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Variational Analysis for Options with Stochastic Volatility and Multiple Factors∗
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Abstract. This paper performs a variational analysis for a class of European or American options with stochas-
tic volatility models, including those of Heston and of Achdou and Tchou. Taking into account
partial correlations and the presence of multiple factors, we obtain the well-posedness of the related
partial differential equations, in some weighted Sobolev spaces. This involves a generalization of the
commutator analysis introduced by Achdou and Tchou in [ESAIM Math. Model. Numer. Anal., 36
(2002), pp. 373–395].
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1. Introduction. In this paper we consider variational analysis for the partial differential
equations associated with the pricing of European or American options. For an introduction to
these models, see Fouque, Papanicolaou, and Sircar [11]. We will set up a general framework
of variable volatility models, which is in particular applicable on the following standard models
which are well established in mathematical finance. The well-posedness of PDE formulations
of variable volatility poblems was studied in [2, 3, 1, 18] and in the recent work [9, 10].

Let the Wi(t) be Brownian motions on a filtered probability space. The variable s denotes
a financial asset, and the components of y are factors that influence the volatility:

(i) the Achdou–Tchou model [3] (see also Achdou, Franchi, and Tchou [1]),

(1.1)

{
ds(t) = rs(t)dt+ σ(y(t))s(t)dW1(t),

dy(t) = θ(µ− y(t))dt+ νdW2(t),

with the interest rate r, the volatility coefficient σ function of the factor y whose
dynamics involves a parameter ν > 0, and positive constants θ and µ;
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(ii) the Heston model [14],

(1.2)

ds(t) = s(t)
(
rdt+

√
y(t)dW1(t)

)
,

dy(t) = θ(µ− y(t))dt+ ν
√
y(t)dW2(t).

(iii) the double Heston model (see Christoffersen, Heston, and Jacobs [17] and also Gauthier
and Possamäı [12]),

(1.3)


ds(t) = s(t)

(
rdt+

√
y1(t)dW1(t) +

√
y2(t)dW2(t)

)
,

dy1(t) = θ1(µ1 − y1(t))dt+ ν1

√
y1(t)dW3(t),

dy2(t) = θ2(µ2 − y2(t))dt+ ν2

√
y2(t)dW4(t).

In the last two models we have similar interpretations of the coefficients; in the double Heston
model, denoting by 〈·, ·〉 the correlation coefficients, we assume that there are correlations
only between W1 and W3, and W2 and W4.

Consider now the general multiple factor model

ds = rs(t)dt+
∑N

k=1
fk(yk(t))s

βk(t)dWk(t),

dyk = θk(µk − yk(t))dt+ gk(yk(t))dWN+k(t), k = 1, . . . , N.(1.4)

Here the yk are volatility factors, fk(yk) represents the volatility coefficient due to yk, and
gk(yk) is a volatility coefficient in the dynamics of the kth factor with positive constants θk
and µk. Let us denote the correlation between the ith and jth Brownian motions by κij : this
is a measurable function of (s, y, t) with value in [0, 1] (here s ∈ (0,∞) and yk belongs to
either (0,∞) or R); see below. We asssume that we have nonzero correlations only between
the Brownian motions Wk and WN+k, for k = 1 to N , i.e.,

(1.5) κij = 0 if i 6= j and |j − i| 6= N .

Note that, in some of the main results, we will assume for the sake of simplicity that the
correlations are constant.

We apply the developed analysis to a subclass of stochastic volatility models, obtained by
assuming that κ is constant and

(1.6) |fk(yk)| = |yk|γk ; |gk(yk)| = νk|yk|1−γk ; βk ∈ (0, 1]; νk > 0; γk ∈ (0,∞).

This covers in particular a variant of the Achdou–Tchou model with multiple factors (VAT),
when γk = 1, as well as a generalized multiple factor Heston (GMH) model, when γk = 1/2,
i.e., for k = 1 to N ,

(1.7)
VAT: fk(yk) = yk, gk(yk) = νk,
GMH: fk(yk) =

√
yk, gk(yk) = νk

√
yk.

For a general class of stochastic volatility models with correlation we refer to Lions and Musiela
[16].
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The main contribution of this paper is variational analysis for the pricing equation corre-
sponding to the above general class in the sense of the Feynman–Kac theory. This requires
in particular to prove continuity and coercivity properties of the corresponding bilinear form
in weighted Sobolev spaces H and V , resp., which have the Gelfand property and allow the
application of the Lions and Magenes theory [15] recalled in Appendix A and the regularity
theory for parabolic variational inequalities recalled in Appendix B. Special emphasis is given
to the continuity analysis of the rate term in the pricing equation. Two approaches are pre-
sented, the standard one and an extension of the one based on the commutator of first-order
differential operators as in Achdou and Tchou [3], extended to the Heston model setting by
Pironneau and Achdou [18]. Our main result is that the commutator analysis gives stronger
results for the subclass defined by (1.6), generalizing the particular cases of the VAT and
GMH classes; see Remarks 6.2 and 6.4. In particular we extend some of the results by [3].

This paper is organized as follows. In section 2 we give the expression of the bilinear
form associated with the original PDE and check the hypotheses of continuity and semi-
coercivity of this bilinear form. In section 3 we show how to refine this analysis by taking
into account the commutators of the first-order differential operators associated with the
variational formulation. In section 4 we show how to compute the weighting function involved
in the bilinear form. In section 5 we develop the results for a general class introduced in
the next section. In section 6 we specialize the results to stochastic volatility models. The
appendix recalls the main results of the variational theory for parabolic equations, with a
discussion on the characterization of the V functional spaces in the case of one-dimensional
problems.

Notation. We assume that the domain Ω of the PDEs to be considered in the rest of this
paper has the following structure. Let (I, J) be a partition of {0, . . . , N}, with 0 ∈ J , and

(1.8) Ω :=
N
Π
k=0

Ωk with Ωk :=

{
R when k ∈ I,
(0,∞) when k ∈ J.

Let L0(Ω) denote the space of measurable functions over Ω. For a given weighting function
ρ : Ω→ R of class C1, with positive values, we define the weighted space

(1.9) L2,ρ(Ω) :=

{
v ∈ L0(Ω);

∫
Ω
v(x)2ρ(x)dx <∞

}
,

which is a Hilbert space endowed with the norm

(1.10) ‖v‖ρ :=

(∫
Ω
v(x)2ρ(x)dx

)1/2

.

By D(Ω) we denote the space of C∞ functions with compact support in Ω. By H2
loc(Ω) we

denote the space of functions over Ω whose product with an element of D(Ω) belongs to the
Sobolev space H2(Ω).

Besides, let Φ be a vector field over Ω (i.e., a mapping Ω→ Rn). The first-order differential
operator associated with Φ is for u : Ω→ R the function over Ω defined by

(1.11) Φ[u](x) :=
n∑
i=0

Φi(x)
∂u

∂xi
(x) for all x ∈ Ω.
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2. General setting. Here we compute the bilinear form associated with the original PDE,
in the setting of the general multiple factor model (1.4). Then we will check the hypotheses
of continuity and semicoercivity of this bilinear form.

2.1. Variational formulation. We compute the bilinear form of the variational setting,
taking into account a general weight function. We will see how to choose the functional
spaces for a given ρ and then how to choose the weight itself.

2.1.1. The elliptic operator. In financial models the underlying is a solution of stochastic
differential equations of the form

dX(t) = b(t,X(t))dt+

nσ∑
i=1

σi(t,X(t))dWi.(2.1)

Here X(t) takes values in Ω, defined in (1.8). That is, X1 corresponds to the s variable, and
Xk+1, for k = 1 to N , corresponds to yk. We have that nσ = 2N .

So, b and σi, for i = 1 to nσ, are mappings (0, T )×Ω→ Rn, and the Wi, for i = 1 to nσ,
are standard Brownian processes with correlation κij : (0, T ) × Ω → R between Wi and Wj

for i, j ∈ {1, . . . , nσ}. The nσ × nσ symmetric correlation matrix κ(·, ·) is nonnegative with
unit diagonal:

(2.2) κ(t, x) � 0; κii = 1, i = 1, . . . , nσ, for a.a. (t, x) ∈ (0, T )× Ω.

Here, for symmetric matrices B and C of the same size, by “C � B” we mean that C −B is
positive semidefinite. The expression of the second-order differential operator A corresponding
to the dynamics (2.1) is, skipping the time and space arguments, for u : (0, T )× Ω→ R,

(2.3) Au := ru− b · ∇u− 1

2

nσ∑
i,j=1

κijσ
>
j uxxσi,

where

(2.4) σ>j uxxσi :=

nσ∑
k,`=1

σkj
∂u2

∂xk∂x`
σ`i,

r(x, t) represents an interest rate, and uxx is the matrix of second derivatives in space of u.
The associated backward PDE for a European option is of the form

(2.5)

{
−u̇(t, x) +A(t, x)u(t, x) = f(t, x), (t, x) ∈ (0, T )× Ω;

u(x, T ) = uT (x), x ∈ Ω,

with u̇ the notation for the time derivative of u, uT (x) payoff at final time (horizon) T and
the right-hand side (r.h.s.) f(t, x) represents dividends (often equal to zero).

