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Abstract. Optimal control problems governed by the dynamical Lamé sys-
tem with additional constraints on the controls are analyzed. Different types

of control action are considered: distributed, Neumann boundary and Dirich-

let boundary control. To treat the inequality control constraints semi-smooth
Newton methods are applied and their convergence is analyzed. Although

semi-smooth Newton methods are widely studied in the context of pde-con-

strained optimization little has been done in the context of the dynamical
Lamé system. The novelty of the paper is the proof that in case of distributed

and Neumann boundary control the Newton method converges superlinearly.

In case of Dirichlet control superlinear convergence is shown for a strongly
damped Lamé system. The results are an extension of Kröner, Kunisch, and

Vexler (2011), where optimal control problems of the classical wave equation

are considered. The control problems are discretized by finite elements and
numerical examples are presented.

1. Introduction

In this paper we analyze semi-smooth Newton methods for optimal control prob-
lems governed by the dynamical Lamé system with control constraints. The control
problems are of the following type:

(1.1)

Minimize J(u, y) = G(y) +
α

2
‖u‖2Uω , subject to

y = S(u), y ∈ Y, u ∈ Uad ⊂ Uω
with control space Uω, state space Y and α > 0. The control-to-state operator
S : Uω → Y is assumed to be affine-linear, the functional G : Y → R to be quadratic.
The control and state space and the operators are defined in more detail in the
next section. The choice of the control-to-state operator incorporates distributed
as well as Neumann and Dirichlet boundary control problems of the dynamical
Lamé system which we will consider later. The set of admissible controls is defined
by

Uad = {u ∈ Uω | ua ≤ u ≤ ub }
for given ua, ub ∈ Uω.

To specify the control-to-state operator we introduce the dynamical Lamé sys-
tem. Let Ω ⊂ Rd, d = 1, 2, 3, be a bounded domain with C2-boundary (bounded
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interval if d = 1) and T > 0. We define ω = Ω in case of distributed control and
ω = ∂Ω in case of Neumann and Dirichlet boundary control and set

I = (0, T ), Q = I ×Ω, Σ = I × ∂Ω.

Further, we introduce the strain tensor

εij(v) =
1

2
(∂ivj + ∂jvi)

and stress tensor

σij(v) = λδij tr(ε(v)) + 2µεij(v)

for the Lamé parameters λ, µ > 0 and i, j ∈ { 1, 2, . . . , d }. Here, tr : Rd×d → R

denotes the usual trace operator and δij the Kronecker delta symbol. For u ∈ Uω
the operator S is given as the solution operator of

(1.2)


ytt − div σ(y) = Bu in Q,

y(0) = y0 in Ω,

yt(0) = y1 in Ω,

Cy = Du on Σ

for given initial values (y0, y1) and operators B, C,D which are given by

B = id, C = id, D ≡ 0, (distributed control)(1.3)

Bu = f, Cy = σ(y) · n, D = id, (Neumann boundary control)(1.4)

Bu = f, C = id, D = id (Dirichlet boundary control)(1.5)

depending on the type of control. Here, n denotes the outer normal and id the
identity operator.

For treating the inequality control constraints and solving (1.1) we apply a semi-
smooth Newton method (cf. [4, 9, 10, 27]). These methods are very efficient for
a large class of optimization problems with partial differential equations; see, e.g.,
[4, 9, 14, 15, 26]. To verify superlinear convergence of the Newton method we need
slant differentiability of the underlying functional and boundedness of the inverse
of this generalized derivative, then superlinear convergence follows by well-known
results (see [4],[9]). The novelty of this paper is the proof that these two properties
are given in case of distributed and Neumann boundary control of the Lamé system
and in case of Dirichlet boundary control for a strongly damped Lamé system. To
verify this we combine results from regularity theory for the Lamé system, slant
differentiability, semi-smooth Newton methods, and from an additional regularity
result for the strongly damped Lamé system which we will prove in the sequel.
This paper is an extension of the results developed in [14], where the convergence
of semi-smooth Newton methods for optimal control problems governed by the wave
equation is analyzed.

To derive slant differentiability we need a smoothing property of the operator
mapping the control to the adjoint state and Neumann traces of the adjoint state,
respectively. In case of distributed and Neumann boundary control of the Lamé
system this smoothing property is given. However, in case of Dirichlet control this
condition is not given in general. This motivates to consider the strongly damped
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dynamical Lamé system given by

(1.6)


ytt − div σ(y)− ρdiv σ(yt) = f in Q,

y(0) = y0 in Ω,

yt(0) = y1 in Ω,

y = u on Σ

with damping parameter ρ > 0 leading to higher regularity of the adjoint state
and superlinear convergence of the Newton method. Control problem (1.1) with S
given by the control-to-state operator of (1.6) with small ρ > 0 can be interpreted
as a regularized optimal Dirichlet boundary control problem of the dynamical Lamé
system. Moreover, it is an interesting problem on its own, since it can be seen as
a model for problems involving loss of energy; cf. the discussion in the context of
the wave equation in [19, p. 334].

Semi-smooth Newton methods can be equivalently formulated as primal-dual
active set methods (PDAS); cf. [9]. These methods exploit pointwise information of
Lagrange multipliers for updating active and inactive sets. To ensure this property
we will choose the control space Uω as a set of L2-functions; cf. the discussion
in [15].

The control problems under consideration are discretized by finite elements sim-
ilar to [14] and numerical examples are presented.

The literature for numerical methods for optimal control of the Lamé system
and second order hyperbolic equations is significantly less rich than for elliptic and
parabolic equations. Let us mention some recent contributions. Adaptive finite
element methods for control problems arising from the Lamé system are considered
in [13] and for the wave equation in [11]. In [28] a time optimal control problem for
the wave equation is analyzed. Control problems governed by the wave equation
with state constraints are discussed in [8].

Controllability problems for the Lamé system can be found in [1] and for higher
dimensional hyperbolic systems in [21]. Discretization issues for controllability
problems for the wave equation are considered in [5, 29], where the authors present
an overview about some recent results.

This paper is organized as follows: In Section 2 the semi-smooth Newton method
is formulated for an abstract optimal control problem and conditions for superlinear
convergence are presented, in Section 3 existence and regularity results for the
dynamical Lamé system are derived, in Section 4 the optimal control problems
are formulated and the convergence of the semi-smooth Newton method applied to
these problems is analyzed, in Section 5 the control problems are discretized, and
in Section 6 numerical examples are presented.

2. Semi-smooth Newton method for a general control problem

In this section we formulate an optimal control problem in an abstract setting
and present conditions under which a semi-smooth Newton method applied to this
control problem converges superlinearly.

