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Abstract. In this paper we consider a bilevel problem for determining the

optimal regularization parameter in an optimal control problem with the lin-
ear wave equation transferring results from [Holler, Kunisch, and Barnard, A

bilevel approach for parameter learning in inverse problems, Inverse Problems

34 (2018) 115012 ] where a general function space setting and applications to
(bilinear) elliptic problems have been addressed. We analyze the well-posedness

and derive the optimality conditions for the bilevel problem for the wave equa-

tion. Moreover, for given noisy data the numerical performance of the approach
to find the regularization parameter is compared for different choices of priors

in the Tikohonov regularization term of the lower level problem.

1. Introduction

In this paper we consider bilevel problems for determining the optimal regular-
ization parameter in optimal control problems with the linear wave equation. Let
Ω ⊂ Rd, d = 1, 2, 3, be an open and bounded subset, T > 0, I := (0, T ), Q := Σ,
Σ := I × ∂Ω. For initial data (y0, y1) ∈ H1

0 (Ω) × L2(Ω) and distributed control
u ∈ L2(Q) the linear wave equation is given by
(1.1)
ytt −∆y = u in Q, y(0, ·) = y0 in Ω, yt(0, ·) = y1 in Ω, y = 0 on Σ.

We denote the unique solution of (1.1) associated with control u by y = y[u].
For given ground truth u† ∈ L2(Q) and noisy measurements of the exact state
yδj ∈ L2(Q), 1 ≤ j ≤ m, m ∈ N, the bilevel problem contains the lower level
problem

S := argmin
(y,u)∈Y×U

J(y, u)(LP)

with

(1.2) J(y, u) :=

α ·Ψ(u) +
1

2m

m∑
j=1

‖y[u]− yδj‖2L2(Q)


and is given as

min
α̌ ≤ α ≤ α̂,

(yα, uα) ∈ Y × U

‖uα − u†‖2L2(Q), s.t. (yα, uα) ∈ S(UP)
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with control space U = L2(I;Hk(Ω)), k ∈ N and state space

(1.4) Y := L2(I;H1
0 (Ω)) ∩H1(I;L2(Ω)) ∩H2(I;H−1(Ω)).

The Tikhonov regularization is given by Ψ(u) :=
∑r
i=1 Ψi(u) for penalty functionals

(1.5) Ψi(u) := 1
2‖Kiu‖2L2(Q)

with so-called priors Ki ∈ L(Hk(Ω), L2(Ω)), 1 ≤ i ≤ r, r ∈ N, and lower and upper
bounds in Rr of the regularization parameter α ∈ Rr given by

(1.6) 0 < α̌ ≤ α̂ <∞

where the inequalities are understood component-wise. This bilevel problem con-
sists of a lower level problem (LP) determining for given regularization parameter
α the optimal control u, and an upper level problem determining the optimal reg-
ularization parameter with respect to the ground truth u†.

There are many publications on the topic of casting parameter learning in reg-
ularized optimization problems as a bilevel optimization problem and investigating
its solvability and optimality conditions. Examples for treatment of the finite di-
mensional case can be found in, e.g., Kunisch and Pock [14], and De los Reyes,
Schönlieb, Valkonen [4] having applications in imaging. Publications in the infi-
nite case are often concerned with inverse optimal control problems with partial
differential equations, see, e.g., Harder and Wachsmuth [8], Holler, Kunisch, and
Barnard [11]. Those works deal with inverse optimal control problems governed by
(bi-)linear elliptic partial differential equations. For learning nonlocal regularization
operators see Holler and Kunisch [10] and algorithms for a bilevel optimal control
problems with a non-smooth lower level problem [3]. For problems with varying reg-
ularization in a weighted total variation model see Hintermüller et al. [9]. Bilevel
problems with non-smooth lower level problems combined with convolutional neural
networks are considered, e.g., in Ochs, Ranftl, Brox, and Pock [18].

