖),
‖Z ′(q)(p)‖ ≤ C‖∇Z ′(q)(p)‖ ≤ C(‖∇Z(q)‖‖p‖+ ‖S′(q)(p)‖),
‖Z(q)‖2,2 ≤ C(1 + ‖q‖)(‖f‖+ ‖ud‖).

Utilizing formulation (2.7) we obtain the following regularity result:

Lemma 2.17 (Regularity). Let q̄ ∈ Qad satisfy (2.7). Then the state ū = S(q̄) and
adjoint state z̄ = Z(q̄) fulfill:

ū, z̄ ∈W 2,p(Ω) for some p > d

and hence,
q̄ ∈W 1,∞(Ω).

Proof. From Assumption 2.13 we have ū, z̄ ∈ W 2,p(Ω) for some p > d and hence, we
can prove ūz̄ ∈W 2,p(Ω) ↪→W 1,∞(Ω) for some p > d. The projection P[a,b] : W 1,∞(Ω)→
W 1,∞(Ω) is continuous. Consequently, (2.7) implies the assertion.
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Hence, we can formulate some explicit representation of some a priori bounds for a
local solution and its derivatives which we will need for the error estimates.

Remark 2.18. Applying Hölder’s inequality and using (2.7) and Remark 2.16 we can
estimate a local solution and its derivatives by the data:

‖q̄‖ ≤ C

α
(‖f‖(‖f‖+ ‖ud‖) + ‖qd‖),

‖∇q̄‖ ≤ C

α
(1 + ‖q̄‖)(‖f‖(‖f‖+ ‖ud‖) + ‖∇qd‖),

‖∇q̄‖∞ ≤
1
α

(‖S(q̄)‖∞‖∇Z(q̄)‖∞ + ‖∇S(q̄)‖∞‖Z(q̄)‖∞ + ‖∇qd‖∞).

On subsets of Ω a control q̄ ∈ Qad satisfying (2.4) might even have better regularity:

Remark 2.19. Let q̄ ∈ Qad satisfy

q̄ =
1
α
S(q̄)Z(q̄) + qd

on a subset Ω′ ⊂ Ω, then we have q̄ ∈ H2(Ω′) and by Remark 2.16 the following estimate
is valid

‖∇2q̄
∣∣∣
Ω′
‖ ≤ C

α
(1 + ‖q̄‖)4(‖f‖(‖f‖+ ‖ud‖) + ‖∇2qd‖).

In the following we state a sufficient optimality condition. Since each local solution q̄
is an element of the space W and because of the Fréchet-differentiability of j on W with
respect to the L∞(Ω)–topology the following assumption is well-formulated:

Assumption 2.20 (Second-order sufficient optimality condition). Let q̄ fullfill the
necessary optimality condition (2.4). Then we assume, that there exists a constant γ > 0,
such that

j′′(q̄)(p, p) ≥ γ‖p‖2 ∀p ∈ L∞(Ω). (2.10)

Remark 2.21. Assumption 2.20 is fulfilled for ‖S(q̄)− ud‖ sufficiently small or α suf-
ficiently large, since

j′′(q̄)(p, p) = (S′(q̄)(p), S′(q̄)(p)) + (S(q̄)− ud, S
′′(q̄)(p, p)) + α(p, p)

≥ (α− C‖S(q̄)− ud‖)‖p‖2.

Usually, one can not check the second-order sufficient optimality condition a priori. For
a technique of numerical verification of second order sufficient optimality conditions we
refer to [30].

To prove, that in a neighbourhood of a local solution the second derivative of the
reduced cost functional is also coercive, we need the next proposition.

Proposition 2.22. The second derivative j′′ of the reduced cost functional fulfills a
Lipschitz-condition, i.e., there exists a constant Ĉ = C(‖f‖2 + ‖f‖‖ud‖) > 0, such
that for all p, q ∈ Qad and all r ∈ L∞(Ω)

|j′′(q)(r, r)− j′′(p)(r, r)| ≤ Ĉ‖q − p‖‖r‖2

holds.
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Proof. We have

j′′(q)(r, r)− j′′(p)(r, r) = (S′(q)(r), S′(q)(r)− S′(p)(r))
+ (S′(q)(r)− S′(p)(r), S′(p)(r))
+ (S(q)− ud, S

′′(q)(r, r)− S′′(p)(r, r))
+ (S(q)− S(p), S′′(p)(r, r))

and hence,

|j′′(q)(r, r)− j′′(p)(r, r)| ≤ ‖S′(q)(r)‖‖S′(q)(r)− S′(p)(r)‖
+ ‖S′(q)(r)− S′(p)(r)‖‖S′(p)(r)‖
+ ‖S(q)− ud‖‖S′′(q)(r, r)− S′′(p)(r, r)‖
+ ‖S(q)− S(p)‖‖S′′(p)(r, r)‖.

Applying the mean value theorem, Remark 2.16, and Proposition 2.2 we deduce the
assertion.

Lemma 2.23. Let q̄ be a local solution and the sufficient optimality condition (2.10) be
true. There exists ε > 0, such that

j′′(q)(r, r) ≥ γ

2
‖r‖2 (2.11)

for all r ∈ L∞(Ω) and q ∈ Qad with ‖q − q̄‖ ≤ ε.

Proof. Due to Assumption 2.20 and Proposition 2.22 we have

j′′(q)(r, r) = j′′(q̄)(r, r) + (j′′(q)− j′′(q̄))(r, r)
≥ γ‖r‖2 − Cε‖r‖2

≥ γ

2
‖r‖2

for ε sufficiently small.

If a given control satisfies the necessary and sufficient optimality conditions (2.4) and
(2.10), then it is a local solution:

Theorem 2.24. Let q̄ ∈ Qad fulfill the necessary and sufficient optimality conditions
(2.4) and (2.10). Then there are constants ε, σ > 0, such that

j(q) ≥ j(q̄) + σ‖q − q̄‖2

for q ∈ Qad and ‖q − q̄‖ ≤ ε.

Proof. Using Q-differentiability, the proof follows by standard arguments, see, e.g.,
[31].

Remark 2.25. If we use the Fréchet-differentiability of S and j with respect to the
L∞(Ω)–topology and apply the theory of the so-called two-norm discrepancy, we get a
slightly worse result:

j(q) ≥ j(q̄) + σ‖q − q̄‖2

for q ∈ Qad and ‖q − q̄‖∞ ≤ ε.
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3. Discretization

Let {Th}h>0 be a family of meshes, whereas each mesh Th is a triangulation of Ω in
open quadrilaterals or hexahedrons, respectively with h = max{hK : K ∈ Th}, where
hK = diam(K). We assume, that {Th}h>0 is quasi-uniform, see, e.g., [10].

We define the conforming ansatz space for the state variable

Vh = {vh ∈ C(Ω̄) : vh|K ∈ Q1(K) ∀K ∈ Th, vh|∂Ω = 0},

where Q1(K) consists of all shape functions obtained via (bi-/tri-)linear transformations
of (bi-/tri-)linear functions defined on a reference cell K̂ = [0, 1]d. For the discretization
of the control space let Qh ⊂ L2(Ω) be a finite dimensional subspace and we define

Qad,h = Qad ∩Qh.

The space Qh will either be the space of cellwise constant functions

Qh,0 = {qh ∈ L2(Ω) : vh|K = const ∀K ∈ Th}

or Qh will be the space of continuous cellwise (bi-/tri-)linear finite elements similar to
Vh:

Qh,1 = {qh ∈ C(Ω̄) : vh|K ∈ Q1(K) ∀K ∈ Th}.

