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We consider light propagation in a Kerr-nonlinear 2D waveguide with a
Bragg grating in the propagation direction and homogeneous in the transverse
direction. Using Newton’s iteration method we construct both stationary and
travelling solitary wave solutions of the corresponding mathematical model,
the 2D nonlinear coupled mode equations (2D CME). We call these solutions
2D gap solitons due to their similarity with the gap solitons of 1D CME
(fiber grating). Long-time stable evolution preserving the solitary fashion is
demonstrated numerically despite the fact that, as we show, for the 2D CME no
local constrained minima of the Hamiltonian functional exist. Building on the
1D study of [1], we demonstrate trapping of slow enough 2D gap solitons at
localized defects. We explain the mechanism of trapping as resonant transfer
of energy from the soliton to one or more nonlinear defect modes. For a
special class of defects, we construct a family of nonlinear defect modes by
numerically following a bifurcation curve starting at analytically or numerically
known linear defect modes. Compared to 1D the dynamics of trapping are
harder to fully analyze and the existence of many defect modes for a given
defect potential causes that slow solitons store a part of their energy for
virtually all of the studied attractive defects.
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1. Introduction

Optical media with their refractive index both periodic in space and nonlinear,
i.e., dependent on the intensity of the field, offer very promising and useful
applications in optical communication and logic devices. The periodicity of
the refractive index induces frequency bands. Linear (small amplitude) pulses
with frequency inside one of these bands do not propagate—are evanescent.
The nonlinearity, on the other hand, if chosen to be “focusing,” induces pulses
to localize in their support and increase in peak amplitude and therefore
counteracts the natural dispersive and diffractive qualities of the medium. By
tailoring the shape and intensity of the pulse one can, in principle, achieve a
perfect balance between dispersion/diffraction and focusing and thus obtain
a solitary wave solution or its special case, a soliton, of the corresponding
mathematical model. Such solutions are interesting objects of analysis but
become valuable from the application point of view only if they are stable. It
is well known that the stability of solitary waves in optical media usually
depends on the number of spatial dimensions in the model, i.e., the number
of dimensions in which the solution is allowed to disperse/diffract. For a
homogeneous medium (no periodicity) with a focusing cubic nonlinearity,
where the model is the nonlinear Schrödinger equations (NLS), it is only in 1D
that stable solitary wave solutions exist. In higher dimensions solutions either
spread (diffract) or focus and become singular in finite time (point blowup)
depending on the value of the Hamiltonian functional (for 2D) or on both the
value of the Hamiltonian and the L2 norm of the initial gradient (for nD, n > 2)
[2]. In the presence of a suitable periodic structure this type of blowup will
likely be arrested although the instability of solitary waves toward focusing
and diffraction remains.

In this paper we consider a (2D) medium with the cubic focusing (Kerr)
nonlinearity and with a Bragg resonant periodic structure in the direction
of propagation (z), often referred to as a “Bragg grating waveguide” ([3],
Section 3.1). In the corresponding 1D structure (the fiber grating, Section 2.1)
the combination of Bragg grating and nonlinearity allows for the existence
of a family of solitary waves, so-called Bragg grating solitons (Section 2.2)
with velocities whose absolute value lies between 0 and the speed of light in
the corresponding homogeneous medium. These solutions are very attractive
from the application point of view firstly because of the tunability in speed
and secondly for their short formation lengths. Pulses launched in a bare (no
grating) fiber converge to solitons after distances of hundreds of meters,
whereas in a fiber grating Bragg grating solitons are formed within centimeters
[4–6]. We investigate the existence of 2D analogs to the Bragg grating solitons
and after constructing several such candidates, we study their interaction with
localized defects demonstrating the possibility of their trapping, analogously
to the 1D study in [1, 7], (Section 2.3).
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In Section 2, we first briefly introduce the fiber Bragg grating, give the
governing mathematical model, the 1D coupled mode equations, and present
its analytically known gap soliton solutions. Then we summarize the results of
[1, 7] on the trapping of 1D gap solitons at localized defects. In Section 3
the geometry of the 2D waveguide grating and the governing equations are
presented and the nonexistence of local constrained minima of the Hamiltonian
functional is proved. Then, the Newton’s iteration construction of 2D gap
solitons is described for both the stationary and the moving case. Section 4
presents preliminary results of the study of soliton interaction with localized
defects building on the 1D results summarized in Section 2. A class of
defects with analytically known linear defect modes is given and corresponding
nonlinear defect modes computed numerically. Finally, the possibility of
trapping is demonstrated by several numerical simulations.

2. 1D: Fiber grating

2.1. The geometry and the governing equation

In a fiber grating the electric field is confined in both transverse directions
(x , y) via the principle of total internal reflection and it propagates along
the fiber length (z) (Figure 1). The linear part n0 of the refractive index is
periodic in z and its variation from the average is small. In other words, we
have n2

0(x, y, z) ≈ n̄2
0(x, y) + 2εn̄0(x, y)�n(z), 0 < ε � n̄0, where n̄0 ≈ 1 is

the average and �n(z) = κ0 cos(λz) is the oscillatory part. For the Bragg
resonance condition the period of �n(z) is chosen to be half that of the carrying
plane waves ei(kz z−ωt) of light, i.e. λ = 2kz, so that strong back reflection
occurs. The generation of backward propagating plane waves is clear from the
following product present in Maxwell’s equations

�n(z)ei(kz z−ωt) = κ0

2
(e2ikz z + e−2ikz z)ei(kz z−ωt)

= κ0

2
ei(−kz z−ωt) + nonresonant terms.

One can, therefore, write the electric field as a sum of forward and backward
propagating plane waves

�E = U (x, y)
(
E+(Z , T )ei(kz z−ωt) + E−(Z , T )ei(−kz z−ωt) + c.c.