Thereby and throughout this paper we use the following notation. For Ba-
nach spaces E,Z let L(E,Z) denote the set of linear and continuous mappings
from E to Z. Further, we use the usual notion for Lebesgue and Sobolev spaces
and set L2(E) = L2(0, T ;E), Hs(E) = Hs(0, T ;E), s ∈ [0,∞), W 1,∞(E) =
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W 1,∞(0, T ;E), C(E) = C([0, T ];E), and C1(E) = C1([0, T ];E). Moreover, we will
use the following notations for inner products

(·, ·) = (·, ·)L2(Ω)d , (·, ·)I = (·, ·)L2(L2(Ω)d), 〈·, ·〉I = (·, ·)L2(L2(∂Ω)d)

and the L2-norm on Ω is denoted by ‖·‖. C > 0 denotes a generic constant.
We recall the notion of slant differentiability for mappings F : D ⊂ E → Z.

Definition 2.1. The mapping F : D ⊂ E → Z is called slant differentiable in
the open subset U ⊂ D if there exists a family of generalized derivatives G : U →
L(E,Z) such that

lim
h→0

1

‖h‖E
‖F (x+ h)− F (x)−G(x+ h)h‖Z = 0(2.1)

for every x ∈ U .

Remark 2.2. The notion of slant differentiability was introduced in [4]. We use a
slight adaptation of the definition formulated there for which also the terminology
Newton differentiability is used, see [9, 10]. The definition of slant differentiability
in an open set in Definition 2.1 does not require that {G(x) | x ∈ U } is bounded
in L(E,Z) in contrast to [4]. In [4] the authors also introduce the notion of slant
differentiability in a point. For smooth problems the assumption of slant differen-
tiability in an open set corresponds to the assumption that one knows the domain
in which a second order sufficient optimality condition is given, see the discussion
in [9].

Slant differentiability allows to define a generalized Newton method; see [4, 9, 25].

Theorem 2.3. Let x∗ ∈ D be a solution to F (x) = 0, F be slant differentiable with
slant derivative G in an open neighborhood U containing x∗, and

{
∥∥G(x)−1

∥∥
L(Z,E)

| x ∈ U }

be bounded. Then for x0 ∈ D the semi-smooth Newton iteration

xk+1 = xk −G(xk)−1F (xk), k ∈ N0,

converges superlinearly to x∗ provided that ‖x0 − x∗‖E is sufficiently small.

Remark 2.4. The composition of a slant and Fréchet differentiable map is again
slant differentiable; see [10, p. 238].

It is well-known, that a candidate for a slant derivative of the max-operator is
given by

Gmax(v)(t, x) =

{
1 if v(t, x) ≥ 0,
0 if v(t, x) < 0

(2.2)

for real-valued functions v on I × ω. Further, the operator

max: Lr(Lr(ω))→ Lq(Lq(ω))

with 1 ≤ q < r <∞ is slant differentiable on Lr(Lr(ω)) with slant derivative (2.2);
see [9]. For functions v defined on I ×ω with values in Rd we define the max- and
min-operators by components

max(0, v) = v, vi = max(0, vi), i = 1, . . . , d, v ∈ Rd,

min(0, v) = v, vi = min(0, vi), i = 1, . . . , d, v ∈ Rd.
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Consequently, we derive from Definition 2.1 the slant differentiability of

max : Lr(Lr(ω)d)→ Lq(Lq(ω)d)(2.3)

for 1 ≤ q < r <∞. The corresponding result holds also for the min-operator. The
slant differentiability of these operators is applied later in this section.

To formulate the functional analytic setting of the control problem under con-
sideration we define the spaces

V0 = H1
0 (Ω)d, V = H1(Ω)d, H = L2(Ω)d

and further, the state and control space

Y = L2(H), Uω = L2(L2(ω)d).

We consider general linear quadratic optimal control problems of type (1.1) with
control-to-state operator

S : Uω → Y, S(u) = T (u) + ȳ(2.4)

with T ∈ L(Uω, Y ) and ȳ ∈ Y . The functional G : Y → R is assumed to be
quadratic with G′ : L2(H)→ L2(H) affine linear and for given γ > 0

(G′′(y)v, v) ≥ γ ‖v‖2L2(H)(2.5)

for all y ∈ L2(H) and all v ∈ L2(H). The set of admissible controls is given by

Uad = {u ∈ Uω | ua ≤ u ≤ ub in I × ω }(2.6)

for ua, ub ∈ Uω.
The existence of a unique global solution of the control problem (1.1) with

control-to-state operator (2.4), functional G defined as above, and with the set
of admissible controls (2.6) follows by standard arguments; see, e.g., [17].

To derive optimality conditions we introduce the reduced cost functional

j : Uω → R, j(u) = G(S(u)) +
α

2
‖u‖2Uω

and reformulate the optimal control problem equivalently as

Minimize j(u), u ∈ Uad.

Then the necessary optimality condition can be formulated as

F(u) = 0(2.7)

with F : Uω → Uω given by

F(u) = α(u− ub) + max(0, αub − q(u)) + min(0, q(u)− αua)

and q : Uω → Uω by

q(u) = −T ∗G′(S(u)).(2.8)

This can be obtained by standard arguments; cf. [12, 14]. We apply a semi-smooth
Newton method to solve equation (2.7) and analyze its convergence behavior. To
ensure superlinear convergence of the semi-smooth Newton method we need the
following assumption.

Assumption 2.5. The operator q defined in (2.8) is a continuous affine-linear
operator

q : L2(L2(ω)d)→ Lr(Lr(ω)d)

for some r > 2.
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In Section 4 we will check whether this assumption is satisfied in case of dis-
tributed, Neumann boundary and Dirichlet boundary control of the dynamical
Lamé system.

Assumption 2.5 guarantees the slant differentiability of the operator F . To
formulate the slant derivative of F we use the generalized derivatives of max- and
min-operators chosen as

(Gmax(v)φ)(t, x) = ((Gmax(v1)φ1)(t, x), . . . , (Gmax(vd)φd)(t, x))T ,

(Gmin(v)φ)(t, x) = ((Gmin(v1)φ1)(t, x), . . . , (Gmin(vd)φd)(t, x))T

for v = (v1, . . . , vd)
T ∈ Uω and φ = (φ1, . . . , φd)T ∈ Uω with

(Gmax(w)ψ)(t, x) =

{
ψ(t, x) if w(t, x) ≥ 0,

0 if w(t, x) < 0,

(Gmin(w)ψ)(t, x) =

{
ψ(t, x) if w(t, x) ≤ 0,

0 if w(t, x) > 0

for w,ψ ∈ L2(L2(ω)), (t, x) ∈ I × ω. Thus, Assumption 2.5, Remark 2.4 and
property (2.3) imply, that the operator F : Uω → Uω is slant differentiable with
generalized derivative GF (u) ∈ L(Uω, Uω) given as

(2.9) GF (u)h = αh+Gmax(αub − q(u))T ∗G′′(S(u))Th

−Gmin(q(u)− αua)T ∗G′′(S(u))Th

for ua, ub ∈ Lr(Lr(ω)d), r > 2.
We want to apply Theorem 2.3 to derive superlinear convergence. Therefore we

further need the boundedness of the inverse of GF (u).