In the case of an American option we obtain a variational inequality; for details we refer
to Appendix D.
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2.1.2. The bilinear form. In what follows we assume that

(2.6) b, σ, κ are C1 mappings over [0, T ]× Ω.

Multiplying (2.3) by the test function v ∈ D(Ω) and the continuously differentiable weight
function ρ : Ω→ R and integrating over the domain we can integrate by parts; since v ∈ D(Ω)
there will be no contribution from the boundary. We obtain

(2.7) − 1

2

∫
Ω
σ>j uxxσivκijρ =

3∑
p=0

apij(u, v)

with

(2.8) a0
ij(u, v) :=

1

2

∫
Ω

n∑
k,`=1

σkjσ`i
∂u

∂xk

∂v

∂x`
κijρ =

1

2

∫
Ω
σj [u]σi[v]κijρ,

(2.9) a1
ij(u, v) :=

1

2

∫
Ω

n∑
k,`=1

σkjσ`i
∂u

∂xk

∂(κijρ)

∂x`
v =

1

2

∫
Ω
σj [u]σi[κijρ]

v

ρ
ρ,

(2.10) a2
ij(u, v) :=

1

2

∫
Ω

n∑
k,`=1

σkj
∂(σ`i)

∂x`

∂u

∂xk
vκijρ =

1

2

∫
Ω
σj [u](div σi)vκijρ,

(2.11) a3
ij(u, v) :=

1

2

∫
Ω

n∑
k,`=1

∂(σkj)

∂x`
σ`i

∂u

∂xk
vκijρ =

1

2

∫
Ω

n∑
k=1

σi[σkj ]
∂u

∂xk
vκijρ.

Also, for the contributions of the first- and zero-order terms, resp. we get

(2.12) a4(u, v) := −
∫

Ω
b[u]vρ; a5(u, v) :=

∫
Ω
ruvρ.

Set

(2.13) ap :=

nσ∑
i,j=1

apij , p = 0, . . . , 3.

The bilinear form associated with the above PDE is

(2.14) a(u, v) :=
5∑
p=0

ap(u, v).

From the previous discussion we deduce as follows.

Lemma 2.1. Let u ∈ H2
`oc(Ω) and v ∈ D(Ω). Then we have that

(2.15) a(u, v) =

∫
Ω
A(t, x)u(x)v(x)ρ(x)dx.
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2.1.3. The Gelfand triple. We can view a0 as the principal term of the bilinear form
a(u, v). Let σ denote the n× nσ matrix whose σj are the columns. Then

(2.16) a0(u, v) =

nσ∑
i,j=1

∫
Ω
σj [u]σi[v]κijρ =

∫
Ω
∇u>σκσ>∇vρ.

Since κ � 0, the above integrand is nonnegative when u = v; therefore, a0(u, u) ≥ 0. When κ
is the identity we have that a0(u, u) is equal to the seminorm a00(u, u), where

(2.17) a00(u, u) :=

∫
Ω
|σ>∇u|2ρ.

In the presence of correlations it is natural to assume that we have a coercivity of the same
order. That is, we assume that

(2.18) for some γ ∈ (0, 1]: σκσ> � γσσ>, for all (t, x) ∈ (0, T )× Ω.

Therefore, we have

(2.19) a0(u, u) ≥ γa00(u, u).

Remark 2.2. Condition (2.18) holds in particular if

(2.20) κ � γI
but may also hold in other situations, e.g., when n = 1, nσ = 2, κ12 = 1, and σ1 = σ2 = 1.
Yet when the σi are linearly independent, (2.19) is equivalent to (2.20).

We need to choose a pair (V,H) of Hilbert spaces satisfying the Gelfand conditions for
the variational setting of Appendix A, namely, V densely and continuously embedded in H,
and a(·, ·) continuous and semicoercive over V . Additionally, the r.h.s. and final condition of
(2.5) should belong to L2(0, T ;V ∗) and H, resp. (and for the second parabolic estimate, to
L2(0, T ;H) and V , resp. ).

We do as follows: for some measurable function h : Ω→ R+ to be specified later we define

(2.21)


H := {v ∈ L0(Ω); hv ∈ L2,ρ(Ω)},
V := {v ∈ H; σi[v] ∈ L2,ρ(Ω), i = 1, . . . , nσ},
V := {closure of D(Ω) in V},

endowed with the natural norms,

(2.22) ‖v‖H := ‖hv‖ρ; ‖u‖2V := a00(u, u) + ‖u‖2H .
We do not try to characterize the space V since this is problem dependent.

Obviously, a0(u, v) is a bilinear continuous form over V. We next need to choose h so that
a(u, v) is a bilinear and semicoercive continuous form, and uT ∈ H.

2.2. Continuity and semicoercivity of the bilinear form over V. We will see that the
analysis of a0 to a2 is relatively easy. It is less obvious to analyze the term

(2.23) a34(u, v) := a3(u, v) + a4(u, v).

Let q̄ij(t, x) ∈ Rn be the vector with kth component equal to

(2.24) q̄ijk := κijσi[σkj ].
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Set

(2.25) q̂ :=

nσ∑
i,j=1

q̄ij , q := q̂ − b.

Then by (2.11)–(2.12), we have that

(2.26) a34(u, v) =

∫
Ω
q[u]vρ.

We next need to assume that it is possible to choose ηk in L0((0, T ) × Ω), for k = 1 to nσ,
such that

(2.27) q =

nσ∑
k=1

ηkσk.

Often the n × nσ matrix σ(t, x) has a.e. rank n. Then the above decomposition is possible.
However, the choice for η is not necessarily unique. We will see in examples how to do it.
Consider the following hypotheses:

hσ ≤ cσh, where hσ :=

nσ∑
i,j=1

|σi[κijρ]/ρ+ κij div σi| , a.e., for some cσ > 0,(2.28)

hr ≤ crh, where hr := |r|1/2, a.e., for some cr > 0,(2.29)

hη ≤ cηh, where hη := |η|, a.e., for some cη > 0.(2.30)

Remark 2.3. Let us set for any differentiable vector field Z : Ω→ Rn

(2.31) Gρ(Z) := divZ +
Z[ρ]

ρ
.

Since κii = 1, (2.28) implies that

(2.32) |Gρ(σi)| ≤ cσh, i = 1; . . . , nσ.

Remark 2.4. Since

(2.33) σi[κijρ] = σi[κij ]ρ+ σi[ρ]κij ,

and |κij | ≤ 1 a.e., a sufficient condition for (2.28) is that there exist a positive constants c′σ
such that

(2.34) h′σ ≤ c′σh; h′σ :=

nσ∑
i,j=1

|σi[κij ]|+
nσ∑
i=1

(|div σi|+ |σi[ρ]/ρ|) .

We will see in section 4 how to choose the weight ρ so that |σi[ρ]/ρ| can be easily estimated
as a function of σ.

Lemma 2.5. Let (2.28)–(2.30) hold. Then the bilinear form a(u, v) is both (i) continuous
over V and (ii) semicoercive, in the sense of (A.5).

Proof. (i) We have that a1+a2 is continuous, since by (2.9)–(2.10), (2.28), and the Cauchy–
Schwarz inequality,
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|a1(u, v) + a2(u, v)| ≤
nσ∑
i,j=1

|a1
ij(u, v) + a2

ij(u, v)|

≤
nσ∑
j=1

‖σj [u]‖ρ
nσ∑
i=1

‖(σi[κijρ]/ρ+ κij div σi) v‖ρ

≤ cσnσ‖v‖H
nσ∑
j=1

‖σj [u]‖ρ.(2.35)

(ii) Also, a34 is continuous, since by (2.27) and (2.30),

(2.36) |a34(u, v)| ≤
nσ∑
k=1

‖σk[u]‖ρ‖ηkv‖ρ ≤ cη‖v‖H
nσ∑
k=1

‖σk[u]‖ρ.

Set c := cσnσ + c2
η. By (2.35)–(2.36), we have that

(2.37)

{
|a5(u, v)| ≤ ‖|r|1/2u‖2,ρ‖|r|1/2v‖2,ρ ≤ c2

r‖u‖H‖v‖H ,
|a1(u, v) + a2(u, v) + a34(u, v)| ≤ ca00(u)1/2‖v‖H .