The discrete optimization problem is formulated as follows:

min
qh∈Qad,h,uh∈Vh

J(qh, uh) =
1
2
‖uh − ud‖2 +

α

2
‖qh − qd‖2, (3.1a)

subject to

(∇uh,∇ϕh) + (qhuh, ϕh) = (f, ϕh) ∀ϕh ∈ Vh. (3.1b)

For this section and all following ones let the constant C > 0 be independent of the mesh
parameter h.

As in Proposition 2.2 we have the following existence result and energy estimate:

Proposition 3.1. For every q ∈ L2(Ω), q ≥ 0, the equation

(∇uh,∇ϕh) + (quh, ϕh) = (f, ϕh) ∀ϕh ∈ Vh (3.2)

admits a unique solution uh ∈ Vh and the following a priori estimate holds:

‖∇uh‖ ≤ C‖f‖.

Let p ∈ L2(Ω), gh ∈ Vh and uh ∈ Vh be the solution of

(∇uh,∇ϕh) + (quh, ϕh) = (pgh, ϕh) ∀ϕh ∈ Vh.

Then the estimate
‖∇uh‖ ≤ C‖∇gh‖‖p‖

holds.
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Moreover, as in the continuous case, we can introduce a discrete control-to-state operator:

Definition 3.2. There exists a unique discrete control-to-state operator Sh with

Sh : W → Vh,

q 7→ Sh(q),

where Sh(q) is the solution of (3.2).

The operator is well-defined by Proposition 3.1.
Using this operator we introduce the discrete reduced cost functional

jh : Qad → R+
0 , q 7→ J(q, Sh(q))

and reformulate the discrete optimal control problem (3.1) as

min
qh∈Qad,h

jh(qh). (3.3)

Further, we define a discrete local solution:

Definition 3.3 (Discrete local solution). A control q̄h ∈ Qad,h is called discrete local
solution of (3.1), if there exists an ε > 0, such that for all qh ∈ Qad,h with ‖qh− q̄h‖ < ε

jh(qh) ≥ jh(q̄h)

holds.

As in the continuous case we obtain the existence of a local solution.
In the next lemma we summarize differentiability properties of the operators Sh and

jh, which we obtain in a similar way as in the continuous case.

Lemma 3.4. The operator Sh belongs to ∈ C∞(W,Vh) with respect to the L∞(Ω)–
topology and its derivatives have the following properties for all directions p1, p2, p3 ∈
L∞(Ω):

(i) S′h(q)(p1) ∈ Vh is the solution vh of

(∇vh,∇ϕh) + (qvh, ϕh) = −(p1Sh(q), ϕh) ∀ϕh ∈ Vh. (3.4)

(ii) S′′h(q)(p1, p2) ∈ Vh is the solution wh of

(∇wh,∇ϕh) + (qwh, ϕh) = −(p2S
′
h(q)(p1), ϕh)− (p1S

′
h(q)(p2), ϕh) ∀ϕh ∈ Vh.

(3.5)

(iii) S′′′h (q)(p1, p2, p3) ∈ Vh is the solution yh of

(∇yh,∇ϕh) + (qyh, ϕh) = −(p3S
′′
h(q)(p1, p2), ϕh)− (p2S

′′
h(q)(p1, p3), ϕh)

− (p1S
′′
h(q)(p2, p3), ϕh) ∀ϕh ∈ Vh.

Moreover, jh : W → R+
0 is at least three times Fréchet-differentiable with respect to the

L∞(Ω)-topology.
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Remark 3.5. Applying Proposition 3.1, we have for q ∈ Qad, p ∈ L∞(Ω) and i ∈
{1, 2, 3}

‖S(i)
h (q)(pi)‖ ≤ C‖∇S(i)

h (q)(pi)‖ ≤ C‖∇S(i−1)
h (q)(pi−1)‖‖p‖.

Thus, we can formulate the discrete necessary optimality condition for q̄h ∈ Qad,h as

j′h(q̄h)(ph − q̄h) ≥ 0 ∀ph ∈ Qad,h,

where j′h(q̄h)(ph − q̄h) is given by

j′h(q̄h)(ph − q̄h) = α(q̄h − qd, ph − q̄h)− ((ph − q̄h)ūh, z̄h) (3.6)

with ūh = Sh(q̄h) and the discrete adjoint solution z̄h ∈ Vh of

(∇ϕh,∇z̄h) + (q̄hϕh, z̄h) = (ūh − ud, ϕh) ∀ϕh ∈ Vh. (3.7)

For the solution of the discrete adjoint equation (3.7) we can also introduce a discrete
control-to-adjoint-state operator:

Lemma 3.6. There exists a unique infinitely Fréchet-differentiable operator Zh : Qad →
Vh, q 7→ Zh(q), where Zh(q) is the solution of (3.7).

Remark 3.7. Applying Proposition 3.1 we have for q ∈ Qad, p ∈ L∞(Ω) the estimate

‖Z ′h(q)(p)‖ ≤ C‖∇Z ′h(q)(p)‖ ≤ C(‖∇Zh(q)‖‖p‖+ ‖∇S′h(q)(p)‖).

4. Auxiliary estimates

In this section we provide some auxiliary estimates for the error due to the discretiza-
tion of the state and adjoint state variable. Furthermore, we deduce a discrete analogon
to the coercivity condition (2.11).

4.1. Estimates for the discrete state and adjoint state variables
By standard finite element estimation techniques we obtain the following proposition.

Proposition 4.1. Let q ∈ L∞(Ω), q ≥ 0, g ∈ L2(Ω) and assume, that u ∈ H1
0 (Ω) and

uh ∈ Vh are the solutions of

(∇u,∇ϕ) + (qu, ϕ) = (g, ϕ) ∀ϕ ∈ H1
0 (Ω) and

(∇uh,∇ϕh) + (quh, ϕh) = (g, ϕh) ∀ϕh ∈ Vh,

respectively. Then we have

‖∇(u− uh)‖ ≤ C(1 + ‖q‖)h‖∇2u‖,
‖u− uh‖ ≤ C(1 + ‖q‖)2h2‖∇2u‖.
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Lemma 4.2. Let q ∈ L∞(Ω), q ≥ 0, p ∈ L2(Ω), g1 ∈ H1
0 (Ω) ∩ H2(Ω), g2 ∈ H1

0 (Ω)
and assume, that u ∈ H1

0 (Ω) and uh ∈ Vh are the solutions of

(∇u,∇ϕ) + (qu, ϕ) = (pg1, ϕ) ∀ϕ ∈ H1
0 (Ω) and

(∇uh,∇ϕh) + (quh, ϕh) = (pg2, ϕh) ∀ϕh ∈ Vh, (4.1)

respectively. Then the following estimates hold:

‖∇(u− uh)‖ ≤ C(1 + ‖q‖)2h‖g1‖2,2‖p‖+ C‖∇(g1 − g2)‖‖p‖,
‖u− uh‖ ≤ C(1 + ‖q‖)3h2‖g1‖2,2‖p‖+ C‖∇(g1 − g2)‖‖p‖.

Proof. Let ûh ∈ Vh be the solution of

(∇ûh,∇ϕh) + (qûh, ϕh) = (pg1, ϕh) ∀ϕh ∈ Vh.

We subtract (4.1) and with ϕh = ûh − uh we obtain using Hölder’s inequality

‖∇(ûh − uh)‖2 + (q(ûh − uh), ûh − uh) ≤ ‖p‖‖g1 − g2‖4‖ûh − uh‖4.