) �x, (1)

Figure 1. A cartoon of the fiber grating.
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where Z = εz, T = εt are “slow” variables, E± are slowly varying envelopes,
�x is the polarization direction, and U is the transverse mode of the fiber.
The nonlinearity is chosen to be of Kerr type, i.e., the polarization is
�P = χ (1) �E + εχ (3)| �E |2 �E and we assume max|�n| = κ0 ≈ χ (3) I , where I is the
peak intensity of the electric field. Upon substituting (1) and �P into Maxwell’s
equations, multiple scales analysis yields at O(1) an eigenvalue problem for
(ω, U ) and at O(ε) the 1D coupled mode equations (1D CME) [8] for the
envelopes. In dimensionless form 1D CME read

i(∂t + ∂z)E+ + κE− + (|E+|2 + 2|E−|2)E+ = 0

i(∂t − ∂z)E− + κE+ + (|E−|2 + 2|E+|2)E− = 0,
(2)

where κ can be assumed nonnegative without any loss of generality and
the independent variables Z , T have been renamed z, t . The system (2) is
Hamiltonian, dispersive, nonintegrable via the inverse scattering transform
and conservative (conserves ‖E+‖2

2 + ‖E−‖2
2). The dispersion relation for

the modes ei(kz z−ωt) is ω = ±√
k2

z + κ2, (Figure 2). As the dispersion relation
shows, there are no linear (small amplitude) solutions with frequencies in the
gap ω ∈ (−κ , κ). Plane waves with frequencies in the gap have imaginary
wavenumbers and thus are evanescent.

2.2. Gap solitons in 1D

Existence of solitary wave solutions to the nonlinear problem was first
demonstrated numerically in [9] and then given in an explicit form in [10, 11].
These solutions are usually called Bragg grating solitons or gap solitons. They
are a family parameterized by a detuning parameter δ ∈ (0, π ) and the velocity
v ∈ (−1, 1), with 1 being the group velocity in the homogeneous medium.

E± = ±αeiη

√
κ

2
sin(δ)�∓1eiσ sech(θ ∓ iδ/2), (3)

Figure 2. The dispersion relation for (2).
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where

α =
√

2(1 − v2)

3 − v2
, � =

(
1 − v

1 + v

)1/4

,

θ = γ κ sin(δ)(z − vt), σ = γ κ cos(δ)(vz − t),

γ = (1 − v2)−1/2, eiη =
(

−e2θ + e−iδ

e2θ + eiδ

) 2v

3 − v2

= e
i 4v

3 − v2 arctan
(

e2θ +cos(δ)
sin(δ)

)
.

The temporal frequency of these solutions (in the travelling wave variables ζ =
z − vt , τ = t) is ω = κcos(δ)

√
1 − v2 and thus lies within the linear frequency

gap. The frequency of the stationary (v = 0) solution lies close to a gap edge
for δ close to 0 or π and in the middle of the gap for δ = π/2. From the sine
factor in formula (3) we see that δ near 0 or π corresponds to small and δ near
π/2 to large amplitude solutions.

It has been shown [12, 13] that gap solitons with ω < ωc for a specific
negative ωc posses an oscillatory instability. Gap solitons with ω > ωc are
stable. The stability for ω > ωc is consistent with the fact that for frequencies
near the upper edge of the gap the 1D CME are approximated by the focusing
1D NLS that supports stable solitary waves.

2.3. Interaction of 1D gap solitons with localized defects

Here we briefly summarize the results of [1, 7] on the study of the interaction of
gap solitons (3) with localized defects. The obtained results include reflection,
transmission as well as trapping. Relevant to our 2D model (Section 4) is
the authors’ derivation of a family of z-localized potentials (defect potentials)
V (z), κ(z) for which the linear problem

i(∂t + ∂z)E+ + κ(z)E− + V (z)E+ = 0

i(∂t − ∂z)E− + κ(z)E+ + V (z)E− = 0
(4)

can be solved explicitly for functions e−iωL t �E(z) with ωL ∈ R and �E = (E+, E−)
localized in z. This is done by rewriting (4) in a form equivalent to the
Zakharov–Shabat eigenvalue problem for the defocusing NLS. It is shown that
the potentials

V (z) = 1

2

nk2�sech2(kz)

�2 + n2k2 tanh2(kz)
, κ(z) =

√
�2 + n2k2 tanh2(kz) (5)

with �, k ∈ R, and n ∈ N support the linear defect mode

(
E+
E−

)
=


 exp

(
i
2 arctan nk tanh(kz)

�

)
∓sign(�) exp

(
−i
2 arctan nk tanh(kz)

�

)

 sechn(kz) (6)
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with frequency ωL = � as well as 2(n − 1) other defect modes (hypergeometric
functions) with frequencies ωL = ±

√
�2 + k2(2nr − r2), r ∈ {1, . . . , n − 1}.

The argument is made, and verified numerically that a gap soliton will be
trapped only at such a defect that supports a nonlinear defect mode with
frequency equal to that of the gap soliton (resonance) and with total power
smaller or equal to that of the soliton (energetic accessibility). Otherwise the
energy stored by the soliton will be reflected and/or transmitted ([1], p. 1642).

3. 2D: x-Homogeneous waveguide grating

3.1. The geometry and governing equations

In a waveguide grating the electric field is confined in only one transverse
direction ( y), it diffracts in the other transverse direction (x), in which the
medium is homogeneous and there is a Bragg grating (Section 2.1) in the
propagation direction (z) (Figure 3). Analogous to Section 2.1, under the
assumption of a balance among the characteristic length scales of coupling,
nonlinearity, and diffraction, which means assuming the following form of the
electric field

�E = U (y)
(
E+(X, Z , T )ei(kz z−ωt) + E−(X, Z , T )ei(−kz z−ωt) + c.c.

