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Abstract. An infinite horizon stochastic optimal control problem with running maximum cost is
considered. The value function is characterized as the viscosity solution of a second-order Hamilton--
Jacobi--Bellman equation with mixed boundary condition. A general numerical scheme is proposed
and convergence is established under the assumptions of consistency, monotonicity, and stability of
the scheme. These properties are verified for a specific semi-Lagrangian scheme.
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1. Introduction. In this paper we consider infinite horizon stochastic optimal
control problems with cost in a maximum form of the following type:

(1.1)

\left\{         
inf
u\in \scrU 

\BbbE 
\biggl[ 

max
s\in [0,\infty )

e - \lambda sg(Xu
x (s))

\biggr] 
subject to

dXu
x (s) = b(Xu

x (s), u(s))ds+ \sigma (Xu
x (s), u(s))dB(s), s \in [0,\infty ),

Xu
x (0) = x \in \BbbR d

with p-dimensional Brownian motion B(\cdot ). The control u belongs to a set \scrU of pro-
gressively measurable processes with values in a given compact set U \subset \BbbR m. The
functions g : \BbbR d \rightarrow \BbbR , b : \BbbR d \times U \rightarrow \BbbR d, and \sigma : \BbbR d \times U \rightarrow \BbbR d\times p and the discount
factor \lambda > 0 are supposed to be known. Control problems of this type can be used
for the characterization of viable and invariant sets and arise in the study of some
path-dependent options in finance (lookback, Russian options). The study of this
problem is also motivated by some engineering applications; see, for instance, [29, 3].

In the deteministic case, problems with supremum costs and finite time horizon
have been extensively studied in the literature; we refer, for instance, to [8, 9, 2, 10],
where the value function is characterized as a unique solution of a Hamilton--Jacobi--
Bellman (HJB) equation with an obstacle. The value function is also analyzed within
the viability framework in [34, 35], and linearization techniques for such problems are
presented in [23].

The case of deterministic control problems with supremum costs and infinite
horizon has been also considered in [8, 20, 21]. Note that in this case it is shown that
the value function satisfies a stationary HJB equation with an obstacle. However,
unlike the finite horizon case, the HJB equation may have several viscosity solutions.
The only characterization of the value function is obtained by the optimality principles
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derived from the dynamic programming principle (DPP). In [1, 21], a control problem
without discount factor is considered and the value function of such a problem is shown
to be the limit of value functions associated to some control problems with maximum
running cost in finite horizon.

In the stochastic setting with finite time horizon, the characterization of the value
function is studied in [4, 5, 7, 8, 11]. We refer also to [26], where some special cases
of control problems with running costs are solved by using the DPP. We point out
that the stochastic framework presents specific difficulties coming from the noncom-
mutativity between the expectation and the maximum operator. In [4, 5, 7, 8] the
characterization of the value function is obtained by considering an Lp approximation
technique where the maximum cost is approximated by a sequence of Lp costs using
the fact that for any a, b \geq 0

max(a, b) \simeq (ap + bp)
1
p (for p \rightarrow \infty ).

Note that this technique can be used only when the cost function g is positive. In
[11], the DPP and the HJB equation are derived directly for the maximum running
cost problem without using the Lp approximation. In addition, a numerical scheme
based on a semi-Lagrangian (SL) approach is analyzed for the computation of the
value function.

In the present work, we consider the case of the stochastic control problem with
supremum running cost in infinite horizon. The cost function involves also a discount
factor \lambda that is positive. We are interested in the characterization of the value function
and its numerical approximation. By using the same viscosity arguments as in [11],
we show that the value function satisfies an HJB equation with a boundary condition
involving an oblique derivative. Unlike the finite time horizon case (see [4, 7, 11]),
this HJB equation fails to be a good characterization of the value function as it may
admit several trivial solutions.

To guarantee the uniqueness, we complete the HJB system by a Dirichlet bound-
ary condition. While the oblique derivative boundary condition is understood in the
viscosity sense [28], the Dirichlet condition is considered pointwise. A similar idea has
also been used in [25]; however, in that paper, the uniqueness result is proved by using
some arguments of nonsmooth analysis that are valid only under some strong stability
assumptions on the differential process. Here, we use only PDE arguments and prove
the uniqueness result without assuming additional assumptions on the state.

The second part of the paper is devoted to the numerical approximation. Thereby
we follow some ideas developed in [11] for the corresponding finite horizon problem.
The extension is not straightforward since we are now dealing with a stationary equa-
tion with mixed boundary conditions.

First, by using the framework of Barles and Souganidis [6], we obtain a con-
vergence result for a general class of numerical schemes satisfying some adequate
monotonicity, stability, and consistency properties. Then, we introduce an SL scheme
and prove its convergence. Recall that SL schemes have been introduced in [16] for
first-order Hamilton--Jacobi equations and then extended to the second-order case
in [15, 18, 19, 32, 33]. For time-dependent equations with an oblique boundary con-
dition (that appears in the case of finite horizon control problems), the SL method
has been investigated in [11].

For the stationary equations as considered in the present work, the SL schemes
are formulated as fixed-point problems. Let us point out that the presence of mixed
boundary conditions brings up some new difficulties in the analysis of this fixed-point
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problem. To deal with these difficulties, the numerical scheme we propose couples
the classical SL scheme with additional projection steps on the boundary taking into
account the overstepping of the domain which is typical in such a wide stencil scheme.
We prove that our scheme is stable, consistent, and monotone. We analyze also the
fixed-point operator in an adequate space where the fixed-point algorithm converges.

The paper is organized as follows. Section 2 introduces the problem and the
main assumptions. Sections 3 and 4 are devoted to the characterization of the value
function by the appropriate HJB equation: the DPP is established, the HJB equation
is derived, and uniqueness is proven by a strong comparison principle. In section
5 the numerical approximation is discussed and a general convergence result is pro-
vided. The SL scheme is presented in section 5.2 and its convergence properties are
investigated. A numerical test in two dimensions is presented in section 6.

2. Formulation of the problem. Let (\Omega ,\scrF ,\BbbP ) be a probability space,
\{ \scrF t, t \geq 0 \} a filtration on \scrF , and B(\cdot ) a \{ \scrF t\} t\geq 0-Brownian motion in \BbbR p, p \geq 1.
Let \scrU be a set of progressively measurable processes with values in a compact set
U \subset \BbbR m (with m \geq 1). For every control input u \in \scrU , and every x \in \BbbR d, we consider
the stochastic differential equation:

(2.1)

\Biggl\{ 
dXu

x (s) = b(Xu
x (s), u(s))ds+ \sigma (Xu

x (s), u(s))dB(s), s \in [0,\infty ),

Xu
x (0) = x.

Throughout the paper we make the following assumptions on the coefficients in (2.1):
(H1) b : \BbbR d \times U \rightarrow \BbbR d and \sigma : \BbbR d \times U \rightarrow \BbbR d\times p are continuous functions. There

exists C0 \geq 0 such that for any x, y \in \BbbR d and u \in U , we have

| b(x, u) - b(y, u)| + | \sigma (x, u) - \sigma (y, u)| \leq C0| x - y| .

Proposition 2.1. Let assumption (H1) hold. Then, for any x \in \BbbR d and u \in \scrU 
there exists a unique strong solution Xu

x (\cdot ) of (2.1). Moreover, there exists C \geq 0
such that

\BbbE 
\biggl[ 
max

\theta \in [0,T ]
| Xu

x (\theta ) - Xu
x\prime (\theta )| 

\biggr] 
\leq CeCT | x - x\prime | (2.2)

for any u \in \scrU , T > 0 and x, x\prime \in \BbbR d.

The proof of the above result can be found in [37, Theorem 6.3, p. 42] and [36,
p. 14]. Now, consider a cost function g satisfying the following condition:

(H2) g : \BbbR d \rightarrow \BbbR is Lipschitz continuous and bounded, i.e., there exist Mg, Lg \geq 0
such that

| g(x) - g(y)| \leq Lg| x - y| , | g(x)| \leq Mg, \forall x, y \in \BbbR d.

For given discount factor \lambda > 0 and initial position x \in \BbbR d the infinite horizon optimal
control problem reads as

inf
u\in \scrU 

J(x, u) := \BbbE 
\biggl[ 

max
s\in [0,\infty )

e - \lambda sg(Xu
x (s))

\biggr] 
.(2.3)

We will denote by v : \BbbR d \rightarrow \BbbR the associated value function, i.e.,

v(x) := inf
u\in \scrU 

J(x, u).(2.4)
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3. Dynamic programming principle. In the next sections, we aim to find a
characterization of the value function v as a solution of a PDE. The presence of the
maximum operator inside the expectation makes the cost J in (2.3) non-Markovian
and it is well-known that this prevents establishing a DPP, which is the first funda-
mental result toward the HJB characterization. A classical strategy to overcome this
difficulty consists in adding an auxiliary variable y that, roughly speaking, gets rid of
the non-Markovian component of the cost. Let us define the auxiliary value function
\vargamma : \BbbR d \times \BbbR \rightarrow \BbbR 

\vargamma (x, y) := inf
u\in \scrU 

\BbbE 
\biggl[ 

max
s\in [0,\infty )

e - \lambda sg(Xu
x (s)) \vee y

\biggr] 
,

which satisfies, for any x \in \BbbR d,

\vargamma (x, g(x)) = v(x),

where v is defined as in (2.4). Consequently, if the value function \vargamma of the auxil-
iary problem is known, one can immediately recover the original value function v.
Therefore, we consider only \vargamma in the rest of the paper.