Applying the embedding theorem and Poincaré’s inequality we get

‖ûh − uh‖ ≤ C‖∇(ûh − uh)‖ ≤ C‖p‖‖∇(g1 − g2)‖.

Consequently, using Proposition 4.1 and Corollary 2.15 we get

‖u− uh‖ ≤ ‖u− ûh‖+ ‖ûh − uh‖
≤ C(1 + ‖q‖)2h2‖∇2u‖+ C‖∇(g1 − g2)‖‖p‖
≤ C(1 + ‖q‖)3h2‖g1‖2,2‖p‖+ C‖∇(g1 − g2)‖‖p‖

and accordingly,

‖∇(u− uh)‖ ≤ C(1 + ‖q‖)2h‖g1‖2,2‖p‖+ C‖∇(g1 − g2)‖‖p‖.

In what follows we summarize some estimates for the operators S, Sh and their deriva-
tives.

Lemma 4.3. Let q, p ∈ Qad and r ∈ L∞(Ω). Then the following estimates hold for
m ∈ {0, 1}:

‖S(q)− Sh(q)‖m,2 ≤ C(1 + ‖q‖)3−mh2−m‖f‖, (4.2)

‖S′(q)(r)− S′h(q)(r)‖ ≤ C(1 + ‖q‖)4h‖r‖‖f‖, (4.3)

‖S′′(q)(r, r)− S′′h(q)(r, r)‖ ≤ C(1 + ‖q‖)5h‖r‖2‖f‖, (4.4)
‖Sh(q)− Sh(p)‖ ≤ C‖p− q‖‖f‖, (4.5)

‖Sh(q)‖∞ ≤ C(1 + ‖q‖)3‖f‖. (4.6)

Remark 4.4. With the standard estimation techniques we cannot prove quadratic con-
vergence in (4.3) and (4.4) with r in the L2(Ω)–norm on the right-hand side of these
error estimates. However, this fact does not influence the rate of convergence which we
will later derive for the error between a continuous optimal control and the associate
discrete one.
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Proof. Assertion (4.2) follows directly from Proposition 4.1 and (2.8). Using Lemma
4.2, (2.2), and (3.4), we have

‖S′(q)(r)− S′h(q)(r)‖ ≤ C(1 + ‖q‖)3h2‖S(q)‖2,2‖r‖
+ C‖∇(S(q)− Sh(q))‖‖r‖

and with (2.8) and (4.2)

‖S′(q)(r)− S′h(q)(r)‖ ≤ C(1 + ‖q‖)4h2‖f‖‖r‖
+ C(1 + ‖q‖)2h‖∇2S(q)‖‖r‖
≤ C(1 + ‖q‖)4h‖f‖‖r‖.

This implies (4.3). Accordingly, we deduce assertion (4.4) from (2.3) and (3.5). (4.5)
is a direct consequence of the mean value theorem and Remark 3.5. Since the mesh is
quasi–uniform, (4.6) follows with a standard estimate, see, e.g., [5] and [10].

For the operators Z and Zh we can state similar estimates:

Lemma 4.5. Let q, p ∈ Qad. Then the following estimates are valid for m ∈ {0, 1}:

‖Zh(q)− Z(q)‖m,2 ≤ C(1 + ‖q‖)3−mh2−m‖f‖,
‖Zh(q)− Zh(p)‖ ≤ C‖p− q‖(‖f‖+ ‖ud‖),

‖Zh(q)‖∞ ≤ C(1 + ‖q‖)3(‖f‖+ ‖ud‖).

4.2. Discrete coercivity
In this section we provide some auxiliary estimates and verify, that the second deriva-

tive of the discrete reduced cost functional is coercive in a neighbourhood of a local
solution, if the second-order optimality condition (2.10) is fulfilled for the continuous
problem.

We start with some estimates for the first derivative of the reduced cost functional
and its discrete analogon.

Lemma 4.6. Let q ∈ Qad and r ∈ L∞(Ω). Then the estimate

|j′(q)(r)− j′h(q)(r)| ≤ Ĉh2‖r‖

holds with Ĉ = C(1 + ‖q‖)4(‖f‖+ ‖ud‖)2.
Moreover, j′h fulfills a Lipschitz condition, i.e., there exists a constant C̃ = C(‖f‖2 +

‖f‖‖ud‖+ α) > 0, such that for all p, q ∈ Qad and all r ∈ L∞(Ω)

|j′h(q)(r)− j′h(p)(r)| ≤ C̃‖q − p‖‖r‖.

Proof. By means of (2.6) and (3.6) we have

|j′(q)(r)− j′h(q)(r)| ≤ |(r(S(q)− Sh(q)), Z(q))|+ |(rSh(q), Z(q)− Zh(q))|.

Using the Lemmas 4.3 and 4.5 and Remark 2.16 we get with C = C(‖f‖, ‖ud‖)

|j′(q)(r)− j′h(q)(r)| ≤ C(1 + ‖q‖)(‖f‖+ ‖ud‖)(‖S(q)− Sh(q)‖
+ ‖Z(q)− Zh(q)‖)‖r‖
≤ C(1 + ‖q‖)4(‖f‖+ ‖ud‖)2h2‖r‖.
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This proves the first assertion.
The second assertion follows as in the proof of Proposition 2.22.

In addition, we can show the coercivity of the second derivative of the discrete reduced
cost functional in a neighbourhood of a local solution.

Lemma 4.7. Let q̄ be a local solution of (2.1) and Assumption 2.20 be valid. Then there
exists an ε > 0, such that for all q ∈ Qad with ‖q − q̄‖ ≤ ε and all r ∈ L∞(Ω)

j′′h(q)(r, r) ≥ γ

4
‖r‖2 (4.7)

holds for h sufficiently small.

Proof. Using the explicit representations of j′′ and j′′h we have with C = C(‖f‖, ‖ud‖)
and (4.3), (4.4), and Remark 2.18

|j′′(q)(r, r)− j′′h(q)(r, r)| ≤ C(1 + ‖q‖)5h‖r‖2

≤ C(1 + ε+ ‖q̄‖)5h‖r‖2

≤ γ

4
‖r‖2

for h sufficiently small. Therefore, the assertion follows immediately from Lemma 2.23.

5. Error estimates

In this section we prove the main results of this article, namely estimates for the
error between a local solution q̄ of the continuous optimal control problem (2.1) and an
associate solution q̄h of the discrete problem (3.1). Thereby, we will distinguish between
different types of discretizations of the control variable.

We start with the formulation of an auxiliary problem for ε > 0, h > 0, to construct
for a given local solution q̄ an associate discrete one:

min
qh∈Uh

ε (q̄)
jh(qh), (5.1)

where Uhε (q̄) is defined by

Uhε (q̄) = {qh ∈ Qad,h : ‖qh − q̄‖ ≤ ε} ⊂ L∞(Ω).

In order to prove, that this auxiliary problem has a solution for h sufficiently small,
we need the following proposition.

Proposition 5.1. Let πh : L2(Ω)→ Qh,0 denote the L2–projection operator defined by

πhq(x) =
1
|K|

∫
K

q(ξ)dξ, x ∈ K

for all K ∈ Th and q ∈ L2(Ω). Then πhQad ⊂ Qad ∩Qh,0 and the estimate

‖πhv − v‖ ≤ ch‖∇v‖ (5.2)
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holds for all v ∈ H1
0 (Ω). In addition, for all qh ∈ Qh,0, p ∈ L2(Ω) we have

(qh, πhp− p) = 0.