) �x, (7)

with X = √
εx, Z = εz and T = εt , the 2D coupled mode equations (2D

CME) [14, 15]

i(∂t + ∂z)E+ + κ E− + ∂2
x E+ + (|E+|2 + 2|E−|2)E+ = 0

i(∂t − ∂z)E− + κ E+ + ∂2
x E− + (|E−|2 + 2|E+|2)E− = 0

(8)

for the envelopes E±(x , z, t) are obtained. Once again, the independent variables
X , Z , T have been renamed x , z, t . Just like (2) this system is Hamiltonian,

Figure 3. A cartoon of the waveguide grating.
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dispersive, nonintegrable, and conservative. The Hamiltonian formulation
reads

i∂t E± = δH

δE∗±
, i∂t E∗

± = − δH

δE±
with the Hamiltonian functional

H =
∫

R

∫
R

i
(
E∗

−∂z E− − E∗
+∂z E+

) − κ
(
E−E∗

+ + E∗
−E+

)
+ |∂x E+|2 + |∂x E−|2 −

(
1

2
|E+|4 + 2|E−|2|E+|2 + 1

2
|E−|4

)
dxdz. (9)

The dispersion relation for plane waves ei(kz z+kx x−ωt) is ω = k2
x ± √

k2
z + κ2,

i.e., the same as for 1D CME (2) but shifted by k2
x . The frequency gap for a

given kx is ω ∈ (k2
x − κ , k2

x + κ).
Existence results for solutions of 2D CME with finite L2 norm have not been

obtained and, in particular, a rigorous proof of absence of point blowup has
not been done. It is, however, believed that the z-periodic structure prevents
blowup but does not, in general, prevent the instability toward focusing. In [16],
a heuristic explanation of this process is made for solutions with frequencies
close to the upper edge of the linear frequency gap (from the outside). As
shown, in that regime the system is well approximated by a perturbed focusing
2D NLS and hence solutions have a tendency to either collapse or diffract.
Because, however, collapse implies broadening of the spectrum in the Fourier
space (thus also frequency space) and an eventual overlap with the gap where
the NLS approximation is no longer valid, the collapse in the NLS fashion is
prevented.

An explanation for the limited amount of rigorous results obtained so far is
that most of the tools that helped answer these questions for general NLS fail
here. More recently, though, we have made important progress on these issues
by a combination of heuristic and semirigorous arguments based on physical,
numerical, and asymptotic techniques, which the remainder of the paper
shows.

A very important question is whether localized dynamics are always unstable
to focusing or diffraction or whether a balance can be achieved. An important
result, presented in Theorem 1, shows that the critical points of the Hamiltonian
under the constraint of a fixed total power are not minima (this result is also
mentioned in [15]). In Hamiltonian systems, minimizers can typically be
proved to be stable (in an orbital sense) in the time evolution. For the CME the
condition of minimality is, however, only sufficient for linear stability and not
necessary [17]. In Section 3.3, we present numerically obtained stationary
as well as travelling wave solutions that, despite Theorem 1, appear long
lived.
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3.2. Bound states and critical points of the Hamiltonian

Let us first define a bound state. A solution of (8) of the form E±(x, z, t) =
e−iωtE±(x, z) is a bound state if ω ∈ R and E± ∈ L2(R2). Suppose that
N := ∫

R2 |E+|2 + |E−|2dxdz = P > 0 for such a bound state E±, we would
then want to know whether

(E+, E−) is a local minimizer of the H (see (9)) within the set S (10)

of all vector functions ( f1(x, z), f2(x, z)) : R
2 → C

2 satisfying the constraint∫
R2

| f1|2 + | f2|2dxdz = P. (11)

THEOREM 1. Possible bound state solutions of the 2D coupled mode
equations (8) are not solutions of the minimization problem (10), (11).

Proof : Assume the existence of a bound state E± with N = P . Consider the
following 3-parameter family S1 of scalings of the assumed (fixed) bound state
profile (E+, E−), i.e., functions α(Ẽ+(x̃, z̃), Ẽ−(x̃, z̃)) := α(E+( x

µ
, z

ν
), E−( x

µ
, z

ν
))

with α, µ, ν > 0. Within S1 the constraint (11) becomes α2µν = 1 and H
becomes Hr = A1α

2µ − A2α
2µν + A3

α2ν
µ

− A4α
4µν, where

A1 = i

∫
R2

E∗
−∂zE− − E∗

+∂zE+ dxdz, A2 = κ

∫
R2

E−E∗
+ + E∗

−E+ dxdz,

A3 =
∫

R2

|∂xE+|2 + |∂xE−|2 dxdz,

A4 = 1

2

∫
R2

|E+|4 + 4|E+|2|E−|2 + |E−|4 dxdz

with A1, A2 ∈ R, A3, A4 > 0. The constants A1, . . . , A4 are scale free. Under
the constraint H r reduces to a function of two variables Hr (α, ν) =
A1
ν

+ A3α
4ν2 − A4α

2 − A2 and one easily finds that the only critical point

with α, ν > 0 is (α∗, ν∗) = ( A1
√

2A3

A3/2
4

,
A2

4
2A1 A3

) and that the discriminant in the

second derivative test is D = −32 A4
1 A3

3

A5
4

< 0, i.e. (α∗, ν∗) is a saddle. This
shows the lack of the existence of a local constrained minimizer of H . �

Note that (α∗, ν∗) must be equal to (1, 1). This is because (E+, E−),
being a solution profile, must be a critical point of the extended Hamiltonian
Ĥ = H − ω

∫
R

∫
R

|E+|2 + |E−|2 dxdz (with ω fixed at the solution frequency)
and therefore also a critical point of its reduced version Ĥr . Ĥr = Hr − ω due
to the constraint and thus (E+, E−) is also a critical point of H r. Given that the
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only critical point of H r is the saddle (α∗, ν∗) and because within S1 the
solution profile (E+, E−) is represented by (1, 1), we get (α∗, ν∗) = (1, 1).

This also yields a necessary condition for a function e−iωt (E+(x, z), E−(x, z))

to be a bound state solution of 2D CME. The condition is ( A1
√

2A3

A3/2
4

,
A2

4
2A1 A3

) = (1, 1).

We have verified that the stationary solutions we find numerically (Section 3.3)
do satisfy this condition.

Comparison with 1D: We have checked that performing the same scaling
argument on H (as in the proof of Theorem 1) for the 1D CME one obtains
that the reduced Hamiltonian H r is constant within the family of scalings of
an assumed minimizer (E+, E−) if

i

∫
R

E∗
−∂zE− − E∗

+∂zE+ dz = 1

2

∫
R

|E+|4 + 4|E+|2|E−|2 + |E−|4 dz, (12)

which is indeed satisfied by the stationary gap solitons, (3) with v = 0. If (12)
is not satisfied, H r has either only the trivial minimum (α = 0) or only a
maximum; in both cases one gets a contradiction with the assumption of the
existence of a nontrivial minimizer of H .