We start by proving a continuity result for the auxiliary value function.

Proposition 3.1. Let assumptions (H1)--(H2) be satisfied. Then the value func-
tion \vargamma is uniformly continuous in \BbbR d \times \BbbR . Moreover,

\vargamma (x,Mg) = Mg and | \vargamma (x, y)| \leq Mg

for any (x, y) \in \BbbR d \times \BbbR with | y| \leq Mg.

Proof. The last statement follows directly by the definition of \vargamma and the bound
on g given by assumption (H2).

By the very definition of \vargamma we have that for any (x, y), (\xi , \eta ) \in \BbbR d \times \BbbR 

| \vargamma (x, y) - \vargamma (\xi , \eta )| 

\leq sup
u\in \scrU 

\BbbE 
\biggl[ \bigm| \bigm| \bigm| max

s\in [0,\infty )
e - \lambda sg(Xu

x (s)) \vee y  - max
s\in [0,\infty )

e - \lambda sg(Xu
\xi (s)) \vee \eta 

\bigm| \bigm| \bigm| \biggr] 
\leq sup

u\in \scrU 
\BbbE 
\biggl[ 

max
s\in [0,\infty )

\bigm| \bigm| \bigm| e - \lambda sg(Xu
x (s)) - e - \lambda sg(Xu

\xi (s))
\bigm| \bigm| \bigm| \vee \bigm| \bigm| \bigm| y  - \eta 

\bigm| \bigm| \bigm| \biggr] 
\leq sup

u\in \scrU 
\BbbE 
\biggl[ 

max
s\in [0,\infty )

\bigm| \bigm| \bigm| e - \lambda sg(Xu
x (s)) - e - \lambda sg(Xu

\xi (s))
\bigm| \bigm| \bigm| \biggr] +

\bigm| \bigm| \bigm| y  - \eta 
\bigm| \bigm| \bigm| .

For any T > 0 we have that (recalling that g is bounded)

\BbbE 
\biggl[ 

max
s\in [0,\infty )

e - \lambda s
\bigm| \bigm| \bigm| g(Xu

x (s)) - g(Xu
\xi (s))

\bigm| \bigm| \bigm| \biggr] 
\leq \BbbE 

\biggl[ 
max

s\in [0,T ]
e - \lambda s

\bigm| \bigm| \bigm| g(Xu
x (s)) - g(Xu

\xi (s))
\bigm| \bigm| \bigm| + max

s\in [T,\infty )
e - \lambda s

\bigm| \bigm| \bigm| g(Xu
x (s)) - g(Xu

\xi (s))
\bigm| \bigm| \bigm| \biggr] 

\leq \BbbE 
\biggl[ 

max
s\in [0,T ]

e - \lambda s
\bigm| \bigm| \bigm| g(Xu

x (s)) - g(Xu
\xi (s))

\bigm| \bigm| \bigm| \biggr] + \BbbE 
\biggl[ 

max
s\in [T,\infty )

2Mge
 - \lambda s

\biggr] 
= \BbbE 

\biggl[ 
max

s\in [0,T ]
e - \lambda s

\bigm| \bigm| \bigm| g(Xu
x (s)) - g(Xu

\xi (s))
\bigm| \bigm| \bigm| \biggr] + 2Mge

 - \lambda T .
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For the first term we have the classical estimates (see Theorem 2.1)

\BbbE 
\Bigl[ 

max
s\in [0,T ]

e - \lambda s
\bigm| \bigm| \bigm| g(Xu

x (s)) - g(Xu
\xi (s))

\bigm| \bigm| \bigm| \Bigr] \leq LgCeCT | x - \xi | .

So putting everything together we get that for every T

| \vargamma (x, y) - \vargamma (\xi , \eta )| \leq LgCeCT | x - \xi | + 2Mge
 - \lambda T + | y  - \eta | .

Now, for any \varepsilon > 0 we can fix T \equiv T (\varepsilon ) such that 2Mge
 - \lambda T < \varepsilon /3. It follows that we

can choose a \delta = \delta (\varepsilon , T (\varepsilon )) such that if | (x, y) - (\xi , \eta )| \leq \delta , then

| \vargamma (x, y) - \vargamma (\xi , \eta )| < \varepsilon .

Remark 3.2. In many cases, under assumptions (H1)--(H2), the value function
is expected to be H\"older continuous. This holds true in the case of finite horizon
problems for both integral and maximum running costs (see [37, Proposition 3.1]
and [11, Proposition 2.2], respectively). In infinite time horizon, such a property
can be recovered only for a discount factor sufficiently big ensuring a dissipative
property of the process e - \lambda tXu

x (t) (see, for instance, [31, Theorem 3.4] for the case
of integral running cost). However, the proof of Proposition 3.1 shows that \vargamma is
Lipschitz continuous with respect to the auxiliary variable y. This will turn out to be
a fundamental property to be preserved when defining a numerical scheme in order
to get convergence (see assumption (H3.a) in section 5).

Thanks to the presence of the auxiliary variable y we are able to state the DPP
for \vargamma . Let us define for t \geq 0

Y u
x,y(t) := max

s\in [0,t]
e - \lambda sg(Xu

x (s)) \vee y.

Following the arguments in [14] and thanks to the uniform continuity of \vargamma one
has the following theorem.

Theorem 3.3 (DPP). Let assumptions (H1)--(H2) be satisfied. For (x, y) \in 
\BbbR d \times \BbbR and any finite stopping time \theta \geq 0 there holds

\vargamma (x, y) = inf
u\in \scrU 

\BbbE 
\Bigl[ 
e - \lambda \theta \vargamma (Xu

x (\theta ), e
\lambda \theta Y u

x,y(\theta ))
\Bigr] 
.

Proof. The proof of the DPP is based on the fact that for every u \in \scrU , we have

max
s\in [0,\infty )

e - \lambda sg(Xu
x (s)) \vee y = max

s\in [\theta ,\infty )
e - \lambda sg(Xu

x (s))
\bigvee 

max
s\in [0,\theta ]

e - \lambda sg(Xu
x (s)) \vee y\underbrace{}  \underbrace{}  

=:Yx,y(\theta )

= e - \lambda \theta max
s\in [0,\infty )

e - \lambda sg(Xu
Xu

x (\theta )(s))
\bigvee 

Yx,y(\theta )

= e - \lambda \theta 

\biggl( 
max

s\in [0,\infty )
e - \lambda sg(Xu

Xu
x (\theta )(s))

\bigvee 
e\lambda \theta Yx,y(\theta )

\biggr) 
.

By the tower property of the expectation, we conclude the proof. We refer to [14] and
[36] for more detailed arguments.
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4. The Hamilton--Jacobi--Bellman equation. The value function \vargamma can be
characterized in terms of a solution of a second-order HJB equation.

Theorem 4.1 (second-order HJB equation). Under assumptions (H1)--(H2), the
value function \vargamma is a continuous viscosity solution of

(4.1)
\lambda \vargamma +H(x, y,Dx\vargamma , \partial y\vargamma ,D

2
x\vargamma ) = 0 for x \in \BbbR d, y > g(x),

 - \partial y\vargamma = 0 for x \in \BbbR d, y = g(x)

with \lambda > 0 and Hamiltonian H : \BbbR d \times \BbbR \times \BbbR d \times \BbbR \times \BbbR d\times d \rightarrow \BbbR defined by

H(x, y, p, q, P ) = sup
u\in U

\biggl( 
 - b(x, u) \cdot p - 1

2
Tr[(\sigma \sigma T )(x, u)P ]

\biggr) 
 - \lambda yq.(4.2)

We recall the notion of viscosity solution for the second-order HJB equation.

Definition 4.2 (see [17, Definition 7.4]). Let \scrO be a locally compact set in \BbbR d+1.
An upper-semicontinuous (USC) function \vargamma (resp., lower-semicontinuous (LSC) func-
tion \vargamma ) on \scrO is a viscosity subsolution (resp., supersolution) of (4.1) if for every
function \varphi \in C2(\scrO ) at every maximum (resp., minimum) point x of \vargamma  - \varphi (resp.,
\vargamma  - \varphi ) the following inequalities hold:\Biggl\{ 

\lambda \varphi +H(x, y,Dx\varphi , \partial y\varphi ,D
2
x\varphi ) \leq 0 in \scrO ,

min(\lambda \varphi +H(x, y,Dx\varphi , \partial y\varphi ,D
2
x\varphi ), - \partial y\varphi ) \leq 0 on \partial \scrO \bigl( 

resp., \Biggl\{ 
\lambda \varphi +H(x, y,Dx\varphi , \partial y\varphi ,D

2
x\varphi ) \geq 0 in \scrO ,

max(\lambda \varphi +H(x, y,Dx\varphi , \partial y\varphi ,D
2
x\varphi ), - \partial y\varphi ) \geq 0 on \partial \scrO .

\bigr) 
A continuous function \vargamma is called a viscosity solution of (4.1) if it is both a sub- and
a supersolution.

Proof of Theorem 4.1. Let

\scrO := \{ (x, y) \in \BbbR d+1 : y \geq g(x) \} .