Let Ih : C(Ω̄) → Qh,1 denote the usual nodal interpolation operator into the space
Qh,1 by pointwise setting

Ihg(xi) = g(xi)

for each node xi of the triangulation Th and g ∈ C(Ω̄). Then IhQad ⊂ Qad ∩ Qh,1 and
the following estimate holds

‖Ihv − v‖ ≤ ch‖∇v‖∞ (5.3)

for all v ∈W 1,∞(Ω).

A proof can be found, e.g., in [10] and [6].
Using this proposition we can state an existence assertion:

Lemma 5.2. For all ε > 0 and h > 0 sufficiently small, the auxiliary problem (5.1) has
a solution.

Proof. Let

q̂h =

{
πhq̄, if Qh = Qh,0,

Ihq̄, if Qh = Qh,1.

Then q̂h ∈ Qad,h and for h small enough we have ‖q̄− q̂h‖ < ε and therefore, q̂h ∈ Uεh(q̄).
Hence, Uεh(q̄) is not empty. For the further argumentation we refer to standard techniques
as in Proposition 2.3.

Provided that ε and h are sufficiently small, the solution of (5.1) is unique:

Lemma 5.3. Let ε > 0 be small enough, such that j′′h satisfies (4.7) for q ∈ Uhε (q̄), p ∈
L∞(Ω) and h sufficiently small. Then the auxiliary problem (5.1) has a unique solution.

Proof. Let q̄h, r̄h ∈ Uhε (q̄) be two global minima of jh on Uhε (q̄) with r̄h 6= q̄h and
jh(r̄h) = jh(q̄h). Utilizing the necessary optimality condition and the coercivity we
obtain for some t ∈ [0, 1]

jh(r̄h) = jh(q̄h) + j′h(q̄h)(r̄h − q̄h) +
1
2
j′′h(tr̄h + (1− t)q̄h)(r̄h − q̄h, r̄h − q̄h)

≥ jh(q̄h) +
γ

8
‖r̄h − q̄h‖2

for h sufficiently small. As a result we get

0 = jh(r̄h)− jh(q̄h) ≥ γ

8
‖r̄h − q̄h‖2 > 0

for h sufficiently small. This is a contradiction.

Under certain conditions the solution of (5.1) is also a discrete local solution of (3.1):
16



Lemma 5.4. Let ε > 0 be small enough, such that j′′h is coercive on Uhε (q̄) for h suffi-
ciently small. Moreover, let q̄εh be a solution of (5.1) with q̄εh → q̄ for h→ 0 with respect
to the L2(Ω)–topology. Then q̄εh is a local solution of (3.1) for h sufficiently small.

Proof. The idea of the proof is taken from [8]. To prove, that q̄εh is a local solution of
(3.1), we have to verify, that

jh(qh) ≥ jh(q̄εh) (5.4)

holds for all qh ∈ Qad,h with ‖qh − q̄εh‖ ≤ ε
2 . By the definition of q̄εh we know (5.4) only

for those qh ∈ Qad,h with ‖qh − q̄‖ ≤ ε. Let qh ∈ Qad,h satisfy ‖qh − q̄εh‖ ≤ ε
2 . Then we

have for h sufficiently small

‖qh − q̄‖ ≤ ‖qh − q̄εh‖+ ‖q̄εh − q̄‖ ≤
ε

2
+
ε

2
≤ ε.

This completes the proof.

5.1. Cellwise constant discretization
In this section we discretize the control variable by cellwise constants, i.e.,

Qh = Qh,0

and show linear convergence with respect to h of the error ‖q̄h− q̄‖ for a sequence (q̄h)h>0

of solutions of the discretized problem (3.1). In [9] and [23] this is proven for an elliptic
and a parabolic problem, respectively with a linear control-to-state operator.

Theorem 5.5. Let q̄ be a local solution of (2.1) and Assumption 2.20 be valid. Then we
can choose ε > 0 and h > 0 small enough, such that (5.1) has a unique solution denoted
by q̄εh and the following estimate holds

‖q̄ − q̄εh‖ ≤ C
α
√
γ
h‖∇qd‖+

C̄
√
γ
h

for h sufficiently small and C̄ = C(‖f‖, ‖ud‖, ‖qd‖, ‖∇qd‖, α).

Proof. Let ε > 0 be small enough, such that

j′′(q)(p, p) ≥ γ

2
‖p‖2 (5.5)

for all q ∈ Qad with ‖q − q̄‖ ≤ ε and such that for h sufficiently small

j′′h(qh)(p, p) ≥ γ

4
‖p‖2 (5.6)

for all qh ∈ Uhε (q̄) = {qh ∈ Qad,h : ‖qh − q̄‖ ≤ ε} and p ∈ L∞(Ω). This is possible,
see Lemma 2.23 and Lemma 4.7. With this ε we consider (5.1) and formulate another
auxiliary problem

min
qh∈Uh

ε (q̄)
j(qh), (5.7)
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where we only discretize the control variable. For h sufficiently small (5.1) and (5.7)
have unique solutions. This is a consequence of the Lemmas 5.2 and 5.3, which are also
valid, if we replace jh by j. We denote the solutions of (5.1) and (5.7) by q̄εh and q̂εh,
respectively.

To derive an error estimate, we split the error

‖q̄ − q̄εh‖ ≤ ‖q̄ − q̂εh‖+ ‖q̂εh − q̄εh‖. (5.8)

By (5.5) we have for a t ∈ [0, 1] with ξ = tq̄ + (1− t)q̂εh and h sufficiently small

γ

2
‖q̄ − q̂εh‖2 ≤ j′′(ξ)(q̄ − q̂εh, q̄ − q̂εh)

= j′(q̄)(q̄ − q̂εh)− j′(q̂εh)(q̄ − q̂εh)
= j′(q̄)(q̄ − q̂εh)− j′(q̂εh)(q̄ − πhq̄)− j′(q̂εh)(πhq̄ − q̂εh).

The necessary optimality conditions imply for h sufficiently small

j′(q̄)(q̄ − q̂εh) ≤ 0 and − j′(q̂εh)(πhq̄ − q̂εh) ≤ 0,

and hence, we get with the properties of πh and Young’s inequality
γ

2
‖q̄ − q̂εh‖2 ≤ −j′(q̂εh)(q̄ − πhq̄)

= −(α(q̂εh − qd)− S(q̂εh)Z(q̂εh), q̄ − πhq̄)
= −(α(πhqd − qd), q̄ − πhq̄)

+ (S(q̂εh)Z(q̂εh)− πh(S(q̂εh)Z(q̂εh)), q̄ − πhq̄)

≤ α2

2
‖qd − πhqd‖2 +

1
2
‖S(q̂εh)Z(q̂εh)− πh(S(q̂εh)Z(q̂εh))‖2

+ ‖q̄ − πhq̄‖2.

Therefore, we have

‖q̄ − q̂εh‖ ≤ C
α
√
γ
‖qd − πhqd‖+

C
√
γ
‖S(q̂εh)Z(q̂εh)− πh(S(q̂εh)Z(q̂εh))‖

+
C
√
γ
‖q̄ − πhq̄‖.

Applying (5.2) we obtain

‖q̄ − q̂εh‖ ≤ C
α
√
γ
h‖∇qd‖+

C
√
γ
h‖∇(S(q̂εh)Z(q̂εh))‖+

C
√
γ
h‖∇q̄‖ (5.9)

and further, we have with Remark 2.16

‖∇(S(q̂εh)Z(q̂εh))‖ ≤ ‖∇S(q̂εh)‖‖Z(q̂εh)‖∞ + ‖S(q̂εh)‖∞‖∇Z(q̂εh)‖
≤ C(1 + ε+ ‖q̄‖)‖f‖(‖f‖+ ‖ud‖).

