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Abstract

Extending the general approach for first-order hyperbolic systems developed in [D. Appelö, T. Hagstrom, G. Kreiss,
Perfectly matched layers for hyperbolic systems: general formulation, well-posedness and stability, SIAM J. Appl. Math.,
2006, to appear], we construct PML equations for the mixed-type system governing propagation of optical wave packets in
both 1D and 2D Bragg resonant photonic waveguides with a cubic nonlinearity, i.e. the coupled mode equations. We prove
that in the linear case the layer equations are absorbing and perfectly matched. We also prove they are stable for constant
parameters. A number of numerical experiments are performed to assess the layer’s performance in both the linear and
nonlinear regimes.
� 2006 Elsevier Inc. All rights reserved.
1. Introduction

Realistic wave propagation problems are ubiquitously dispersive and their numerical simulations have to,
therefore, typically treat modes (waves) that, within the integration time, travel out of the spatial domain of
interest. This treatment needs to be efficient, to automatically and accurately treat all such modes, that is it
should only introduce minimal artificial reflections. Two basic approaches have been developed for such prob-
lems, the perfectly matched layers (PML) and radiation boundary conditions, of which we use the former one
in our model.

In nonlinear optics problems, when modeling the evolution of solitary waves (or solitons) in the presence of
radiation due to, for instance, perturbations or solitary wave interactions, the radiation propagates at a larger
group velocity than the solitary wave. Treatment of radiation leaving the domain is then essential [27,28].
In such cases the main part of the solution, i.e. the solitary wave, remains in the physical domain and only
the typically small radiation enters the layers. Despite the nonlinearity of the system the dynamics in the layers
are, therefore, linear and a linear PML may be used. In the presence of solitons propagating at different
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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velocities one of the solitons itself may leave the domain within the time of interest and PML has been used in
order to minimize its unphysical reflection from the boundary [12,14,27]. (For information on radiation
boundary conditions for the Schrödinger equation see e.g. [13,20,22].)

This paper derives and tests PML for a wave propagation problem in both 1D and 2D optical nonlinear
Bragg resonant grating waveguides. The Bragg grating [25] is a special periodic structure leading to coupling
between forward and backward (along the periodicity direction) propagating waves, and in combination with
the (cubic) nonlinearity leads to the existence of localized solitary waves with a large range of velocities
[2,4,10,11]. Simulations of slow solitary waves may result in the need for very large evolution times and thus
for good long time behavior of the PML. See, for example [10,11], where interactions of 2D solitary waves
with spatially localized defects are simulated (with the help of PML) up to t � 1000 for solitary waves trav-
elling at speeds around 0.2 and the radiation at velocities in (�1,1) depending on the wavenumber.

The PML formulation is typically, and also here, derived for linear equations with the expectation of satis-
factory performance even in presence of (e.g. polynomial) nonlinear terms under the condition that the solution
remains small inside the absorbing layers. Although the split-field PML approach for the Maxwell’s equation
has been adapted for the presence of nonlinear terms via an iterative scheme [26], we use the (unsplit and more
rigorous) linear approach for general first order hyperbolic systems [5,17,18], which we extend for the governing
coupled mode equations (CME). This system is hyperbolic in the 1D case and of degenerate Schrödinger type in
the 2D case, taking the form of a first-order hyperbolic equation in one of the two spatial dimensions.

The rest of the paper is organized as follows. In Section 2, we present the partial differential equations gov-
erning the physical model at hand and introduce some necessary notation. In Sections 3–5, we present a
detailed derivation of the PML equations (for both 1D and 2D linear CME) using elementary intuitive argu-
ments to prove their absorption and perfect matching. Section 6 contains a proof of stability of the PML equa-
tions. Finally, in Section 7 we present a number of numerical tests in both one and two dimensions showing
exponential error convergence with respect to the width of the absorbing layers.
2. The main equations and notation

We address the propagation of quasi-monochromatic wavepackets of light in two-dimensional optical
dielectric waveguides with a Bragg resonant spatially periodic structure (so-called Bragg grating [25]) in the
propagation direction and a homogeneous structure in the transverse direction. If the underlying medium pos-
sesses the cubic focusing nonlinearity, then the wave propagation is modeled by the 2D coupled mode equa-
tions [1,4,10,11], which in their nondimensional form read
iðot þ cgozÞEþ þ jE� þ o
2
xEþ þ CðjEþj2 þ 2jE�j2ÞEþ ¼ 0;

iðot � cgozÞE� þ jEþ þ o
2
xE� þ CðjE�j2 þ 2jEþj2ÞE� ¼ 0;

ð1Þ
where E+ and E� denote the forward and backward (in z) propagating wavepackets, respectively, cg, j, C > 0
are proportional to the group velocity, grating depth and the cubic susceptibility of the medium, respectively,
and x, z and t correspond to the coordinate along the transverse direction, the propagation direction and time,
respectively. The dynamics in the third spatial direction y are assumed stationary due to total internal reflec-
tion. The coexistence and coupling of forward and backward propagating wavepackets is caused by the Bragg
resonant structure.