Since a0 is obviously continuous, the continuity of a(u, v) follows.
(iii) Semicoercivity. Using (2.37) and Young’s inequality, we get that

(2.38)

a(u, u) ≥ a0(u, u)−
∣∣a1(u, u) + a2(u, u) + a34(u, u)

∣∣− ∣∣a5(u, u)
∣∣

≥ γa00(u)− ca00(u)1/2‖u‖H − cr‖u‖2H
≥ 1

2
γa00(u)−

(
1

2

c2

γ
+ cr

)
‖u‖2H ,

which means that a is semicoercive.

The above consideration allows us to derive well-posedness results for parabolic equations
and parabolic variational inequalities.

Theorem 2.6. (i) Let (V,H) be given by (2.21), with h satisfying (2.28)–(2.30), (f, uT ) ∈
L2(0, T ;V ∗)×H. Then (2.5) has a unique solution u in L2(0, T ;V ) with u̇ ∈ L2(0, T ;V ∗), and
the mapping (f, uT ) 7→ u is nondecreasing. (ii) If in addition the semi-symmetry condition
(A.8) holds, then u in L∞(0, T ;V ) and u̇ ∈ L2(0, T ;H).

Proof. This is a direct consequence of Propositions A.1, A.2, and C.1.

We next consider the case of parabolic variational inequalities associated with the set

(2.39) K := {ψ ∈ V : ψ(x) ≥ Ψ(x) a.e. in Ω},

where Ψ ∈ V . The strong and weak formulations of the parabolic variational inequality are
defined in (B.2) and (B.5), resp. The abstract notion of monotonicity is discussed in Appendix
B. We denote by K the closure of K in V .
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Theorem 2.7. (i) Let the assumptions of Theorem 2.6 hold, with uT ∈ K. Then the weak
formulation (B.5) has a unique solution u in L2(0, T ;K) ∩ C(0, T ;H), and the mapping
(f, uT ) 7→ u is nondecreasing.

(ii) Let in addition the semisymmetry condition (A.8) be satisfied. Then u is the unique so-
lution of the strong formulation (B.2) and belongs to L∞(0, T ;V ), and u̇ belongs to L2(0, T ;H).

Proof. This follows from Propositions B.1 and C.2.

3. Variational analysis using the commutator analysis. In the following a commutator
for first-order differential operators is introduced, and calculus rules are derived.

3.1. Commutators. Let u : Ω → R be of class C2. Let Φ and Ψ be two vector fields
over Ω, both of class C1. Recalling (1.11), we may define the commutator of the first-order
differential operators associated with Φ and Ψ as

(3.1) [Φ,Ψ][u] := Φ[Ψ[u]]−Ψ[Φ[u]].

Note that

(3.2) Φ[Ψ[u]] =
n∑
i=1

Φi
∂(Ψu)

∂xi
=

n∑
i=1

Φi

(
n∑
k=1

∂Ψk

∂xi

∂u

∂xk
+ Ψk

∂2u

∂xk∂xi

)
.

So, the expression of the commutator is

[Φ,Ψ] [u] =

n∑
i=1

(
Φi

n∑
k=1

∂Ψk

∂xi

∂u

∂xk
−Ψi

n∑
k=1

∂Φk

∂xi

∂u

∂xk

)

=

n∑
k=1

(
n∑
i=1

Φi
∂Ψk

∂xi
−Ψi

∂Φk

∂xi

)
∂u

∂xk
.(3.3)

It is another first-order differential operator associated with a vector field (which happens to
be the Lie bracket of Φ and Ψ; see, e.g., [4]).

3.2. Adjoint. Remembering that H was defined in (2.21), given two vector fields Φ and
Ψ over Ω, we define the spaces

V(Φ,Ψ) := {v ∈ H; Φ[v], Ψ[v] ∈ H} ,(3.4)

V (Φ,Ψ) := {closure of D(Ω) in V(Φ,Ψ)} .(3.5)

We define the adjoint Φ> of Φ (view as an operator over, say, C∞(Ω,R), the latter being
endowed with the scalar product of L2,ρ(Ω)) by

(3.6) 〈Φ>[u], v〉ρ = 〈u,Φ[v]〉ρ for all u, v ∈ D(Ω),

where 〈·, ·〉ρ denotes the scalar product in L2,ρ(Ω). Thus, there holds the identity

(3.7)

∫
Ω

Φ>[u](x)v(x)ρ(x)dx =

∫
Ω
u(x)Φ[v](x)ρ(x)dx for all u, v ∈ D(Ω).
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Furthermore,

(3.8)

∫
Ω
u

n∑
i=1

Φi
∂v

∂xi
ρdx = −

n∑
i=1

∫
Ω
v
∂

∂xi
(uρΦi)dx

= −
n∑
i=1

∫
Ω
v

(
∂

∂xi
(uΦi) +

u

ρ
Φi

∂ρ

∂xi

)
ρdx.

Hence,

(3.9) Φ>[u] = −
n∑
i=1

∂

∂xi
(uΦi)− uΦi

∂ρ

∂xi
/ρ = −u div Φ− Φ[u]− uΦ[ρ]/ρ.

Remembering the definition of Gρ(Φ) in (2.31), we obtain that

(3.10) Φ[u] + Φ>[u] +Gρ(Φ)u = 0.

3.3. Continuity of the bilinear form associated with the commutator. Setting, for v
and w in V (Φ,Ψ),

(3.11) ∆(u, v) :=

∫
Ω

[Φ,Ψ][u](x)v(x)ρ(x)dx,

we have

(3.12)

∆(u, v) =

∫
Ω

(Φ[Ψ[u]]v −Ψ[Φ[u]]v)ρdx =

∫
Ω

Ψ[u]Φ>[v]− Φ[u]Ψ>[v])ρdx

=

∫
Ω

(Φ[u]Ψ[v]−Ψ[u]Φ[v]) ρdx+

∫
Ω

(Φ[u]Gρ(Ψ)v −Ψ[u]Gρ(Φ)v) ρdx.

Lemma 3.1. For ∆(·, ·) to be a continuous bilinear form on V (Φ,Ψ), it suffices that, for
some c∆ > 0,

(3.13) |Gρ(Φ)|+ |Gρ(Ψ)| ≤ c∆h a.e.,

and we have then

(3.14) |∆(u, v)| ≤ ‖Ψ[u]‖ρ
(
‖Φ[v]‖ρ + c∆ ‖v‖H

)
+ ‖Φ[u]‖ρ

(
‖Ψ[v]‖ρ + c∆ ‖v‖H

)
.

Proof. Apply the Cauchy–Schwarz inequality to (3.12), and use (3.13) combined with the
definition of the space H.

We apply the previous results with Φ := σi, Ψ := σj . Set for v, w in V ,

(3.15) ∆ij(u, v) :=

∫
Ω

[σi, σj ][u](x)v(x)ρ(x)dx, i, j = 1, . . . , nσ.

We recall that V was defined in (2.21).

Corollary 3.2. Let (2.28) hold. Then the ∆ij(u, v), i, j = 1, . . . , nσ, are continuous bilinear
forms over V .

Proof. Use Remark 2.3 and conclude with Lemma 3.1.
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3.4. Redefining the space H. In section 2.2 we have obtained the continuity and semi-
coercivity of a by decomposing q, defined in (2.26), as a linear combination (2.27) of the σi.
We now take advantage of the previous computation of commutators and assume that, more
generally, instead of (2.27), we can decompose q in the form

q =

nσ∑
k=1

η′′kσk +
∑

1≤i<j≤nσ

η′ij [σi, σj ] a.e.(3.16)

We assume that η′ and η′′ are measurable functions over [0, T ]×Ω, that η′ is weakly differen-
tiable, and that for some c′η > 0,

h′η ≤ c′ηh,whereh′η := |η′′|+
N∑

i,j=1

∣∣σi[η′ij ]∣∣ a.e., η′ ∈ L∞(Ω).(3.17)

Lemma 3.3. Let (2.28), (2.29), and (3.17) hold. Then the bilinear form a(u, v) defined in
(2.14) is both (i) continuous and (ii) semicoercive over V .

Proof. (i) We only have to analyze the contribution of a34 (defined in (2.23)), since the
other contributions to a(·, ·) do not change. For the terms in the first sum in (3.16) we have,
as was done in (2.36),

(3.18)

∣∣∣∣∫
Ω
σk[u]η′′kvρ

∣∣∣∣ ≤ ‖σk[u]‖ρ
∥∥σk[u]η′′kv

∥∥
ρ
≤ ‖σk[u]‖ρ ‖v‖H .

(ii) Setting w := η′ijv and taking here (Φ,Ψ) = (σi, σj), we get that

(3.19)

∫
Ω
η′ij [σi, σj)[u]vρ = ∆(u,w),

where ∆(·, ·) was defined in (3.11). Combining with Lemma 3.1, we obtain

|∆ij(u, v)| ≤ ‖σj [u]‖ρ
(
‖σi[w]‖ρ + cσ‖η′ij‖∞ ‖v‖H

)
+ ‖σi[u]‖ρ

(
‖σj [w]‖ρ + cσ‖η′ij‖∞ ‖v‖H

)
.(3.20)

Since

(3.21) σi[η
′
ijv] = η′ijσi[v] + σi[η

′
ij ]v,

by (3.17),

(3.22) ‖σi[w]‖ρ ≤ ‖η
′
ij‖∞ ‖σi[v]‖ρ +

∥∥σi[η′ij ]v∥∥ρ ≤ ‖η′ij‖∞ ‖σi[v]‖ρ + cη‖v‖H .