(5.10)

Summarizing, we deduce from (5.9) and (5.10)

‖q̄ − q̂εh‖ ≤ C
α
√
γ
h‖∇qd‖+

C(1 + ε+ ‖q̄‖)
√
γ

h‖f‖(‖f‖+ ‖ud‖) +
C
√
γ
h‖∇q̄‖. (5.11)
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To estimate the second term in (5.8), we exploit the necessary optimality conditions
leading to the following relation for all rh ∈ Uhε (q̄)

j′h(q̄εh)(q̄εh − rh) ≤ 0 ≤ j′(q̂εh)(rh − q̂εh).

Hence, we obtain with (5.6) the following estimate for ξ = tq̄εh+ (1− t)q̂εh with a t ∈ [0, 1]
and h sufficiently small:

γ

4
‖q̄εh − q̂εh‖2 ≤ j′′h(ξ)(q̄εh − q̂εh, q̄εh − q̂εh)

= j′h(q̄εh)(q̄εh − q̂εh)− j′h(q̂εh)(q̄εh − q̂εh)
≤ j′(q̂εh)(q̄εh − q̂εh)− j′h(q̂εh)(q̄εh − q̂εh)

≤ C(1 + ε+ ‖q̄‖)4(‖f‖+ ‖ud‖)2h2‖q̄εh − q̂εh‖.

(5.12)

The last step follows from Lemma 4.6 and since (1 + ‖q̂εh‖) ≤ (1 + ε+ ‖q̄‖).
Using Remark 2.18 and inserting (5.11) and (5.12) in (5.8) yields the assertion.

This theorem implies the following result:

Corollary 5.6. Let q̄ be a local solution of (2.1) and Assumption 2.20 be valid. Then
for a h0 > 0 there exists a sequence (q̄h)0<h<h0 of discrete solutions of (3.1), such that
the following estimate holds

‖q̄h − q̄‖ ≤ C
α
√
γ
h‖∇qd‖+

C̄
√
γ
h

with C̄ = C(‖f‖, ‖ud‖, ‖qd‖, ‖∇qd‖, α).

Proof. From the Lemmas 5.3 and 5.4 we derive, that we can choose ε > 0 small enough,
such that for h > 0 sufficiently small the solution q̄εh of (5.1) is a local solution of (3.1).
Hence, the assertion follows from Theorem 5.5.

5.2. Cellwise linear discretization
This section is devoted to the error analysis for the discretization of the control

variable by cellwise (bi-/tri-)linear functions, i.e., we choose

Qh = Qh,1.

The analysis of this section and the following one is based on an assumption on the
structure of the active sets. Let q̄ ∈ Qad be a local solution. Then we group the cells K
of the mesh Th depending on the value of q̄K on K into the three sets Th = T 1

h ∪T 2
h ∪T 3

h

with T ih ∩ T
j
h = ∅ for i 6= j. The sets are

T 1
h = {K ∈ Th : q̄(x) = a or q̄(x) = b for all x ∈ K},
T 2
h = {K ∈ Th : a < q̄ < b for all x ∈ K},
T 3
h = Th \ (T 1

h ∪ T 2
h ).
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Assumption 5.7. We assume that there exists a positive constant C independent of h,
such that ∑

K∈T 3
h

|K| ≤ Ch.

Remark 5.8. A similar assumption is used in [24, 7, 23]. This assumption is valid if
the boundary of the level sets

{x ∈ Ω : q̄(x) = a} and {x ∈ Ω : q̄(x) = b}

consists of a finite number of rectifiable curves.

Let Ih be defined as in Proposition 5.1. Then we can state the following theorem.

Theorem 5.9. Let q̄ be a local solution of (2.1) and Assumption 2.20 be valid. Then
we can choose a h0 > 0, such that there exists a sequence (q̄h)0<h<h0 of discrete local
solutions of (3.1) and the following estimate holds

‖q̄ − q̄h‖ ≤ (1 +
C

γ
)‖Ihq̄ − q̄‖+

C
√
γ

√
j′(q̄)(Ihq̄ − q̄) +

C̄

γ
h2 (5.13)

with the constants

C = C(‖f‖, ‖ud‖, α) and C̄ = C(‖f‖, ‖ud‖, ‖qd‖, α).

Proof. Let ε > 0 be small enough, such that for h > 0 sufficiently small j′′h satisfies
(4.7) for all q ∈ Qad with ‖q − q̄‖ ≤ ε and p ∈ L∞(Ω). Then for h sufficiently small the
auxiliary problem (5.1) has a unique solution. We denote this solution by q̄h.

To derive the estimate (5.13) we split the error

‖q̄ − q̄h‖ ≤ ‖q̄ − Ihq̄‖+ ‖Ihq̄ − q̄h‖ (5.14)

and estimate the term ‖Ihq̄ − q̄h‖. Due to the necessary optimality condition and since
Ihq̄ ∈ Qad,h, we have

−j′h(q̄h)(Ihq̄ − q̄h) ≤ 0 ≤ −j′(q̄)(q̄ − q̄h).

Applying the coercivity of j′′h , we obtain for ξ = tq̄h + (1 − t)Ihq̄ for a t ∈ [0, 1] and h
sufficiently small

γ

4
‖Ihq̄ − q̄h‖2 ≤ j′′h(ξ)(Ihq̄ − q̄h, Ihq̄ − q̄h)

≤ j′h(Ihq̄)(Ihq̄ − q̄h)− j′h(q̄h)(Ihq̄ − q̄h)
≤ j′h(Ihq̄)(Ihq̄ − q̄h)− j′(q̄)(q̄ − q̄h)
= j′h(Ihq̄)(Ihq̄ − q̄h)− j′h(q̄)(Ihq̄ − q̄h)

+ j′h(q̄)(Ihq̄ − q̄h)− j′(q̄)(Ihq̄ − q̄h)
+ j′(q̄)(Ihq̄ − q̄).

(5.15)

From Lemma 4.6 we deduce for h sufficiently small

|(j′h(Ihq̄)− j′h(q̄))(Ihq̄ − q̄h)| ≤ C(‖f‖2 + ‖f‖‖ud‖+ α)‖Ihq̄ − q̄‖‖Ihq̄ − q̄h‖
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and
|(j′h(q̄)− j′(q̄))(Ihq̄ − q̄h)| ≤ C(1 + ‖q̄‖)4(‖f‖+ ‖ud‖)2h2‖Ihq̄ − q̄h‖.

Applying these inequalities to the right hand side of (5.15) leads to

‖Ihq̄ − q̄h‖ ≤
C

γ
(‖f‖2 + ‖f‖‖ud‖+ α)‖Ihq̄ − q̄‖

+
C

γ
(1 + ‖q̄‖)4(‖f‖+ ‖ud‖)2h2

+
C
√
γ

√
j′(q̄)(Ihq̄ − q̄)

for h sufficiently small. Inserting this estimate into (5.14) together with Remark 2.18
we have proved the estimate (5.13) and hence, convergence of a solution q̄h of (5.1) to
q̄. Therefore, we obtain by Lemma 5.4, that q̄h is also a local solution of (3.1), which
completes the proof.

Corollary 5.10. Let q̄ be a local solution of (2.1) and the Assumptions 2.20 and 5.7 be
valid. Then there exists a h0 > 0, such that there exists a sequence (q̄h)0<h<h0 of discrete
local solutions of (3.1) and the following estimate holds

‖q̄ − q̄h‖ ≤
C

γ
h

3
2

with the constant

C̄ = C(‖f‖, ‖ud‖, ‖qd‖, ‖∇2qd‖, ‖∇S(q̄)‖∞, ‖∇Z(q̄)‖∞, ‖∇qd‖∞, α).