The corresponding one-dimensional model is the system of 1D coupled mode equations (Eqs. (1) without
the o2

x terms). It describes the same situation in the fiber grating, where total internal reflection confines the
dynamics in all transverse directions. Much more research has been historically devoted to this 1D model
[2,6,7,15,23,25] but to our knowledge systematic treatment of radiation in numerical simulations appears in
the literature neither for 1D nor for 2D.

As they stand, Eqs. (1) are defined on the whole plane ðx; zÞ 2 R2. For computational purposes we consider
a finite domain (x,z) 2 [0,Lx] · [0, Lz] appended with absorbing layers in the x-direction [�dx, 0] · [0,Lz] and
[Lx,Lx + dx] · [0, Lz], in the z-direction [0, Lx] · [�dz, 0] and [0,Lx] · [Lz,Lz + dz] and in the corners [�dx, 0] ·
[�dz, 0], [�dx, 0] · [Lz,Lz + dz], [Lx,Lx + dx] · [�dz, 0] and [Lx,Lx + dx] · [Lz,Lz + dz], see Fig. 1. Note that the
initial data are assumed to be supported only on the physical domain [0,Lx] · [0,Lz].



Fig. 1. The physical domain and the absorbing layers.
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We use the linear case of Eqs. (1), i.e. C = 0, to derive the layer equations. The resulting system is then used
even in the nonlinear case C > 0 under the condition that inside the layers the solution remains small in mag-
nitude so that the dynamics are essentially linear. We also show one example when an Oð1Þ disturbance prop-
agates into the layer in the nonlinear case; this results in a largely increased error and decreased convergence
rate.

In the following calculations the negative real semiaxis is chosen as the branch cut of the square root func-
tion and for n = reih, h 2 [�p,p), r > 0 we use n1/2 or

ffiffiffi
n
p

to denote
ffiffi
r
p

eh=2 and �n1/2 or �
ffiffiffi
n
p

to denoteffiffi
r
p

eh=2þp.
3. z-Layer equations

To derive equations in the z-layers [0,Lx] · [�dz, 0] and [0,Lx] · [Lz,Lz + dz], see Fig. 2, we first perform the
Laplace transform in t over [0,1) and Fourier transform in x over (�1,1) on the linear case of (1). For z

outside the physical domain [0,Lz] we obtain
icgozÊþ þ ðis� k2
xÞÊþ þ jÊ� ¼ 0;

� icgozÊ� þ ðis� k2
xÞÊ� þ jÊþ ¼ 0;

ð2Þ
where we have used the fact that E±(t = 0) ” 0 in the layers z < 0 and z > Lz. (2) has solution modes

ðÊþ; Ê�Þ ¼ ðc1; c2Þekz, where k ¼ k1;2 ¼ � 1
cg
½j2 þ ðsþ ik2

xÞ
2�1=2. In this section ðÊþ; Ê�ÞT denotes the solution

of (2), i.e. the Fourier(x) + Laplace(t) transform of the solution of (1) (C = 0) for z 2 {[�dz, 0] [ [Lz,Lz + dz]}
and ðÊpml

þ ; Êpml
� Þ stands for the transform of the solution of the to-be-determined PML equipped system on this

domain.
The desired absorption in the z-layers will be satisfied if the following damping property in z holds when

�dz 6 z < 0 or Lz < z 6 Lz + dz:
ozÊ
pml
� ¼ ~kÊpml

� with

� R~k < 0 for right travelling modes and

� R~k > 0 for left travelling modes;

ð3Þ
Fig. 2. Layers in the z-direction.
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where right and left means in the positive and negative z-direction, respectively. As k can be seen to satisfy the
above conditions with 6 and P, respectively, we simply need to ensure the strict nature of the inequalities. In
order to also ensure that at the interfaces z = 0, Lz ðÊpml

þ ; Êpml
� Þ perfectly matches the solution in the physical

domain, we need
lim
z!0�
ðÊpml
þ ; Êpml

� Þ ¼ lim
z!0�
ðÊþ; Ê�Þ ð4Þ
and similarly for z! Lz+. Because of continuity of (E+,E�) across the interfaces this then gives continuity of
the overall profile composed of ðEpml

þ ;Epml
� Þ inside the layers and (E+,E�) in the physical domain.

Using the general approach of [5,16,18] for first order hyperbolic systems we give the following.

Proposition 1. Replacing k by ~k ¼ k
sþik2

xþa
with a > 0 in ðÊþ; Ê�Þ yields ðÊpml

þ ; Êpml
� Þ, that satisfies the damping

property (3).

Proof. Let us study the two solution modes corresponding to k1;2 ¼ � 1
cg
½j2 þ ðsþ ik2

xÞ
2�1=2 separately.