Lemma 2.6. There exists an inverse operator GF (u)−1 ∈ L(Uω, Uω) for given
u ∈ Uω. Further, there exists a constant CG > 0 such that

(2.10) ‖GF (u)−1(w)‖Uω ≤ CG ‖w‖Uω
for all w ∈ Uω and for each u ∈ Uω.

Proof. Let for i = 1, . . . , d

Ii = {(t, x) ∈ I × ω : αua(t, x)i ≤ q(u)i(t, x) ≤ αub(t, x)i},
Ai = (I × ω) \ Ii,

where the index i denotes the ith component and ua, ub ∈ Uω. By χIi we denote
the characteristic function of the set Ii and by χAi the characteristic function of Ai
for i = 1, . . . , d. Further we set I = I1 × · · · × Id, A = A1 × · · · × Ad, and define
the extension-by-zero operator EI : L2(I) → Uω and its adjoint E∗I : Uω → L2(I)
as a restriction operator. Accordingly EA and E∗A are defined. Further, we denote
the identity map on L2(I) by idI and on L2(A) by idA. For h ∈ Uω there holds

GF (u)(h) = (g1, . . . , gd)
T , gi =

{
αhi on Ai,
αhi + (T ∗G′′(S(u))Th)i on Ii.

(2.11)

Thus following [9, Appendix A] we have with D = T ∗G′′(S(u))T

GF (u)(h) =

(
α idI +E∗IDEI E∗IDEA

0 α idA

)(
h̃I
h̃A

)
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with h̃I = E∗Ih and h̃A = E∗Ah. Consequently, using (2.5) we derive that for given
w ∈ Uω there exists a unique h ∈ Uω such that w = GF (u)(h). Since GF (u) ∈
L(Uω, Uω) we obtain from the bounded inverse theorem GF (u)−1 ∈ L(Uω, Uω).

To verify the estimate (2.10) we proceed similarly as in [14, Proof of Lemma
2.9]. For given w ∈ Uω let h ∈ Uω be the solution of

(2.12) w = GF (u)(h).

Let
hA = (h1χA1 , . . . , hdχAd)T , hI = (h1χI1 , . . . , hdχId)T ,

wA = (w1χA1 , . . . , wdχAd)T , wI = (w1χI1 , . . . , wdχId)T

with h = (h1, . . . , hd)
T and w = (w1, . . . , wd)

T . From (2.11) we obtain

(2.13) ‖hA‖Uω =
1

α
‖wA‖Uω .

By taking the inner product of (2.12) with hI we find

α ‖hI‖2Uω + (G′′(S(u))Th, ThI)I = (w, hI)I

implying that

α ‖hI‖2Uω + (G′′(S(u))ThI , ThI)I = (w, hI)I − (G′′(S(u))ThA, ThI)I .

Thus, since G′′ is non-negative, we obtain

α ‖hI‖2Uω ≤ ‖wI‖Uω ‖hI‖Uω +K‖hA‖Uω ‖hI‖Uω
for a constant K independent of h and u. As a direct consequence we have

(2.14) α ‖hI‖Uω ≤ ‖wI‖Uω +K‖hA‖Uω ≤ ‖wI‖Uω +
K

α
‖wA‖Uω .

Finally, the estimate follows by (2.13) and (2.14). �

Thus, we can state the superlinear convergence result.

Theorem 2.7. Let Assumption 2.5 be fulfilled and u∗ ∈ Uω be a solution to the
optimal control problem under consideration. Then, for u0 ∈ Uω the semi-smooth
Newton method

GF (uk)(uk+1 − uk) + F(uk) = 0, k = 0, 1, 2, . . . ,(2.15)

converges superlinearly if ‖u0 − u∗‖Uω is sufficiently small.

Proof. This follows from Theorem 2.3, Lemma 2.6, and (2.9). �

Remark 2.8. The semi-smooth Newton method (2.15) is equivalent to a primal-
dual active set method (PDAS), cf. [14], which we will apply for the numerical
realization. If two successive active sets of the PDAS method are equal, the solution
is found. This condition will be used as a stopping criterion for the numerical
examples.

To verify superlinear convergence of the semi-smooth Newton method applied to
the problems under consideration Assumption 2.5 has to be verified for the different
optimal control problems. Therefore, we derive some regularity results for the Lamé
system in the next section.
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3. The dynamical Lamé system

In this section we recall some results on existence and regularity of the solutions
of the dynamical Lamé systems. Furthermore we prove a regularity result for the
strongly damped Lamé system (1.6).

We start our consideration with an existence result for the homogeneous system.

3.1. Homogeneous system. For the homogeneous dynamical Lamé system there
holds the following theorem.

Theorem 3.1. Let W = V0 in case of homogeneous Dirichlet boundary conditions
and W = V in case of homogeneous Neumann conditions. For f ∈ L2(H), y0 ∈W ,
and y1 ∈ H there exists a unique solution

y ∈ C(W ) ∩ C1(H) ∩H2(W ∗),

of the system

(3.1)


ytt − div σ(y) = f in Q,

y(0) = y0 in Ω,

yt(0) = y1 in Ω

with either homogeneous Dirichlet or Neumann boundary conditions. The solution
satisfies the variational formulation
(3.2)

(ytt, ξ) + λ(div(y),div(ξ)) + 2µ(ε(y) : ε(ξ)) = (f, ξ) ∀ξ ∈W, t ∈ (0, T )

with y(0) = y0 and yt(0) = y1 (here we use the notation A : B = tr(ATB) for
matrices A,B ∈ Rν×ν , ν ∈ N).

Proof. The proof follows by standard arguments using Korn’s first inequality and
[18, p. 271]. �

3.2. Inhomogeneous Neumann problem. There exists a unique very weak so-
lution of system (1.2) with operators given by (1.4).

Lemma 3.2. For u ∈ U∂Ω, f ∈ L1(V ∗), y0 ∈ H, and y1 ∈ V ∗ there exists a very
weak solution y ∈ L2(H) of (1.2) with operators given by (1.4) satisfying

(y, g)I =

∫ T

0

〈f(t), ξ(t)〉V ∗,V dt− (y0, ξt(0)) + 〈y1, ξ(0)〉V ∗,V + 〈u, ξ〉I ,(3.3)

where ξ = ξg is the solution of

(3.4)


ξtt − div σ(ξ) = g in Q,

ξ(T ) = 0 in Ω,

ξt(T ) = 0 in Ω,

σ(ξ) · n = 0 on Σ

for g ∈ L2(H).

Proof. From Theorem 3.1 we obtain the boundedness of the right side in (3.3).
Thus, the assertion follows by Riesz representation theorem. �
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3.3. Inhomogeneous Dirichlet problem. The system with inhomogeneous Dirich-
let boundary condition is given by (1.2) with operators given by (1.5). To derive
existence of a solution in Y for given u ∈ U∂Ω we need a hidden regularity result
for the Neumann trace of the solution of the corresponding homogeneous system.