3.3. Numerically constructed stationary and moving solutions

Stationary gap solitons: Despite the result of Theorem 1 we have been able to
numerically construct solutions that are stationary on long times. To compute
the bound state profile (E+, E−) as well as the frequency ω, we use Newton’s
iteration method [18] combined with the GMRES iteration [19] for solving the
linear system at each Newton step. In fact, this technique has to be used to
find just one solution-frequency pair. Afterward, other pairs may be found
following the bifurcation curve through the first pair by slowly varying ω

and solving for the profiles only. Assuming the bound state solution form
E±(x, z, t) = e−iωtE±(x, z) the system (8) becomes an eigenvalue problem for
(ω, (E+, E−)):

ω �E = −[
iσ3∂z + ∂2

x + σ1κ
] �E − N ( �E, �E∗) �E, (13)

where we have adopted the vector notation with �E = (E+, E−)T , the Pauli

matrices σ1 = (0 1
1 0

)
, σ3 = (1 0

0 −1

)
, and N ( �E, �E∗) = (|E+|2+2|E−|2 0

0 |E−|2+2|E+|2
)
.

This system can be solved as a nonlinear system of equations for ω and
(E+, E−) simultaneously if an extra condition is imposed, for example, on the
amplitude of |E+| or on the total power N := ‖E+‖2

2 + ‖E−‖2
2. We choose

the latter one; given a number P > 0 we solve (13) together with the
constraint

N = P (14)

for ω and (E+, E−) via Newton’s iteration. For its convergence it is crucial to
choose an initial guess (ω(0), (E (0)

+ , E (0)
− )) close enough to the solution. One
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possible initialguess is (ω(0), (F+(z)G(x),F−(z)G(x))),wheree−iω(0)t (F+,F−)T

is a stationary 1D gap soliton ((3) with v = 0) and G is a suitable x-dependent
localized profile. Note that such a separable waveform will most likely not
be an exact profile of a bound state solution. To determine a suitable G we
substitute E (0)

± (x, z, t) = F±(z)G(x)e−iω(0)t into (8), multiply the first/second
equation by F∗

±, respectively, integrate in θ = γ κsin(δ)z, and divide by∫ |F±|2 dθ . Given that for v = 0 one has F− = −F∗
+, we get a single equation

for G:

G ′′ − bG + bG3 = 0 (15)

with b = 3
∫

R
|F+|4dθ∫

R
|F+|2dθ

= −i
∫

R
F∗

+(∂tF+ + ∂zF+)dθ∫
R

|F+|2dθ
+ κ

∫
R
F∗

+
2dθ∫

R
|F+|2dθ

.b can be calculated

exactly, b = 2 κ
δ

(sin(δ) − δ cos(δ)). And because b > 0 for 0 < δ ≤ π , the

localized solution of (15) is G(x) = √
2sech (

√
bx). Now, (ω(0), (F+G,F−G))

is used as the initial guess in solving the nonlinear system (13) and (14).
Because the initial guess satisfies the symmetry F− = −F∗

+, we enforce this
symmetry on our solutions E±. This reduces the size of the system by a half.
We also assume odd/even symmetries in x and z as satisfied by the initial
guess with a final reduction to about one-eighth of the original size. We note
that the symmetry E− = −E∗

+ is in contrast with stationary solutions found in
[15], which satisfy E− = E∗

+. Unfortunately, their evolution was not checked
numerically.

In solving (13) and (14) we only succeed to obtain convergence of Newton’s
iteration for gap solitons with frequencies near the upper edge of the linear
frequency gap. In the case κ = 1 with the trivial x-phase (kx = 0), where the
gap is (−1, 1), the convergent iterations yield 0.85 < ω < 0.99. The reason for
the convergence failure for ω < 0.85 remains to be determined. Solutions
with 0.85 < ω < 0.9 have significant oscillations in the spatial profiles and
these increase as ω gets closer to 0.85. Gap solitons with frequency close
to the upper edge are relatively wide and also small in amplitude; they are,
nevertheless, truly nonlinear states.

Figure 4 shows the stationary 2D gap soliton with ω ≈ 0.9595. Both the
profile and evolution plots of the modulus (down the middle of the x-width) as
well as of the amplitude, total power, and frequency1 are given. The slight
decrease in power and amplitude in the PDE evolution through our code is
attributed to the use of a Fourier filter (Appendix A).

Moving gap solitons: Unfortunately, similar to 1D, neither the Lorentzian
nor Galilean transformation can be applied to stationary solutions of 2D CME
to produce moving ones. We, therefore, construct moving solitons numerically.

1We measure temporal frequency of stationary bound states via the formula ω± = − �(
∫

E∗±∂t E±dx dz)∫ |E±|2 dx dz
,

where ω+ = ω− for a stationary bound state solution.
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Figure 4. Stationary 2D gap soliton with ω ≈ 0.9595 obtained via Newton’s iteration (κ =
1); (a) �(E+(x, z)) = −�(E−(x, z)), (b) �(E+(x, z)) = �(E−(x, z)), (c) |E+(0, z, t)|, (d) E−(0,
z, t)|, (e) full line: evolution of peak amplitude (|E+| = |E−|) and dashed line: total power
minus a constant, (f) frequency evolution (ω+ = ω−).

A natural ansatz for gap solitons with a nonzero z-speed v is e−iωτE±(x, ζ ),
where ζ = z − vt , τ = t , |v| < 1. For this ansatz 2D CME read

ωE+ + i(1 − v)∂ζE+ + κE− + ∂2
xE+ + (|E+|2 + 2|E−|2)E+ = 0

ωE − i(1 + v)∂ζE− + κE+ + ∂2
xE− + (|E−|2 + 2|E+|2)E− = 0.