(1) Because Rs P 0; kx 2 R and cg, j > 0, it is easy to see that with the above described definition of the
square root function Range(k1) is the right half of the complex plane excluding the upper half of the
imaginary axis, i.e. Range(k1) = {reih|r P 0, �p/2 6 h < p/2}. Therefore, k1 corresponds to left propagating
modes.

To determine Rangeð~k1Þ, i.e. the image of Range(k1) under the map k! ~k, we first study the image of the
lower half of the imaginary axis. Consider b P 0. At k = �ib it is sþ ik2

x þ a ¼ ð�c2
gb

2 � j2Þ1=2 þ a ¼
a� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

gb
2 þ j2

q
and, therefore, division by sþ ik2

x þ a in the map k! ~k involves a rotation by the positive

angle �/ ¼ arctan a�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

gb
2 þ j2

q� �
2 ð0; p=2Þ which increases with b and attains the minimum value

�/� ¼ arctanðjaÞ at b = 0.
Similarly, as k approaches the upper half of the imaginary axis, i.e. for k1 = n + ib with b > 0 and n! 0+,

one gets sþ ik2
x þ a! aþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

gb
2 þ j2

q
and the rotation is by the negative angle / 2 (�p/2,0). Fig. 3

illustrates the rotation and shows a superset of Rangeð~k1Þ.
(2) Analogously, k2 ¼ � 1

cg
½j2 þ ðsþ ik2

xÞ
2�1=2 has Range(k2) = {reih|r P 0,p/2 6 h < 3p/2} and corresponds

to right propagating modes. The rotations involved in the mapping k! ~k are exactly opposite to those for k1,
see Fig. 4.

Using these facts one can easily check that the strict inequalities required in (3) are satisfied. Note that the
origin, k = 0, where s ¼ �ik2

x � ij, corresponds to waves propagating in the x-direction (so-called glancing
waves), which are not required to be damped. h
φ*

ℜ

ℑ

φ*

Fig. 3. A superset of Rangeð~k1Þ.
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Fig. 4. A superset of Rangeð~k2Þ.
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The function ðÊpml
þ ; Êpml

� Þ ¼ ðc1; c2Þe~kz does not, however, satisfy the perfect matching condition (4) as
limz!LzþðÊ

pml
þ ; Êpml

� Þ ¼ ðc1; c2Þe~kLz 6¼ ðc1; c2ÞekLz ¼ limz!LzþðÊþ; Ê�Þ. This can be easily remedied by replacing
~kz by kzþ ~k

R z
z0

rzðnÞ dn with rz(n) P 0 and
R z

z0
rzðnÞ dn > 0, where z0 = 0 for z < 0 and z0 = Lz for z > Lz.

The role of the integral and the function rz is for ðÊpml
þ ; Êpml

� Þ to continuously deform into ðÊþ; Ê�Þ at the inter-
face. rz can, moreover, be chosen to make the deformation arbitrarily smooth. The solution mode now
becomes
Êpml
þ ; Êpml

�
� �

¼ ðc1; c2Þe
k zþ

R z

z0
rzðnÞ dn

sþik2
xþa

� �
: ð5Þ
In addition to the automatically satisfied perfect matching (4) the nth derivative in z is also matched if the
(n � 1)th derivative of rz converges to 0 at z0. The constant in the damping property (3) is now
kð1þ rzðzÞ

sþik2
xþa
Þ and one can easily check that its real part still satisfies the strict sign conditions, i.e. the direction

of the rotation in Figs. 3 and 4 is preserved. For illustration, in Fig. 5 we show the mapping
k1 ! k1ð1þ rzðzÞ

sþik2
xþa
Þ for k1 that lies on the negative imaginary axis.

In order to now derive the layer equations we study the relation between Ê� and Êpml
� :
Ê� ¼ Êpml
� e

�k
R z

z0
rzðnÞ dn

sþik2
xþa ; ozÊ� ¼ ozÊ

pml
� �

krz

sþ ik2
x þ a

Ê pml
�

 !
e

�k
R z

z0
rzðnÞ dn

sþik2
xþa :
To account for the second term in ozÊ�, we define auxiliary variables
F̂ � :¼ �cg

krzðzÞ
sþ ik2

x þ a
Êpml
� : ð6Þ
Fig. 5. Mapping of k1 = �ib as in the solution (5).
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The layer equations, i.e. equations satisfied by ðEpml
þ ; F þ;Epml