The contribution of this note is a proof of concept of the ideas developed in [11] for
optimal control problems governed by the linear wave equation. The well-posedness
of the bilevel problem (UP) is shown and necessary optimality conditions are de-
rived. For the latter one we transfer the problem to a single level one. We present
several numerical examples considering the effect of different priors in the problem
setting.

Finally, we remark that single level optimal control problems for the wave equa-
tion have been studied with respect to various aspects, see, e.g., [7, 13, 15, 16, 17].

The paper is organized as follows: In Section 2 we consider the multiple prior
case, in Section 3 the problem is discretized and the algorithm is formulated, and
in Section 4 numerical examples are presented.

Notation: Let H be Hilbert space. By L(H) we denote the linear bounded
mappings on H. The associated duality product is denoted by 〈·, ·, 〉H . Throughout
the paper we use the standard notation for Lebesgue, Sobolev, and Bochner spaces.
The inner product in L2(Ω) is denoted by (·, ·) and the inner product in L2(I;L2(Ω))
by (·, ·)I . For Banach space X the associated norm is denoted by ‖·‖X . The absolute
value is denoted by | · |.
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2. The lower-level problem and bilevel problem

In this section we state existence results and derive the optimality systems for
the lower level and the bilevel problem. Let

Z := L2(I,H−1(Ω))×H−1(Ω)× L2(Ω)(2.1)

identifying L2(Ω) with its dual. We introduce e : Y × U → Z given by

(2.2) e(y, u) :=

∫ T

0

〈ytt(t, ·), ·〉H1
0 (Ω)dt+ (∇y(t, ·),∇·)I − (u(t, ·), ·)I

+ 〈y0 − y(0, ·), ·〉H1
0 (Ω) − 〈y1 − yt(0, ·), ·〉L2(Ω).

For (y0, y1) ∈ H1
0 (Ω)× L2(Ω) the weak formulation of (1.1) is given by

(2.3) e(y, u)(w) = 0 for all w := (v, q1, q2) ∈ Z∗.

Proposition 2.1. Equation (2.3) has for control u ∈ L2(I;L2(Ω)), initial data
(y0, y1) ∈ H1

0 (Ω) × L2(Ω) a unique weak solution y ∈ Y of (2.3) satisfying the
stability estimate

‖y‖Y ≤ C(‖u‖L2(I;L2(Ω)) + ‖y0‖H1
0 (Ω) + ‖y1‖L2(Ω)).(2.4)

Proof. We refer to [5, Theorem 3 and 4, p. 384f]. �

The solution mapping of (1.1) has the structure (neglecting arguments of GQ
being zero)

(2.5) y = GQ[u] +GQ[y0] +GQ[y1],

with GQ[u, y0, y1] : L2(Q) × H1
0 (Ω) × L2(Ω) → Y . Each term in (2.5) is linear

continuous with respect to u, y0, and y1, respectively. Since by Aubin–Lions (see [2])

Y ⊂ L2(Q) continuous we can view G̃Q := GQ[·, 0, 0] as a linear continuous operator

with range in L2(Q). In the following, we will consider G := EY G̃Q instead of G̃Q
where EY : Y → L2(Q) denotes the embedding operator.We thus have the operator
G : L2(Q) → L2(Q) defined by u 7→ y[u] =: Gu. Using this embedding has the
advantage that the adjoint operator G∗ also acts on the space L2(Q).

We can formulate problem (LP) equivalently as

(2.6) min
u∈U

 1

2m

m∑
j=1

‖Gu− wj‖2L2(Q) +
1

2

r∑
i=1

αi‖Kiu‖2L2(Q)


with the abbreviation wj := −GQ[y0]−GQ[y1] + yδj .

2.1. Lower level problem. Existence and the optimality system for the lower
level problem is derived in this section. In the following we make the following
hypothesis.