Proof. As in [7] and [23] we prove, that

j′(q̄)(Ihq̄ − q̄h) ≤ Ch3‖∇q̄‖2∞,

‖Ihq̄ − q̄‖ ≤ Ch2‖∇2q̄‖L2(T 2
h ) + Ch

3
2 ‖∇q̄‖∞.

Together with Theorem 5.9 and Remark 2.19 we obtain the assertion.

Remark 5.11. If we assume, qd ∈ W 2,p(Ω) for some p > d, then in case of inactive
control constraints, i.e., a < q̄ < b, we can prove convergence of order O(h2) in the
control.

5.3. Post-processing strategy
In this section, we extend the post-processing techniques initially proposed in [24]

for a linear-quadratic optimal control problem to the optimal control problem under
consideration.

As described in Section 5.1, we discretize the control variable by piecewise constants.
But here, we will prove quadratic order of convergence by employing a post-processing
step.

In what follows we use the operator Rh defined for functions g ∈ C(Ω̄) cellwise by

Rhg|K = g(SK), K ∈ Th,

where SK denotes the barycenter of the cell K.
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Lemma 5.12. Let K ∈ Th be a given cell. Then we have for g ∈ H2(K)∣∣∣∣∫
K

(g(x)− (Rhg)(x))dx
∣∣∣∣ ≤ Ch2|K| 12 ‖∇2g‖L2(K), (5.16)

and for g ∈W 1,∞(K)

‖g −Rhg‖L∞(K) ≤ Ch‖∇g‖L∞(K). (5.17)

Proof. The proof is done by standard arguments using the Bramble-Hilbert Lemma,
see [24] for details.

The proofs of the next two lemmas are similar to lemmas in [23].

Lemma 5.13. Let q̄ be a local solution of (2.1) and q̄h be an arbitrary local solution of
(3.1). Then the following estimate holds

0 ≤ (αRhq̄ +Rh(z(q̄)u(q̄)) +Rhqd, q̄h −Rhq̄).

Lemma 5.14. For every function v ∈ H2(Ω) and every cellwise constant function ph ∈
Qh the estimate

(ph, v −Rhv) ≤ Ch2‖ph‖‖∇2v‖
holds.

In the next step, we estimate the error ‖Rhq̄− q̄h‖. To this end, we need the following
two lemmas.

Lemma 5.15. Let q̄ ∈ Qad be a local solution of (2.1) and Assumption 5.7 be valid.
Furthermore, let vh, wh ∈ Vh. Then the following estimate holds for an arbitrary r ≥ 3:

(vhwh, q̄ −Rhq̄) ≤ Ch2(‖wh‖1,r + ‖wh‖∞)‖∇vh‖+ Ch2‖wh‖∞‖vh‖∞

with the constant

C = C(‖f‖, ‖ud‖, ‖qd‖, ‖∇qd‖, ‖∇2qd‖, ‖∇S(q̄)‖∞, ‖∇Z(q̄)‖∞, ‖∇qd‖∞, α).

The proof is given in the Appendix.
Before we formulate the next lemma we recall an estimate from [6, Theorem (8.1.11)].

For 2 < s <∞ and a constant C̃ ≥ 0 there holds

‖Sh(Rhq̄)‖1,s ≤ C̃‖S(Rhq̄)‖1,s. (5.18)

Lemma 5.16. Let q̄ ∈ Qad be a local solution of (2.1) and Assumption 5.7 be valid.
Then the estimates

‖Sh(Rhq̄)− Sh(q̄)‖ ≤ Ch2,

‖Zh(Rhq̄)− Zh(q̄)‖ ≤ Ch2

hold with the constant

C = C(C̃, ‖f‖, ‖ud‖, ‖qd‖, ‖∇qd‖, ‖∇2qd‖, ‖∇S(q̄)‖∞, ‖∇Z(q̄)‖∞, ‖∇qd‖∞, α)

and h sufficiently small.
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Proof. At first let e = Sh(Rhq̄)− Sh(q̄). Let y be the solution of

(∇y,∇ϕ) + (q̄y, ϕ) = (e, ϕ) ∀ϕ ∈ H1
0 (Ω).

Then we have

‖e‖2 = (∇e,∇y) + (q̄y, e)
= (∇e,∇(y − Ihy)) + (q̄e, y − Ihy) + (∇e,∇Ihy) + (q̄e, Ihy).

(5.19)

Since

(∇Sh(Rhq̄),∇ϕh) + (Rhq̄ · Sh(Rhq̄), ϕh) = (f, ϕh),
(∇Sh(q̄),∇ϕh) + (q̄Sh(q̄), ϕh) = (f, ϕh),

we have

0 = (∇e,∇ϕh) + (q̄(Sh(Rhq̄)− Sh(q̄)), ϕh) + ((Rh(q̄)− q̄)Sh(Rhq̄), ϕh). (5.20)

From (5.18) we obtain for 2 < s ≤ 6 using the embedding theorem and Remark 2.16

‖Sh(Rhq̄)‖1,s ≤ C̃‖S(Rhq̄)‖1,s
≤ CC̃(1 + ‖Rhq̄‖)‖f‖
≤ CC̃(1 + ‖q̄‖)‖f‖
≤ C(C̃, ‖f‖, ‖ud‖, ‖qd‖, α)

for h sufficiently small. Hence, setting vh = Ihy and wh = Sh(Rh(q̄)) in Lemma 5.15 we
obtain from Lemma 5.15 applying Lemma 4.3, Remark 2.18, and (5.20) for 3 ≤ r ≤ 6

(∇e,∇Ihy) + (q̄e, Ihy) = −((Rh(q̄)− q̄)Sh(Rhq̄), Ihy)

≤ Ch2(‖Sh(Rhq̄)‖1,r + ‖Sh(Rhq̄)‖∞)‖∇Ihy‖
+ Ch2‖Sh(Rhq̄)‖∞‖Ihy‖∞
≤ Ch2‖∇Ihy‖+ Ch2‖Ihy‖∞

(5.21)

with

C = C(C̃, ‖f‖, ‖ud‖, ‖qd‖, ‖∇qd‖, ‖∇2qd‖, ‖∇S(q̄)‖∞, ‖∇Z(q̄)‖∞, ‖∇qd‖∞, α)

and h sufficiently small. In addition, we have

‖Ihy‖∞ ≤ ‖Ihy − y‖∞ + ‖y‖∞ ≤ Ch‖∇2y‖+ ‖y‖∞ ≤ (1 + ‖q̄‖)‖e‖. (5.22)

Inserting (5.21) and (5.22) in (5.19) and using Lipschitz continuity of Sh and Remark
2.16 we get

‖e‖2 ≤ ‖∇(Sh(Rhq̄)− Sh(q̄))‖‖∇(y − Ihy)‖
+ C‖q̄‖‖∇(Sh(Rhq̄)− Sh(q̄))‖‖∇(y − Ihy)‖+ Ch2‖e‖
≤ C‖Rhq̄ − q̄‖‖∇(y − Ihy)‖+ C‖q̄‖‖Rhq̄ − q̄‖‖∇(y − Ihy)‖+ Ch2‖e‖
≤ C(1 + ‖q̄‖)h2‖∇q̄‖‖e‖+ C(1 + ‖q̄‖)‖q̄‖h2‖∇q̄‖‖e‖+ Ch2‖e‖
≤ Ch2‖e‖.
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For e = Zh(Rhq̄)− Zh(q̄) we have instead of (5.20)

0 = (∇e,∇ϕh) + (q̄(Zh(Rhq̄)− Zh(q̄)), ϕh) + ((Rh(q̄)− q̄)Zh(Rhq̄), ϕh)
+ (Sh(q̄)− Sh(Rhq̄), ϕh)

and we can argue in the same way as above using

(Sh(q̄)− Sh(Rhq̄), Ihy) ≤ C‖Sh(q̄)− Sh(Rhq̄)‖‖e‖
≤ Ch2‖e‖.