We first check that \vargamma is a viscosity subsolution. Let \varphi \in C2(\scrO ) such that \vargamma  - \varphi attains
a maximum at point (\=x, \=y) \in \scrO . Without loss of generality we can assume that (\=x, \=y)
is a strict local maximum point (let us say in a ball of radius r > 0 centered in (\=x, \=y))
and \vargamma (\=x, \=y) = \varphi (\=x, \=y). Thanks to Theorem 3.3, for any u \in \scrU and for any sufficiently
small stopping time \theta = \theta u, we have

\varphi (\=x, \=y) = \vargamma (\=x, \=y) \leq \BbbE 
\biggl[ 
e - \lambda \theta \vargamma 

\bigl( 
Xu

\=x (\theta ), e
\lambda \theta Y u

\=x,\=y(\theta )
\bigr) \biggr] 

\leq \BbbE 
\biggl[ 
e - \lambda \theta \varphi 

\bigl( 
Xu

\=x (\theta ), e
\lambda \theta Y u

\=x,\=y(\theta )
\bigr) \biggr] 
.(4.3)

Two cases will be considered depending on whether the point (\=x, \=y) belongs to the
boundary of \scrO .

Case 1: g(\=x) < \=y. Consider a constant control u(s) \equiv u \in U . From the continuity
of g and the a.s. continuity of the sample paths it follows that for a.e. \omega \in \Omega there
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exists \=s(\omega ) > 0 such that g(Xu
\=x (s))e

 - \lambda s < \=y if s \in [0, \=s(\omega )). Given h > 0, let \=\theta be the
following stopping time:

(4.4)

\=\theta := inf
\Bigl\{ 
s > 0: (Xu

\=x (s), e
\lambda sY u

\=x,\=y(s)) /\in B((\=x, \=y), r)
\Bigr\} 

\wedge h

\wedge inf
\Bigl\{ 
s > 0: e - \lambda sg(Xu

\=x (s)) \geq \=y
\Bigr\} 

(where B((\=x, \=y), r) denotes the ball of radius r > 0 centered at (\=x, \=y) and a \wedge b =
min(a, b)). One can easily observe that a.s. \=\theta > 0 and Y u

\=x,\=y(
\=\theta ) = \=y; then by (4.3)

\varphi (\=x, \=y) \leq \BbbE 
\biggl[ 
e - \lambda \=\theta \varphi 

\bigl( 
Xu

\=x (
\=\theta ), e\lambda 

\=\theta \=y
\bigr) \biggr] 

\forall u \in U.

By applying Ito's formula [37, Theorem 5.5], and thanks to the smoothness of \varphi , we
get

0\geq \BbbE 
\biggl[ \int \=\theta 

0

 - d
\Bigl( 
e - \lambda s\varphi (Xu

\=x (s), e
\lambda s\=y)

\Bigr) \biggr] 
= \BbbE 

\biggl[ \int \=\theta 

0

\Bigl\{ 
\lambda \varphi (Xu

\=x (s), e
\lambda s\=y) - b(Xu

\=x (s), u)Dx\varphi (X
u
\=x (s), e

\lambda s\=y)

 - 1

2
Tr[\sigma \sigma T (Xu

\=x (s), u)D
2
x\varphi (X

u
\=x (s), e

\lambda s\=y)] - \lambda \=ye\lambda s\partial y\varphi (X
u
\=x (s), e

\lambda s\=y)
\Bigr\} 
e - \lambda sds

\biggr] 
.

Observing that the stopping times

inf
\bigl\{ 
s > 0: (Xu

\=x (s), e
\lambda sY u

\=x,\=y(s)) /\in Br(\=x, \=y)
\bigr\} 

and inf
\bigl\{ 
s > 0: e - \lambda sg(Xu

\=x (s)) \geq \=y
\bigr\} 

are a.s. strictly greater than 0, for a.e. fixed \omega one obtains \=\theta = h for a sufficiently
small h in (4.4). Dividing by h > 0, one gets

\BbbE 
\biggl[ 
1

h

\int \=\theta 

0

\Bigl\{ 
\lambda \varphi (Xu

\=x (s), e
\lambda s\=y) - b(Xu

\=x (s), u)Dx\varphi (X
u
\=x (s), e

\lambda s\=y)

 - 1

2
Tr[\sigma \sigma T (Xu

\=x (s), u)D
2
x\varphi (X

u
\=x (s), e

\lambda s\=y)] - \lambda \=ye\lambda s\partial y\varphi (X
u
\=x (s), e

\lambda s\=y)
\Bigr\} 
e - \lambda sds

\biggr] 
\leq 0.

By the dominate convergence theorem, taking the limit for h going to 0 inside the
expectation and applying the mean value theorem, it follows that

\lambda \varphi (\=x, \=y) - b(\=x, u)Dx\varphi (\=x, \=y) - 
1

2
Tr[\sigma \sigma T (\=x, u)D2

x\varphi (\=x, \=y)] - \lambda \=y\partial y\varphi (\=x, \=y) \leq 0.

Finally, thanks to the arbitrariness of u \in U ,

\lambda \varphi (\=x, \=y) + sup
u\in U

\Bigl( 
 - b(\=x, u)Dx\varphi (\=x, \=y) - 

1

2
Tr[\sigma \sigma T (\=x, u)D2

x\varphi (\=x, \=y)]
\Bigr) 
 - \lambda \=y\partial y\varphi (\=x, \=y) \leq 0.

Case 2: g(\=x) = \=y. Let us assume that  - \partial y\varphi (\=x, \=y) > 0; otherwise the conclusion
is straightforward.

As in the previous case, we consider a constant control u(s) \equiv u \in U . Thanks to
the continuity of the sample paths and the smoothness of \varphi , for a.e. \omega there is a time
\=s(\omega ) > 0 and \eta > 0 such that

\varphi (Xu
\=x (s), e

\lambda sy) \leq \varphi (Xu
\=x (s), e

\lambda s\=y) \forall s \in [0, \=s], y \in [\=y, \=y + \eta ).
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Let \=\theta be the stopping time given by

\=\theta := inf
\bigl\{ 
s > 0: (Xu

\=x (s), e
\lambda sY u

\=x,\=y(s)) /\in B((\=x, \=y), r)
\bigr\} 
\wedge inf \{ s > 0: \partial y\varphi (X

u
\=x (s), \=y) \geq 0\} 

\wedge inf
\bigl\{ 
s > 0: e - \lambda sg(Xu

\=x (s)) /\in [\=y, \=y + \eta )
\bigr\} 
\wedge h.

By (4.3) we have \varphi (\=x, \=y) \leq \BbbE [e - \lambda \=\theta \varphi 
\bigl( 
Xu

\=x (
\=\theta ), e\lambda 

\=\theta \=y
\bigr) 
], which implies (as in Case 1)

\lambda \varphi (\=x, \=y) + sup
u\in U

\Bigl\{ 
 - b(\=x, u)Dx\varphi (\=x, \=y) - 

1

2
Tr[\sigma \sigma T (\=x, u)D2

x\varphi (\=x, \=y)]
\Bigr\} 
 - \lambda \=y\partial y\varphi (\=x, \=y) \leq 0.

In conclusion at (\=x, \=y) \in \partial \scrO we have

min
\bigl( 
\lambda \varphi +H(\=x, \=y,Dx\varphi , \partial y\varphi ,D

2
x\varphi ), - \partial y\varphi 

\bigr) 
\leq 0,

and \vargamma is a viscosity subsolution of (4.1).
It remains to prove that \vargamma is a viscosity supersolution of (4.1). Let \varphi \in C2(\scrO )

be such that \vargamma  - \varphi attains a minimum at point (\=x, \=y) \in \scrO . Without loss of generality
we can always assume that (\=x, \=y) is a strict local minimum point in a ball B((\=x, \=y), r)
and \vargamma (\=x, \=y) = \varphi (\=x, \=y). We consider again the two cases:

Case 1: g(\=x) < \=y. We assume by contradiction that

\lambda \varphi +H(\=x, \=y,Dx\varphi , \partial y\varphi ,D
2
x\varphi ) < 0.

By using continuity arguments we can also state that

(4.5) \lambda \varphi +H(\cdot , \cdot , Dx\varphi , \partial y\varphi ,D
2
x\varphi ) \leq 0

in a neighborhood B((\=x, \=y), r1) of (\=x, \=y) for some r1 > 0. Moreover, thanks to the
continuity of g, if \=y  - g(\=x) =: \rho > 0 we can find r2(\rho ) > 0 and T (\rho ) > 0 such that

max
t\in [0,T ],

x\in B(\=x,r2)

e - \lambda tg(x) - g(\=x) \leq \rho 

2

and we have
max

t\in [0,T ],
x\in B(\=x,r2)

e - \lambda tg(x) \vee \=y = \=y.

For any u \in \scrU we define the stopping time \theta u as the first exit time of the process
(Xu

\=x (s), e
\lambda sY u

\=x,\=y(s)) from the ball B((\=x, \=y), R) for R := min(r, r1, r2) > 0, i.e.,

\theta u := inf
\bigl\{ 
s > 0: (Xu

\=x (s), e
\lambda sY u

\=x,\=y(s)) /\in B((\=x, \=y), R)
\bigr\} 
\wedge T.