(16)

Once again, we use Newton’s iteration to solve (16) for a given v. Unlike for
(13) we fix ω and solve only for (E+, E−). This is for the linear system at each
Newton’s iteration to be banded, which allows for a more efficient computational
treatment. If both v and ω are to be fixed, one is required to know the relation
ω(v). For the 1D gap solitons (3) this relation is ω(v) = ω0

√
1 − v2, where ω0

is the frequency of the stationary soliton. Using this relation in (16) leads to a
successful convergence, which suggests its validity (for this particular family
of gap solitons) also in 2D. We find the solutions of (16) by following the
bifurcation curve parameterized by v and starting at v = 0. The initial guess
for an iteration at v = nε̃, n ∈ N, n < 1/ε̃ is the final iterate at v = (n − 1)ε̃

scaled to satisfy max(x,z) |E+|
max(x,z) |E−| =

√
1+v
1−v

. ε̃ is a small step in the velocity and

the particular ratio of amplitudes of the initial guess is chosen based on
previous PDE trial runs of various initial conditions, which showed that,
remarkably, all moving solutions found (solitary waves, breathers, or diffracting
solutions) satisfy this relation. Note that this relation also holds for the 1D gap
solitons (3).
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Figure 5. z-profiles of moving solitons for (κ , ω0) = (1, 0.9595); full line v = 0, (∗) v =
0.2, dashed line v = 0.4, (◦) v = 0.6, dotted line v = 0.8.

We use the banded linear solver DGBSV of the LAPACK library for
solving the linear system at each Newton step. Figure 5 shows the z-profiles of
solitons with various velocities corresponding to ω0 = 0.9595. The x-profile
remains very similar throughout the range of v (for v = 0; Figure 4). Also,
as Figure 5 shows, profiles of the moving solitons are symmetric in the z
directions (�(E±) even and �(E±) odd). This is because the first initial guess
(the stationary soliton) has these symmetries and Newton’s iteration preserves
them. 1D gap solitons (3), on the other hand, satisfy these symmetries only for
v = 0. Possibly, z-symmetric moving pulses of 1D CME also exist.

Figure 6 shows the propagation of a 2D gap soliton with v = 0.2.
Long-time evolution exhibits slow weak breathing that demonstrates an
instability of the found solution. The subplot (e) shows the validity of the above

mentioned relation max(x,z) |E+|
max(x,z) |E−| =

√
1 + v
1 − v

between the ratio of amplitudes and the

velocity.
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Figure 6. The moving 2D gap soliton with v = 0.2, ω0 ≈ 0.9595 obtained via Newton’s
iteration (κ = 1); (a) |E+(x , z, 0)|, (b) |E−(x , z, 0)|, (c) |E+(0, z, t)|, (d) |E−(0, z, t)|,
(e) peak amplitude evolution: (+) a+ := max(x,z)|E+|, full line: a− := max(x,z)|E−|, dotted
line: (a2

+/a2
− − 1)/(a2

+/a2
− + 1) ≈ v.

Solutions with an arbitrary nonzero x-component of the velocity can be
easily generated by imposing a nontrivial x-phase, i.e., multiplying the above
solution profiles by eikx x , kx ∈ R. We, however, concentrate on solutions
travelling parallel to the z-axis (kx = 0).

4. Interaction of 2D gap solitons with defects

Analogously to the idea of [1], we study the possibility of trapping 2D gap
solitons due to the presence of a localized deterministic defect. Just like in the
1D case of [1] we base our predictions about the nature of interactions on
the principle of resonant energy transfer and energy conservation (see end
of Section 2.3). In Section 4.1, 4.2, we construct defects and a family of
corresponding defect modes and in Section 4.3 we present results of our
numerical simulations of soliton–defect interactions.

4.1. Linear defect modes

We first select suitable defect potentials that, if added to the linear 2D
CME (Equation (8) without the nonlinear terms) give a system that can be
solved exactly for the ansatz �E(x, z, t) = e−iωL t �E(x, z) with ωL ∈ R and
�E = (E+, E−)T localized. We call �E a linear defect mode. Ideally, the defect
should be represented by some (qualitatively) radially symmetric potentials
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Figure 7. Example of the defect potential V1(x) + V2(z) after support truncation.

V (x , z), κ(x , z) centered at (x0, z0). Solutions of the linear 2D CME with such V
are not known and, hence, we propose the form V (x , z) = V1(x) + V2(z), κ =
κ(z), where V1 and V2 are smooth and decay to 0 sufficiently fast as |x − x0|
and |z − z0| grow, respectively, and κ is smooth and similarly approaches a
constant value κ∞ > 0 (i.e., the coupling coefficient away from the defect)
as |z − z0| grows. Then, for some special choices of V1,2 and κ the
system [

ω + iσ3∂z + ∂2
x + σ1κ(z) + V1(x) + V2(z)

] �E = 0 (17)

can be solved exactly via the separation of variables. In Equation (17), ∂ t was
replaced with ω to account for the assumed ansatz. Clearly, neither κ nor V1 +
V2 are localized in 2D. This can be fixed by smoothly truncating the support
of V1(x) in the z-direction and of V2(z) and κ∞ − κ(z) in the x-direction at
such a distance that the exact solution E± is affected negligibly (see Figure 7
for a schematic of V1(x) + V2(z) treated in this way).

Assuming the separation of variables E± = F±(z)G(x) the system (17)
becomes [

ωL − λ + iσ3∂z + ∂2
x + σ1κ(z) + V2(z)

] �F = 0, (18a)

G ′′ + (V1(x) + λ)G = 0, (18b)

with �F = (F+, F−)T and the constant λ being the separation constant. Upon
choosing

V1(x) = 2β2sech2(βx), β ∈ R, (19)

Equation (18b) with zero decay boundary conditions has a unique eigenfunction
G = sech(βx) with λ = −β2. The problem now reduces to solving (18a) with
λ = −β2. The case λ = 0 was analyzed in detail in [1, 7] and the results are
summarized in Section 2.3. Generalization to λ �= 0, λ ∈ R only requires a
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shift in the frequency ωL � ωL + λ. In summary, for V1(x) = 2β2sech2(βx)
and V2(z), κ(z) given in (5) Equation (17) has the linear defect mode

(
E+
E−

)
=


 exp

(
i
2 arctan nk tanh(kz)

�

)
∓sign(�) exp

(
−i
2 arctan nk tanh(kz)

�

)

 sechn(kz)sech(βx), (20)

with frequency ωL = � − β2. The other 2(n − 1) linear defect modes
F±(z)G(x), with F± being hypergeometric functions, have frequencies ωL =
−β2 ±

√
�2 + k2(2nr − r2), r ∈ {1, . . . , n − 1}. Compared to 1D the

frequencies are shifted by β2 and hence lie in (−κ∞ − β2, κ∞ − β2). The 2D
gap solitons propagating in the z-direction have frequencies in (−κ∞, κ∞) and
hence for β2 > κ∞ there is no overlap of the two frequency regions. This is in
contrast with 1D [1] where the two regions are identical.