Hypothesis 2.2. There exists c > 0 such that

(2.7)

r∑
i=1

‖Kiu‖2L2(Q) ≥ c‖u‖
2
U for all u ∈ U.
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Then, obviously for sequences (un) ⊂ U with ‖un‖U → ∞ (n → ∞) we have∑r
i=1 ‖Kiun‖L2(Q) →∞. Thus, we have in particular

(2.8)

 Ψi : U → [0,∞) for 1 ≤ i ≤ r are weakly lower semi-continuous on U ,∑r
i=1 Ψi is coercive on U and

proper on the set of feasible points of the (LP).

Furthermore, we observe that for d = 2 Hypothesis 2.2 is satisfied with equality
for

(2.9) U = L2(I;H1(Ω)), K1 = id, K2 = ∂x1 , K3 = ∂x2

which will be considered in the numerical examples later.

Theorem 2.3. Assume that Hypothesis 2.2 is satisfied. Then the (LP) has a unique
solution (ȳ, ū) ∈ Y × U .

Proof. This follows by classical arguments using convexity of (LP), see, e.g., [12].
�

Furthermore, by convexity, the necessary and sufficient optimality conditions for
a pair (ȳ, ū) to be optimal for (LP) are given by

1

m

m∑
j=1

G∗(Gū− wj) +

r∑
i=1

αiKiū = 0(2.10)

with the abbreviation Ki := K∗iKi, 1 ≤ i ≤ r.
We introduce the costate equation for given state ȳ ∈ Y by

(2.11)

λtt −∆λ = − 1

m

m∑
i=1

(ȳ − yδi) in Q, λ = 0 on Σ, λ(T, ·) = λt(T, ·) = 0 in Ω

whose solution is understood in a weak sense as follows

(2.12)

∫ T

0

(〈λtt(t, ·), v〉H1
0 (Ω) + (∇λ(t, ·),∇v(t, ·))L2(Ω))dt− 〈λ(T, ·), q1〉H1

0 (Ω)

+ (λt(T, ·), q2)L2(Ω) = − 1

m

m∑
i=1

(ȳ − yδi , v)L2(Q) for all (v, q1, q2) ∈ Z.

Using the reversibility of the wave equation and Proposition 2.1 we obtain a unique
solution λ ∈ Y .

Theorem 2.4. Let ū ∈ U be a control with associated state ȳ such that (ȳ, ū) solves
problem (LP). Then, there exists a λ ∈ Y such that the state equation (1.1), the
costate equation (2.11), and the optimality condition

(2.13)

r∑
i=1

αiKiuα − λ = 0

are satisfied.

Proof. Observe that by Proposition 2.1 the operator Dye(ȳ, ū) ∈ L(Y,Z) has a
bounded inverse. Hence, there exists a unique (λ̄, µ0, µ1) ∈ Z∗ such that by Theo-
rem A.4 we have
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∫ T

0

(〈δytt(t, ·), λ̄(t, ·)〉H1
0 (Ω) + (∇δy(t, ·),∇λ̄(t, ·))L2(Ω))dt+

1

m

m∑
i=1

(ȳ − yδi , δy)L2(Q)

− 〈δy(0, ·), µ0〉H1
0 (Ω) + (δyt(0, ·), µ1)L2(Ω) = 0 for all δy ∈ Y.

(2.14)

Using C∞0 (I;V ) ⊂ Y is dense in L2(I;V ) we get that assuming λ̄ ∈ Y , the
adjoint equation (2.14) is equivalent to (2.12) which has a unique solution λ̄ ∈ Y
and which is together with (µ0, µ1) the unique adjoint state.

Furthermore, we have
r∑
i=1

αi(Kiū,Kiu)L2(Q) − (u, λ)L2(Q) = 0 for all u ∈ U = L2(Q).(2.15)

�

2.2. Upper level problem. In this section the existence of a solution of the bilevel
problem is stated and the optimality system for the problem is derived.

Lemma 2.5. Hypotheses A.1 and A.2 are satisfied.