Applying Ito's formula and taking the expectation we get

\varphi (\=x, \=y) - \BbbE 
\Bigl[ 
e - \lambda \theta u

\varphi (Xu
\=x (\theta 

u), e\lambda \theta 
u

Y u
\=x,\=y(\theta 

u))
\Bigr] 

= \varphi (\=x, \=y) - \BbbE 
\Bigl[ 
e - \lambda \theta u

\varphi (Xu
\=x (\theta 

u), e\lambda \theta 
u

\=y)
\Bigr] 

= \BbbE 
\biggl[ \int \theta u

0

\Bigl\{ 
\lambda \varphi (Xu

\=x (s), e
\lambda s\=y) - b(Xu

\=x (s), u)Dx\varphi (X
u
\=x (s), e

\lambda s\=y)

 - 1

2
Tr[\sigma \sigma T (Xu

\=x (s), u)D
2
x\varphi (X

u
\=x (s), e

\lambda s\=y)] - \lambda \=ye\lambda s\partial y\varphi (X
u
\=x (s), e

\lambda s\=y)
\Bigr\} 
e - \lambda sds

\biggr] 
\leq 0,

which leads to

\vargamma (\=x, \=y) = \varphi (\=x, \=y) \leq \BbbE 
\biggl[ 
e - \lambda \theta u

\varphi (Xu
\=x (\theta 

u), e\lambda \theta 
u

Y u
\=x,\=y(\theta 

u))

\biggr] 
.(4.6)
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The continuity of the sample paths implies that\biggl\{ 
either \theta u = T or
(Xu

\=x (\theta 
u), e\lambda \theta 

u

Y u
\=x,\=y(\theta 

u)) \in \partial B((\=x, \=y), R) a.s.

Since (\=x, \=y) is a strict minimum point we have

min
\Bigl\{ 
(\vargamma  - \varphi ) : (x, y) \in \partial B((\=x, \=y), R)

\bigcup \Bigl( 
B((\=x, \=y), R) \cap y = e\lambda T \=y

\Bigr) \Bigr\} 
=: \eta > 0,

and hence

\vargamma (\=x, \=y) \leq \varphi (Xu
\=x (\theta 

u), e\lambda \theta 
u

Y u
\=x,\=y(\theta 

u)) \leq \vargamma (Xu
\=x (\theta 

u), e\lambda \theta 
u

Y u
\=x,\=y(\theta 

u)) - \eta .

Substituting in (4.6), for any u \in \scrU one has

\vargamma (\=x, \=y) \leq \BbbE 
\biggl[ 
e - \lambda \theta u

\vargamma (Xu
\=x (\theta 

u), e\lambda \theta 
u

Y u
\=x,\=y(\theta 

u))

\biggr] 
 - \eta e - \lambda T .

Since \eta and T do not depend on u, a minimization over u contradicts the DPP.
Case 2: g(\=x) = \=y. Assume by contradiction that

 - \partial y\varphi (\=x, \=y) < 0 and \lambda \varphi +H(\=x, \=y,Dx\varphi , \partial y\varphi ,D
2
x\varphi ) < 0.

We can again define r1 > 0 such that (4.5) is satisfied in B((\=x, \=y), r1). Moreover there
exists \~r2 > 0 such that

\varphi (\xi , \zeta ) \leq \varphi (\xi , \zeta \prime )

for any (\xi , \zeta ), (\xi , \zeta \prime ) \in B((\=x, \=y), \~r2) such that \zeta \leq \zeta \prime . For any u \in \scrU we define
the stopping time \theta u as the first exit time of the process (Xu

\=x (s), e
\lambda sY u

\=x,\=y(s)) and

(Xu
\=x (s), e

\lambda s\=y) from the ball B((\=x, \=y), \~R) for \~R := min(r, r1, \~r2) > 0. As for Case 1, we
can still say that a.s.

\vargamma (Xu
\=x (\theta 

u), Y u
\=x,\=y(\theta 

u)) \geq \varphi (Xu
\=x (\theta 

u), Y u
\=x,\=y(\theta 

u)) + \eta \prime 

for some \eta \prime > 0 not depending on u. Therefore, observing that

e\lambda sY u
\=x,\=y(s) \geq e\lambda s\=y

for any s \geq 0 and using Ito's formula, we get

\vargamma (\=x, \=y) = \varphi (\=x, \=y) \leq \BbbE 
\Bigl[ 
\varphi (Xu

\=x (\theta 
u), e\lambda \theta 

u

\=y)
\Bigr] 
\leq \BbbE 

\Bigl[ 
\varphi (Xu

\=x (\theta 
u), e\lambda \theta 

u

Y u
\=x,\=y(\theta 

u))
\Bigr] 

\leq \BbbE 
\Bigl[ 
\vargamma (Xu

\=x (\theta 
u), e\lambda \theta 

u

Y u
\=x,\=y(\theta 

u)
\Bigr] 
 - \eta \prime ,

which yields again to a contradiction of the DPP.

Remark 4.3. Unlike the case of finite time horizon (see [4, 11]), the HJB equation
(4.1) obtained by the DPP does not admit a unique solution. Indeed, one can observe
that the function identically equal to zero is always a solution of (4.1). To overcome
this problem we will restrict our domain to

D := \{ (x, y) \in \BbbR d+1 : y > g(x) , y \in ( - Mg,Mg)\} 

and add a Dirichlet boundary condition for y = Mg.
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Let

\Gamma 1 := \{ (x, y) \in D : y = Mg \} ; \Gamma 2 := \{ (x, y) \in D : y = g(x) \} .(4.7)

Then the value function \vargamma is a viscosity solution of the following problem:

\lambda \vargamma +H(x, y,Dx\vargamma , \partial y\vargamma ,D
2
x\vargamma ) = 0 in D,(4.8a)

 - \partial y\vargamma = 0 on \Gamma 2(4.8b)

and satisfies additional

\vargamma = Mg on \Gamma 1(4.8c)

in a strong sense. We point out that in our case the strong constant Dirichlet boundary
condition on \Gamma 1 is compatible with the homogeneous derivative condition on \Gamma 2. This
prevents possible problems related with mixed boundary conditions at the junctions
where different components of the boundary cross. Now, we can establish the following
comparison result.

Theorem 4.4. Let assumptions (H1)--(H2) be satisfied and let \vargamma \in USC(D),
\vargamma \in LSC(D), respectively, a bounded sub- and supersolution to (4.8) in D such that

\vargamma \leq Mg and \vargamma \geq Mg on \Gamma 1.

Then \vargamma \leq \vargamma in D.

The proof can be obtained by a modification of the arguments in [22, Theorem
2.1], which show how to deal with the derivative conditions; see also [24]. We report
here the main steps.

Proof. We set

\~b(x, y, u) :=

\biggl( 
b(x, u)
\lambda y

\biggr) 
\in \BbbR d+1 and \~\sigma (x, y, u) :=

\biggl( 
\sigma (x, u)
0 . . . 0

\biggr) 
\in \BbbR (d+1)\times p.

Further, let x denote the variable in the augmented state space \BbbR M with M := d+1,
i.e., x \equiv (x, y) \in \BbbR M and x

M
= y. Then the Hamiltonian H in (4.2) is given by

H(x, p, P ) := sup
u\in U

\biggl( 
 - \~b(x, u) \cdot p - 1

2
Tr[\~\sigma \~\sigma T (x, u)P ]

\biggr) 
.

Thanks to the Lipschitz continuity of the function g that defines the boundary
\Gamma 2, we can observe that there exists \mu > 0 such that for any z \in \Gamma 2 we have

(4.9)
\bigcup 

0\leq \xi \leq \mu 

B(z  - \xi , \xi \mu ) \subset DC ,

where DC denotes the complementary of the set D; this corresponds to [22, condition
(2.9)]. Let us define for positive \alpha and \beta the functions

\vargamma \alpha ,\beta (x) := \vargamma (x) - \alpha (Mg  - x
M
) - \beta , \vargamma \alpha ,\beta (x) := \vargamma (x) + \alpha (Mg  - x

M
) + \beta .

Thanks to the nonnegativity of (Mg  - x
M
) for y \in D we have

\vargamma \alpha ,\beta \leq \vargamma and \vargamma \alpha ,\beta \geq \vargamma on D
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and in particular

\vargamma \alpha ,\beta \leq Mg and \vargamma \alpha ,\beta \geq Mg on \Gamma 1.

With an abuse of notation, we denote by D\vargamma ,D\vargamma ,D2\vargamma ,D2\vargamma the corresponding ele-
ments of the semijets of \vargamma and \vargamma ; see [17, section 2]. We have

\lambda \vargamma \alpha ,\beta +H(x,D\vargamma \alpha ,\beta , D
2\vargamma \alpha ,\beta ) - \lambda \vargamma  - H(x,D\vargamma ,D2\vargamma ) \leq  - \lambda \beta + \lambda \alpha Mg

and

\lambda \vargamma \alpha ,\beta +H(x,D\vargamma \alpha ,\beta , D
2\vargamma \alpha ,\beta ) - \lambda \vargamma  - H(x,D\vargamma ,D2\vargamma ) \geq \lambda \beta  - \lambda \alpha Mg.

Moreover, we have

 - \partial xM
\vargamma \alpha ,\beta =  - \partial xM

\vargamma  - \alpha ,  - \partial xM
\vargamma \alpha ,\beta =  - \partial xM

\vargamma + \alpha .

Therefore for any \beta > 0 and \alpha = \alpha (\beta ) > 0 small enough, \vargamma \alpha ,\beta (resp., \vargamma \alpha ,\beta ) is
a subsolution (resp., supersolution) to (4.8) with the following modified boundary
condition on \Gamma 2:

(4.10)  - \partial xM
\vargamma + \alpha \leq 0 (resp.,  - \partial xM

\vargamma  - \alpha \geq 0) .