We note that the above 2n − 1 linear defect modes are not necessarily the
only ones for the defects in question. There may be other stationary solutions
whose spatial profile cannot be written as a product F±(z)G(x). These can be,
in principle, found numerically as bound state eigenfunctions of (17).

4.2. Nonlinear defect modes

The linear defect modes in Section 4.1 are used as starting points in the
construction of nonlinear defect modes. We construct nonlinear defect modes
of small total power by regular perturbation methods and modes with larger
power numerically via Newton’s iteration.

4.2.1. Nonlinear defect modes with small total power-perturbative
construction. We carry out the perturbation analysis analogously to [1]. With
the ansatz �E(x, z, t) = e−iωt �E(x, z) the governing system reads

[
ω + iσ3∂z + ∂2

x + σ1κ(z) + V1(x) + V2(z)
] �E + N ( �E, �E∗) �E = 0. (21)

Let ω = ωL + ω(1)|α|2 + O(|α|4), �E(x, z) = α[ �E0(x, z) + |α|2 �E1(x, z) +
O(|α|4)], where �E0 is a linear defect mode with frequency ωL (see
Section 4.1) and α ∈ C is a small (in absolute value) parameter. At O(|α|), we
recover the linear equation L0 �E0 = 0 with L0 = ωL + iσ3∂z + ∂2

x + σ1κ(z) +
V1(x) + V2(z). At O(|α|3), we get

L0 �E1 = −ω(1) �E0 − N ( �E0, �E∗
0) �E0,

which has an (x , z)-localized solution �E1 only if the orthogonality condition
〈 �E0, ω

(1) �E0 + N ( �E0, �E∗
0) �E0〉 = 0 is satisfied. This yields
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ω(1) = −
〈 �E0, N

( �E0, �E∗
0

) �E0
〉

〈 �E0, �E0〉
, (22)

where the inner product is 〈 �F, �G〉 := ∫
R2 F1G1 + F2G2dxdz. Clearly, ω(1) < 0

and the frequency of the nonlinear defect modes bifurcates to the left of ωL .
For the case n = 1 in (20) the integrals in (22) can be easily calculated. With
�E0 normalized so that ‖ �E0‖2

2 = 〈 �E0, �E∗
0〉 = 1 we get ω(1) = −βk

6 .
In conclusion, consider the defect V1(x) = 2β2sech2(βx) and V2(z), κ(z) as

in (5) with n = 1. Then, given α ∈ C with |α| � 1, a linear defect mode α �E0

with total power N = |α|2 and frequency ωL bifurcates into a nonlinear defect
mode of total power O(|α|2) and frequency ω = ωL − βk

6 |α|2 + O(|α|4).

4.2.2. Nonlinear defect modes with O(1) total power-numerical construction.
Once again, we employ Newton’s iteration for the construction of “large”
nonlinear defect modes. Using a known linear defect mode with ω = ωL and
N = |α2| � 1 as the initial guess, we find the nonlinear defect mode with
ω = ωL − βk

6 |α|2 by fixing ω in (21) to this value and solving the system via
Newton’s iteration with the banded linear solver DGBSV of LAPACK at each
step. The resulting mode has N = ν1 ≈ |α|2. For a nonlinear defect mode
with ω = ωL − m βk

6 |α|2, we scale the mode with ω = ωL − (m − 1)βk
6 |α|2 to

N = νm−1 + |α|2 and use it as the initial guess. The result of such a construction
can be plotted in a bifurcation diagram for N (ω) starting at N (ωL ) = |α|2;
Figure 8a shows an agreement between the asymptotic approximation (22) and

Figure 8. (a) Bifurcation curve of nonlinear defect modes corresponding to the defect
(κ∞, n, β, k) = (1, 1, 0.16, 0.18), � = √

κ2∞ − k2 (no support truncation)—detail at small N :
(-) numerical result, (◦) linear defect modes, (•) nonlinear defect modes predicted by the
perturbation technique; (b) nonlinear defect modes corresponding to the defect used in Section
4.3.1 (ωL ≈ 0.963, 0.992): bifurcation curves until convergence failure at ω ≈ 0.8908,
0.9723, respectively. Stars represent the 5 gap solitons used in Section 4.3.1
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the numerical result for small N . The chosen defect belongs to the family
(5) and (19) (without any support truncation), for which exact linear defect
modes are known. The parameters are κ∞ = 1, (n, β, k) = (1, 0.16, 0.18),
and � = √

κ2∞ − k2.2 As expected, with increasing N the asymptotic form is
no longer a good approximation. Figure 8b shows bifurcation curves for two
numerically found linear defect modes corresponding to the same defect as
used in Figure 8a only with a truncated support. The curves could not be
continued due to a failure of Newton’s iteration to converge. Similar to the 1D
study in [1], we predict trapping if the stationary gap soliton corresponding to
the incident gap soliton lies above the bifurcation curve of a defect mode. This
will ensure both resonance and energetic accessibility.

4.3. Numerical simulations of soliton-defect interactions

In this section we present preliminary results on the interactions of the 2D gap
solitons of Section 3.3 with localized defects of the type described in Section
4.1. We wish to verify validity of the mechanism of resonant energy transfer
mentioned in Section 2.3 and used to explain trapping of 1D gap solitons in
[1]. Compared to the 1D model of [1] there are two major limitations of the so
far outlined 2D model. Firstly, gap solitons have been found only for a small
range of frequencies within the gap (Section 3.3) and secondly, exact linear
defect modes are available only for a class of defects represented as a sum of a
truncated x-dependent and a truncated z-dependent potential (Figure 7), which
makes finding all the linear defect modes analytically impossible. Other linear
defect modes than the family given in Section 4.1 exist and have to be found
numerically. This can lead to the existence of many nonlinear defect modes
(with different frequencies) into which gap solitons’ energy can be transferred.
With this in mind the results below still demonstrate the possibility of trapping
for the studied defects but a more complete study involving computation of the
full set of linear defect modes and their corresponding nonlinear ones as well
as determining the relevant frequency definition for the resonance condition is
needed to be able to better explain the dynamics.