Combining these inequalities, point (i) follows.
(ii) Use u = v in (3.21) and (3.12). We find after cancellation in (3.12) that

∆ij(u, η
′
iju) =

∫
Ω
u(σi[u]σj [η

′
ij ]− σj [u]σi(η

′
ij))ρ

+

∫
Ω

(σi[u]Gρ(σj)− σj [u]Gρ(σi)) η
′
ijuρ.(3.23)

By (3.17), an upper bound for the absolute value of the first integral is
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(3.24)
(
‖σi[u]‖ρ + ‖σj [u]‖ρ

)
‖hu‖ρ ≤ 2 ‖u‖V ‖u‖H .

With (2.28), we get an upper bound for the absolute value of the second integral in the same
way, so, for any ε > 0,

(3.25) |∆ij(u, η
′
iju)| ≤ 4 ‖u‖V ‖u‖H .

We finally have that for some c > 0

a(u, u) ≥ a0(u, u)− c ‖u‖V ‖u‖H ,

≥ a0(u, u)− 1

2
‖u‖2V −

1

2
c2 ‖u‖2H ,

=
1

2
‖u‖2V −

1

2
(c2 + 1) ‖u‖2H .(3.26)

The conclusion follows.

Remark 3.4. The statements analogous to Theorems 2.6 and 2.7 hold, assuming now that
h satisfies (2.28), (2.29), and (3.17) (instead of (2.28)–(2.30)).

4. The weight ρ. Classes of weighting functions characterized by their growth are intro-
duced. A major result is the independence of the growth order of the function h on the choice
of the weighting function ρ in the class under consideration.

4.1. Classes of functions with given growth. In financial models we usually have non-
negative variables and the related functions have polynomial growth. Yet, after a logarithmic
transformation, we get real variables whose related functions have exponential growth. This
motivates the following definitions.

We recall that (I, J) is a partition of {0, . . . , N} with 0 ∈ J and that Ω was defined in (1.8).

Definition 4.1. Let γ′ and γ′′ belong to RN+1
+ , with index from 0 to N . Let G(γ′, γ′′) be the

class of functions ϕ : Ω→ R such that for some c > 0,

|ϕ(x)| ≤ c
(

Π
k∈I

(eγ
′
kxk + e−γ

′′
kxk)

)(
Π
k∈J

(x
γ′k
k + x

−γ′′k
k )

)
.(4.1)

We define G as the union of G(γ′, γ′′) for all nonnegative (γ′, γ′′). We call γ′k and γ′′k the
growth order of ϕ, w.r.t. xk, at −∞ and +∞ (resp., at zero and +∞).

Observe that the class G is stable by the operations of sum and product and that if f , g
belong to that class, so does h = fg, h having growth orders equal to the sum of the growth
orders of f and g. For a ∈ R, we define

a+ := max(0, a); a− := max(0,−a); N(a) := (a2 + 1)1/2,(4.2)

as well as

ρ := ρIρJ ,(4.3)

where

ρI(x) := Π
k∈I

e−α
′
kN(x+k )−α′′kN(x−k ),(4.4)

ρJ(x) := Π
k∈J

x
α′k
k

1 + x
α′k+α′′k
k

,(4.5)

for some nonnegative constants α′k, α
′′
k, to be specified later.
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Lemma 4.2. Let ϕ ∈ G(γ′, γ′′). Then ϕ ∈ L1,ρ(Ω) whenever ρ is as above, with α satisfying,
for some positive ε′ and ε′′, for all k = 0 to N ,

(4.6)

{
α′k = ε′ + γ′k, α′′k = ε′′ + γ′′k , k ∈ I,
α′k = (ε′ + γ′′k − 1)+, α′′k = 1 + ε′′ + γ′k, k ∈ J.

In addition we can choose for k = 0 (if element of J)

(4.7)

{
α′0 := (ε′ + γ′′0 − 1)+; α′′0 := 0 if ϕ(s, y) = 0 when s is far from 0,

α′0 := 0, α′′0 := 1 + ε′′ + γ′0 if ϕ(s, y) = 0 when s is close to 0.

Proof. It is enough to prove (4.6); the proof of (4.7) is similar. We know that ϕ satisfy
(4.1) for some c > 0 and γ. We need to check the finiteness of∫

Ω

(
Π
k∈I

(eγ
′
kyk + e−γ

′′
k yk)

)(
Π
k∈J

(y
γ′k
k + y

−γ′′k
k )

)
ρ(s, y)d(s, y).(4.8)

But the above integral is equal to the product pIpJ with

pI := Π
k∈I

∫
R

(eγ
′
kxk + e−γ

′′
kxk)e−α

′
kN(x+k )−α′′kN(x−k )dxk,(4.9)

pJ := Π
k∈J

∫
R+

x
α′k+γ′k
k + x

α′k−γ
′′
k

k

1 + x
α′k+α′′k
k

dxk.(4.10)

Using (4.6) we deduce that pI is finite since, for instance,

(4.11)

∫
R+

(eγ
′
kxk + e−γ

′′
kxk)e−α

′
kN(x+k )−α′′kN(x−k )dxk

≤ 2

∫
R+

eγ
′
kxke−(1+γ′k)xkdxk = 2

∫
R+

e−xkdxk = 2,

and pJ is finite since

(4.12) pJ = Π
k∈J

∫
R+

x
ε′+γ′k+γ′′k
k + xε

′−1
k

1 + x
ε′+ε′′+γ′k+γ′′k
k

dxk <∞.

The conclusion follows.

4.2. On the growth order of h. Set for all k

αk := α′k + α′′k.(4.13)

Remember that we take ρ in the form (4.3)–(4.4).

Lemma 4.3. We have the following:
(i) We have that

(4.14)

∥∥∥∥ρxkρ
∥∥∥∥
∞
≤ αk, k ∈ I;

∥∥∥∥xρρxk
∥∥∥∥
∞
≤ αk, k ∈ J.

(ii) Let h satisfying either (2.28)–(2.30) or (2.28)–(2.29), and (3.17). Then the growth
order of h does not depend on the choice of the weighting function ρ.
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Proof. (i) For k ∈ I this is an easy consequence of the fact that N(·) is nonexpansive. For
k ∈ J , we have that

x

ρ
ρxk =

x

ρ

α′kx
α′k−1(1 + xαk)− xα′kαkxαk−1

(1 + xαk)2
=
α′k − α′′kxαk

1 + xαk
.(4.15)

We easily conclude, discussing the sign of the numerator.
(ii) The dependence of h w.r.t. ρ is only through the last term in (2.28), namely,∑

i |σi[ρ]/ρ. By (i) we have that∣∣∣∣σki [ρ]

ρ

∣∣∣∣ ≤ ∥∥∥∥ρxkρ
∥∥∥∥
∞
|σki | ≤ αk|σki |, k ∈ I,(4.16)

∣∣∣∣σki [ρ]

ρ

∣∣∣∣ ≤ ∥∥∥∥xkρxkρ

∥∥∥∥
∞

∣∣∣∣σkixk
∣∣∣∣ ≤ αk ∣∣∣∣σkixk

∣∣∣∣ , k ∈ J.(4.17)

In both cases, the choice of α has no influence on the growth order of h.

4.3. European option. In the case of a European option with payoff uT (x), we need to
check that uT ∈ H, that is, ρ must satisfy∫

Ω
|uT (x)|2h(x)2ρ(x)dx <∞.(4.18)

In the framework of the semisymmetry hypothesis (A.8), we need to check that uT ∈ V , which
gives the additional condition

nσ∑
i=1

∫
Ω
|σi[uT ](x)|2ρ(x)dx <∞.(4.19)

In practice the payoff depends only on s and this allows us to simplify the analysis.

5. Applications using the commutator analysis. The commutator analysis is applied to
the general multiple factor model and estimates for the function h characterizing the space H
(defined in (2.21)) are derived. The estimates are compared to the case when the commutator
analysis is not applied. The resulting improvement will be established in the next section.