Proof. Hypotheses A.1: (H1) is obvious. Since

(2.16) (0, 0) ∈ Fad := {(y, u) ∈ Y × U | e(y, u) = 0}
the admissible set is non-empty implying (H2). (H3) follows from linearity of the
state equation. (H4) follows directly from the estimate in Proposition 2.3. (H5)
and (H6) follow from (2.8). (H7) follows from Hypothesis 2.2 and that norm to-
gether with weak convergence is equivalent to strong convergence. (H8) is given by
Proposition 2.1.

Hypothesis A.2: (B1) and (B2) are satisfied trivially. (B3) follows from the first
part of the proof of Theorem 2.4 and Proposition 2.1. �

Consequently, we derive by Theorem A.3 the following

Corollary 2.6. The bilevel problem (UP) has a solution.

The optimality condition (2.10) for the (LP) is necessary and sufficient. Thus,
the bilevel problem (UP) is equivalent to

min
α̌≤α≤α̂, (yα,uα)∈Y×U

‖uα − u†‖2L2(Q), s.t. (2.10) holds for (yα, uα).(2.17)

or equivalently,

(2.18)



min
α̌≤α≤α̂, (yα,uα)∈Y×U

‖uα − u†‖2L2(Q) s.t.

λtt −∆λ = − 1

m

m∑
i=1

(y − yδi), λ(T, ·) = λt(T, ·) = 0, λ|Σ = 0,

r∑
i=1

αiKiuα − λ = 0,

ytt −∆y = uα, y(0, ·) = y0, yt(0, ·) = y1, y|Σ = 0.

Defining the lagrangian L : [α̌, α̂]× U × Y × Z∗ → R as

L(α, u, y, w) = 〈w, e(u, y)〉Z + Jα(y, u).(2.19)
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by the linear-quadratic structure of the lower level problem we have immediately
the second order condition for some η > 0 given as

(2.20) D2
(y,u)L(α, u, y, w)[(δy, δu), (δy, δu)] ≥ η ‖(y, u)‖2Y×U .

Now, we can formulate the specific version of Lemma A.5 for this example.

Lemma 2.7. Let (ᾱ, ȳ, ū) be a solution to (UP) with uniquely determined Lagrange
multiplier w = (λ, µ0, µ1) ∈ Z∗ for the (LP). Then, there exists a unique (p, q, z) ∈
Y × U × Y such that

(q,Ψu(ū))L2(Q)(α− ᾱ) ≥ 0, for all α ∈ [α̌, α̂],(2.21)

ztt −∆z = −p, z(T, ·) = zt(T, ·) = 0,(2.22)

ū− u† +
r∑
i=1

ᾱiKiq + z = 0,(2.23)

ptt −∆p = −q, p(0, ·) = pt(0, ·) = 0.(2.24)

Proof. This is a direct consequence of Lemma A.5 using regularity results from
Proposition 2.1 for the solution of the linear wave equation. �

Remark 2.8. Let (ᾱ, ȳ, ū) be a solution to (UP). Then, we can interpret (2.22)–
(2.24) as the optimality system of the following minimization problem
(2.25) min

(p,q)∈Y×U
J(p, q) = 1

2

r∑
i=1

αi‖Kiq‖2L2(Q) + 1
2‖p‖

2
L2(Q) + (ū− u†, q)L2(Q) s.t.

ptt −∆p = −q in Q, p(0, ·) = pt(0, ·) = 0 in Ω, p = 0 on Σ.

This reformulation will be used for the implementation of the upper level problem
in the software package dolfin-adjoint [6].

3. Discretization

The problem is discretized following ideas from [13, Section 5]. The wave equation
is written as a first order system in time. We introduce a partition of the time
interval I as

I = 0 ∪ I1 ∪ · · · ∪ IM(3.1)

with Im = (tm−1, tm] of size km and time points

(3.2) 0 = t0 < t1 < · · · < tM−1 < tM = T.