� ; F �ÞT , then read
iðotEþ þ cgozEþ þ F þÞ þ jE� þ o2
xEþ ¼ 0;

otF þ þ cgrzozEþ � io2
xF þ þ ðaþ rzÞF þ ¼ 0;

iðotE� � cgozE� þ F �Þ þ jEþ þ o2
xE� ¼ 0;

otF � � cgrzozE� � io2
xF � þ ðaþ rzÞF � ¼ 0

ð7Þ
with F±(t = 0) ” 0.
The second and fourth equations in (7) are obtained by relating F̂ � with ozÊ

pml
� . From (5) one has
Êpml
� ¼

sþ ik2
x þ a

kðsþ ik2
x þ aþ rzÞ

ozÊ
pml
� :
Thus, using (6),
ðsþ ik2
x þ aþ rzÞF̂ � ¼ �cgrzozÊ

pml
� ;
which is equivalent to the second and fourth equations in (7), respectively.
For the 1D coupled mode equations the derivation of layer equations is completely analogous to the previous

discussion (with kx = 0) and leads to
iðotEþ þ cgozEþ þ F þÞ þ jE� ¼ 0;

otF þ þ cgrzozEþ þ ðaþ rzÞF þ ¼ 0;

iðotE� � cgozE� þ F �Þ þ jEþ ¼ 0;

otF � � cgrzozE� þ ðaþ rzÞF � ¼ 0

ð8Þ
with E± = E±(z, t) and F± = F±(z, t).
4. x-Layer equations

The dynamics of the linear part of (1) (C = 0) in the x-direction are similar to those of the linear Schröding-
er equation (LSE) and, therefore, the layer equations in the x-layers [�dx, 0] · [0, Lz] and [Lx,Lx + dx] · [0, Lz],
see Fig. 6, turn out to be analogous to those of the LSE [12,18]. After the Laplace–Fourier transform in (t,z)
the linear part of (1) becomes for x < 0 or x > Lx
ðis� cgkzÞÊþ þ jÊ� þ o2
xÊþ ¼ 0;

ðisþ cgkzÞÊ� þ jÊþ þ o
2
xÊ� ¼ 0

ð9Þ
with solution modes ðÊþ; Ê�Þ ¼ ðc1; c2Þekx, where k ¼ k1;2 ¼ �½�is�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

gk2
z þ j2

q
�1=2. Analogously to (3) we

seek a solution ðÊpml
þ ; Êpml

� Þ such that when �dx 6 x < 0 or Lx < x 6 Lx + dx,
Fig. 6. Layers in the x-direction.
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Fig. 7. Range(k1,2).
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oxÊ
pml
� ¼ ~kÊpml

� with

� R~k < 0 for up travelling modes and

� R~k > 0 for down travelling modes;

ð10Þ
where up and down means in the positive and negative x-direction, respectively. Similar to Section 3 ðÊþ; Ê�Þ
is the Fourier(x) + Laplace(t) transform of the solution of (1) (C = 0) for x 2 {[�dx, 0] [ [Lx,Lx + dx]} and
ðÊpml
þ ; Êpml

� Þ is the transform of the PML equipped system.
Since Rs P 0, it is easy to see that Range(k1) = {reih|r P 0,� p/2 6 h 6 0}, see Fig. 7. k1,2 correspond to up

and down propagating modes respectively since otherwise the modes would not be bounded. Because their
ranges are only quadrants (as opposed to the half planes in the z-layer case), a simple rotation
~k ¼ eiqk; q 2 ð0; p=2Þ would ensure the strict inequalities in (10). In order to also achieve perfect matching,
we let
Êpml
þ ; Êpml

�
� �

¼ ðc1; c2Þe
k xþeiq

R x

x0
rxðnÞ dn

� �
ð11Þ
with x0 = 0 for x < 0 and x0 = Lx for x > Lx, q 2 (0,p/2) and rx defined analogously to rz. We note, however,
that due to the presence of second x-derivatives perfect matching also requires besides the condition (4) con-
tinuity of the first x-derivatives. This is accomplished by imposing the additional condition
rxðx0Þ ¼ 0: ð12Þ
Since
E� ¼ Epml
� e

�keiq
R x

x0
rxðnÞ dn

and oxE� ¼
1

1þ rxeiq
oxE

pml
� e

�keiq
R x

x0
rxðnÞ dn

;

the layer equations become
iðotE� � cgozE�Þ þ jE� þ
1

1þ rxeiq
ox

1

1þ rxeiq
oxE�

� �
¼ 0: ð13Þ
5. Equations in the corner layers

The most natural treatment of the corner layers [�dx, 0] · [�dz,0], [�dx, 0] · [Lz,Lz + dz], [Lx,Lx + dx] ·
[�dz, 0] and [Lx,Lx + dx] · [Lz,Lz + dz] is, of course, to extend and combine Eqs. (7) and (13) to these regions
(see Fig. 8). This results in



Fig. 8. Corner layers.
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iðotEþ þ cgozEþ þ F þÞ þ jE� þ
1

1þ rxeiq
ox

1

1þ rxeiq
oxEþ

� �
¼ 0;

otF þ þ cgrzozEþ � i
1

1þ rxeiq
ox

1

1þ rxeiq
oxF þ

� �
þ ðaþ rzÞF þ ¼ 0;

iðotE� � cgozE� þ F �Þ þ jEþ þ
1

1þ rxeiq
ox

1

1þ rxeiq
oxE�

� �
¼ 0;

otF � � cgrzozE� � i
1

1þ rxeiq
ox

1

1þ rxeiq
oxF �

� �
þ ðaþ rzÞF � ¼ 0:

ð14Þ
Replacing o2
x by 1

1þrxeiqoxð 1
1þrxeiqoxÞ in the equations for the auxiliary functions F± ensures consistency of the

PML formulation, i.e. the rotation involved in k! ~k is now the same throughout each of the z-layers
[�dx,Lx + dx] · [�dz, 0] and [�dx,Lx + dx] · [Lz,Lz + dz]. The same analysis as in Section 3 can be used (with
constant rx) to show that the z-damping property and perfect matching in z are satisfied for Eqs. 14. Perform-

ing the analysis, one now obtains the linear mode ðÊpml
þ ; Êpml

� Þ ¼ ðc1; c2Þe
k zþðsþil2k2

xþaÞ�1
R z

z0
rzðnÞ dn

� �
, where

k ¼ � 1
cg
½j2 þ ðsþ il2k2

xÞ
2�1=2 and l = (1 + rxeiq)�1, cf. Eq. (5). It is not obvious how to analytically prove

the damping and perfect matching in x but the numerical tests presented below suggest this to be satisfied also.
In Section 7 we use the above derived PML equations even in the nonlinear regime under the assumption of

|E+| and |E�| being small in the layers. The governing system is then (14) with the addition of
C(|E+|2 + 2|E�|2)E+ and C(|E�|2 + 2|E+|2)E� to the left-hand side of the first and third equations, respectively.
One analogously ‘‘delinearizes’’ the 1D system (8).
6. Stability of the layer equations

We now follow the analysis in [5] to establish the stability of the corner layer system (14) assuming constant
layer parameters. We realize that to maintain perfect matching one must use varying values of rx, but none-
theless we believe the following result with constant rx provides complementary evidence to the numerical
experiments that the layer equations are stable. They do establish that the layer equations are well-posed.
The analysis, which is based on the Sturm sequence method for bounding the roots of polynomial equations,
also can be used to derive energy estimates; see [19] for details.

Performing a Fourier transformation in (x,z) and solving for time derivatives leads to a system:
dŴ
dt
¼ �i

k2
x

ð1þ rxeiqÞ2
Ŵ þ P̂ Ŵ ; ð15Þ
where Ŵ ¼ ðÊþ; F̂ þ; Ê�; F̂ �ÞT. We will prove that if rz > 0 and a > 0, then the eigenvalues of the 4 · 4 matrix P̂
have negative real part (unless kz = 0). Since
R �i
k2

x

ð1þ rxeiqÞ2

 !
¼ � rxk

2
x

ð1þ r2
xÞ

2
ð2 sin qþ rx sin 2qÞ; ð16Þ
we will have proven stability under the additional assumptions rx > 0, 0 < q < p
2
.
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To establish the result concerning the eigenvalues of P̂ , we compute its characteristic polynomial:
k4 þ ak3 þ bk2 þ ckþ d; ð17Þ
a ¼ 2ðaþ rzÞ;
b ¼ ðaþ rzÞ2 þ c2

gk2
z þ j2;

c ¼ 2ðac2
gk2

z þ ðaþ rzÞj2Þ;
d ¼ a2c2

gk2
z þ ðaþ rzÞ2j2:

ð18Þ
Application of the Sturm sequence technique yields that the roots have negative real parts if and only if
a > 0;

ab� c > 0;

cðab� cÞ � a2d > 0;

d > 0:

ð19Þ
Carrying through the algebra one easily checks that these inequalities hold so long as a > 0, rz > 0, and
cgkz 6¼ 0. We note that if cgkz = 0 the system has two distinct imaginary roots and thus is neutrally stable
for such modes. Note that the neutrally stable kz = 0 modes have zero group velocity and cannot propagate
into the layer.

Stability of the layer equations (7) and (13) follows from the above result.
7. Numerical experiments

We perform numerical finite difference (FD) time domain simulations of the 1D and 2D CME in both lin-
ear (C = 0) and nonlinear (C > 0) regimes and study the performance of the PML. It can be shown that taking
the absorbing layer of a finite width generates reflections from the boundary z = �dz, Lz + dz (or x = �dx,
Lx + dx), which decrease exponentially as the layer width is increased, i.e. like e�pdz (or e�pdx ) with p > 0
[8,9,16,24]. We show this exponential error convergence to be true for the above constructed PML for 1D
and 2D linear CME and show that a decreased exponential rate can be obtained even in the nonlinear case.
The convergence rate is decreased most dramatically when, in the nonlinear regime, a disturbance with a rel-
atively large amplitude (so that |E±|2E± is non-negligible) enters a PML layer. In such cases one should, actu-
ally, expect even a failure of the absorption and lack of error convergence. In the cases presented here this is
not, however, the case. It is, nevertheless, the satisfactory behavior in situations when the solution is only
weakly nonlinear in the layers (main pulse stays in the physical domain) that is more important in typical non-
linear optics simulations, see Section 1.