5.1. Commutator and continuity analysis. We analyze the general multiple factor model
(1.4), which belongs to the class of models (2.1) with Ω ⊂ R1+N , nσ = 2N , and for i = 1
to N ,

σi[v] = fi(yi)s
βivs; σN+i[v] = gi(yi)vi,(5.1)

with fi and gi of class C1 over Ω. We need to compute the commutators of the first-order
differential operators associated with the σi. The correlations will be denoted by

κ̂k := κk,N+k, k = 1, . . . , N.(5.2)
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Remark 5.1. We use many times the following rule. For Ω ⊂ Rn, where n = 1 + N ,
u ∈ H1(Ω), a, b ∈ L0, and vector fields Z[u] := aux1 and Z ′[u] := bux2 , we have Z[Z ′[u]] =
a(bux2)x1 = abx1ux2 + abux1x2 , so that

[Z,Z ′][u] = abx1ux2 − bax2ux1 .(5.3)

We obtain that

[σi, σ`][u] = (β` − βi)fi(yi)f`(y`)sβi+β`−1us, 1 ≤ i < ` ≤ N,(5.4)

[σi, σN+i][u] = −sβif ′i(yi)gi(yi)us, i = 1, . . . , N,(5.5)

and

[σi, σN+`][u] = [σN+i, σN+`][u] = 0, i 6= `.(5.6)

Also,

div σi +
σi[ρ]

ρ
= fi(yi)s

βi−1

(
βi + s

ρs
ρ

)
,

div σN+i +
σN+i[ρ]

ρ
= g′i(yi) + gi(yi)

ρi
ρ
.(5.7)

5.1.1. Computation of q. Remember the definitions of q̄, q̂ and q in (2.24) and (2.25),
where δij denote the Kronecker operator. We obtain that, for 1 ≤ i, j, k ≤ N ,

(5.8)


q̄ij0 = δijβjf

2
i (yi)s

2βi−1; q̄iik = 0;
q̄i,N+j = 0;
q̄N+i,j,0 = δij κ̂if

′(yi)gi(yi)s
βi ; q̄N+i,j,k = 0;

q̄N+i,N+j,k = δijkgi(yi)g
′
i(yi).

That means we have for q̂ =
∑2N

i,j=1 q̄ij and q = q̂ − b that

(5.9)
q̂0 =

∑N
i=1

(
βif

2
i (yi)s

2βi−1 + κ̂if
′(yi)gi(yi)s

βi
)

; q0 = q̂0 − rs,
q̂k = gk(yk)g

′
k(yk); qk = q̂k − θk(µk − yk),

k = 1, . . . , N.

5.2. Computation of η′ and η′′. The coefficients η′, η′′ are a solution of (3.16). We can
write η = η̂ + η̃, where

(5.10)

q̂ =

nσ∑
i=1

η̂′′i σi +
∑

1≤i,j≤nσ

η̂′ij [σi, σj ], η̂′ij = 0 if i = j.

−b =

nσ∑
i=1

η̃′′i σi +
∑

1≤i,j≤nσ

η̃′ij [σi, σj ], η̃′ij = 0 if i = j.

For k = 1 to N , this reduces to

(5.11)

{
η̂′′N+kgk(yk) = g′k(yk)gk(yk);

η̃′′N+kgk(yk) = −θk(µk − yk).
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So, we have that

(5.12)


η̂′′N+k = g′k(yk);

η̃′′N+k =
−θk(µk − yk)

gk(yk)
.

For the 0th component, (5.10) can be expressed as

(5.13)



N∑
k=1

(
−η̂′k,N+kf

′
k(yk)gk(yk)s

βk − κ̂kf ′k(yk)gk(yk)sβk
)

+

N∑
k=1

(
η̂′′kfk(yk)s

βk − βkf2
k (yk)s

2βk−1
)

+
N∑
k=1

(
−η̃′k,N+kf

′
k(yk)gk(yk)s

βk + η̃′′kfk(yk)s
βk
)
− rs = 0.

We choose to set each term in parentheses in the first two lines above to zero. It follows that

η̂′k,N+k = −κ̂k ∈ L∞(Ω), η̂′′k = βkfk(yk)s
βk−1.(5.14)

If N > 1 we (arbitrarily) choose then to set the last line to zero with

(5.15) η̃′′k = η̃′k = 0, k = 2, . . . , N.

It remains that

η̃′′1f1(y1)sβ1 − η̃′1,N+1f
′
1(y1)g1(y1)sβ1 = rs.(5.16)

Here, we can choose to take either η̃′′1 = 0 or η̃′1,N+1 = 0. We obtain then two possibilities:

(5.17)


(i) η̃′′1 = 0 and η̃′1,N+1 =

−rs1−β1

f ′1(y1)g1(y1)
,

(ii) η̃′′1 =
rs1−β1

f1(y1)
and η̃′1,N+1 = 0.

5.2.1. Estimate of the h function. We decide to choose case (i) in (5.17). The function h
needs to satisfy (2.28), (2.29), and (3.17) (instead of (2.30)). Instead of (2.28), we will rather
check the stronger condition (2.34). We compute

h′σ :=
N∑
k=1

|fk(yk)|sβk
(
|(κ̂k)s|+

∣∣∣∣ρsρ
∣∣∣∣)+ |gk(yk)|

(
|(κ̂k)k|+

∣∣∣∣ρkρ
∣∣∣∣)(5.18)

+
N∑
k=1

(
βk|fk(yk)sβk−1|+ |g′k(yk)|

)
,

hr := |r|
1
2 ,(5.19)

h′η := ĥ′η + h̃′η,(5.20)
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where we have

ĥ′η :=

N∑
k=1

(
βk|fk(yk)|sβk−1 + |g′k(yk)|+

∣∣∣∣fk(yk)|sβk ∂κ̂k∂s
∣∣∣∣+

∣∣∣∣gk(yk)∂κ̂k∂yk

∣∣∣∣) ,(5.21)

h̃′η :=
N∑
k=1

∣∣∣∣θk(µk − yk)gk(yk)

∣∣∣∣+

∣∣∣∣r f1(y1)

f ′1(y1)g1(y1)

∣∣∣∣+

∣∣∣∣rg1(y1)s1−β1 ∂

∂y1

[
1

f ′1(y1)g1(y1)

]∣∣∣∣ .(5.22)

Remark 5.2. Had we chosen (ii) instead of (i) in (5.17), this would only change the ex-
pression of h̃′η that would then be

(5.23) h̃′η =
N∑
k=1

∣∣∣∣θk(µk − yk)gk(yk)

∣∣∣∣+

∣∣∣∣rs1−β1

f1(y1)

∣∣∣∣ .
5.2.2. Estimate of the h function without the commutator analysis. The only change

in the estimate of h will be the contribution of h′η and h′′η. We have to satisfy (2.28)–(2.30).
In addition, ignoring the commutator analysis, we would solve (5.13) with η̂′ = 0, meaning
that we choose

(5.24) η̂′′k := βkfk(yk)s
βk−1 + κ̂k

f ′k(yk)gk(yk)

fk(yk)
, k = 1, . . . , N,

and take η̃′′1 out of (5.16). Then condition (3.17), with here η̂′ = 0, would give

(5.25) h ≥ cηhη, where hη := hη̂ + hη̃,

with

hη̂ :=
N∑
k=1

(
βk|fk(yk)|sβk−1 + |κ̂k|

∣∣∣∣f ′k(yk)gk(yk)fk(yk)

∣∣∣∣+ |g′k(yk)|
)
,(5.26)

hη̃ :=

N∑
k=1

∣∣∣∣θk(µk − yk)gk(yk)

∣∣∣∣+

∣∣∣∣rs1−β1

f1(y1)

∣∣∣∣ .(5.27)

We will see in applications that this is in general worse.

6. Application to stochastic volatility models. The results of section 5 are specified for
a subclass of the multiple factor model, in particular for the VAT and GMH models. We
show that the commutator analysis allows us to take smaller values for the function h (and
consequently to include a larger class of payoff functions).

6.1. A useful subclass. Here we assume that

(6.1) |fk(yk)| = |yk|γk ; |gk(yk)| = νk|yk|1−γk ; βk ∈ (0, 1]; νk > 0; γk ∈ (0,∞).

Furthermore, we assume κ to be constant and

(6.2) |f ′k(yk)gk(yk)| = const for all yk, k = 1, . . . , N.
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Set

(6.3)

cs := ‖sρs/ρ‖∞;

c′k =

{
‖ρk/ρ‖∞ if Ωk = R,

0 otherwise.

c′′k =

{
0 if Ωk = R,

‖ykρk/ρ‖∞ otherwise.