For the spatial discretization we consider two dimensional shape regular meshes;
see, e.g., [6]. A mesh consists of triangles K, which constitute a nonoverlapping
cover of the computational domain Ω. The corresponding mesh is denoted by T =
{K}, where we define the discretization parameter h as a cellwise function by setting
h|K = hK with the diameter hK of the cell K. On the mesh Th we construct
conforming finite element spaces Vh ⊂ H1(Ω) and V 0

h ⊂ H1
0 (Ω) in the following

standard way:

Vh := {v ∈ H1(Ω)|v|K ∈ P
1(K) for K ∈ Th},(3.3)

V 0
h := {v ∈ H1

0 (Ω)|v|K ∈ P1(K) for K ∈ Th}.(3.4)
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We define the following space-time finite element ansatz and test spaces:

Xkh := {vkh ∈ C(I, Vh)|vkh|Im ∈ P1(Im, Vh)},(3.5)

X0
kh := {vkh ∈ C(I, V 0

h )|vkh|Im ∈ P1(Im, V
0
h )},(3.6)

X̃kh := {vkh ∈ L2(I, Vh)|vkh|Im ∈ P0(Im, Vh) and vkh(0, ·) ∈ Vh},(3.7)

X̃0
kh := {vkh ∈ L2(I, V 0

h )|vkh|Im ∈ P0(Im, V
0
h ) and vkh(0, ·) ∈ Vh},(3.8)

where P r(Im, Vh) denotes the space of polynomials up to degree r on Im with values
in Vh. Thus, the spaces Xkh and X0

kh consist of piecewise linear and continuous
functions in time with values in the usual spatial finite element space, whereas
the functions in Xkh and X0

kh are piecewise constant in time and therefore discon-
tinuous. Based on the equivalent formulation of the state equations as first-order
systems we introduce the Galerkin finite element formulation of the state equations.
We introduce the discrete control and state space

(3.9) Ykh := Xkh ×Xkh, Ukh = Xkh

and the bilinear form a : Xkh ×Xkh × X̃kh × X̃kh → R by

(3.10)
a(y, v) := a(y1, y2, v1, v2) = (∂ty2, v1)I + (∇y1,∇v1)I

+ (∂ty1, v2)I − (y2, v2)I + (y2(0, ·), v1(0, ·))− (y1(0, ·), v2(0, ·))

with y = (y1, y2) and ξ = (ξ1, ξ2). The discrete state equation is given as

a(ykh, vkh) = (ukh, vkh)I + (y1, v
1
kh(0, ·))− (y0, v

2
kh(0, ·)) for all vkh ∈ X̃0

kh × X̃kh

(3.11)

defining (by classical arguments) the linear and continuous mapping Ukh → Ykh,
ukh 7→ ykh. That means, the first and second component of the state are discretized
by continuous piecewise linear finite elements where we impose zero boundary con-
ditions for the first component; the control is discretized by continuous piecewise
linear finite elements. The discrete bilevel problem contains the lower level problem

Skh := argmin min
(ykh,ukh)∈Ykh×Ukh

α ·Ψ(ukh) +
1

2m

m∑
j=1

‖ykh[ukh]− yδj‖2L2(Q)


(LPdiscr)

and is given as

min
α̌≤α≤α̂, (yαkh,u

α
kh)∈Ykh×Ukh

‖uαkh − u†‖2L2(Q), s.t. (yαkh, u
α
kh) ∈ Skh(UPdiscr)

As a time stepping scheme a Crank-Nicolson scheme is applied. The problem is
implemented in dolfin-adjoint [6] based on FEniCS [1].

For solving problem (UPdiscr) we use a gradient descent scheme with dynamic
stepsize adaption. By avoiding an Armijo backtracking line search the computa-
tional effort can be strongly reduced which is an important issue for this bilevel
problem involving time-depending partial differential equations. For details see Al-
gorithm 1.
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Data: Initialize α̌ and α̂ in R, α0 ∈ [α̌, α̂], the step size τ := τ̄ > 0, tolτ � 1
tolerance tol > 0, and k := 0.

Compute u0 by solving the lower-level problem (LP) with α = α0.
Calculate the corresponding Lagrange multiplier (p0, q0, z0) by solving the
optimality system (2.22)–(2.24) (i.e. by solving (2.25)).