In what follows we prove a comparison principle between the subsolution \vargamma \alpha ,\beta and

supersolution \vargamma \alpha ,\beta of the modified problem. The comparison result between \vargamma and \vargamma 
follows from taking the limit of \alpha , \beta \rightarrow 0. In order to simplify the notation we denote
the sub- and supersolutions of the modified problem also by \vargamma and \vargamma .

Let

\Phi \gamma (x) := \vargamma (x) - \vargamma (x) - 2\gamma log(1 + | (x1 . . . xM - 1
)| 2).

In order to simplify the notation, from now on we will denote | x| 
M - 1

= | (x1 . . . xM - 1
)| .

Thanks to the boundedness and the upper semicontinuity of \vargamma  - \vargamma , the function \Phi \gamma 

admits a maximum point \^x\gamma = \^x in D.
Let us assume that there exists a sequence \{ \gamma k\} k\geq 0 such that \gamma k \rightarrow 0 and the

points \^x\gamma k
approach the boundary \Gamma 1. In this case for any x \in D we have

(4.11)
\vargamma (x) - \vargamma (x) = lim supk\rightarrow \infty \vargamma (x) - \vargamma (x) - 2\gamma k log(1 + | x| 2

M - 1
)

\leq lim supk\rightarrow \infty \vargamma (\^x) - \vargamma (\^x) \leq 0.

The last inequality follows by the fact that any convergent subsequence of points
\{ \^x\gamma k

\} converges to a point of \Gamma 1 where one has \vargamma  - \vargamma \leq 0 by assumption. We obtain
the same result if \Phi \gamma k

(\^x) \leq 0 for all k.
Therefore, in what follows, we assume that there exists a \=\gamma small enough such

that d(\^x, \Gamma 1) = \rho > 0 and \vargamma (\^x)  - \vargamma (\^x) \geq \Phi \gamma (\^x) > \rho for any \gamma \leq \=\gamma and some \rho > 0
(with d(\cdot , \Gamma 1) we have denoted the Euclidean distance function to \Gamma 1).

Moreover, by classical doubling variable techniques it is standard to obtain a
contradiction if \^x belongs to the interior of D (see, for instance, [27, Theorem 7.3]).
Such techniques have to be modified if \^x belongs to \Gamma 2. Thanks to the property (4.9)
of the domain, the existence of a family of C2 test functions \{ w\varepsilon \} \varepsilon >0 can be proven
as in [22, Theorem 4.1]. Among the other properties, \{ w\varepsilon \} : \BbbR M \times \BbbR M \rightarrow \BbbR satisfies
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w\varepsilon (x, x) \leq \varepsilon ,(4.12)

w\varepsilon (x, y) \geq C
| x - y| 2

\varepsilon 
,(4.13)

 - \partial x
M
w\varepsilon (x, y) \geq  - C

| x - y| 2

\varepsilon 
if x \in \Gamma 2 \cap B(\^x, \eta ), y \in B(\^x, \eta ),(4.14)

 - \partial y
M
w\varepsilon (x, y) \geq 0 if y \in \Gamma 2 \cap B(\^x, \eta ), x \in B(\^x, \eta )(4.15)

for \varepsilon > 0 and some \eta > 0 small enough.
Applying the doubling variables procedure we define

\Phi \varepsilon (x, y) := \vargamma (x) - \vargamma (y) - \gamma log(1 + | x| 2
M - 1

) - \gamma log(1 + | y| 2
M - 1

) - w\varepsilon (x, y) - | x - \^x| 4

and we denote by (x\varepsilon , y\varepsilon ) its maximum point. Thanks to properties (4.12) and (4.13),
we have for \varepsilon \rightarrow 0 that

(4.16) x\varepsilon , y\varepsilon \rightarrow \^x and
| x\varepsilon  - y\varepsilon | 2

\varepsilon 
\rightarrow 0.

Thus for \varepsilon small enough we can assume that x\varepsilon , y\varepsilon /\in \Gamma 1; however, since the case
\^x \in \Gamma 2 is taken into account, the sequence (x\varepsilon , y\varepsilon ) may consider points on \Gamma 2. Taking
\varepsilon small enough we can also say that x\varepsilon , y\varepsilon \in B(\^x, \eta ) and then we can make use of
properties (4.14) and (4.15).

If x\varepsilon \in \Gamma 2, using (4.16), we have that for \varepsilon small enough

 - \partial x
M

\Bigl( 
w\varepsilon (x\varepsilon , y\varepsilon ) + \gamma log(1 + | x\varepsilon | 2M - 1

) + | x\varepsilon  - \^x| 4
\Bigr) 

\geq  - C
| x\varepsilon  - y\varepsilon | 2

\varepsilon 
 - 4| x\varepsilon  - \^x| 3 >  - \alpha .

Similarly if y\varepsilon \in \Gamma 2 one has

 - \partial y
M

\Bigl( 
 - w\varepsilon (x\varepsilon , y\varepsilon ) - \gamma log(1 + | y\varepsilon | 2M - 1

)
\Bigr) 
\leq 0 < \alpha 

for \varepsilon small enough.
This means that, considering w\varepsilon (\cdot , y\varepsilon )+\gamma log(1 + | \cdot | 2

M - 1
)+| \cdot  - \^x| 4 and - w\varepsilon (x\varepsilon , \cdot ) - 

\gamma log(1 + | \cdot | 2
M - 1

) as test functions for \vargamma and \vargamma , respectively, for sufficiently small
values of \varepsilon the derivative boundary conditions in x\varepsilon and y\varepsilon can be neglected and one
can only consider in \Gamma 2 \cup D

\lambda \vargamma +H(x\varepsilon , D\vargamma ,D2\vargamma ) \leq 0 and \lambda \vargamma +H(y\varepsilon , D\vargamma ,D2\vargamma ) \geq 0

in the viscosity sense. Thanks to the properties of H and w\varepsilon , this leads to a contra-
diction using the arguments in [22, 27].

Corollary 4.5. The value function \vargamma is the unique bounded continuous viscosity
solution to (4.8) in D.

Starting by its HJB characterization in D, \vargamma can be extended in a unique way to
the full space \BbbR d \times \BbbR by

(4.17)
\vargamma (x, y) = y for any y \geq Mg,

\vargamma (x, y) = \vargamma (x, g(x)) for any y \leq g(x).

However, we can observe that in order to characterize the original value function
v, the way we extend \vargamma for y > Mg does not matter and only the values of \vargamma for
y = g(x) \leq Mg are relevant.
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5. Numerical approximation. In this section, convergence is proven for a
general class of numerical schemes. Then, we show that a fully discrete SL method
applied to the problem under consideration belongs to this class.

Let BC denote the space of bounded and continuous functions in \BbbR d+1 equipped
with the L\infty -norm. Further, we introduce the discretization parameters

\Delta x = (\Delta x1, . . . ,\Delta xd) \in (\BbbR >0)d, \Delta y > 0, \rho = (\Delta x,\Delta y),

and denote the corresponding mesh by

\scrG \rho := \{ (xi, yj) = (i\Delta x, j\Delta y), (i, j) \in \BbbZ d \times \BbbZ \} ,

where i\Delta x = (i1\Delta x1, . . . , iN\Delta xN ), i \in \BbbZ d. We set

jx := min \{ j \in \BbbZ | j\Delta y \geq g(x) \} ,(5.1)

jM := min \{ j \in \BbbZ | j\Delta y \geq Mg \} (5.2)

and introduce a projection operator

(5.3) \Pi \scrG \rho 

(\phi )(xi, yj) :=

\left\{   
yj if j \geq jM ,
\phi (xi, yj) if jM > j \geq jxi

,
\phi (xi, yjxi

) if j < jxi

for functions \phi \in BC. We aim to define a general approximation of the value func-
tion \vargamma . We start considering a general scheme

S\rho (xi, yj , \phi i,j , \phi ) = 0

that approximates the equation

\lambda \phi +H(x, y,Dx\phi , \partial y\phi ,D
2
x\phi ) = 0

at node (xi, yj), with H defined by (4.2). Here \phi i,j = \phi (xi, yj) and \phi denote the values
of \phi at nodes different from (xi, yj). S

\rho may represent a finite difference operator (see
[13, 12, 30]) or an SL scheme ([32, 15, 19]). The main idea of the numerical method
described here is to mix the use of a standard scheme for (4.8a), together with a
projection step on \partial D in order to get the desired boundary conditions. Let us point
out that a similar method was introduced for treating oblique derivative boundary
conditions, i.e., the condition we have in \Gamma 2, in [5] for the case g(x) \equiv | x| and in [11]
for a general Lipschitz continuous function g. In addition, here the numerical solution
also has to satisfy the Dirichlet condition on \Gamma 1.