Lemma 3.3. For u ∈ U∂Ω, f ∈ L1(V ∗0 ), y0 ∈ H, and y1 ∈ V ∗0 there exists a very
weak solution y ∈ L2(H) of (1.2) together with (1.5) satisfying

(y, g)I =

∫ T

0

〈f(t), ξ(t)〉V ∗0 ,V0
dt− (y0, ξt(0)) + 〈y1, ξ(0)〉V ∗0 ,V0

− 〈u, σ(ξ) · n〉I ,

(3.5)

where ξ = ξg is the solution of

(3.6)


ξtt − div σ(ξ) = g in Q,

ξ(T ) = 0 in Ω,

ξt(T ) = 0 in Ω,

ξ = 0 on Σ

for g ∈ L2(H).

Proof. As in the proof of Lemma 3.2 we will apply Riesz representation theorem.
To show that the right side of (3.5) is bounded, the main task is, to verify some
hidden regularity for the solution ξ of (3.6) namely σ(ξ) · n ∈ L2(L2(∂Ω)d). This
corresponds for d = 1 to the well-known hidden regularity result for the wave
equation; see, e.g., [16]. The boundedness of the other terms of the right hand side
of (3.5) follows by Theorem 3.1. The hidden regularity for the Lamé system is shown
in [1, Proof of Proposition 1]. In this reference the case d = 3 is considered, but it
holds for d = 2, too. Thus, existence follows by Riesz representation theorem. �

Next we will study a strongly damped dynamical Lamé system given in (1.6)
for 0 < ρ < ρ0, ρ0 ∈ R+. To formulate a existence result we first consider the
corresponding homogeneous system with u ≡ 0.

Theorem 3.4. For u ≡ 0, f ∈ L2(H), y0 ∈ H1
0 (Ω)d ∩H2(Ω)d, and y1 ∈ V ∗0 , there

exists a unique weak solution of (1.6)

y ∈ H2(L2(Ω)d) ∩ C1(H1
0 (Ω)d) ∩H1(H2(Ω)d)(3.7)

defined by y(0) = y0, yt(0) = y1 and

(3.8)

(ytt(s), φ) + (λ+ µ)(div y(s),div φ) + µ(∇y(s) : ∇φ) + ρ(λ+ µ)(div yt(s),div φ)

+ ρµ(∇yt(s) : ∇φ) = (f(s), φ) ∀φ ∈ V0 a.e. in (0, T ).

Moreover, the a priori estimate

(3.9) ‖y‖H2(L2(Ω)d)∩C1(H1
0 (Ω)d)∩H1(H2(Ω)d) ≤ C

(
‖f‖L2(H) + ‖∇y0‖+ ‖div y0‖

+ ‖∆y0‖+ ‖∇ div y0‖+ ‖∇y1‖+ ‖div y1‖
)

holds, where the constant C = C(ρ) tends to infinity as ρ tends to zero.
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Before we prove the theorem we make a short remark on the variational formu-
lation (3.8).

Remark 3.5. Let the data be given as in Theorem 3.4. Then, a solution of (1.6)
with u ≡ 0 which satisfies the regularity condition in (3.7) is also a solution of the
system

(3.10)


ytt − (µ+ λ)∇ div y − µ∆y − ρ((λ+ µ)∇ div yt + µ∆yt) = f in Q,

y(0) = y0 in Ω,

yt(0) = y1 in Ω,

y = 0 on Σ

and conversely, a solution of (3.10) satisfying (3.7) is a solution of (1.6) with
u ≡ 0. Consequently, a sufficient smooth solution of (3.8) is a solution of (1.6)
with u ≡ 0.

To prove Theorem 3.4 we apply a Galerkin procedure.

Proof of Theorem 3.4. To apply a Galerkin procedure we construct solutions ym,
m ∈ N, of finite dimensional approximations of (3.8) and pass to the limit m→∞;
cf. [14] and [6, Chap. 7]. Thus, the main task is to prove the estimate

(3.11)

‖y‖H2(L2(Ω)d)∩W 1,∞(H1
0 (Ω)d)∩H1(H2(Ω)d) ≤ C

(
‖f‖L2(H) + ‖∇y0‖+ ‖div y0‖

+ ‖∆y0‖+ ‖∇ div y0‖+ ‖∇y1‖+ ‖div y1‖
)

for these approximating functions ym leading to existence of a solution y in

H2(L2(Ω)d) ∩W 1,∞(H1
0 (Ω)d) ∩H1(H2(Ω)d).(3.12)

Then the step to (3.7) follows by classical arguments; cf. [14, p. 838].
To prove (3.11) we proceed in five steps:

(i) We test (3.8) with yt. Then we obtain

(3.13)

(ytt(s), yt(s))+(λ+µ)(div y(s),div yt(s))+µ(∇y(s) : ∇yt(s))+ρ(λ+µ) ‖div yt‖2

+ ρµ‖∇yt(s)‖2 = (f(s), yt(s))

and hence,

(3.14)
1

2

d

dt
‖yt‖2 +

1

2
(λ+ µ)

d

dt
‖div y‖2 +

1

2
µ
d

dt
‖∇y‖2

+ ρ(λ+ µ) ‖div yt‖2 + ρµ‖∇yt(s)‖2 = (f(s), yt(s)).

We integrate in time from 0 to t, apply Gronwall’s lemma and obtain

(3.15) ‖yt(t)‖2 + (λ+ µ)‖div y(t)‖2 + µ‖∇y(t)‖2 + ρ(λ+ µ)

∫ t

0

‖div yt(s)‖2ds

+ ρµ

∫ t

0

‖∇yt(s)‖2ds ≤ C
(
‖∇y0‖2 + ‖y1‖2 + ‖div y0‖2 + ‖f‖2L2(H)

)
.
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(ii) Let e(y) = −(λ+µ)∇div y−µ∆y. Then we test (3.8) with φ = −e(y). We
obtain

−(ytt(s), e(y)(s)) + ‖e(y)(s)‖2 + ρ(e(yt)(s), e(y)(s)) = −(f(s), e(y)(s))

or equivalently

−(ytt(s), e(y)(s)) + ‖e(y)(s)‖2 +
ρ

2

d

dt
‖e(y)(s)‖2 = −(f(s), e(y)(s)) .

Integrating in time from 0 to t implies that

−
∫ t

0

(ytt(s), e(y)(s)) ds+

∫ t

0

‖e(y)(s)‖2 ds+
ρ

2
‖e(y)(t)‖2

≤ 1

2
‖f‖2L2(H) +

1

2

∫ t

0

‖e(y)(s)‖2 ds+
ρ

2
‖µ∆y0 + (λ+ µ)∇ div y0‖2.

For almost every t ∈ (0, T ) the first term on the left-hand side can be
expressed as

−
∫ t

0

(ytt(s), e(y)(s)) ds =

∫ t

0

(yt(s), e(yt)(s))) ds− (yt(t), e(y)(t))

+ (yt(0), e(y)(0)) = −(λ+ µ)

∫ t

0

‖div yt(s)‖2 ds− µ
∫ t

0

‖∇yt(s)‖2 ds

− (yt(t), e(y)(t)) + (y1, (λ+ µ)∇ div y0 + µ∆y0).