Set

(3.13) g
(i)
k := 〈Kiqk,Kiuk〉L2(Q) for i = 1, . . . , r.

while |gk|2 > tol and τ > tolτ do
Set

(3.14) α := α− τ gk
|gk|

.

Compute uα by solving the lower-level problem (LP) for current α.
if ‖uα − u†‖2L2(Q) < ‖uk − u

†‖2L2(Q) then
Compute the corresponding Lagrange multiplier (pk, qk, zk) via
(2.22)–(2.24) and the gradient gk by (3.13).

Set αk = α and uk := uα.
Set k = k + 1.

else
Set τ = 0.5τ .

end

end

Algorithm 1: Solver for bilevel problem.

4. Numerical results

Set Ω = (0, 1) × (0, 1), T = 1.5, i.e. Q = (0, 1.5) × (0, 1)2, m = 1, and let the
state y† corresponding to the exact control be given for (t, x1, x2) ∈ Q by

u†(t, x1, x2) :=

{
2.5t(sin4(4πx1)) + x2

2) if |x1 − 0.5| < 0.2 and |x2 − 0.5| < 0.2,

2.5 else.

We choose this control for analyzing the performance of the parameter learning
algorithm, since it exhibits a lot of distinct structure. Furthermore, we set τ̄ = 10−4,
tolτ = 10−10, α̌i = 10−13, and α̂i = 10−2 for i = 1 (one prior) and i = 1, 2, 3 (three
priors), respectively. The exact control and corresponding state (with y0 = 0) are
shown in Figure 1 and Figure 2. The problem is discretized on a uniform 64 × 64
spatial mesh and a temporal mesh with 50 timesteps. Noisy data is generated in
each time step via pointwise setting

(4.1) yδ(t, ·) := y†(t, ·) + εξ,

where ξ ∈ N (0, 1) is a standard normal distributed random variable and we set

(4.2) ε := ε
∥∥y†∥∥

L∞(Q)

with the relative noise level ε > 0. The noisy data for a noise level of ε = 0.1
is shown in Figure 3. In the experiments we use a fixed seed for random number
generation to ensure comparability. We consider the case with one prior K1 := id
as well as the case of three priors with additional

K2 := ∂x1 , K3 := ∂x2 .
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For the case of only one prior K1 the value of the cost functional of the higher-
level problem, which is the squared L2-distance between the exact control and the
recovered control, in dependence on the regularization parameter α is shown in
Figure 4. The algorithm is initialized with α0 = 2 · 10−6.

(a) t = 0 (b) t = 0.3 (c) t = 0.6

(d) t = 0.9 (e) t = 1.2 (f) t = 1.5

Figure 1. Exact control u† plotted at several timepoints.

(a) t = 0 (b) t = 0.3 (c) t = 0.6

(d) t = 0.9 (e) t = 1.2 (f) t = 1.5

Figure 2. Exact state y† plotted at several timepoints.
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(a) t = 0 (b) t = 0.3 (c) t = 0.6

(d) t = 0.9 (e) t = 1.2 (f) t = 1.5

Figure 3. Noisy data yδ plotted at several timepoints with a noise
level of 10%.

Figure 4. Optimal cost of the bilinear problem in dependence on
the regularization parameter α with one operator K1 = id.

Used operators (Locally) optimal α∗ Error ‖uα∗ − u†‖2L2(Q)

K1 1.91 · 10−6 1.105
(K1,K2,K3) (9.81 · 10−9, 1.67 · 10−10, 9.99 · 10−7) 0.586

Table 1. Optimal α∗ computed for different combinations of reg-
ularization operators.
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Table 1 shows the (locally) optimal α∗ computed for the single operator K1 and
the set of three operators Ki, I = 1, 2, 3 for a noise level of ε = 0.1. In the latter case
the algorithm is initialized with α0 = (10−8, 10−8, 10−6). In case of only one prior

(a) t = 0 (b) t = 0.3 (c) t = 0.6

(d) t = 0.9 (e) t = 1.2 (f) t = 1.5

Figure 5. Reconstructed control uα plotted at several timepoints
using the optimal (as determined by the algorithm) parameter α =
1.91 ·10−6 with regularization operator K1 = id, ‖uα∗−u†‖2L2(Q) =
1.105.