We define V on \scrG \rho such that

(5.4)

\left\{     
Vi,j = yj if yj \geq Mg,

S\rho (xi, yj , Vij , \Pi 
\scrG \rho 

(V )) = 0 if g(xi) \leq yj < Mg,

Vi,j = Vi,jxi
if yj < g(xi)

and we denote by V \rho its continuous extension by bilinear interpolation. We assume
the grid \scrG \rho aligned with the domain [ - Mg,Mg], so that we have V \rho = Mg on \Gamma 1.
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5.1. General convergence result. In order to prove the convergence of V \rho to
the unique viscosity solution \vargamma of (4.8) we will make use of the arguments introduced
by Barles and Souganidis in [6]. These make use of the properties of stability, consis-
tency, and monotonicity of the scheme. We assume that the scheme defined by (5.4)
satisfies the following assumptions:
(H3.a) Stability: for any \rho the scheme (5.4) admits a solution V \rho \in BC(D). More-

over, there exist M,L \geq 0 such that

V \rho (x, y) \leq M and | V \rho (x, y) - V \rho (x, y\prime )| \leq L| y  - y\prime | 

for any (x, y), (x, y\prime ) \in D, and \rho > 0.
(H3.b) Consistency: the scheme S\rho is consistent with respect to (4.1) in D, i.e., for

all (x, y) \in D and every \phi \in C2(D) there holds

lim
\rho \rightarrow 0,

D\ni (\xi ,\gamma )\rightarrow (x,y),
\zeta \rightarrow 0

S\rho (\xi , \gamma , \phi (\xi , \gamma ) + \zeta , \phi + \zeta ) = \lambda \phi +H(x,Dx\phi ,D
2
x\phi ).

(H3.c) Monotonicity: for every \rho , r \in \BbbR , (x, y) \in D, S\rho (x, y, r, \phi ) depends only on
the values of \phi in a neighborhood B\eta (\rho )(x, y) of (x, y) with \eta (\rho ) \geq 0 such that

\eta (\rho ) \rightarrow 0 for \rho \rightarrow 0. For all function \phi 1, \phi 2 : \BbbR d \times \BbbR \rightarrow \BbbR with \phi 1 \geq \phi 2 on
B\rho (x, y), there holds

S\rho (x, y, r, \phi 1) \leq S\rho (t, x, y, r, \phi 2).(5.5)

Remark 5.1. Stability, consistency, and monotonicity are the classical require-
ments to prove convergence of numerical schemes in the framework of viscosity so-
lutions. However, in our case some slight modifications with respect to the original
assumptions considered in [6] are necessary. In particular, the additional regularity
assumption with respect to the variable y turns out to be fundamental to deal with
Dirichlet boundary conditions, while the reason for our formulation of the monotonic-
ity condition is the fact that the numerical scheme S\rho defined on D may use some
values of the function V \rho outside the domain D.

Theorem 5.2. Let assumptions (H1)--(H2) be satisfied and let the scheme (5.4)
satisfy assumption (H3). Then for \rho \rightarrow 0 the solution V \rho converges to the unique
viscosity solution to (4.1).

Proof. Let us define for (x, y) \in D

V (x, y) := lim sup
D\ni (\xi ,\gamma )\rightarrow (x,y)

\rho \rightarrow 0

V \rho (\xi , \gamma ),

V (x, y) := lim inf
D\ni (\xi ,\gamma )\rightarrow (x,y)

\rho \rightarrow 0

V \rho (\xi , \gamma ).

Observe that the semilimits are well defined thanks to the boundedness of V \rho uni-
formly with respect to \rho . We start by proving that V is a viscosity subsolution to
(4.1).

Thanks to the Lipschitz continuity of V \rho with respect to y (uniform with respect
to \rho ) and the fact that, by definition, V \rho (x, y) = Mg on \Gamma 1 one has for any (\xi , \gamma ) \in D

| V \rho (\xi , \gamma ) - Mg| = | V \rho (\xi , \gamma ) - V \rho (\xi ,Mg)| \leq L| \gamma  - Mg| ,
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so that
lim

D\ni (\xi ,\gamma )\rightarrow (x,y)
\rho \rightarrow 0

V \rho (\xi , \gamma ) = Mg.

Hence, V = Mg on \Gamma 1 and the Dirichlet condition is satisfied.
Let \varphi \in C2(D) and let (\=x, \=y) be a local maximum point for V  - \varphi on D. Without

loss of generality we can assume that (\=x, \=y) is a strict local maximum in Br(\=x, \=y)\cap D
for a certain r > 0 and \varphi \geq 2 sup\rho \| W \rho \| \infty outside the ball Br(\=x, \=y). We claim that\Biggl\{ 

\lambda u+H(\=x, \=y,Dx\varphi , \partial y\varphi ,D
2
x)\varphi \leq 0 if (\=x, \=y) \in D,

min(\lambda u+H(\=x, \=y,Dx\varphi , \partial y\varphi ,D
2
x\varphi ), - \partial y\varphi ) \leq 0 if (\=x, \=y) \in \Gamma 2.

We follow the argument in Barles and Souganidis [6]. There exists a sequence \rho k,
(xk, yk) such that \rho k \rightarrow 0, (xk, yk) \rightarrow (\=x, \=y) for k \rightarrow \infty , and

(V \rho k  - \varphi )(xk, yk) = max
D

(V \rho k  - \varphi ) = \delta k \rightarrow 0 as k \rightarrow \infty (5.6)

and
V \rho k(xk, yk) \rightarrow V (\=x, \=y) as k \rightarrow \infty .

Case 1: (\=x, \=y) \in D. For k large enough (xk, yk) \in D. Since g is continuous, for
\rho k small enough we can assume that y > g(x) for any (x, y) \in B\eta (\rho k)(xk, yk) (where
B\eta (\rho k)(xk, yk) is the neighborhood that appears in assumption (H3.c)). Consequently,
for k big enough

\Pi \scrG \rho k (V \rho k) = V \rho k and V \rho k < \varphi + \delta k

in B\eta (\rho k)(xk, yk). By the monotonicity of the scheme (assumption (H3.c)) we further
deduce

0 = S\rho k(xk, yk, V
\rho k(xk, yk), \Pi 

\scrG \rho k (V \rho k))

\geq S\rho k(xk, yk, \varphi (xk, yk) + \delta k, \varphi + \delta k))

and by the consistency assumption (H3.b) we obtain that as k \rightarrow \infty 

\lambda \varphi +H(\=x, \=y,Dx\varphi , \partial y\varphi ,D
2
x\varphi ) \leq 0.

Case 2: (\=x, \=y) \in \Gamma 2. If  - \partial y\varphi (\=x, \=y) \leq 0 the subsolution property on \Gamma 2 is auto-
matically satisfied. Let us assume that  - \partial y\varphi (\=x, \=y) > 0.

We point out that if \=y = g(\=x), (xk, yk) can also be on \Gamma 2 and the scheme may
involve values Vm,n on some point (xm, yn) which is not in D.

If  - \partial y\varphi (\=x, \=y) > 0, there exists a neighborhood \scrV of (\=x, \=y) where \partial y\varphi is well
defined and  - \partial y\varphi > 0. Therefore,

y \leq y\prime \Rightarrow \varphi (x, y) \geq \varphi (x, y\prime ) \forall (x, y), (x, y\prime ) \in \scrV ,(5.7)

and, taking k large enough, B\eta (\rho k)(xk, yk) \subset \scrV . Let (x, y) \in B\eta (\rho k)(xk, yk). If y \geq 
g(x), we have

\Pi \scrG \rho (V \rho k(x, y)) = V \rho k(x, y) \leq \varphi (x, y) + \delta k.

If y < g(x), \Pi \scrG \rho (V \rho k(x, y)) = V \rho k(x, yjx) and we have

(5.8)

\Pi \scrG \rho (V \rho k(x, y)) = V \rho k(x, yjx)

\leq \varphi (x, yjx) + \delta k using (5.6)

\leq \varphi (x, y) + \delta k using (5.7).
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For the last inequality one also needs to observe that if (x, y) \in \scrV and y < g(x),
thanks to the continuity of g one can choose k big enough so that also (x, yjx) \in \scrV .

Consequently, we have \Pi \scrG \rho (V \rho k) \leq \varphi +\delta k on B\eta (\rho k)(xk, yk). Thus by monotonic-
ity we have

0 = S\rho k(xk, yk, V
\rho k(xk, yk), \Pi 

\scrG \rho (V \rho k))

\geq S\rho k(xk, yk, \varphi (xk, yk) + \delta k, \varphi + \delta k))

and using consistency when k \rightarrow \infty we have

\lambda \varphi +H(\=x, \=y,Dx\varphi , \partial y\varphi ,D
2
x\varphi ) \leq 0.(5.9)

This proves that V is a viscosity subsolution to (4.1). Analogously one can show that
V is a viscosity subsolution. Applying the comparison principle (Theorem 4.4), it
follows that V \geq V on D. Since V \leq V is always true by definition, it is possible to
conclude that V = V on D, which proves the assertion.

5.2. Semi-Lagrangian scheme. In this section we introduce an SL scheme and
verify that it satisfies assumptions (H3).

5.2.1. Semidiscretization. To simplify the presentation, we consider first a
semidiscrete version of the scheme. Let h > 0 be the time discretization parameter of
the dynamics. We define the mapping T0 : BC \rightarrow BC with

T0(\phi )(x, y)

:= min
u\in U

\Biggl\{ 
(1 - \lambda h)

2p

2p\sum 
k=1

\phi 

\biggl( 
x+ hb(x, u) +

\sqrt{} 
hp( - 1)k\sigma \lfloor k+1

2 \rfloor (x, u),
y

1 - \lambda h

\biggr) \Biggr\} 
,

where \lfloor \cdot \rfloor denotes the integer part. Furthermore, let X(Mg) be the subset of BC
given by

X(Mg) :=

\biggl\{ 
\phi \in BC \cap Lipy

\phi (x, y) = y \forall (x, y) \in \BbbR d \times \BbbR 
with Mg \leq y \leq 2Mg(1 - \lambda h)

\biggr\} 
,

where Lipy denotes the set of functions that are Lipschitz continuous with respect to
y. We introduce the operator T0 : X(Mg) \rightarrow X(Mg) defined by

(5.10) T0(\phi )(x, y) := T0(\Pi (\phi ))(x, y),

where \Pi is the continuous version of the projection \Pi \scrG \rho 

, i.e.,

\Pi (\phi )(x, y) :=

\left\{   y \wedge 2Mg if y \geq Mg,
\phi (x, y) if g(x) \leq y < Mg,
\phi (x, g(x)) if y \leq g(x).