Here, we have used the fact that ytt = yt = 0 on Σ and y1 = 0 on ∂Ω. This
yields∫ t

0

‖e(y)(s)‖2 ds+
ρ

2
‖e(y)(t)‖2 ≤ 1

2
‖f‖2L2(H) +

1

2

∫ t

0

‖e(y)(s)‖2 ds

+
ρ

2
‖(λ+ µ)∇ div y0 + µ∆y0‖2 + (λ+ µ)

∫ t

0

‖div yt(s)‖2 ds

+ µ

∫ t

0

‖∇yt(s)‖2 ds+
1

ρ
‖yt(t)‖2 +

ρ

4
‖e(y)(t)‖2 +

1

2
‖y1‖2

+
1

2
‖(λ+ µ)∇div y0 + µ∆y0‖2.

Absorbing terms we derive

1

2

∫ t

0

‖e(y)(s)‖2 ds+
ρ

4
‖e(y)(s)‖2 ≤ 1

2
‖f‖2L2(H)

+
ρ+ 1

2
‖(λ+ µ)∇ div y0 + µ∆y0‖2 + (λ+ µ)

∫ t

0

‖div yt(s)‖2 ds

+ µ

∫ t

0

‖∇yt(s)‖2 ds+
1

ρ
‖yt(t)‖2 +

1

2
‖y1‖2

and with using (3.15) we obtain the estimate

(3.16)

∫ t

0

‖e(y)(s)‖2ds+ ρ‖e(y)(t)‖2

≤ C

ρ

(
‖div y0‖2 + ‖∇y0‖2 + ‖(λ+ µ)∇div y0 + µ∆y0‖2 + ‖y1‖2 + ‖f‖2L2(H)

)
.
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(iii) We test (3.8) with φ = e(yt). Then there holds

−(ytt(s), e(yt)(s)) + (e(y)(s), e(yt)(s)) + ρ‖e(yt)(s)‖2 = −(f(s), e(yt)(s)).

Integrating by parts in the first term we obtain for almost every s

(λ+ µ)
1

2

d

dt
‖div yt(s)‖2 + µ

1

2

d

dt
‖∇yt(s)‖2 +

1

2

d

dt
‖e(y)(s)‖2

+ ρ‖e(yt)(s)‖2 = −(f(s), e(yt)(s)).

Integrating in time from 0 to t we obtain

(λ+ µ)
1

2
‖div yt(t)‖2 + µ

1

2
‖∇yt(t)‖2 +

1

2
‖e(y)(t)‖2 + ρ

∫ t

0

‖e(yt)(s)‖2 ds

≤ 1

2ρ
‖f‖2L2(H) +

ρ

2

∫ t

0

‖e(yt)(s)‖2 ds+ (λ+ µ)
1

2
‖div y1‖2 + µ

1

2
‖∇y1‖2

+
1

2
‖(λ+ µ)∇div y0 + µ∆y0‖2.

This implies the estimate

(3.17)

(λ+ µ)‖div yt(t)‖2 + µ‖∇yt(t)‖2 + ‖e(y)(t)‖2 + ρ

∫ t

0

‖e(yt)(s)‖2 ds

≤ C

ρ

(
‖f‖2L2(H) + ‖∇y1‖2 + ‖div y1‖2 + ‖∆y0‖2 + ‖∇ div y0‖2

)
.

(iv) We test (3.8) with φ = ytt. Then we have

‖ytt(s)‖2 − (e(y)(s), ytt(s))− ρ(e(yt), ytt(s)) = (f(s), ytt(s))

and thus,∫ t

0

‖ytt(s)‖2 ds+

∫ t

0

(e(yt)(s), yt(s)) ds− (e(y)(t), yt(t))

+ ((λ+ µ)∇ div y(0) + µ∆y(0), yt(0)) =

∫ t

0

(f, ytt)ds+ ρ

∫ t

0

(e(yt)(s), ytt(s))ds.

This implies∫ t

0

‖ytt(s)‖2 ds ≤ ‖f‖2L2(H) +
1

4

∫ t

0

‖ytt(s)‖2ds+
ρ2

2

∫ t

0

‖e(yt)(s)‖2ds

+
1

2

∫ t

0

‖ytt(s)‖2ds+ (λ+ µ)

∫ t

0

‖div yt(s)‖2ds+ µ

∫ t

0

‖∇yt(s)‖2ds

+
1

2
(λ+ µ)‖div y(t)‖2 +

1

2
(λ+ µ)‖div yt(t)‖2 +

1

2
µ‖∇y(t)‖2 +

1

2
µ‖∇yt(t)‖2

+
1

2
‖(λ+ µ)∇ div y0 + µ∆y0‖2 +

1

2
‖y1‖2.

Absorbing terms and using (3.15) and (3.17) we obtain the estimate

(3.18)∫ t

0

‖ytt(s)‖2ds ≤
C

ρ

(
‖f‖2L2(H) + ‖∇y0‖2 + ‖div y0‖2 + ‖∆y0‖2 + ‖∇ div y0‖2

+ ‖∇y1‖2 + ‖div y1‖2
)
.
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(v) Finally, with the estimate [3, Lemma 2.2] for the stationary problem and
estimates (3.15)–(3.18) we obtain (3.11).

�

Now, we return to the inhomogeneous system (1.6) with general u ∈ U∂Ω .

Theorem 3.6. For u ∈ U∂Ω, f ∈ L1(V ∗0 ), y0 ∈ H and y1 ∈ V ∗, system (1.6)
possess a unique very weak solution y ∈ L2(H) defined by

(3.19) (y, g)I =

∫ T

0

〈f, ξ〉V ∗0 ,V0
dt− (y0, ξt(0)) + 〈y1, ξ(0)〉V ∗,V − 〈u, σ(ξ) · n〉I

+ ρ〈u, σ(ξt) · n〉I − ρ(y0,div σ(ξ(0))) + ρ〈y0, σ(ξ(0)) · n〉

with the solution ξ = ξg of

(3.20)


ξtt − div σ(ξ)− ρ div σ(ξt) = g in Q,

ξ(T ) = 0 in Ω,

ξt(T ) = 0 in Ω,

ξ = 0 on Σ

for g ∈ L2(H). Further, there holds the following estimate

‖y‖L2(H) ≤ C
(
‖u‖U∂Ω + ‖y0‖ + ‖y1‖V ∗ + ‖f‖L1(V ∗0 )

)
with constant C = C(ρ) tending to infinity for ρ tending to zero.

Proof. The right hand side of (3.19) defines a linear functional G(g) on L2(H).
Since by Theorem 3.4 there holds

‖ξt(0)‖+ ‖ξ(0)‖V + ‖div σ(ξ(0))‖+ ‖σ(ξ(0)) · n‖L2(∂Ω)d + ‖σ(ξ) · n‖U∂Ω
+ ‖σ(ξt) · n‖U∂Ω + ‖ξ‖L∞(V0) ≤ C‖g‖L2(H),

the functional is bounded. Thus, by Riesz representation theorem we obtain a
solution y ∈ L2(H). �

4. Optimal control problems and convergence analysis

In this section we formulate the optimal control problems for distributed, Neu-
mann boundary and Dirichlet boundary control and check whether Assumption 2.5
is satisfied for these problems. Here we restrict the consideration to d = 2, 3.