K1 the reconstructed control for the optimal numerically determined regularization
parameter α is shown in Figure 5, for comparison in Figure 6 the control for a
suboptimal regularization parameter is shown. The numerical results confirm the
expected behaviour. For the case of three priors K1, K2, and K3 the control for the
optimal numerically determined parameter α is given in Figure 7. In comparison
to only one prior it shows a better reconstruction of the vertical elements but a
slightly worse one of the square in the middle. Although not covered by the theory
(Hypothesis 2.2 is no longer satisfied) we consider numerically the case of only
one single prior K2 with here α0 = 10−3. The resulting sub-optimal and optimal
controls can be seen in Figures 8–10 showing again, that the numerically optimal
regularization parameter α leads to the best reconstruction of the control.

Appendix A. General setting

We recall the general setting from Holler et al. [11]: The lower level problem is
given by

(Pα,yδ)

 min
(y,u)∈Y×U

Iα,yδ(y, u) =
1

2m

m∑
j=1

‖y − yδj‖2Ỹ + α ·Ψ(u) subject to

e(y, u) = 0,
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(a) t = 0 (b) t = 0.3 (c) t = 0.6

(d) t = 0.9 (e) t = 1.2 (f) t = 1.5

Figure 6. Reconstructed control uα plotted at several timepoints
using the sub-optimal (too big) parameter α = 10−2 with regular-
ization operator K1 = id, ‖uα∗ − u†‖2L2(Q) = 4.864.

(a) t = 0 (b) t = 0.3 (c) t = 0.6

(d) t = 0.9 (e) t = 1.2 (f) t = 1.5

Figure 7. Reconstructed control uα plotted at several timepoints
using the parameters α = (9.81 ·10−9, 1.67 ·10−10, 9.99 ·10−7) with
regularization operators K1,K2,K3, ‖uα∗ − u†‖2L2(Q) = 0.586.



BILEVEL OPTIMIZATION PROBLEM WITH THE WAVE EQUATION 13

(a) t = 0 (b) t = 0.3 (c) t = 0.6

(d) t = 0.9 (e) t = 1.2 (f) t = 1.5

Figure 8. Reconstructed control uα plotted at several timepoints
using the sub-optimal (too small) parameter α = 1 · 10−8 with
regularization operator K3 = ∂x2

, ‖uα∗ − u†‖2L2(Q) = 2.15.

(a) t = 0 (b) t = 0.3 (c) t = 0.6

(d) t = 0.9 (e) t = 1.2 (f) t = 1.5

Figure 9. Reconstructed control uα plotted at several timepoints
using the sub-optimal (too big) parameter α = 1.96 · 10−5 with
regularization operator K3 = ∂x2 , ‖uα∗ − u†‖2L2(Q) = 2.494.
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(a) t = 0 (b) t = 0.3 (c) t = 0.6

(d) t = 0.9 (e) t = 1.2 (f) t = 1.5

Figure 10. Reconstructed control u∗ plotted at several timepoints
using the learned parameter α∗ = 3.28 · 10−7 with regularization
operator K3 = ∂x2

, ‖uα∗ − u†‖2L2(Q) = 1.46289.

and the upper level problem

(UP)

 min
α∈[α,α], (yα,uα)∈U

‖uα − u†‖2Ũ subject to

uα is minimizer of (Pα,yδ).

with a reflexive Banach space U , Y is a reflexive Banach space, Ũ and Ỹ are Hilbert
spaces with U ⊂ Ũ , Y ⊂ Ỹ continuous, u† ∈ Ũ is the ground truth control, and
yδj ∈ Ỹ , 1 ≤ j ≤ m, are noisy measurements of the ground truth state, e : Y ×U →
Z represents equality constraints in a reflexive Banach space Z, Ψi : U → [0,∞],
1 ≤ i ≤ r, are penalty functionals, and α, α̌, and α̂ as in (1.6).

