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Abstract: We present the problem of optical pulses interacting with localized defects in 2D
photonic structures, where the grating in the direction of propagation is assumed to be in Bragg
resonance with the electric field.
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1 Uniform grating structures

We consider a waveguide geometry with confinement of light in one transverse direction (y). The refractive
index is periodic in both the direction of propagation (z) and the other transverse direction (x). Furthermore,
the periodicity in the direction of propagation (z) is assumed to be in Bragg resonance with the wavelength
of the electric field, thus creating strong back reflection.

The regime of wave propagation through these gratings that we are interested in is when the coupling between
forward and backward propagating modes is of the order of the nonlinear length. A coupled system for the
slowly varying envelopes of the electric field can be derived from Maxwell’s Equations. The derivation is
typically done using a multiple scales expansion under the assumption that the characteristic length scales of
the coupling, the diffraction and the nonlinearity are in balance. The dynamics in uniform fiber gratings are
then governed by the two dimensional Coupled Mode Equations with a nonnegative periodic x−potential
(for the 1D case see for example chapter 2 of [5])

i(∂t + cg∂z)E+ + ∂2
x2E+ + κE− + P (x)E+ + Γ(|E+|

2 + 2|E−|
2)E+ = 0

i(∂t − cg∂z)E− + ∂2
x2E− + κE+ + P (x)E− + Γ(|E−|

2 + 2|E+|
2)E− = 0,

(1)

where E+, E− denote the forward and backward propagating envelopes respectively; and without any loss
of generality cg, κ,Γ > 0. We typically take P (x) = δ(1 + cos(νx)) with δ, ν ≥ 0.

In the 1D case, for fiber gratings, where the confinement of light is in both x and y directions (equation (1)
without the diffraction term ∂2

x2E± and the potential P (x)) stable pulse propagation is possible thanks to
the existence of gap solitons ([2], [3]). These are solitary waves with frequency inside the forbidden gap of
the linear system (Γ = 0) and can propagate with velocities ranging between 0 and the speed of light in
the corresponding uniform medium. The main advantage of fiber gratings as compared to bare fibers, from
application point of view, is the distance at which solutions converge to stable pulses. In bare fibers it is
hundreds of meters whereas in fiber gratings it is within centimeters.

In the 2D case without the x−grating (equation (1) without P (x)) no stable pulse propagation is possible
due to the diffraction. This can be argued directly from the Hamiltonian structure of the system and has
been seen both in the reduced variational analysis of [1] and in our numerical experiments, where all so far
studied localized pulses rapidly diffract in the x direction. Since our objective, as introduced in the next
section, is to model interaction of pulses with localized defects, stable pulse propagation is crucial for the
study.

We propose that by introducing a grating in x, i.e. the periodic potential P (x), stable pulse propagation
occurs as demonstrated in Figure 1. We will also investigate whether a specific z−profile in the initial
condition of (1) yields both E+ and E− propagating together in the same direction (referring to the 1D case
where for gap solitons E+, E− do co-propagate).
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Fig. 1. Solution to (1) with cg = 2, κ = 1,Γ = 1, δ = 10, ν = 2

2 Periodic structures with defects

We introduce localized defects (local variations to the refractive index) to the above described medium and
study whether pulses can be stopped or whether the direction of their propagation can be changed due to
the interaction with these defects. Potential engineering applications of this are in optical memory, rerouting
of pulses or all-optical switches.

An analogous study has been done in [4] in 1D for fiber gratings. There, the authors studied how gap solitons
interact with carefully selected defects. The governing model is

i(∂t + cg∂z)E+ + κ(z)E− + V (z)E+ + Γ(|E+|
2 + 2|E−|

2)E+ = 0

i(∂t − cg∂z)E− + κ(z)E+ + V (z)E− + Γ(|E−|
2 + 2|E+|

2)E− = 0.
(2)

They showed that for a given defect with its defect mode (stationary solution of (2) of the form e−iωtE±(z))
with frequency ω and total intensity I they had to launch a pulse of the same frequency (resonance) and
equal or higher total intensity (energetic accessibility) to achieve strong interaction.

In our 2D case we select defects that can be represented as a sum of 1D defects: V1(x) + V2(z). This is in
order to be able to use a separation of variables ansatz E±(x, z, t) = G(x)F±(z, t) for finding the linear defect
modes. The governing linear system is

i(∂t + cg∂z)E+ + κ(z)E− + ∂2
x2E+ + (V1(x) + V2(z) + P (x))E+ = 0

i(∂t − cg∂z)E− + κ(z)E+ + ∂2
x2E− + (V1(x) + V2(z) + P (x))E− = 0

(3)

and after separating the variables

[i∂t + icgσ3∂z + V2(z)− µ+ κ(z)σ1] ~F =0 (4a)

G′′ + (V1(x) + P (x) + µ)G =0, (4b)

with σ1 =

(

0 1
1 0

)

, σ3 =

(

1 0
0 −1

)

, ~F =

(

F+

F−

)

and µ the separation constant.

First we solve the eigenvalue problem (4b) numerically with V1(x) = βsech(ηx) (with the condition of a
localized eigenfunction with no zeros) to obtain (µ,G). Then, using the same ansatz and the same z−defect
V2(z) as in [4], we solve (4a). An example solution is

κ(z) = eiα
[

(ω − µ)2 + k2tanh2

(

k

cg
z

)]1/2

, α ∈ {0, π}

V2(z) =
1

2

k2(ω − µ)sech2
(

k
cg
z
)

(ω − µ)2 + k2tanh2
(

k
cg
z
) .
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~F = e−iωt
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z
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.

The plot of the modulus |E+| for the above linear defect mode at time t = 1 is shown in Figure 2. The
solution is stationary with its modulus constant in time. The parameter choice is β = 5, η = 10, δ = 10, ν =
2, ω = µ + 1, k = 4, φ = 3

2
π and cg = 1. The corresponding eigenvalue of (4b) is µ ≈ −16.96. The plotted

solution was obtained integrating (3) using the Discontinuous Galerkin method with the initial condition
(

E+

E−

)

(x, z, t = 0) = G(x) ~F (z, t = 0) as given above.

Fig. 2. The modulus of a linear defect mode at time t = 1

Using the linear defect modes, an example of which was given above we perform a perturbative construction
of nonlinear defect modes of small total intensity and for large intensity numerically solve the full nonlinear
eigenvalue problem

(ω + icg∂z)E+ + κ(z)E− + ∂2
x2E+ + (V1(x) + V2(z) + P (x))E+

+Γ(|E+|
2 + 2|E−|

2)E+ = 0

(ω − icg∂z)E− + κ(z)E+ + ∂2
x2E− + (V1(x) + V2(z) + P (x))E−

+Γ(|E−|
2 + 2|E+|

2)E− = 0.

(5)

Finally, we investigate the possibility of trapping pulses on these defects as well as changing direction of
their propagation due to the contact with a defect.
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