7.1. 1D CME tests

1D CME with PML are given by (8), where F± are only defined inside the layers [�dz, 0], [Lz,Lz + dz]. We
use the following third order upwind FD formula for oz, ozu(zi) � (�3ui�1 � 10ui + 18ui+1 � 6ui+2 + ui+3)/
(12 dz), where ui = u(zi). This formula is used ‘verbatim’ in the E� equation while the direction of upwinding
is reversed for the E+ equation. The layers are terminated via the zero Dirichlet boundary condition
E±(�dz, t) = E±(Lz + dz, t) = F±(�dz, t) = F±(Lz + dz, t) = 0.

The PML parameter a is chosen a = 2 and we take a smooth profile of the function rz(z), namely
rzðzÞ ¼
hz½1þ tanhðazðdzÞðz� Lz � dz=2ÞÞ� if Lz 6 z 6 Lz þ dz;

hz½1� tanhðazðdzÞðzþ dz=2ÞÞ� if � dz 6 z < 0

	
ð20Þ
with az, hz > 0. The slope parameter az = az(dz) is taken inversely proportional to dz so that rz ‘stretches’
with increasing dz. As our tests have shown, this results in higher convergence rates of the error as a function
of dz than if the shape of rz does not change with dz. Finally, the PDE coefficients cg and j are fixed at
cg = j = 1.
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7.1.1. Linear evolution (C = 0)

In this test we take C = 0, Lz = 8, dz = 0.001 and the Gaussian initial data Eþðz; 0Þ ¼ E�ðz; 0Þ ¼ e�ðz�Lz=2Þ2 .
Setting the amplitude parameter of rz to hz = 100 and the slope parameter to az = 24/dz, we study the error
convergence with respect to dz, taking dz = 0.6, 0.9, 1.2 and 1.5.

The linear dynamics always lead to E+ and E� propagating in opposite directions according to the linear
advection part of the equations. We present results for three different points in time; t = 4 (Figs. 9 and 10)
when only radiation but not the main pulses in E+ and E� have reached the layers, t = 6 (Figs. 11 and 12)
when a large part of the pulses has entered the PML layers and, in order to also check long time properties
of the PML, t = 20 (Figs. 13 and 14) when almost all energy has left the physical domain. The error is
computed with respect to the exact solution obtained by applying the solution operator of the linear PDE
0.6 0.9 1.2 1.5

10

10

10

δ

|| 2

Fig. 9. Error convergence. *, L2 error at t = 4; ––, ce�5:79dz .

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

z

a |E
+
(z,4)|

|E (z,4)|

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5
x 10

z

b |E
+ +

ex(z,4)|

|E ex(z,4)|

Fig. 10. (a) Solution modulus and (b) error at t = 4 for dz = 1.5.
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Fig. 12. (a) Solution modulus and (b) error at t = 6 for dz = 1.5.
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in Fourier space on a physical domain that is large enough so that the solution remains well decayed at the
boundary, namely on [�2Lz, 3Lz � dz]. The resulting convergence and error values in the L2 norm are shown.
Figs. 9, 11 and 13 show that the obtained error convergence is exponential with approximate rates 5.8, 4.6 and
3.6. (Note that a decrease in the exponent with increasing time is predicted by the analysis in [8,9,16].) Figs. 10,
12 and 14 show the modulus of both components E+ and E� on the whole domain including the PML layers
for the case of the widest layer and the corresponding error inside the physical domain. The error plots clearly
show that the error is initially concentrated near the physical domain boundaries, which is due to the reflec-
tions induced by truncating the layers to a finite width.
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Fig. 14. (a) Solution modulus and (b) error at t = 20 for dz = 1.5.
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7.1.2. Nonlinear evolution

When C > 0, the 1D model without PML (Eq. (1) with o2
x ¼ 0) has a family of closed form solitary wave

solutions, so-called gap solitons [2,7]. These are localized pulses parameterized by the velocity v 2 (�cg,cg)
and a detuning parameter d 2 (0,p):
E� ¼ �aeig

ffiffiffiffiffiffi
j

2C

r
sinðdÞD�1eirsechðh� id=2Þ; ð21Þ
where
a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� v2Þ

3� v2

r
; D ¼ 1� v

1þ v

� �1=4

; h ¼ cj sinðdÞ z� z0

cg

� vt
� �

; r ¼ cj cosðdÞ v
cg

ðz� z0Þ � t
� �

;

c ¼ ð1� v2Þ�1=2
; eig ¼ � e2h þ e�id

e2h þ eid

� � 2v
3�v2

¼ e
i 4v
3�v2 arctan

e2hþcosðdÞ
sinðdÞ

� �
:
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Both |E+| and |E�| are the hyperbolic secant function and they propagate in the same direction. We use these
special solutions for the following test. Since the gap solitons are not true solitons in the sense of the inverse
scattering transform, they do not interact elastically with each other. Collisions of two gap solitons generally
result in large amounts of radiation. We simulate such a collision of two relatively slow (|v| = 0.3) gap sol-
itons and study radiation absorption by the PML, see Fig. 15. The radiation travels at the group velocity cg,
i.e. much faster than the gap solitons. Because of the small speed of the gap solitons we can study relatively
long time dynamics (t = 30) with only small amplitude waves reaching the PML layers. We also investigate
the PML performance at an even larger time (t = 40) when one of the gap solitons has itself entered the
layer.