Hypothesis A.1. (H1) The feasible control set U is closed and convex.
(H2) The feasible set of the lower level problem Fad (defined as in (2.16)) is

non-empty.
(H3) For every sequence (yn, un) in Y×U and (ȳ, ū) ∈ Y×U such that e(yn, un) =

0 for all n ∈ N, and (yn, un) ⇀ (ȳ, ū) it follows that e(ȳ, ū) = 0.
(H4) For every sequence (yn, un) in Fad it holds that if (un) is bounded in U ,

then (yn) is bounded in Y .
(H5) The function

∑r
i=1 Ψi is coercive on U and proper on Fad.

(H6) The penalty functionals Ψi, 1 ≤ i ≤ r, are weakly lower semi-continuous
on U .

(H7) For every sequence (un) in U and u ∈ U it holds that, if un ⇀ u and
Ψ(un)→ Ψ(u), then it follows that un → u.

(H8) For each u ∈ U there exists a unique y[u] ∈ Y such that e(y[u], u) = 0, and
the mapping u 7→ y[u] is continuous from U to Y .
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Hypothesis A.2. (B1) The state equation e is twice continuously Fréchet dif-
ferentiable on Y × U .

(B2) The penalty function Ψ is twice continuously Fréchet differentiable on U .
(B3) For each u ∈ U there is a unique y ∈ Y such that

(A.1) e(y, u) = 0.

Moreover, ey(y, u) ∈ L(Y,Z) is bijective for all (y, u) ∈ Y ×U satisfying the
equation (A.1).

Theorem A.3. [11, Theorem 4.1] Let Hypotheses A.1 (H1)–(H6) hold. Then the
problem (UP) has a solution.

Theorem A.4. ([11, Sec. 5.1] and [19]) Let Hypothesis A.2 be satisfied. Further-
more, let (ȳ, ū) be a solution to (Pα,yδ) such that ey(ȳ, ū) is bijective. Then there
exists a unique λ̄ ∈ Z∗ such that (ȳ, ū, λ̄) is a KKT point of (Pα,yδ). In particu-
lar, (ȳ, ū) satisfies the first order necessary optimality conditions, i.e. there exists
λ̄ ∈ Z∗ such that

(A.2)

ȳ − ȳδ + λ̄ey(ȳ, ū) = 0,

α ·Ψu(ū) + λ̄eu(ȳ, ū) = 0,

e(ȳ, ū) = 0,

where ȳδ := 1
m

∑m
j=1 yδj .

Theorem A.5. [11, Lemma 5.1] Let Hypothesis A.1 (1)–(8) and Hypothesis A.2 be
satisfied. Let (ᾱ, ȳ, ū, λ̄) be a local solution to (UP), and the second-order condition
(2.20) be satisfied in (ȳ, ū). Then there exists a unique (p, q, z) ∈ Y × U × Z∗ such
that
(A.3)

〈Ψu(ū)q, α− ᾱ〉U ≥ 0, for all α ∈ [α, α],

p+ λ̄eyy(ȳ, ū)p+ λ̄eyu(ȳ, ū)q + zey(ȳ, ū) = 0,

ū− u† + λ̄euy(ȳ, ū)p+ ᾱ ·Ψuu(ū)q + λ̄euu(ȳ, ū)q + zeu(ȳ, ū) = 0,

ey(ȳ, ū)p+ eu(ȳ, ū)q = 0.

Proof. By [11, Cor. 3.1] we have stability with respect to data and regularization
parameter, and by [11, Lem. 5.1] we derive the statement of the theorem. Thereby,
we use the fact that the necessary condition is also sufficient for optimality for the
lower level problem. �
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