4.1. Distributed control. The optimal distributed control problem of the Lamé
system reads as

(4.1)


Minimize J(u, y) = G(y) +

α

2
‖u‖2UΩ , u ∈ UΩ , y ∈ Y, s.t.

(1.2) with Bu = u+ f, C = id, D = 0,

ua ≤ u ≤ ub a.e. in Q

for f ∈ L2(H), y0 ∈ V0, y1 ∈ H, ua, ub ∈ Lr(Lr(Ω)d), r > 2, and α > 0. We can
directly formulate a result on superlinear convergence.

Theorem 4.1. The semi-smooth Newton method applied to the optimal distributed
control problem (4.1) converges superlinearly.
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Proof. In this case the operator q is given by

q : UΩ → UΩ , q(u) = p(u),

where p(u) is the solution of the adjoint system

(4.2)


ptt − div σ(p) = −G′(y(u)) in Q,

p(T ) = 0 in Ω,

Pt(T ) = 0 in Ω,

p = 0 on Σ

with the corresponding state y(u). Here, G′(y(u)) denotes the L2(H)-representative.
From Theorem 3.1 we deduce that the adjoint state is in particular an element in

L2(H1(Ω)d) ∩H1(L2(Ω)d) ↪→ Lµ(Lµ(Ω)d)

for all 1 ≤ µ < ∞ for d = 2 and all 1 ≤ µ ≤ 6 for d = 3. Thus, Assumption 2.5 is
satisfied and we obtain superlinear convergence by Theorem 2.7. �

4.2. Neumann boundary control. The optimal Neumann boundary control prob-
lem of the Lamé system reads as

(4.3)


Minimize J(u, y) = G(y) +

α

2
‖u‖2U∂Ω , u ∈ U∂Ω , y ∈ Y, s.t.

(1.2) with operators given by (1.4),

ua ≤ u ≤ ub a.e. in Σ

for f ∈ L1(V ∗), y0 ∈ H, y1 ∈ V ∗, ua, ub ∈ Lr(Lr(∂Ω)d), r > 2, α > 0, and outer
normal n.

As in the previous case we obtain superliner convergence.

Theorem 4.2. The semi-smooth Newton method applied to the Neumann boundary
control problem (4.3) converges superlinearly.

Proof. In this case the operator q is given by

q : U∂Ω → U∂Ω , q(u) = p(u)|Σ ,
where p(u) is the the solution of the corresponding adjoint system

(4.4)


ptt − div σ(p) = −G′(y(u)) in Q,

p(T ) = 0 in Ω,

pt(T ) = 0 in Ω,

σ(p) · n = 0 on Σ.

The solution of this system is an element in L2(V )∩H1(H) by Theorem 3.1. Thus,
in analogy to [14, Theorem 4.4] we derive, that Assumption 2.5 is satisfied and we
obtain superlinear convergence by Theorem 2.7. �

4.3. Dirichlet boundary control. The optimal Dirichlet boundary control prob-
lem for the Lamé system reads as

(4.5)


Minimize J(u, y) = G(y) +

α

2
‖u‖2U∂Ω , u ∈ U∂Ω , y ∈ Y, s.t.

(1.2) with operators given by (1.5),

ua ≤ u ≤ ub a.e. in Σ
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for f ∈ L1(V ∗0 ), y0 ∈ H, y1 ∈ V ∗0 , ua, ub ∈ Lr(Lr(∂Ω)d), r > 2 and α > 0.
In this case the operator q is given by

q : U∂Ω → U∂Ω , q(u) = −σ(p(u)) · n,
where p(u) is the solution of (4.2). By [1, Proof of Proposition 1] we have σp · n ∈
U∂Ω . In the one dimensional case, d = 1, the Lamé system reads as

ytt − λyxx − 2µyxx = f

with corresponding boundary and initial condition. Thus for λ+ 2µ = 1 we obtain
the classical wave equation with velocity of propagation c = 1. In [14, p. 846] it
was shown, that in this case there is no smoothing of the operator q given. This
is the reason why we consider a regularized optimal control problem in the sequel.
Instead of the Lamé system we consider the strongly damped dynamical Lamé
system leading to higher regularity of the adjoint state. The regularized problem
is given by

(4.6)

 Minimize J(u, y) = G(y) +
α

2
‖u‖2U∂Ω , u ∈ U∂Ω , y ∈ Y, s.t.

(1.6) with ua ≤ u ≤ ub a.e. on Σ

for f ∈ L1(V ∗0 ), y0 ∈ H, y1 ∈ V ∗0 , ua, ub ∈ Lr(Lr(∂Ω)d) for some r > 2, and
damping parameter 0 < ρ < ρ0, ρ ∈ R+. In this case the operator q has some
smoothing property and we obtain superlinear convergence.

Theorem 4.3. The semi-smooth Newton method applied to the optimal Dirich-
let boundary control problem (4.6) of the strongly damped Lamé system converges
superlinearly.

Proof. We verify Assumption 2.5. There holds

q(u) = −σ(p(u)) · n+ ρσ(p(u)t) · n,
where p = p(u) is the solution of the adjoint system

ptt − div σ(p) + ρdiv σ(pt) = −G′(y(u)) in Q,

p(T ) = 0 in Ω,

pt(T ) = 0 in Ω,

p = 0 on Σ.

We prove, that σ(p(u)t)·n ∈ Lµ(Lµ(∂Ω)) for some µ > 2. The proof of σ(p(u))·n ∈
Lµ(Lµ(∂Ω)), µ > 2, uses the same arguments.

From Theorem 3.4 we obtain

pt ∈ H1(L2(Ω)d) ∩ L2(H2(Ω)d)(4.7)

and hence,
pt ∈ Ll(L2(Ω)d) ∩ L2(H2(Ω)d)

for 1 ≤ l ≤ ∞. Thus, from [22, p. 124] we further derive

pt ∈ Lqs([L2(Ω)d, H2(Ω)d]s) = Lqs(H2s(Ω)d),
1

qs
=
s

2
+

1− s
l

, s ∈ [0, 1],

where the interpolation bracket [·, ·]s, cf. [22, p. 58], is understood by components.
Let s ∈

(
3
4 , 1
]
, then we have

∂ipt ∈ Lqs(H2s−1(Ω)d), i = 1, . . . , d,
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and on the boundary

∂ipt|Σ ∈ Lqs(H2s− 3
2 (∂Ω)d), i = 1, . . . , d.

According to [24, Remark 12] and [23, p. 129] there holds the following embedding
for s ∈ (0.75, 1]

H2s− 3
2 (∂Ω) ↪→ L

2d−2
d−4s+2 (∂Ω) for d ≥ 3,(4.8)

i.e. for d = 3 we have

∂ipt|Σ ∈ Lqs
(
L

4
5−4s (∂Ω)3

)
.