Remark 5.3. Compared with (5.3) here we have modified the value of the operator
\Pi for y \geq Mg in order to guarantee the boundedness of the operator T . It is possible
to verify that this does not affect the proof of the main convergence result which only
concerns neighborhoods of points in D.

Observe that for functions \phi in X(Mg) the operator \Pi simplies to

(5.11) \Pi (\phi )(x, y) = \phi (x, g(x) \vee (y \wedge 2Mg)).
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Lemma 5.4. The operator T0 is well defined.

Proof. For every \phi \in X(Mg) the image T0(\phi ) is bounded and continuous. For
L \geq 0 let Lipy(L) \subset Lipy be the subset of functions with Lipschitz constant L. Then
we have for \phi \in Lipy(L)

| T0(\phi )(x, y) - T0(\phi )(x, y
\prime )| 

\leq max
u\in U

(1 - \lambda h)

2p

2p\sum 
k=1

\bigm| \bigm| \Pi (\phi )
\bigl( 
Xu,k,p

x (h), Y u
y (h)

\bigr) 
 - \Pi (\phi )

\bigl( 
Xu,k,p

x (h), Y u
y\prime (h)

\bigr) \bigm| \bigm| ,
where we use the notation

Xu,k,p
x (h) := x+ hb(x, u) +

\sqrt{} 
hp( - 1)k\sigma \lfloor k+1

2 \rfloor (x, u),

Y u
y (h) :=

y

1 - \lambda h

for any (x, y) \in \BbbR d+1 and u \in U . From (5.11) we obtain

| \Pi (\phi )(x, y) - \Pi (\phi )(x, y\prime )| = | \phi (x, y \vee (g(x) \wedge 2Mg)) - \phi (x, g(x) \vee (y\prime \wedge 2Mg))| 
\leq L| (y \vee (g(x) \wedge 2Mg)) - (y\prime \vee (g(x) \wedge 2Mg))| 
\leq L| y  - y\prime | ;

here we used the classical inequalitites

(5.12)
| a \vee b - c \vee d| \leq | a - c| \vee | b - d| ,
| a \wedge b - c \wedge d| \leq | a - c| \vee | b - d| .

Therefore, we have

| T0(\phi )(x, y) - T0(\phi )(x, y
\prime )| \leq max

u\in U

(1 - \lambda h)

2p

2p\sum 
k=1

L
\bigm| \bigm| Y u

y (h) - Y u
y\prime (h)

\bigm| \bigm| 
\leq max

u\in U

(1 - \lambda h)

2p

2p\sum 
k=1

L
| y  - y\prime | 
(1 - \lambda h)

,

which implies T0(\phi ) \in Lipy(L).
Moreover, for y \geq Mg one has y/(1 - \lambda h) > Mg and then

T0(\phi )(x, y) = min
u\in U

\Biggl\{ 
(1 - \lambda h)

2p

2p\sum 
k=1

\biggl( 
y

1 - \lambda h

\biggr) 
\wedge 2Mg

\Biggr\} 
= y \wedge 2Mg(1 - \lambda h),

which proves that T0(\phi ) \in X(Mg).

Next we verify the properties of stability, consistency, and monotonicity (in the
sense of assumption (H3)) for the scheme

(5.13) Sh(x, y, \phi (x, y), \phi ) :=
1

h

\Bigl( 
\phi (x, y) - T0(\phi )(x, y)

\Bigr) 
for \phi \in X(Mg).

The fact of dealing with an infinite horizon problem and therefore with a stationary
PDE requires the use of a fixed-point argument in order to prove the existence of a
solution for (5.13). We point out that, due to the presence of the projection operator,
X(Mg) is the suitable space to guarantee the continuity of T (\phi ).
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Lemma 5.5 (stability). For 0 \leq \lambda h < 1 there exists a fixed point of the equation

(5.14) Sh(x, y, \phi (x, y), \Pi (\phi )) =
1

h

\Bigl( 
\phi (x, y) - T0(\phi )(x, y)

\Bigr) 
in X(Mg) and the scheme Sh is stable in the sense of assumption (H3.a).

Proof. T0 is a contraction on X(Mg), since

\| T0(v) - T0(w)\| \infty \leq (1 - \lambda h)

2p

2p\sum 
k=1

\| (\Pi v) - (\Pi w)\| \infty \leq (1 - \lambda h) \| v  - w\| \infty .

Furthermore, since (X(Mg), \| \cdot \| \infty ) is a closed subset of (BC, \| \cdot \| \infty ), it is a complete
metric space. Thus we obtain existence by the Banach--Cacioppoli fixed-point theo-
rem. Stability in the sense of assumption (H3.a) follows from the fact that the bound
and the Lipschitz constant of the fixed point do not depend on h.

The lemma implies in particular that for any (x, y) \in D there exists a solution in
X(Mg) of the scheme

Sh(x, y, \phi (x, y), \Pi (\phi )) = 0,

which we denote by V h in what follows. Observe that V h automatically satisfies the
boundary condition V h(x,Mg) = Mg.

Lemma 5.6 (consistency). For any smooth and bounded function \phi , there exists
some C > 0 such that\bigm| \bigm| \bigm| \bigm| 1h (\phi (x, y) - T0(\phi )(x, y)) - 

\Bigl( 
\lambda \phi +H(x, y,Dx\phi , \partial y\phi ,D

2
x\phi )

\Bigr) \bigm| \bigm| \bigm| \bigm| \leq Ch.

Proof. The assertion follows straightforwardly by a Taylor expansion. For sim-
plicity we show the results in the one-dimensional case. Observing that

1

1 - \lambda h
= 1 + \lambda h+O(h2),

we have

\phi (x, y) - T0(\phi )(x, y)

= \phi (x, y) - (1 - \lambda h)

2
min
u\in U

\Bigl\{ 
\phi 
\Bigl( 
x+ hb(x, u) +

\surd 
h\sigma (x, u),

y

1 - \lambda h

\Bigr) 
+ \phi 

\Bigl( 
x+ hb(x, u) - 

\surd 
h\sigma (x, u),

y

1 - \lambda h

\Bigr) \Bigr\} 
= \lambda h\phi (x, y) - (1 - \lambda h)

2
min
u\in U

\Bigl\{ 
\phi x(x, y)(hb(x, u) +

\surd 
h\sigma (x, u)) + \phi y(x, y)(\lambda hy)

+
1

2
\phi xx(x, y)(hb(x, u) +

\surd 
h\sigma (x, u))2 + \phi xy(x, y)(hb(x, u) +

\surd 
h\sigma (x, u))(\lambda hy)

+
1

6
\phi xxx(x, y)(hb(x, u) +

\surd 
h\sigma (x, u))3

+ \phi x(x, y)(hb(x, u) - 
\surd 
h\sigma (x, u)) + \phi y(x, y)(\lambda hy)

+
1

2
\phi xx(x, y)(hb(x, u) - 

\surd 
h\sigma (x, u))2 + \phi xy(x, y)(hb(x, u) - 

\surd 
h\sigma (x, u))(\lambda hy)

+
1

6
\phi xxx(x, y)(hb(x, u) - 

\surd 
h\sigma (x, u))3

\Bigr\} 
+O(h2)

= \lambda h\phi (x, y) - min
u\in U

\Bigl\{ 
hb(x, u)\phi x(x, y)+h\lambda y\phi y(x, y)+

1

2
h\sigma 2(x, u)\phi xx(x, y)

\Bigr\} 
+O(h2).
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Lemma 5.7 (monotonicity). For any h > 0 with 0 \leq \lambda h < 1 the scheme is
monotone in the sense of assumption (H3.c).

Proof. For (x, y) \in D the definition of the operator T involves only values at
points (x+hb(x, u)+

\surd 
hp( - 1)k\sigma \lfloor k+1

2 \rfloor (x, u), y/(1 - \lambda h)) which remain in a neighbor-

hood B\eta (h) of (x, y), with \eta (h) = O(
\surd 
h). Moreover, by definition we have

Sh(x, y, \phi (x, y), \phi ) =
1

h

\Bigl( 
\phi (x, y) - T0(\phi )(x, y)

\Bigr) 
and the assertion follows immediately, since for \phi 1 \leq \phi 2 we have

T0(\phi 1)(x, y) \leq T0(\phi 2)(x, y).

Having verified the assumptions (H3), we can apply Theorem 5.2 and state a
convergence result for the semidiscrete scheme.

Theorem 5.8. Let assumptions (H1)--(H2) be satisfied. Then for h \rightarrow 0 the
solution V h of the scheme (5.14) converges uniformly to \vargamma in D.