We get, assuming that γ1 6= 0,

(6.4)
h′σ :=

N∑
k=1

(
cs|yk|γksβk−1 + νkc

′
k|yk|1−γk

+ νkc
′′
k|yk|−γk + βk|yk|γksβk−1 + (1− γk)νk|yk|−γk

)
,

ĥ′η :=

N∑
k=1

(
βk|yk|γksβk−1 + (1− γk)νk|yk|−γk

)
,(6.5)

h̃′η :=
N∑
k=1

(
θk|µk − yk|
νk|yk|1−γk

+
r|y1|γ1
γ1ν1

)
.(6.6)

Therefore when all yk ∈ R, we can choose h′ as

h′ : = 1 +
N∑
k=1

(
|yk|γk(1 + sβk−1) + (1− γk)|yk|−γk + |yk|γk−1

)
+
∑
k∈I
|yk|1−γk +

∑
k∈J
|yk|−γk .(6.7)

Without the commutator analysis we would get

ĥη :=

N∑
k=1

(βk|yk|γksβk−1 + νk|κ̂k||yk|−γk + (1− γk)νk|yk|−γk),(6.8)

h̃η :=
N∑
k=1

(
θk
|µk − yk|
νk|yk|1−γk

+ rs1−β1 |y1|−γ1
)
.(6.9)

Therefore we can choose

(6.10) h := h′′; h′′ := h′ + rs1−β1/|y1|γ1 +
∑
k

νk|κ̂k||yk|−γk .

So, we always have that h′ ≤ h′′, meaning that it is advantageous to use the commutator
analysis, due to the term rs1−β1/|y1|γ1 above in particular. The last term in the above r.h.s.
has as contribution only when γk 6= 1 (since otherwise h′ includes a term of the same order).
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6.2. Application to the VAT model. For the VAT model, i.e., when γk = 1, for k = 1 to
N , we can take h equal to

(6.11) h′TA := 1 +
N∑
k=1

|yk|(1 + sβk−1)

when the commutator analysis is used, and when it is not, we take h equal to

(6.12) hTA := hTA + rs1−β1 |y1|−1 +
N∑
k=1

νk|κ̂k||yk|−1.

Remember that uT (s) = (s−K)+ for a call option, and uT (s) = (K−s)+ for a put option,
both with strike K > 0.

Lemma 6.1. For the VAT model, using the commutator analysis, in case of a call (resp.,
put) option with strike K > 0, we can take ρ = ρcall, (resp., ρ = ρput), with

(6.13)
ρcall(s, y) := (1 + s3+ε′′)−1ΠN

k=1e
−εN(yk),

ρput(s, y) :=
sαP

1 + sαP
ΠN
k=1e

−εN(yk),

where αP := (ε′ + 2
∑N

k=1(1− βk)− 1)+.

Proof. (i) In the case of a call option, we have that

(6.14) 1 ≥ c0s
βk−1 for c0 > 0 small enough over the domain of integration,

so that we can as well take

(6.15) h(s, y) = 1 +
N∑
k=1

|yk| ≤ ΠN
k=1(1 + |yk|).

So, we need that ϕ(s, y) ∈ L1,ρ(Ω) with

(6.16) ϕ(s, y) = h2(s, y)u2
T (s) = (s−K)2

+ΠN
k=1(1 + |yk|)2.

By Lemma 4.2, where here J = {0} and I = {1, . . . , N}, we may take, resp.,

(6.17) γ′0 = 2, γ′′0 = 0, γ′k > 0, γ′′k > 0, k = 1, . . . , N,

and so we may choose for ε′ > 0 and ε′′ > 0

(6.18) α′0 = 0, α′′0 = 3 + ε′′, α′k = ε′, α′′k = ε′′, k = 1, . . . , N,

so that setting ε := ε′ + ε′′, we can take ρ = ρcall.
(ii) For a put option with strike K > 0, 1 ≤ c0s

βk−1 for big enough c0 > 0, over the
domain of integration, so that we can as well take

(6.19) h(s, y) = 1 +

N∑
k=1

|yk|sβk−1 ≤ ΠN
k=1(1 + |yk|sβk−1)2 ≤ ΠN

k=1s
2βk−2(1 + |yk|)2
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and

(6.20) ϕ(s, y) = h2(s, y)u2
T (s) ≤ (K − s)2

+ΠN
k=1s

2βk−2(1 + |yk|)2.

By Lemma 4.2, in the case of a put option and since (K − s)2
+ is bounded, we can take γ′k,

γ′′k , α′k, α
′′
k as before, for k = 1 to N , and

(6.21) γ′0 = 0, γ′′0 = 2
N∑
k=1

(1− βk), α′0 =

(
ε′ + 2

N∑
k=1

(1− βk)− 1

)
+

, α′′0 = 0,

and the result follows.

Remark 6.2. If we do not use the commutator analysis, then we have a greater “h” func-
tion; we can check that our previous choice of ρ does not apply any more (so we should
consider a smaller weight function, but we do not need to make it explicit). And indeed, we
have then a singularity when, say, y1 is close to zero so that the previous choice of ρ makes
the p integral undefined.

6.3. Application to the GMH model. For the GMH model, i.e., when γk = 1/2, k = 1
to N , we can take h equal to

(6.22) h′H := 1 +
N∑
k=1

(
|yk|

1
2 (1 + sβk−1) + |yk|−

1
2

)
when the commutator analysis is used, and when it is not, we take h equal to

(6.23) hH := hH + rs1−β1 |y1|−
1
2 .

Lemma 6.3. (i) For the GMH model, using the commutator analysis, in case of a call
option with strike K, meaning that uT (s) = (s−K)+, we can take ρ = ρcall, with

(6.24) ρcall(s, y) := (1 + sε
′′+3)−1ΠN

k=1y
ε′
k (1 + yε+2

k )−1.

(ii) For a put option with strike K > 0, we can take ρ = ρput, with

(6.25) ρput(s, y) := ΠN
k=1y

ε′
k (1 + yε+2

k )−1.

Proof. (i) For the call option, using (6.14) we see that we can as well take

(6.26) h(s, y) ≤ 1 +
N∑
k=1

(
y

1/2
k + y

−1/2
k

)
≤ (s−K)2

+ΠN
k=1(1 + y

1/2
k + y

−1/2
k ).

So, we need that ϕ(s, y) ∈ L1,ρ(Ω), with

(6.27) ϕ(s, y) = h2(s, y)u2
T (s) = (s−K)2

+ΠN
k=1(1 + y

1/2
k + y

−1/2
k ).

By Lemma 4.2, where here J = {0, . . . , N}, we may take, resp.,

(6.28) γ′0 = 2, γ′′0 = 0, γ′k = 1, γ′′k = 1, k = 1, . . . , N,
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and so we may choose for ε′ > 0 and ε′′ > 0

(6.29) α′0 = 0, α′′0 = 3 + ε′′, α′k = ε′, α′′k = ε′′ + 2, k = 1, . . . , N,

so that setting ε := ε′ + ε′′, we can take ρ = ρcall.
(ii) For a put option with strike K > 0, 1 ≤ c0s

βk−1 for big enough c0 > 0, over the
domain of integration, so that we can as well take

(6.30) h(s, y) = 1 +

N∑
k=1

|yk|sβk−1 ≤ ΠN
k=1(1 + |yk|sβk−1)2 ≤ ΠN

k=1s
2βk−2(1 + |yk|)2

and

(6.31) ϕ(s, y) = h2(s, y)u2
T (s) ≤ (K − s)2

+ΠN
k=1s

2βk−2(1 + |yk|)2.

By Lemma 4.2, in the case of a put option and since (K − s)2
+ is bounded, we can take γ′k,

γ′′k , α′k, α
′′
k as before, for k = 1 to N , and

(6.32) γ′0 = 0, γ′′0 = 0, α′0 = 0, α′′0 = 0,

and the result follows.

Remark 6.4. If we do not use the commutator analysis, then, again, we have a greater “h”
function; we can check that our previous choice of ρ does not apply any more (so we should
consider a smaller weight function, but we do not need to make it explicit). And indeed, by
the behavior of the integral for large s the previous choice of ρ makes the p integral undefined.

Appendix A. Regularity results by Lions and Magenes. Let H be a Hilbert space
identified with its dual and scalar product denoted by (·, ·). Let V be a Hilbert space, densely
and continuously embedded in H, with duality product denoted by 〈·, ·〉V . Set

(A.1) W (0, T ) := {u ∈ L2(0, T ;V ); u̇ ∈ L2(0, T ;V ∗)}.

It is known [15, Chap. 1] that

(A.2) W (0, T ) ⊂ C(0, T ;H) with continuous inclusion

and that for any u, v in W (0, T ), and 0 ≤ t < t′ ≤ T , the following integration by parts
formula holds:

(A.3)

∫ t′

t
(〈u̇(s), v(s)〉V + 〈v̇(s), u(s)〉V ) ds = (u(t′), v(t′))H − (u(t), v(t))H .

Equivalently,

(A.4) 2

∫ t′

t
〈u̇(s), u(s)〉V ds = ‖u(t′)‖2H − ‖u(t)‖2H for all u ∈W (0, T ).