Lemma 5.17. Let q̄ be a local solution of (2.1) and the Assumptions 2.20 and 5.7 be
valid. Then there exists a h0 > 0, such that there exists a sequence (q̄h)0<h<h0 of discrete
local solutions of (3.1) with ‖q̄ − q̄h‖ = O(h) and the estimate

‖Rhq̄ − q̄h‖ ≤ Ch2 (5.23)

holds with the constant

C = C(C̃, ‖f‖, ‖ud‖, ‖qd‖, ‖∇qd‖, ‖∇2qd‖, ‖∇S(q̄)‖∞, ‖∇Z(q̄)‖∞, ‖∇qd‖∞, α).

The proof is given in the Appendix.
Let q̄ ∈ Qad be a local solution of (2.1) and q̄h the corresponding discrete local

solution of (3.1) with ‖q̄ − q̄h‖ = O(h), see Corollary 5.6. Then a better approximation
is constructed by a post-processing step making use of the projection operator:

q̃h = P[a,b]

(
1
α
Sh(q̄h)Zh(q̄h) + Ihqd

)
. (5.24)

Here, Ih denotes the operator defined in Section 5.1. Thus, we can formulate the main
result of this section:

Theorem 5.18. Let q̄ be a local solution of (2.1) and the Assumptions 2.20 and 5.7 be
valid. Then we can choose a h0 > 0, such that there exists a sequence (q̄h)0<h<h0 of
discrete local solutions of (3.1) and the following estimate holds

‖q̄ − q̃h‖ ≤ Ch2

with the constant

C = C(C̃, ‖f‖, ‖ud‖, ‖qd‖, ‖∇qd‖, ‖∇2qd‖, ‖∇S(q̄)‖∞, ‖∇Z(q̄)‖∞, ‖∇qd‖∞, α)

and where q̃h is defined by (5.24).

Proof. By the optimality condition (2.7) and the definition of q̃h we have

‖q̄ − q̃h‖ =
∥∥∥∥P[a,b]

(
1
α
Z(q̄)S(q̄) + qd

)
− P[a,b]

(
1
α
Zh(q̄h)Sh(q̄h) + Ihqd

)∥∥∥∥ .
Further, using the Lipschitz continuity of P[a,b] on L2(Ω) and Remark 2.16, we have

‖q̄ − q̃h‖ ≤ C(‖Sh(q̄h)− S(q̄)‖+ ‖Zh(q̄h)− Z(q̄)‖+ ‖qd − Ihqd‖)
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with C = C(‖f‖, ‖ud‖, ‖qd‖, α). Hence, with the Lemmas 4.3, 4.5, 5.16 and 5.17 as well
as (5.3) we get

‖q̄ − q̃h‖ ≤ C(‖Sh(q̄h)− Sh(Rhq̄)‖+ ‖Sh(Rhq̄)− Sh(q̄)‖+ ‖Sh(q̄)− S(q̄)‖
+ ‖Zh(q̄h)− Zh(Rhq̄)‖+ ‖Zh(Rhq̄)− Zh(q̄)‖+ ‖Zh(q̄)− Z(q̄)‖
+ ‖qd − Ihqd‖)
≤ C(‖q̄h −Rhq̄‖+ h2)

≤ Ch2

with

C = C(C̃, ‖f‖, ‖ud‖, ‖qd‖, ‖∇qd‖, ‖∇2qd‖, ‖∇S(q̄)‖∞, ‖∇Z(q̄)‖∞, ‖∇qd‖∞, α).

Remark 5.19. Alternatively to the post-processing technique discussed above, the vari-
ational approach originally introduced by Hinze, see [14], is transferable to the optimal
control problem under consideration to obtain quadratic order of convergence in the con-
trol with respect to the L2-norm. The basic idea is not to discretize the control variable.
The solution q̂h is then not a mesh-function and there holds

q̂h = P[a,b]

(
1
α
Sh(q̂h)Zh(q̂h) + Ihqd

)
. (5.25)

It is a short proof to verify, that ‖q̄ − q̂h‖ = O(h2). However, this ansatz requires a
non-standard implementation which goes beyond the implementation for linear–quadratic
problems. This is due to the fact that the term 1

αSh(q̂h)Zh(q̂h) in (5.25) is cellwise bi-
quadratic and that as a consequence of the projection the boundaries of the active sets
are in general curved lines.

6. Numerical examples

In this section we are going to confirm the a priori error estimates for the error in the
control numerically. Thereby the optimal control problem is solved by the optimization
library RoDoBo [29] and the finite element toolkit Gascoigne [12] using a primal-dual
active set strategy (cf. [4, 15, 19]) in combination with a conjugate gradient method
applied to the reduced problem (3.3). In the first example we consider an optimal control
problem with an unknown exact solution, in the second one the analytical solution is
known. In both cases let Ω = (0, 1)2 and x = (x1, x2) ∈ Ω.

Example 6.1. We consider the following concretization of the optimal control problem
(P):

ud(x) = 5 · 10−4 · e−x1 , qd(x) = 0, f(x) = x
− 1

4
1 , α = 10−4, a = 1, b = 2.

To calculate the error in the control for Example 6.1 we compare the solutions with the
solution which we calculated on an eight times uniformly refined mesh. The Figures 1
and 2 depict the development of the L2-error in the control under uniform refinement of
the mesh. In Figure 1, the expected order O(h) for cellwise constant control is observed
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and in Figure 2, the order O(h
3
2 ) for bilinear control discretization is shown. From the

numerical solution we can derive, that in both cases the control constraints are active.
Additionally, the Figures 1 and 2 show the L2-error in the state and adjoint state.
Thereby, we observe convergence of order O(h2) regardless of the type of discretization
used for the control. Since the post-processing strategy presented in Section 5.3 relies
essentially on the convergence properties of the state and adjoint state variable, Figure 1
confirms the order of convergence for the post-processing strategy proved in Section 5.3.

10−7

10−6

10−5

10−4

10−3

10−2

10−1

101 102 103 104

number of nodes

control
state

adjoint state
O(h2)
O(h)

Figure 1: Example 6.1: Discretization error of the control, state and adjoint state when discretizing the
control by cellwise constants

In the next example we consider a concretization of (P) whose analytical solution is
known.

Example 6.2. Let

ud(x) = (1− x1)(1− x2)− 0.1 · π2 · sin(πx1) sin(πx2)
− 0.05 · sin(πx1) sin(πx2) · P[a,b] (5 · sin(πx1) sin(πx2)(1− x1)(1− x2)) ,

f(x) = 2(x2(1− x2) + x1(1− x1))
+ (1− x1)(1− x2) · P[a,b] (5 · sin(πx1) sin(πx2)(1− x1)(1− x2)) ,

qd(x) = 0, α = 0.01, a = 0.1, b = 0.3.