4.3.1. Velocity threshold for trapping; wide defect. In the following numerical
experiment, we have κ∞ = 1 and use travelling gap solitons with v = 0.04,
0.2, 0.3, 0.4, 0.5 corresponding to the stationary gap soliton with ω0 ≈ 0.9595,
incident on a relatively wide defect (n, k, β) = (1, 0.18, 0.16), � = √

κ2∞ − k2

(see Section 2.3, 4.1). The support of V1(x) was truncated via multiplication
of V1 by 0.5 × (tanh(z + 9) − tanh(z − 9)); similarly, V2(z) and the variation
κ(z) away from κ∞ were multiplied by 0.5 × (tanh(x + 7) − tanh(x − 7)).

2For κ∞, n, and k fixed, � is given by studying κ(z), i.e., Equation (5) at |z| → ∞. This gives
� = ±√

κ2∞ − k2. Here, we choose � > 0 corresponding to an attractive potential.



226 T. Dohnal and A. B. Aceves

Figure 9. Orthogonal projections of the solutions in Section 4.3.1 onto two corresponding
linear defect modes found numerically. The absolute value of the projection coefficients
|ak(t)|, k = 1, 2 is plotted. Full line: ωL ≈ 0.963, dotted line: ωL ≈ 0.992.

This results in a perturbation of the linear defect mode (and its frequency ωL )
predicted by (4.1). The modes of this ‘truncated’ defect are found numerically.
They have frequencies ωL1 ≈ 0.963, ωL2 ≈ 0.992. The bifurcation curves of the
corresponding nonlinear defect modes are shown in Figure 8b. The gap solitons
corresponding to this experiment are represented by the asterisks. Although
the bifurcation curves could not be continued numerically further, Figure 8b
suggests that the gap soliton lies above the curve corresponding to ωL1 and, if
the bifurcation curve corresponding to ωL2 ≈ 0.992 exists for ω below 0.9595,
then, most likely, also above the other curve. Projection of the trapped solution
onto the two linear modes reveals that both modes are activated (Figure 9).
Figure 10 reveals that there is a critical velocity3 vc ≈ 0.5 above which virtually
no energy is trapped and below which as much as 30% is trapped.

As can be seen from the velocity and amplitude plots, the soliton’s first
response to the defect is to speed up while first slightly decreasing in amplitude
and then focusing. If trapped, focusing and spreading are repeated. These
effects are reminiscent of a particle behavior in a potential well but can
be better explained as a lens effect of the attractive potential. Also notice
that any energy that is transmitted or reflected finally diffracts. This is,
again, in contrast with the 1D results of [1], where a 1D gap soliton forms after

3The velocity is determined from measuring the position of the solution’s peak amplitude within the
spatial domain.
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Figure 10. Soliton-defect interaction of Section 4.3.1 for various velocities of the soliton with
ω0 ≈ 0.9595 (each row different velocity). Left plot: |E+(Lx/2, z, t)| (|E−| is qualitatively
the same). Middle plot: (+) max(x,z)|E+|, (-) max(x,z)|E−|, (·) speed in the z-direction. Right
plot: dashed line: total power N , dotted line: power contained in the two linear defect modes.
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Figure 11. Gap soliton with ω0 ≈ 0.929 and v = 0.2 incident on the same defect as in
Figure 10. Legend as in Figure 10.

transmission/reflection. We expect this behavior in 2D to be caused by a weaker
stability of the 2D gap solitons compared to 1D gap solitons.

For comparison, in Figures 11 and 12 we show gap solitons with ω0 ≈ 0.92,
v = 0.2, and ω0 ≈ 0.9, v = 0.04, respectively, incident on the same defect, i.e.,
(n, k, β, κ∞, �) = (1, 0.18, 0.16, 1, 0.9837). Because in the (ω,N )-plane the
gap solitons lie to the left of those in Figure 10 and closer to the line of
nonlinear defect modes, more energy should be trapped. This is, indeed, the
case and in Figure 12 about 57% of the energy is trapped.

4.3.2. x-narrow defect, reflection. In this simulation, we choose a slow
gap soliton obtained not via Newton’s iteration but by simply perturbing
the ratio of the amplitudes |E+| and |E−| of the stationary gap soliton
with ω0 ≈ 0.9595. Interestingly, this perturbation induces movement
though the resulting pulse is a breather. The defect in this simulation is
(n, k, β, κ∞) = (1, 0.18, 0.6, 1), � = −√

κ2∞ − k2 ≈ −0.9837. Clearly, in this
case the family of nonlinear defect modes bifurcating from the one analytically
known linear mode (with frequency ωL = � − β2) should not be resonant
with the gap soliton as ωL is far to the left of ω0. Figure 13 shows that most of

Figure 12. Gap soliton with ω0 ≈ 0.9 and v = 0.04 incident on the same defect as in Figure 10.
Legend as in Figure 10. The power contained in the linear defect modes is smaller than the total
power and hence another defect mode (not found in our numerics) must exist and be accessed.
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Figure 13. Soliton-defect interaction of Section 4.3.2. Legend as in Figure 10.

the energy is reflected but, once again, eventually diffracts. We believe that
slow moving solitons far from resonance will always mostly reflect.

5. Summary

We demonstrate the existence of both stationary and travelling solitary wave
solutions (2D gap solitons) of the 2D CME describing light propagation in
Kerr nonlinear 2D waveguides with a Bragg resonant periodic structure in the
propagation direction. This is despite the nonexistence of local constrained
minima of the corresponding Hamiltonian functional. The travelling gap
solitons propagate at any speed less than the absolute value of the group
velocity. Evolution of the constructed solutions is checked numerically via a
finite-difference time domain code with an ESDIRK-type integration scheme.
The successfully constructed solutions occupy a region near the upper edge
(from the inside) of the linear frequency gap. Our travelling solitons are the
first reported moving localized solutions of 2D CME.