486 J. FRÉDÉRIC BONNANS AND AXEL KRÖNER

Let A(t) ∈ L∞(0, T ;L(V, V ∗)) satisfy the hypotheses of uniform continuity and semicoercivity,
i.e., for some α > 0, λ ≥ 0, and c > 0,

(A.5)

{
〈A(t)u, u〉V ≥ α‖u‖2V − λ‖u‖H for all u ∈ V and a.a. t ∈ [0, T ],
‖A(t)u‖V ∗ ≤ c‖u‖V for all u ∈ V and a.a. t ∈ [0, T ].

Given (f, uT ) ∈ L2(0, T ;V ∗) × H, we consider the following (backward) parabolic equation:
find u in W (0, T ) such

(A.6)

{
−u̇(t) +A(t)u(t) = f in L2(0, T ;V ∗),

u(T ) = uT in H,

and recall classical results from [15, Chap. 1].

Proposition A.1 (first parabolic estimate). The parabolic equation (A.6) has a unique so-
lution u ∈W (0, T ), and for some c > 0 not depending on (f, uT ),

(A.7) ‖u‖L2(0,T ;V ) + ‖u‖L∞(0,T ;H) ≤ c(‖uT ‖H + ‖f‖L2(0,T ;V ∗)).

We next derive a stronger result with the hypothesis of semisymmetry below:

(A.8)



A(t) = A0(t) +A1(t), A0(t) and A1(t) continuous linear mappings V → V ∗,
A0(t) symmetric and continuously differentiable V → V ∗ w.r.t. t,
A1(t) is measurable with range in H, and for positive numbers α0, cA,1
(i) 〈A0(t)u, u〉V ≥ α0‖u‖2V for all u ∈ V , and a.a. t ∈ [0, T ],

(ii) ‖A1(t)u‖H ≤ cA,1‖u‖V for all u ∈ V and a.a. t ∈ [0, T ],
f ∈ L2(0, T ;H) and uT ∈ V .

Proposition A.2 (second parabolic estimate). Let (A.8) hold. Then the solution u ∈
W (0, T ) of (A.6) belongs to L∞(0, T ;V ), u̇ belongs to L2(0, T ;H), and for some c > 0 not
depending on (f, uT )

(A.9) ‖u‖L∞(0,T ;V ) + ‖u̇‖L2(0,T ;H) ≤ c(‖uT ‖V + ‖f‖L2(0,T ;H)).

Appendix B. Parabolic variational inequalities. Let K ⊂ V be a nonempty, closed, and
convex set, K be the closure of K in H, and uT ∈ K. Let

(B.1)

{
L2(0, T ;K) := {u ∈ L2(0, T ;V ); u(t) ∈ K a.e.},
W (0, T ;K) := W (0, T ) ∩ L2(0, T ;K).

We consider parabolic variational inequalities as follows: find u ∈W (0, T ;K) such that

(B.2)

{
〈−u̇(t) +A(t)u(t)− f(t), v − u(t)〉V ≥ 0 for all v ∈ K a.a. t,

u(T ) = uT in H.

Take v ∈W (0, T ;K). Adding to the previous inequality the integration by parts formula

(B.3) −
∫ T

0
〈v̇(s)− u̇(s), v(s)− u(s)〉V ds =

1

2
‖u(0)− v(0)‖2H −

1

2
‖u(T )− v(T )‖2H
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and since u(T ) = uT we find that

(B.4)


∫ T

0
〈−v̇(t) +A(t)u(t)− f(t), v − u(t)〉V ≥

1

2
‖u(0)− v(0)‖2H −

1

2
‖u(T )− v(T )‖2H

for all v ∈W (0, T ;K), u(T ) = uT .

It can be proved that the two formulation (B.2) and (B.4) are equivalent (they have the same
set of solutions) and that they have at most one solution. The weak formulation is as follows:
find u ∈ L2(0, T ;K) ∩ C(0, T ;H) such that

(B.5)


∫ T

0
〈−v̇(t) +A(t)u(t)− f(t), v − u(t)〉V ≥ −

1

2
‖u(T )− v(T )‖2H

for all v ∈ L2(0, T ;K), u(T ) = uT .

Clearly a solution of the strong formulation (B.2) is a solution of the weak one.

Proposition B.1 (Brézis [6]). The following holds:
(i) Let uT ∈ K and f ∈ L2(0, T ;V ∗). Then the weak formulation (B.5) has a unique

solution u and, for some c > 0, given v0 ∈ K,

(B.6) ‖u‖L∞(0,T ;H) + ‖u‖L2(0,T ;V ) ≤ c(‖uT ‖H + ‖f‖L2(0,T ;V ∗) + ‖v0‖V ).

(ii) Let in addition the semisymmetry hypothesis (A.8) hold, and let uT belong to K.
Then u ∈ L∞(0, T ;V ), u̇ ∈ L2(0, T ;H), and u is the unique solution of the original
formulation (B.2). Furthermore, for some c > 0,

(B.7) ‖u‖L∞(0,T ;V ) + ‖u̇‖L2(0,T ;H) ≤ c(‖uT ‖V + ‖f‖L2(0,T ;H)).

Appendix C. Monotonicity. Assume that H is an Hilbert lattice, i.e., is endowed with an
order relation � compatible with the vector space structure:

(C.1) x1 � x2 implies that γx1 + x � γx2 + x for all γ ≥ 0 and x ∈ H

such that the maxima and minima denoted by max(x1, x2) and min(x1, x2) are well defined,
the operator max, min be continuous, with min(x1, x2) = −max(−x1,−x2). Setting x+ :=
max(x, 0) and x− := −min(x, 0) we have that x = x+ − x−. Assuming that the maximum
of two elements of V belong to V we see that we have an induced lattice structure on V .
The induced dual order over V ∗ is as follows: for v∗1 and v∗2 in V ∗, we say that v∗1 ≥ v∗2 if
〈v∗1 − v∗2, v〉V ≥ 0 whenever v ≥ 0.

Assume that we have the following extension of the integration by parts formula (B.3):
for all u, v in W (0, T ) and 0 ≤ t < t′ ≤ T ,

(C.2) 2

∫ t′

t
〈u̇(s), u+(s)〉V ds = ‖u+(t′)‖2H − ‖u+(t)‖2H ,

and

(C.3) 〈A(t)u, u+〉V = 〈A(t)u+, u+〉V .
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Proposition C.1. Let ui be solution of the parabolic equation (A.6) for (f, uT ) = (f i, uiT ),
i = 1, 2. If f1 ≥ f2 and u1

T ≥ u2
T , then u1 ≥ u2.

This type of result may be extended to the case of variational inequalities. If K and K ′ are
two subsets of V , we say that K dominates K ′ if for any u ∈ K and u′ ∈ K ′, max(u, u′) ∈ K
and min(u, u′) ∈ K ′.

Proposition C.2. Let ui be solution of the weak formulation (B.5) of the parabolic vari-
ational inequality for (f, uT ,K) = (f i, uiT ,K

i), i = 1, 2. If f1 ≥ f2, u1
T ≥ u2

T , and K1

dominates K2, then u1 ≥ u2.

The monotonicity w.r.t. the convex K is due to Haugazeau [13] (in an elliptic setting, but
the result is easily extended to the parabolic one). See also Brézis [7].

Appendix D. Link with American options. An American option is the right to get a
payoff Ψ(t, x) at any time t < T and uT at time T . We can motivate as follows the derivation
of the associated variational inequalities. If the option can be exercised only at times tk = hk,
with h = T/M and k = 0 to M (Bermudean option), then the same PDE as for the European
option holds over (tk, tk+1), k = 0 to M − 1. Denoting by ũk the solution of this PDE, we
have that u(tk) = max(Ψ, ũk). Assuming that A does not depend on time and that there is
a flux f(t, x) of dividends, we compute the approximation uk of u(tk) as follows. Discretizing
the PDE with the implicit Euler scheme we obtain the continuation value ûk solution of

(D.1)
ûk − uk+1

h
+Aûk = f(tk, ·), k = 0, . . . ,M − 1; uM = max(Ψ, 0),

so that uk = uk+1 − hAûk + hf(tk, ·), and we find that

(D.2) uk = max(ûk,Ψ) = max(uk+1 − hAûk + hf(tk, ·),Ψ),

which is equivalent to

(D.3) min

(
uk −Ψ,

uk − uk+1

h
+Aûk − f(tk, ·)

)
= 0.

This suggest for the continuous time model and general operators A and r.h.s. f the following
formulation:

(D.4) min(u(t, x)−Ψ(x),−u̇(t, x) +A(t, x)u(t, x)− f(t, x)) = 0, (t, x) ∈ (0, T )× Ω.