Then we have for (P) the following optimal state, adjoint state and control:

ū(x) = (1− x1)(1− x2),
z̄(x) = 0.05 · sin(πx1) sin(πx2),

q̄ = P[a,b](
1
α
z̄ū).
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Figure 2: Example 6.1: Discretization error of the control, state and adjoint state when discretizing the
control by continuous cellwise bilinear finite elements

In Figure 3 the L2-error in the control, state and adjoint state under uniform re-
finement of the mesh for the data given in Example 6.2 is shown, when discretizing the
control with continuous cellwise bilinear finite elements. Here, we calculate the error by
comparison with the analytical solution. Again, we derive from the numerical solution,
that the control constraints are active and we see the order O(h

3
2 ) for the control and

O(h2) for the state and adjoint state.

7. Appendix

Proof of Lemma 5.15. By means of the L2-projection πh : Q→ Qh, we split

(vhwh, q̄ −Rhq̄) = (vhwh, q̄ − πhq̄) + (vhwh, πhq̄ −Rhq̄). (7.1)

For the first term we obtain

(vhwh, q̄ − πhq̄) = (vhwh − πh(vhwh), q̄ − πhq̄)
≤ Ch2‖∇(vhwh)‖‖∇q̄‖
≤ Ch2(‖∇vhwh‖+ ‖vh∇wh‖)‖∇q̄‖

and hence, for all r ≥ 3

(vhwh, q̄ − πhq̄) ≤
C

α
h2‖∇vh‖‖wh‖∞‖∇(S(q̄)Z(q̄)) +∇qd‖

+
C

α
h2‖∇vh‖‖wh‖1,r‖∇(S(q̄)Z(q̄)) +∇qd‖.
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Figure 3: Example 6.2: Discretization error of the control, state and adjoint state when discretizing the
control by continuous cellwise bilinear finite elements

Utilizing the fact that πhq̄ as well as Rhq̄ are constant on each cell K, we obtain for the
second term in (7.1)

(vhwh, πhq̄ −Rhq̄) =
∑
K

∫
K

vhwh(πq̄ −Rhq̄)dx

=
∑
K

1
|K|

∫
K

vhwhdx

∫
K

(πq̄ −Rhq̄)dx

≤ ‖wh‖∞‖vh‖∞
∑
K

∣∣∣∣∫
K

(q̄ −Rhq̄)dx
∣∣∣∣ .

As in Section 5.2, we split the last sum using the separation Th = T 1
h ∪ T 2

h ∪ T 3
h . For

the sum T 1
h ∪ T 2

h we obtain by means of (5.16) and the fact that q̄ equals either a, b or
1
αS(q̄)Z(q̄) + qd:∑

K∈T 1
h∪T

2
h

∣∣∣∣∫
K

(q̄ −Rhq̄)dx
∣∣∣∣ ≤ Ch2

∑
K∈T 1

h∪T
2

h

|K| 12 ‖∇2q̄‖L2(K)

≤ Ch2

 ∑
K∈T 1

h∪T
2

h

|K|

 1
2

‖∇2q̄‖L2(T 1
h∪T

2
h )

≤ Ch2‖∇2(S(q̄)Z(q̄) + qd)‖L2(Ω).

28



For the part of the sum over T 3
h , estimate (5.17) and Assumption 5.7 leads to∑

K∈T 3
h

∣∣∣∣∫
K

(q̄ −Rhq̄)dx
∣∣∣∣ ≤ ‖q̄ −Rhq̄‖L∞(T 3

h )

∑
K∈T 3

h

|K|

≤ Ch‖∇q̄‖L∞(T 3
h )

∑
K∈T 3

h

|K|

≤ C

α
h2‖∇(S(q̄)Z(q̄) + qd)‖L∞(Ω).

We obtain

(vhwh, πhq̄ −Rhq̄) ≤ Ch2‖wh‖∞‖vh‖∞
with

C = C(‖f‖, ‖ud‖, ‖qd‖, ‖∇qd‖, ‖∇2qd‖, ‖∇S(q̄)‖∞, ‖∇Z(q̄)‖∞, ‖∇qd‖∞, α).

This completes the proof.

Proof of Lemma 5.17. The existence of a h0 > 0 and a sequence (q̄h)0<h<h0 of dis-
crete local solutions with ‖q̄ − q̄h‖ = O(h) follows immediately from Section 5.1.

Now, we prove the error estimate (5.23). For every ε > 0 there exists a h0 > 0, such
that

‖Rhq̄ − q̄‖ ≤ ε and ‖q̄h − q̄‖ ≤ ε
for h ≤ h0. Hence, we can apply (4.7) and get with ξ = tRhq̄ + (1− t)q̄h for a t ∈ [0, 1]

γ

4
‖Rhq̄ − q̄h‖2 ≤ j′′h(ξ)(Rhq̄ − q̄h, Rhq̄ − q̄h)

= j′h(Rhq̄)(Rhq̄ − q̄h)− j′h(q̄h)(Rhq̄ − q̄h)

for h sufficiently small. From the optimality condition and Lemma 5.13 we have

−j′h(q̄h)(Rhq̄ − q̄h) ≤ 0 ≤ −(αRhq̄ +Rh(Z(q̄)S(q̄)) +Rhqd, Rhq̄ − q̄h)

and hence,
γ

4
‖Rhq̄ − q̄h‖2 ≤ j′h(Rhq̄)(Rhq̄ − q̄h)− (αRhq̄ +Rh(Z(q̄)S(q̄)), Rhq̄ − q̄h)

− (Rhqd, Rhq̄ − q̄h)
≤ (Zh(Rhq̄)Sh(Rhq̄)− Z(q̄)S(q̄), Rhq̄ − q̄h)

+ (Z(q̄)S(q̄)−Rh(Z(q̄)S(q̄)), Rhq̄ − q̄h)
+ (qd −Rhqd, Rhq̄ − q̄h)

=: A1 +A2 +A3.

Now, we further estimate the terms A1, A2 and A3:

A1 =
∫
Ω

(Zh(Rhq̄)− Z(q̄))Sh(Rhq̄)(Rhq̄ − q̄h)dx

+
∫
Ω

Z(q̄)(Sh(Rhq̄)− S(q̄))(Rhq̄ − q̄h)dx

=: B1 +B2
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We start with the consideration of B2:

B2 ≤ ‖Z(q̄)‖∞‖Sh(Rhq̄)− S(q̄)‖‖Rhq̄ − q̄h‖
≤ ‖Z(q̄)‖∞(‖Sh(Rhq̄)− Sh(q̄)‖+ ‖Sh(q̄)− S(q̄)‖)‖Rhq̄ − q̄h‖.

Applying the Lemmas 5.16 and 4.3 we deduce

B2 ≤ Ch2‖Rhq̄ − q̄h‖

with

C = C(C̃, ‖f‖, ‖ud‖, ‖qd‖, ‖∇qd‖, ‖∇2qd‖, ‖∇S(q̄)‖∞, ‖∇Z(q̄)‖∞, ‖∇qd‖∞, α).

In the same way, we get for B1:

B1 ≤ ‖Sh(Rhq̄)‖∞(‖Zh(Rhq̄)− Zh(q̄)‖+ ‖Zh(q̄)− Z(q̄))‖)‖Rhq̄ − q̄h‖
≤ Ch2‖Rhq̄ − q̄h‖.

To estimate A2 we apply Lemma 5.14 with ph = Rhq̄ − q̄h and v = Z(q̄)S(q̄) we have:

(Z(q̄)S(q̄)−Rh(Z(q̄)S(q̄)), Rhq̄ − q̄h) ≤ Ch2‖Rhq̄ − q̄h‖‖∇2(S(q̄)Z(q̄))‖.

Finally, we have by Lemma 5.14

A3 ≤ Ch2‖∇2qd‖‖Rhq̄ − q̄h‖.

By combining these estimates, we obtain the asserted estimate.
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