In the second part we present preliminary results on trapping of the above
mentioned solitons at localized defects. For selected defect potentials, a family
of exact linear defect modes is presented (using results of [1]) and corresponding
nonlinear defect modes are constructed numerically. A more complete analysis
using other localized defects and identifying their defect modes is necessary to
verify the trapping dynamics via a resonant energy transfer between solitons and
defect modes. The presented numerical simulations demonstrate the possibility
of trapping of slow enough solitons. In these simulations, we take advantage
of a perfectly matched boundary layer (PML) treatment of the outgoing
radiation.
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Appendix: Note on the numerical method for integrating 2D CME

The numerical results of PDE evolution presented in this paper were obtained
using a finite difference time-domain method. More concretely, we use 4-th
order central difference formulas to approximate the spatial derivatives ∂ z E±
and ∂2

x E± and a 4-th order explicit/implicit (ESDIRK) Runge–Kutta time
integration method [20] to advance the data in time. This time integration
method was designed for advection-diffusion equations but serves well in
our setting as it allows us to treat the highest order derivative (stiff)
terms ∂2

x E± implicitly and the remaining terms explicitly, thus requiring a
reasonable CFL condition dt < cdz. As common for nonlinear advection-type
equations without any dissipation, we find it necessary to artificially damp
the highest oscillations in the advection direction (z). The usual approach
of adding a diffusion term is impractical on long evolution times as the
solitary wave structure is lost. Hence, we choose to use a (more expensive)
Fourier filter in the z-coordinate to selectively kill only the highest Fourier
modes.

An effective treatment of the outgoing radiation is crucial in our simulations
where long evolution times on finite domains are required. We use the method
of PML [21]; in this approach, the domain is extended beyond the physical
boundary by artificial layers (Figure 14) in which the solution is absorbed while
ensuring that the interface between the physical domain and the boundary
layer is reflectionless. This is done by requiring that the eigenfunctions (in
Laplace transform sense) in the layers are identical to those in the physical

Figure 14. The physical domain and the PML layers.
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domain while the eigenvalues change to provide for damping. With our PML
formulation the linear system becomes

i(∂t E+ + ∂z E+ + F+) + κ E− + 1

1 + σ̃x eiρ
∂x

(
1

1 + σ̃x eiρ
∂x E+

)
= 0

i(∂t F+ + σ̃z∂z E+ + (α + σ̃z)F+) + 1

1 + σ̃x eiρ
∂x

(
1

1 + σ̃x eiρ
∂x F+

)
= 0

i(∂t E− − ∂z E− + F−) + κ E+ + 1

1 + σ̃x eiρ
∂x

(
1

1 + σ̃x eiρ
∂x E−

)
= 0

i(∂t F− − σ̃z∂z E− + (α + σ̃z)F−) + 1

1 + σ̃x eiρ
∂x

(
1

1 + σ̃x eiρ
∂x F−

)
= 0,

(A.1)

where α > 0, ρ ∈ (0, π/2), σ̃x (x) and σ̃z(z) are smooth functions that vanish
inside the physical domain 0 ≤ x ≤ Lx, 0 ≤ z ≤ Lz but are positive inside
the x and z layers, respectively, and F± are auxiliary variables defined only
in the z-layers (z < 0, z > Lz). We find that in our case using layers with
about 10–15 computational points across their width is sufficient to ensure
absorption and to maintain the accuracy of the integration method.

Because in the nonlinear case only radiation waves are expected to reach
the PML layers with the main pulse remaining inside the physical domain, the
solution inside the layers behaves linearly; hence, after adding the nonlinear
terms to the first and third equation, we use the system (A.1) in the nonlinear
case also.

References

1. R. H. GOODMAN, R. E. SLUSHER, and M. I. WEINSTEIN, Stopping light on a defect, JOSA
B 19:1635–1652 (2002).

2. C. SULEM and P. SULEM, The Nonlinear Schrödinger Equation: Self-focusing and Wave
Collapse, pp. 93–103, Springer-Verlag, Berlin, 2000.

3. A. B. ACEVES and T. DOHNAL, Stopping and bending light in 2D photonic structures, in
Nonlinear Waves: Classical and Quantum Effects, (F. K. Abdullaev and V. V. Konotop
Eds.), pp. 293–302, Kluwer, Dordrecht, 2004.

4. B. J. EGGLETON, R. E. SLUSHER, C. M. DE STERKE, P. A. KRUG, and J. E. SIPE, Bragg
grating solitons, Phys. Rev. Lett. 76:1627–1630 (1996).

5. B. J. EGGLETON, C. M. DE STERKE, and R. E. SLUSHER, Nonlinear pulse propagation in
Bragg gratings, JOSA B 14:2980–2993 (1997).

6. N. G. R. BRODERICK, D. J. RICHARDSON, and M. IBSEN, Nonlinear switching in a
20-cm-long fiber Bragg grating, Opt. Lett. 25:536–538 (2000).

7. R. H. GOODMAN, R. E. SLUSHER, M. I. WEINSTEIN, and M. KLAUS, Trapping light
with grating defects, in Proceedings of NSF-CBMS Regional Research Conference:
Mathematical Methods in Nonlinear Wave Propagation, Greensboro, NC, May 2002.



232 T. Dohnal and A. B. Aceves

8. R. E. SLUSHER and B. J. EGGLETON, Eds., Nonlinear Photonic Crystals, Ch. 8,
Springer-Verlag, Berlin, 2003.

9. W. CHEN and D. L. MILLS, Gap solitons and the nonlinear optical response of superlattices,
Phys. Rev. Lett. 58:160–163 (1987).

10. A. B. ACEVES and S. WABNITZ, Self induced transparency solitons in nonlinear refractive
media, Phys. Lett. A 141:37–42 (1989).

11. D. N. CHRISTODOULIDES and R. I. JOSEPH, Slow Bragg solitons in nonlinear periodic
structures, Phys. Rev. Lett. 62:1746–1749 (1989).

12. A. DE ROSSI, C. CONTI, and S. TRILLO, Stability, multistability, and wobbling of optical
gap solitons, Phys. Rev. Lett. 81:85–88 (1998).

13. I. V. BARASHENKOV, D. E. PELINOVSKY, and E. V. ZEMLYANAYA, Vibrations and oscillatory
instabilities of gap solitons, Phys. Rev. Lett. 80:5117–5120 (1998).

14. A. B. ACEVES, B. CONSTANTINI, and C. DE ANGELIS, Two-dimensional gap solitons in a
nonlinear periodic slab waveguide, JOSA B 12:1475–1479 (1995).
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