The chosen parameters are C = 1, Lz = 24 and dz = 0.03 and the initial data are
Eþðz; 0Þ
E�ðz; 0Þ

� �
¼ GSAðzÞ þ GSBðzÞ;
where GSA is the gap soliton (21) with t = 0, v = 0.3, d = p/2 and z0 = Lz/4 and GSB is (21) with t = 0,
v = �0.3, d = p/2 and z0 = 3Lz/4, see Fig. 15a. Four different layer widths are considered: dz = 0.6, 0.9, 1.2
and 1.5. The amplitude parameter of the function rz is hz = 60 and the slope parameter is az(dz) = 18/dz.

Figs. 16 and 17 present the results at t = 30, when both pulses are still inside the physical domain but
have already collided and Figs. 18 and 19 are for t = 40, when one of the pulses has completely entered
the layer.

The error (L2) convergence appears to be still exponential with the rate p � 0.8 at t = 30 and p � 0.1 at
t = 40. Of course, the error is greatly increased in the latter case near the layer which the large disturbance
has reached. This is not unexpected as the PML is designed to work only for linear dynamics. The satisfactory
performance for radiation absorption (t = 30) is, nevertheless, very encouraging as that is the main purpose of
PML in nonlinear optics simulations.

7.2. 2D CME tests

We now turn to the full 2D system (14) on the physical domain (x,z) 2 [0,Lx] · [0,Lz] appended with the
PML layers of width dx and dz in x and z, respectively, see Fig. 1. Recall that F+ and F� need to be defined
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Fig. 15. (a) Modulus of initial data and (b) after interaction at t = 24.
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Fig. 17. (a) Solution modulus and (b) error at t = 30 for dz = 1.5.
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only inside the z-layers [�dx,Lx + dx] · [�dz, 0] and [�dx,Lx + dx] · [Lz,Lz + dz], which is what we also do in
our FD implementation. The FD approximation of oz is done using the same upwind formulas as in Section
7.1 and o2

x is approximated via the third order central difference formula o2
xuðxi; zjÞ � ð�ui�2;j þ 16ui�1;j�

30ui;j þ 16uiþ1;j � uiþ2;jÞ=ð12dx2Þ, where ui,j = u(xi,zj). As in the 1D case, we use zero Dirichlet boundary
conditions on E± as well as F± at the layer ends z = �dz,Lz + dz and x = �dx,Lx + dx. Time evolution is
treated by a fourth order additive Runge–Kutta scheme of the ESDIRK type [21] which allows us to treat
the second derivative (stiff) terms implicitly and the remaining terms explicitly leading to a first order
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CFL condition. We only need to solve 2(Nz + 2Nzpml)
1 linear systems of size Nx · Nx at each stage of the

Runge–Kutta method because the implicitly treated part has only x-derivative terms and no coupling
between E+ and E�.

The PML parameters are chosen a = 1, q = p/4, the function rz is given in (20), rx is completely analogous
(replace all z by x) and we fix hz = hx = 40. Also, once again, the PDE coefficients are j = cg = 1.
7.2.1. Linear evolution

We take C = 0, Lz = 1, Lx = 2, dz = 0.01, dx = 0.02 and dt = 0.001 and the Gaussian initial data
Eþðx; z; 0Þ ¼ E�ðx; z; 0Þ ¼ e�30ðx�Lx=2Þ2�40ðz�Lz=2Þ2 . Setting the slope parameters of rz and rx to az = 8/dz and
ax = 12/dx, we study the error convergence with respect to dx and dz, taking dx = 2dz = 0.4, 0.5, 0.6, 0.7
and 0.8.

Similarly to the 1D case the linear dynamics lead to transport of energy in both the positive and negative
z-directions but more dominant is the diffraction (spreading) in the x-direction. We present results of
1 Nzpml = dz/dz is the number of computational points across the z-width of each PML z-layer.
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simulations at t = 0.6 shortly after the main pulses have entered the z-layers. At this time, however, the fast
x-diffraction has already resulted in a very wide (in x) solution causing a large portion of the initial energy
to be absorbed by the x-layers. This also forces us to use a wide domain, namely (x,z) 2
[�70Lx, 71Lx] · [�Lz, 2Lz] for the application of the solution operator in Fourier space in order to find
the ‘exact’ solution for error computations. We also present results at t = 6 to study ‘long’ time performance
of the PML.