5.2.2. Full discretization. Now, we consider the scheme on the discretized
space. This requires we introduce an interpolation step in order to define the value
of the solution at points\biggl( 

xi + hb(xi, u) +
\sqrt{} 
hp( - 1)k\sigma \lfloor k+1

2 \rfloor (xi, u),
yj

1 - \lambda h

\biggr) 
that may not belong to the grid \scrG \rho (\rho \equiv (\Delta x,\Delta y)). We denote by [ \cdot ] the monotone,
P1 interpolation operator, satisfying the following properties:

(5.15)

(i) [\phi ](xi, yj) = \phi (xi, yj) \forall (xi, yj) \in \scrG \rho ;
(ii) | [\phi ](x, y) - \phi (x, y)| \leq L| (\Delta x,\Delta y)| \forall \phi \in Lip(L);
(iii) | [\phi ](x, y) - \phi (x, y)| \leq C(| \Delta x| 2 +\Delta y2)

\bigm\| \bigm\| D2\phi 
\bigm\| \bigm\| 
\infty \forall \phi \in C2;

(iv) \phi 1 \leq \phi 2 \Rightarrow [\phi 1] \leq [\phi 2].

The fully discrete operator is then defined by

T (\phi )(xi, yj)

:= min
u\in U

\Biggl\{ 
(1 - \lambda h)

2p

2p\sum 
k=1

[\phi ]

\biggl( 
xi + hb(xi, u) +

\sqrt{} 
hp( - 1)k\sigma \lfloor k+1

2 \rfloor (xi, u),
yj

1 - \lambda h

\biggr) \Biggr\} 

and the fully discrete scheme reads

(5.16) S\rho (xi, yj , \phi (xi, yj), \Pi 
\scrG \rho 

\phi ) :=
1

h

\Bigl( 
\phi (xi, yj) - T (\Pi \scrG \rho 

\phi )(xi, yj)
\Bigr) 
,

where

\Pi \scrG \rho 

(\phi )(xi, yj) :=

\left\{   yj \wedge 2Mg if yj \geq Mg,
\phi (xi, yj) if g(xi) \leq yj < Mg,
\phi (xi, g(xi)) if yj \leq g(xi).

We associate to each grid function S\rho (\cdot , \cdot , \phi (\cdot , \cdot ), \Pi \scrG \rho 

\phi ) the continuous function ob-
tained by bilinear interpolation in the grid points and denote it by the same expression.
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Theorem 5.9. Let 0 \leq \lambda h < 1 and let the following condition be satisfied:

| \Delta x| 2 +\Delta y2

h
\rightarrow 0 as \rho , h \rightarrow 0.

Then scheme (5.16) is stable in the subspace of piecewise linear functions in X(Mg),
consistent and monotone in the sense of definition (H3).

Proof. Stability follows by similar arguments as in the semidiscrete case. In-
deed, observing that the bilinear interpolation preserves the Lipschitz constant, the
fixed-point theorem still holds if we consider piecewise bilinear functions in X(Mg).
Consistency can follow by (5.15)(iii). Indeed, when interpolation is taken into account,
in the estimates obtained proving Lemma 5.6 one gets the extra term

| \Delta x| 2 +\Delta y2

h
\| \phi xx\| 

which goes to zero guaranteeing the consistency property. Monotonicity is ensured
by the use of a linear interpolation.

Corollary 5.10. Let 0 \leq \lambda h < 1 and let the following condition be satisfied:

| \Delta x| 2 +\Delta y2

h
\rightarrow 0 as \rho , h \rightarrow 0.

Then, as \rho , h \rightarrow 0 the solution V h,\rho of the fully discrete scheme (5.16) converges in
D to the unique viscosity of (4.8).

Proof. The proof follows from Theorems 5.9 and 5.2.

6. A numerical test. In this section we present a numerical result where the
controlled system Xu

x (\cdot ) in \BbbR 2 satisfies the following stochastic differential equation:

(6.1)

\left\{   dX(s) =

\biggl( 
X2(s)
u(s)

\biggr) 
ds+ \sigma (X(s)) dBs, s \geq 0,

X(0) = x,

where B\cdot is a two-dimensional Brownian motion (p = 2), U = [ - 1, 1] \subset \BbbR and the
function \sigma : \BbbR 2 \rightarrow \BbbR 2\times 2 is defined, for every x \equiv (x1, x2)

T \in \BbbR 2, by

\sigma (x) =
1

2
max(1 - 

\sqrt{} 
(x1 + 0.5)2 + (x2  - 0.5)2, 0)\times 

\biggl( 
1 0
0 1

\biggr) 
.

This setting satisfies assumption (H1). We consider the cost function g : \BbbR 2 \rightarrow \BbbR 
with

g(x) :=
1

2
d(x,\scrK ) \forall x \in \BbbR 2,

where d(x,\scrK ) stands for the Euclidean distance between x \in \BbbR 2 and the set \scrK :=
[ - 1, 1]2. The auxiliary value function that will be approximated is given by

\vargamma (x, y) = inf
u\in \scrU 

\BbbE 
\biggl[ 

max
s\in [0,+\infty )

e - \lambda sd(Xu
x (s),\scrK ) \vee y

\biggr] 
with \lambda = 2.

In this test, the computational domain for (x1, x2, y) is

\Upsilon := [ - 2, 2]\times [ - 2, 2]\times [ - 1, 1].
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Observe that, given the boundedness of \Upsilon , the function g satisfies assumption (H2).
The numerical scheme implemented is the SL scheme introduced in section 5.2.

We denote by Nx1
, Nx2

, and Ny the number of mesh steps for the space variables
x1, x2, and y on the domain \Upsilon , i.e., \Delta x1 = 4/Nx1 , \Delta x2 = 4/Nx2 , and \Delta y = 2/Ny.
According to section 5.2, we also use the notation h for the time step in the SL scheme.

The control values u are in [ - 1, 1] and since the dynamics depends linearly on
the control, we consider in the numerical simulations only five control values (Nu =
5) u \in \{  - 1; - 0.5; 0; 0.5; 1\} (actually, we have also verified that three control values
u \in \{  - 1; 0; 1\} give analogous results).

Table 1
Convergence table.

Grid h L1-error Order L2-error Order L\infty -error Order

402 \times 10 0.24 1.89E-01 - 2.37E-01 - 1.14E+00 -
802 \times 20 0.12 9.71E-02 0.96 1.34E-01 0.83 7.28E-01 0.64
1602 \times 40 0.06 4.17E-02 1.22 6.35E-02 1.07 4.04E-01 0.85
3202 \times 80 0.03 1.41E-02 1.57 2.26E-02 1.49 1.73E-01 1.23

(a) (b)

(c)

Fig. 1. Approximation of \vargamma (\cdot , \cdot , 0) on three different grids.
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Since the exact value function is not known, we solve first the HJB equation on
a refined grid where Nx1

= Nx2
= 640 and Ny = 160 and with h = 0.015. We denote

by V ref the approximated solution obtained on this grid that we will consider as a
reference solution. To check the stability and numerical convergence of the SL scheme,
we consider different grids \scrG \rho (\rho \equiv (\Delta x1, \Delta x2, \Delta y)) and time steps h, and compute
the numerical solutions V h,\rho . In Table 1, we report the numerical error \| V ref - V h,\rho \| 
for different grids and norms. In this table, the first two columns indicate the grid
size (i.e., Nx1

\times Nx2
\times Ny) and the SL time step h, respectively. In the other three

columns, we report the computed error in L1, L2, and L\infty -norm and the associated
order of convergence.

From this table, one can notice that the SL scheme is stable in L\infty -norm. This
confirms the theoretical results of the previous sections (compare these results with
Lemma 5.6 and Theorem 5.9, which give for | \Delta x| , \Delta y \sim h order one of consistency).
Moreover, we observe that the numerical convergence is also valid in L1 and L2 norms.
The observed asymptotic rate of convergence, for this example, seems to tend toward
an order greater than one (however, this observation might be due to the fact that
we are comparing with a numerical reference solution and not with the exact solution
itself).

Figure 1 shows the approximation of \vargamma (x1, x2, 0) = v(x1, x2) (where v is defined
as in (2.4)) obtained on different grids. More precisely, Figure 1(a) corresponds to an
approximation of \vargamma (\cdot , 0) on a grid of 20\times 20\times 5 points and with h = 0.48. In Figure
1(b) the approximation of \vargamma (\cdot , 0) is computed on a grid of 40 \times 40 \times 10 points and
with h = 0.24. And finally, we display in Figure 1(c) an approximation of \vargamma (\cdot , 0) on a
grid of 80\times 80\times 20 points and with h = 0.12. From these plots, we notice again that
the numerical scheme is stable.

7. Conclusions. In this paper we have studied infinite horizon stochastic opti-
mal control problems with cost in maximum form. By the introduction of an auxil-
iary Markovian problem and dynamic programming arguments we have characterized
the associated value function by means of an HJB equation with mixed Dirichlet-
derivative boundary conditions. We have proposed a general numerical scheme which
incorporates the treatment of the boundary condition and proved its convergence to
the unique viscosity solution of the HJB equation under the assumptions of mono-
tonicity, consistency, and stability. Furthermore, we have shown that a particular SL
scheme satisfies such assumptions and therefore can be used to approximate the value
function of the original problem.

Further directions of work might involve the application of our scheme to the
computation of viable and invariant sets (see [11, section 2.3]) as well as the theoretical
proof of the associated rate of convergence.
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