The above equation has a rigorous mathematical sense in the context of a viscosity solution;
see Barles [5]. However, we rather need the variational formulation which can be derived as
follows. Let v(x) satisfy v(x) ≥ Ψ(x) a.e. and be smooth enough. Then

(D.5)

∫
Ω

(−u̇(t, x) +A(t, x)u(t, x)− f(t, x))) (v(x)− u(t, x))dx

=

∫
{u(t,x)=Ψ(x)}

(−u̇(t, x) +A(t, x)u(t, x)− f(t, x))) (v(x)− u(t, x))dx

+

∫
{u(t,x)>Ψ(x)}

(−u̇(t, x) +A(t, x)u(t, x)− f(t, x))) (v(x)− u(t, x))dx.
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The first integrand is nonnegative, being a product of nonnegative terms, and the second
integrand is equal to 0 since by (D.3), −u̇(t, x) + A(t, x)u(t, x) − f(t, x)) = 0 a.e. when
u(t, x) > Ψ(x). So we have that, for all v ≥ Ψ smooth enough,

(D.6)

∫
Ω

(−u̇(t, x) +A(t, x)u(t, x)− f(t, x)) (v(x)− u(t, x))dx ≥ 0.

We see that this is of the same nature as a parabolic variational inequality, where K is the
set of functions greater than or equal to Ψ (in an appropriate Sobolev space).

Appendix E. Some one-dimensional problems. It is not always easy to characterize the
space V. Let us give a detailed analysis in a simple case.

E.1. The Black–Scholes setting. For the Black–Scholes model with zero interest rate
(the extension to a constant nonzero interest rate is easy) and unit volatility coefficient,
we have that Au = −1

2x
2u′′(x) with x ∈ (0,∞). In the case of a put option uT (x) =

(K−x)+ we may take H := L2(R+). For v ∈ D(0,∞) and u sufficiently smooth we have that
−1

2

∫∞
0 x2u′′(x)dx = a(u, v) with

(E.1) a(u, v) :=
1

2

∫ ∞
0

x2u′(x)v′(x)dx+

∫ ∞
0

xu′(x)v(x)dx.

This bilinear form a is continuous and semicoercive over the set

(E.2) V := {u ∈ H; xu′(x) ∈ H}.

It is easily checked that ū(x) := x−1/3/(1 + x) belongs to V . So, some elements of V are
unbounded near zero.

We now claim that D(0,∞) is a dense subset of V . First, it follows from a standard
truncation argument and the dominated convergence theorem that V∞ := V ∩ L∞(0,∞) is
a dense subset of V . Note that elements of V are continuous over (0,∞). Given ε > 0 and
u ∈ V∞, define

(E.3) uε(x) :=


0 if x ∈ (0, ε),
u(2ε)(x/ε− 1) if x ∈ [ε, 2ε],
u(2ε) if x > 2ε.

Obviously uε ∈ V∞. By the dominated convergence theorem, uε → u in H. Set for w ∈ V

(E.4) Φε(w) :=

∫ 2ε

0
x2w′(x)2dx.

Since Φε is quadratic and vε → u in H, we have that

(E.5)
1

2

∫ ∞
0

x2(u′ε − u′)2dx =
1

2
Φε(uε − u) ≤ Φε(uε) + Φε(u).

Since u ∈ V , Φε(u)→ 0 and

(E.6) Φε(uε) ≤ ‖u‖2∞
∫ 2ε

0
ε−2x2dx = O(‖u‖2∞ε).

So, the l.h.s. of (E.5) has limit 0 when ε ↓ 0. We have proved that the set V 0 of functions in
V∞ equal to zero near zero is a dense subset of V . Now define for N > 0



490 J. FRÉDÉRIC BONNANS AND AXEL KRÖNER

(E.7) ϕN (x) =


1 if x ∈ (0, N),
1− log(x/N) if x ∈ [N, eN ],
0 if x > eN.

Given u ∈ V0, set uN := uϕN . Then uN ∈ H and, by a dominated convergence argument,
uN → u in H. The weak derivative of uN is u′N = u′ϕN + uϕ′N . By a dominated convergence
argument, xu′ϕN → xu′ in L2(R+). It remains to prove that xuϕ′N → 0 in L2(R+). But ϕ′N
is equal to 1/x over its support, so that

(E.8) ‖xuϕ′N‖2L2(R+) =

∫ eN

N
u2(x)dx ≤

∫ ∞
N

u2(x)dx→ 0

when N ↑ ∞. The claim is proved.

E.2. The Cox–Ingersoll–Ross setting. In the Cox–Ingersoll–Ross model [8] the stochastic
process satisfies

(E.9) ds(t) = θ(µ− s(t))dt+ σ
√
sdW (t), t ≥ 0.

We assume the coefficients θ, µ, and σ to be constant and positive. The associated PDE is
given by

(E.10)

Au := −θ(µ− x)u′ − 1

2
xσ̂2u′′ = 0, (x, t) ∈ R+ × (0, T ),

u(x, T ) = uT (x), x ∈ R+.

Again for the sake of simplicity we will take ρ(x) = 1, which is well adapted in the case of a
payoff with compact support in (0,∞). For v ∈ D(0,∞) and u sufficiently smooth we have
that

∫∞
0 Au(x)v(x)dx = a(u, v) with

(E.11) a(u, v) := θ

∫ ∞
0

(µ− x)u′(x)v(x)dx+
1

2
σ̂2

∫ ∞
0

xu′(x)v′(x)dx+
1

2
σ̂2

∫ ∞
0

u′(x)v(x)dx.

So one should take V of the form

(E.12) V := {u ∈ H;
√
xu′(x) ∈ L2(R+)}.

We next determineH by requiring that the bilinear form is continuous; by the Cauchy–Schwarz
inequality

(E.13)

∣∣∣∣∫ ∞
0

u′(x)v(x)dx

∣∣∣∣ ≤ ‖x1/2u′‖2‖x−1/2v‖2;

∣∣∣∣∫ ∞
0

xu′(x)v(x)dx

∣∣∣∣ ≤ ‖x1/2u′‖2‖x1/2v‖2.

We easily deduce that the bilinear form a is continuous and semicoercive over V when choosing

(E.14) H := {v ∈ L2(R+); (x1/2 + x−1/2)v ∈ L2(R+)},
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Note that then the integrals below are well defined and finite for any v ∈ V:

(E.15)

∫ ∞
0

(x1/2v′)(x−1/2v) =

∫ ∞
0

vv′ =
1

2

∫ ∞
0

(v2)′.

So w := v2 is the primitive of an integrable function and therefore has a limit at zero. Since
v is continuous over (0,∞) it follows that v has a limit at zero.

However, if this limit is nonzero we get a contradiction with the condition that x−1/2v ∈
L2(R+). So, every element of V has zero value at zero.

We now claim that D(0,∞) is a dense subset of V. First, V∞ := V ∩ L∞(0,∞) is a dense
subset of V. Note that elements of V are continuous over (0,∞). Given ε > 0 and u ∈ V∞,
define uε(x) as in (E.3). Then uε ∈ V∞. By the dominated convergence theorem, uε → u in
H. Set for w ∈ V

(E.16) Φε(w) :=

∫ 2ε

0
xw′(x)2dx.

Since Φε is quadratic and uε → u in H, we have that

(E.17)
1

2

∫ ∞
0

x2(u′ε − u′)2dx =
1

2
Φε(uε − u) ≤ Φε(uε) + Φε(u).

Since u ∈ V, Φε(u)→ 0 and

(E.18) Φε(uε) ≤ ε−2u(2ε)2

∫ 2ε

0
xdx = 2u(2ε)2 → 0.

So, the l.h.s. of (E.17) has limit 0 when ε ↓ 0. We have proved that the set V0 of functions in
V∞ equal to zero near zero is a dense subset of V. Define ϕN as in (E.7)

Given u ∈ V0, set uN := uϕN . As before, uN → u in H, and u′N = u′ϕN + uϕ′N ,
xu′ϕN → xu in L2(R+), and it remains to prove that xuϕ′N → 0 in L2(R+). But ϕ′N is equal
to 1/x over its support, so that when N ↑ ∞,

(E.19) ‖x1/2uϕ′N‖2L2(R+) =

∫ eN

N
x−1u2(x)dx ≤

∫ ∞
N

u2(x)dx→ 0.

The claim is proved.
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[7] H. Brézis, Problèmes unilatéraux, J. Math. Pures Appl., 51 (1972), pp. 1–168.
[8] J. C. Cox, J. E. Ingersoll, Jr., and S. A. Ross, A theory of the term structure of interest rates,

Econometrica, 53 (1985), pp. 385–407.
[9] P. M. N. Feehan and C. A. Pop, Schauder a priori estimates and regularity of solutions to boundary-

degenerate elliptic linear second-order partial differential equations, J. Differential Equations, 256
(2014), pp. 895–956.

[10] P. M. N. Feehan and C. A. Pop, Degenerate-elliptic operators in mathematical finance and higher-order
regularity for solutions to variational equations, Adv. Differential Equations, 20 (2015), pp. 361–432.

[11] J.-P. Fouque, G. Papanicolaou, and K. R. Sircar, Derivatives in Financial Markets with Stochastic
Volatility, Cambridge University Press, Cambridge, UK, 2000.
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