The results at t = 0.6 for the widest layers are presented in Figs. 21 and 22. The convergence is expo-
nential with an approximate rate p � 7.3, see Fig. 20, and one can clearly see in Fig. 22 that the error is
concentrated near z = Lz for E+ and near z = 0 for E�, which is due to the artificial reflections caused by
layer truncation. x-symmetric error due to reflections from the x-layer boundaries is, however, also
apparent.
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Fig. 20. Error convergence. *, L2 error at t = 0.6; ––, ce�7:33dx .

Fig. 21. Solution modulus at t = 0.6 for dx = 2dz = 0.8.



Fig. 22. Error at t = 0.6 for dx = 2dz = 0.8.
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For the long time behavior the solution modulus at t = 6 is shown in Fig. 23. Using differences of solutions
computed with different layer widths we estimate the convergence rate. For exponential rate, when
error ¼ ce�pdx , one has
Fig. 23. Solution modulus at t = 6 for dx = 2dz = 0.8.



T. Dohnal, T. Hagstrom / Journal of Computational Physics 223 (2007) 690–710 707
k~Eð1Þ �~Eð2Þk
k~Eð1Þ �~Eð3Þk

¼ 1� e�pðdð2Þx �dð1Þx Þ

1� e�pðdð3Þx �dð1Þx Þ
: ð22Þ
We choose ~Eð1Þ; ~Eð2Þ and ~Eð3Þ to be the solutions (E+,E�)T corresponding to the three widest layers
dð1Þx ¼ 2dð1Þz ¼ 0:6, dð2Þx ¼ 2dð2Þz ¼ 0:7 and dð3Þx ¼ 2dð3Þz ¼ 0:8, respectively. The norms on the left-hand side of
(22) are L2 norms over the physical domain [0,Lx] · [0, Lz]. Solving (22) in p via Newton’s iteration results
in p � 6.9.

7.2.2. Nonlinear evolution

Unlike for the 1D case, in the 2D nonlinear regime closed form solitary wave solutions of the CME are not
known. Although a limited set of such solutions has been found numerically [11,10], here we use a heuristically
selected initial condition that is close to a solitary wave and results in a much slower diffraction than in the
linear regime as well as in co-propagation of energy carried by E+ and E� in the same z-direction. Of course,
radiation waves are present as the solution is not a true solitary wave. The initial data we use are
Eþðx; z; 0Þ
E�ðx; z; 0Þ

� �
¼

ffiffiffi
2
p

GSðz; 0; v ¼ 0:92; d ¼ p=2; z0 ¼ Lz=2Þsechðbðx� Lx=2ÞÞ;
where b = 2j(sin(d)/d � cos(d)) and GS is the gap soliton (21) centered at z = Lz/2, with velocity v = 0.92 and
detuning d = p/2, see Fig. 24. We use C = 1, Lz = 6, Lx = 12, dz = 0.04, dx = 0.08 and dt = 0.004. The PML
parameters are az = 9.6/dz, ax = 16/dx and dx = 2dx = 1.6, 2, 2.4, 2.8 and 3.2.

Figs. 25 and 26 show the solution modulus at t = 2 and t = 4, respectively. At t = 2 the main pulse is still
within the physical domain and at t = 4 it has entered the z-layer as well as slightly diffracted into the x-layers.
The approximate error convergence rates found by using the relation (22) with dð1Þx ¼ 2dð1Þz ¼ 2:4,
dð2Þx ¼ 2dð2Þz ¼ 2:8 and dð3Þx ¼ 2dð3Þz ¼ 3:2 are p � 3.1 at t = 2 and p � 1.4 at t = 4. The fact that the decrease
in the rate as the pulse enters the layer is not as dramatic as in the 1D case (Figs. 16 and 18) is attributed
to the relatively small amplitude of the pulse as it enters the layer.
Fig. 24. Initial data.



Fig. 25. Solution modulus at t = 2 for dx = 2dz = 3.2.

Fig. 26. Solution modulus at t = 4 for dx = 2dz = 3.2.
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8. Conclusion

We have constructed PML equations for the mixed-type system governing propagation of optical wave
packets in both 1D and 2D Bragg resonant photonic waveguides with a cubic nonlinearity, i.e. the coupled
mode equations. The construction builds on an existing approach for general first order hyperbolic systems.
The given analysis proves the desired absorption of the layers, their perfect matching as well as stability for the
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corresponding linear system. Via performing a number of numerical FDTD simulations we verify the analyt-
ical results and show that the error due to layer truncation converges exponentially with respect to the layer
width even in the nonlinear regime although at a decreased rate compared to the linear regime. An important
topic for continuation of this work is construction of PML equations for other types of coupled mode equa-
tions in 2D photonic crystals, as classified in [3].
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