From the condition

qs =
2l

sl + 2(1− s)
=

4

5− 4s
, l <∞,

we have

s =
10l − 8

12l − 8
>

3

4

for 2 < l <∞, which implies

qs =
12l − 8

5l − 2
→ 12

5
(l→∞).

So, we obtain

σ(pt) · n ∈ Lµ(Lµ(∂Ω)3)(4.9)

for 2 ≤ µ < 12
5 . For d = 2 there holds

H2s− 3
2 (∂Ω) ↪→ L

1
2−2s (∂Ω), s ∈ (0.75, 1) ,

see [24, 23] as above.
Further,

qs =
2l

sl + 2(1− s)
=

1

2− 2s

implies

s =
4l − 2

5l − 2
>

3

4
,

for 2 < l <∞ and hence,

qs =
5l − 2

2l
→ 5

2
(l→∞).

So, we finally obtain

σ(pt) · n ∈ Lµ(Lµ(∂Ω)2)(4.10)

for 2 ≤ µ < 5
2 .

For σ(p) · n we proceed analog.
The continuity of q follows by the continuity of the embedding and trace theorems

and the interpolation operation.
In conclusion, we derive superlinear convergence by Theorem 2.7. �
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5. Discretization

In this section we discretize the optimal control problems under consideration.
We proceed as in [14]. The Lamé system is discretized by a Petrov-Galerkin scheme
in time and conforming finite elements in space.

Let

Ī = { 0 } ∪ I1 ∪ · · · ∪ IM
be a partition of our time interval Ī = [0, T ] with subintervals Im = (tm−1, tm] of
length km and time points

0 = t0 < t1 < · · · < tM−1 < tM = T

for M ∈ N. Further, let k be the time discretization parameter defined as a
piecewise constant function by setting k|Im = km for m = 1, . . . ,M .

For space discretization we will consider two- or three-dimensional shape regular
meshes; see, e.g., [2]. Thereby, a mesh consists of quadrilateral or hexahedral cells
K, which constitute a non-overlapping cover of the computational domain Ω. (On
the discrete level we consider bounded and convex polygonal domains Ω.) The
corresponding mesh is denoted by Th = K, where the discretization parameter h is
defined as a cellwise function by setting h|K = hK with the diameter hK of the cell
K. We introduce the following conforming finite element spaces

Vh =
{
v ∈ V |vi|K ∈ Q1(K) for K ∈ Th, i = 1, . . . , d

}
,

V 0
h =

{
v ∈ V0|vi|K ∈ Q1(K) for K ∈ Th, i = 1, . . . , d

}
.

Here, Q1(K) consists of shape functions obtained by bi- or trilinear transformations

of polynomials in Q̂1(K̂) defined on the reference cell K̂ = (0, 1)d, where

Q̂1(K̂) = span


d∏
j=1

x
kj
j

∣∣∣∣ kj ∈ { 0, 1 }

 .

Using these spaces we can introduce the following discrete ansatz and test spaces

Xk,h =
{
vkh ∈ C(Ī , H)|vkh|Im ∈ P1(Im, Vh)

}
,

X0
k,h =

{
vkh ∈ C(Ī , H)|vkh|Im ∈ P1(Im, V

0
h )
}
,

X̃k,h =
{
vkh ∈ C(Ī , H)|vkh|Im ∈ P0(Im, Vh) and vkh(0) ∈ Vh

}
,

X̃0
k,h =

{
vkh ∈ C(Ī , H)|vkh|Im ∈ P0(Im, V

0
h ) and vkh(0) ∈ Vh

}
,

where Pr(Im, Vh) (and Pr(Im, V 0
h )), r ∈ N0, denotes the space of polynomials up

to degree r on Im with values in Vh (and V 0
h ).

Finally, to formulate the discrete control problems we introduce the bilinear form

aρ : Xk,h ×Xk,h × X̃0
k,h × X̃0

k,h −→ R,

aρ(y, ξ) = aρ(y
1, y2, ξ1, ξ2)

= (∂ty
2, ξ1)I + λ(div y1,div ξ1)I + 2µ(ε(y1) : ε(ξ1))I

+ ρλ(div y2,div ξ1)I + 2ρµ(ε(y2) : ε(ξ1))I + (∂ty
1, ξ2)I − (y2, ξ2)I

+ (y2(0), ξ1(0))− (y1(0), ξ2(0))

with y = (y1, y2) and ξ = (ξ1, ξ2) and ρ ≥ 0.
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5.1. Distributed control. For the distributed control problem we choose the dis-
crete control space UDk,h = Xk,h. The discrete control problem is formulated as
follows:
(5.1)

Minimize J(ukh, y
1
kh), s.t.

a0(ykh, ξ) = (f, ξ1)I + (ukh, ξ
1)I + (y1, ξ

1(0))− (y0, ξ
2(0)) ∀ξ ∈ X̃0

k,h × X̃k,h,

ukh ∈ UDk,h ∩ Uad, ykh ∈ X0
k,h ×Xk,h.

5.2. Neumann boundary control. For the Neumann boundary control problem
we choose the discrete control space as

UBkh =
{
v ∈ C(Ī ,Wh)

∣∣ v|Im ∈ P1(Im,Wh)
}
,

where the space Wh is given by

Wh =
{
wh ∈ H

1
2 (∂Ω)d

∣∣∣ wh = γ(vh), vh ∈ Vh
}

with the usual trace operator γ : H1(Ω)d → H
1
2 (∂Ω)d.

The corresponding discrete optimization problem is formulated as follows:
(5.2)

Minimize J(ukh, y
1
kh) s.t.

a0(ykh, ξ) = 〈ukh, ξ1〉I + (f, ξ1)I + (y1, ξ
1(0))− (y0, ξ

2(0)) ∀ξ ∈ X̃k,h × X̃k,h,

ukh ∈ UBk,h ∩ Uad, ykh ∈ Xk,h ×Xk,h.

5.3. Dirichlet boundary control. For the Dirichlet boundary control problem we
choose the discrete control space as in the Neumann case. For a function ukh ∈ UBk,h
we define an extension ûkh ∈ Xk,h such that

γ(ûkh(t, ·)) = ukh(t, ·) and ûkh(t, xi) = (0, . . . , 0)T(5.3)

on all interior nodes xi of Th and for all t ∈ Ī.
The discrete optimization problem is formulated as follows:

(5.4)


Minimize J(ukh, y

1
kh), s.t.

aρ(ykh, ξ) = (f, ξ1)I + (y1, ξ
1(0))− (y0, ξ

2(0)) ∀ξ ∈ X̃0
k,h × X̃k,h,

ukh ∈ UB
k,h ∩ Uad, ykh ∈

(
ûkh +X0

k,h

)
×Xk,h.

For a realization of the optimization algorithm on the discrete level we proceed as
in [14].

6. Numerical examples

In this section we present numerical examples for distributed, Neumann bound-
ary and Dirichlet boundary control confirming the theoretical results from above.
The numbers of PDAS iterations on a sequence of uniform temporal and spatial
meshes and the behaviour of the iteration error on a fixed mesh are presented.
Typically, on the discrete level the PDAS method converges in a finite number of
steps (cf. Remark 2.8) which is better than superlinear convergence. We consider
the case d = 2 on the unit square Ω = (0, 1)2. The functional G is chosen by

G(y) =
1

2
‖y − yd‖2L2(H)
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for given yd ∈ L2(H). This fits in the general definition of G given in Section 2.
For the computations the optimization library RoDoBo [20] and the finite ele-

ment toolkit Gascoigne [7] are applied.

6.1. Distributed control. In this numerical example we consider the distributed
optimal control problem (5.1). Let the data be given as follows

α = 3 · 10−4, T = 1, µ = λ = 1, ua = (−1,−1)T , ub = (2.1, 2.1)T ,

y0(x) = (sin(πx1) sin(πx2), 0)T , y1(x) = (x1x2(1− x1)(1− x2), 0)T ,

f(t, x) =

 (0, 0.5)T , x2 < 0.5, t < 0.5,
(1, 0.5)T , x2 > 0.5, t > 0.5,
(0, 0)T , else

yd(t, x) = (1, 0)T

for (t, x) = (t, x1, x2) ∈ [0, T ] ∈ Ω.
The problem is discretized according to Section 5 and the discrete problem is

solved by the PDAS method; cf. [14]. Table 1 shows the numbers of PDAS iterations
for a sequence of uniformly refined meshes. Thereby, N denotes the number of cells
in the spatial mesh Th and M denotes the number of time intervals. The numbers
of iterations indicate a mesh-independent behavior of the PDAS method.

Table 1. Numbers of PDAS iterations on a sequence of uniformly re-
fined meshes for control problem (5.1)

Level N M PDAS steps

1 16 4 7
2 64 8 6
3 256 16 6
4 1024 32 6
5 4096 64 5

We introduce the iteration error

ei =
∥∥∥u(i)

kh − ukh
∥∥∥
Uω

on a given iteration level to analyze the convergence behavior of the PDAS method.

Thereby, u
(i)
kh denotes the ith iterate and ukh the optimal discrete solution. For a

fixed discretization with 64 intervals and a spatial mesh with 4096 cells at each
time node Table 2 shows the iteration errors of the PDAS algorithm. The results
indicate superlinear convergence.

Table 2. Superlinear convergence of the PDAS method for distributed
control - PDAS iteration error

i 1 2 3 4 5

ei 2.1 · 10−1 6.3 · 10−2 7.0 · 10−3 2.3 · 10−4 0
ei+1/ei 3.0 · 10−1 1.1 · 10−1 3.4 · 10−2 0 -
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6.2. Neumann boundary control. In this numerical example we consider the
Neumann boundary control problem (5.2). Let the data be given as follows.

α = 10−2, T = 1, µ = λ = 1 ua = (−0.8,−0.8)T , ub = (1, 1)T ,

y0(x) = (sin(πx1) sin(πx2), 1)T , y1(x) = (sin(πx1) sin(πx2), x1)T ,

f(t, x) = (0, 0)T , yd(t, x) =

{
(1, 0)T , x1 > 0.5,
(0, 0)T , else

for (t, x) = (t, x1, x2) ∈ [0, T ] ∈ Ω. Table 3 shows the numbers of PDAS steps
on a sequence of uniformly refined meshes. As in the previous example the values
indicate a mesh-independence of the numbers of iterations.

Table 3. Numbers of PDAS iterations on a sequence of uniformly re-
fined meshes for control problem (5.2)

Level N M PDAS steps

1 16 2 5
2 64 4 5
3 256 8 4
4 1024 16 5
5 4096 32 5

For a time mesh with 32 intervals and a spatial mesh at each time point with 4096
spatial nodes the development of the error presented in Table 4 confirms superlinear
convergence.

Table 4. Superlinear convergence of the PDAS method for Neumann
boundary control - PDAS iteration error

i 1 2 3 4 5

ei 4.9 · 10−2 9.5 · 10−3 2.3 · 10−3 3.6 · 10−4 0
ei+1/ei 1.9 · 10−1 2.4 · 10−1 1.6 · 10−1 0 -

6.3. Dirichlet boundary control. In this numerical example we consider the
Dirichlet optimal control problem (5.4). Let the data be given as follows

α = 10−3, T = 1, µ = λ = 1, ua = (−0.18,−0.18)T , ub = (0.2, 0.2)T ,

y0(x) = (0, 0)T , y1(x) = (0, 0)T ,

f(t, x) = (x2
1, t)

T , yd(t, x) =

{
(x1, 0)T , x1 > 0.5,
(−x1, 0)T , else

for (t, x) = (t, x1, x2) ∈ [0, T ]×Ω.
Table 5 shows the numbers of PDAS steps on a sequence of uniformly refined

meshes for the case without damping (ρ = 0) and with damping (ρ = 0.1). For a
time mesh with 32 intervals and a spatial mesh at each time point with 4096 nodes
the development of the error for ρ = 0 and ρ = 0.1 is presented in Table 6 and
Table 7, respectively. Comparing the control problems with and without damping
we see a increase of the numbers of PDAS steps in case of ρ = 0 in contrast to ρ > 0.
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Table 5. Numbers of PDAS iterations on a sequence of uniformly re-
fined meshes for control problem (5.4)

Level N M ρ = 0 ρ = 0.1

1 16 2 5 4
2 64 4 4 5
3 256 8 6 3
4 1024 16 9 4
5 4096 32 12 5

This corresponds to the results known for Dirichlet control of the wave equation,
cf. [14]. Thus, in the case without damping we have no mesh-independence, whereas
in the case with damping the results indicate superlinear convergence.

Table 6. Dirichlet boundary control without damping, ρ = 0 - PDAS
iteration error

i 1 2 3 4 5 6

ei 5.0 · 10−2 7.2 · 10−2 1.8 · 10−2 9.9 · 10−3 5.5 · 10−3 4.2 · 10−3

ei+1/ei 1.4 2.6 · 10−1 5.4 · 10−1 5.5 · 10−1 7.7 · 10−1 8.0 · 10−1

i 7 8 9 19 11 12

ei 3.4 · 10−3 2.5 · 10−3 1.8 · 10−3 1.1 · 10−3 3.1 · 10−4 0
ei+1/ei 7.4 · 10−1 7.0 · 10−1 6.0 · 10−1 3.0 · 10−1 0 -

Table 7. Superlinear convergence of the PDAS method for Dirichlet
boundary control with ρ = 0.1 - PDAS iteration error

i 1 2 3 4 5

ei 3.1 · 10−1 5.1 · 10−2 8.9 · 10−3 1.2 · 10−3 0
ei+1/ei 1.6 · 10−1 1.8 · 10−1 1.3 · 10−1 0 -
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