Coupled-mode equations and gap solitons in two dimensions

Dmitry Pelinovsky

Institute of Analysis and Dynamics, University of Stuttgart, Germany Department of Mathematics, McMaster University, Canada

> Joint work with Tomas Dohnal (ETH Zurich) and Guido Schneider (University of Stuttgart)

ICIAM-07, Zurich, July 16-20, 2007

Motivations

Gap solitons are localized stationary solutions of nonlinear PDEs with space-periodic coefficients which reside in the spectral gaps of associated linear operators.

Examples: Complex-valued Maxwell equation

$$
\nabla^{2} E-E_{t t}+\left(V(x)+\sigma|E|^{2}\right) E_{t t}=0
$$

and the Gross-Pitaevskii equation

$$
i E_{t}=-\nabla^{2} E+V(x) E+\sigma|E|^{2} E,
$$

where $E(x, t): \mathbb{R}^{N} \times \mathbb{R} \mapsto \mathbb{C}, V(x)=V\left(x+2 \pi e_{j}\right): \mathbb{R}^{N} \mapsto \mathbb{R}$, and $\sigma= \pm 1$.

Existence of stationary solutions

Stationary solutions $E(x, t)=U(x) e^{-i \omega t}$ with $\omega \in \mathbb{R}$ satisfy a nonlinear elliptic problem with a periodic potential

$$
\nabla^{2} U+\omega U=V(x) U+\sigma|U|^{2} U
$$

Theorem:[Pankov, 2005] Let $V(x)$ be a real-valued bounded periodic potential. Let ω be in a finite gap of the spectrum of $L=-\nabla^{2}+V(x)$. There exists a non-trivial weak solution $U(x) \in H^{1}\left(\mathbb{R}^{N}\right)$, which is (i) real-valued, (ii) continuous on $x \in \mathbb{R}^{N}$ and (iii) decays exponentially as $|x| \rightarrow \infty$.

Remark: Additionally, there exists a localized solution $U(x) \in H^{1}\left(\mathbb{R}^{N}\right)$ in the semi-infinite gap for $\sigma=-1$ (NLS soliton).

Asymptotic reductions in 1D

The nonlinear elliptic problem with a periodic potential can be reduced asymptotically for $N=1$ to the following problems:

- Coupled-mode (Dirac) equations for small potentials

$$
\left\{\begin{array}{c}
i a^{\prime}(x)+\Omega a+\alpha b=\sigma\left(|a|^{2}+2|b|^{2}\right) a \\
-i b^{\prime}(x)+\Omega b+\alpha a=\sigma\left(2|a|^{2}+|b|^{2}\right) b
\end{array}\right.
$$

- Envelope (NLS) equations for finite potentials near band edges

$$
a^{\prime \prime}(x)+\Omega a+\sigma|a|^{2} a=0
$$

- Lattice (dNLS) equations for large potentials

$$
\alpha\left(a_{n+1}+a_{n-1}\right)+\Omega a_{n}+\sigma\left|a_{n}\right|^{2} a_{n}=0 .
$$

Localized solutions of reduced equations exist in the analytic form.

Bifurcation of gap solitons in 2D

Let $N=2$ and $V(x)=\eta\left[W\left(x_{1}\right)+W\left(x_{2}\right)\right]$ be a separable potential. The band surface is given by $\omega=\rho\left(k_{1}\right)+\rho\left(k_{2}\right)$, while the eigenfunction is $\psi\left(x_{1}, x_{2}\right)=u\left(x_{1}\right) u\left(x_{2}\right)$, where

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)+\eta W(x) u(x)=\rho u(x), \quad 0 \leq x \leq 2 \pi \\
u(2 \pi)=e^{i 2 \pi k} u(0)
\end{array}\right.
$$

Left: spectrum of $L=-\partial_{x}^{2}+\eta W(x)$ versus η. Right: spectrum of $L=-\partial_{x_{1}}^{2}-\partial_{x_{1}}^{2}+\eta W\left(x_{1}\right)+\eta W\left(x_{2}\right)$ versus η.

Resonant Bloch modes at the bifurcation

The first band gap opens up at $\eta=\eta_{0} \approx 0.1747$, where three Bloch modes are in resonance

$$
\phi_{1}=\psi_{1}\left(x_{1}\right) \varphi_{2}\left(x_{2}\right), \phi_{2}=\varphi_{2}\left(x_{1}\right) \psi_{1}\left(x_{2}\right), \phi_{3}=\varphi_{1}\left(x_{1}\right) \varphi_{1}\left(x_{2}\right)
$$

for corresponding eigenvalues

$$
\omega=\lambda_{1}+\mu_{2}=\mu_{2}+\lambda_{1}=2 \mu_{1} .
$$

Here $\psi_{n}(x)$ is a 2π-periodic function for eigenvalue λ_{n} and $\varphi_{n}(x)$ is a 2π-antiperiodic function for eigenvalue μ_{n}.

Derivation of coupled-mode equations

Let $\epsilon=\eta-\eta_{0}, \omega=\omega_{0}+\epsilon \Omega$, and

$$
U=\sqrt{\epsilon}\left[A_{1} \phi_{1}+A_{2} \phi_{2}+A_{3} \phi_{3}+\epsilon \Phi\left(x_{1}, x_{2}\right)\right]
$$

where $A_{1,2,3}$ are functions of $X=\sqrt{\epsilon} x$ and $\phi_{1,2,3}$ are functions of x. The projection algorithm leads to three coupled NLS equations:

$$
\begin{array}{r}
\left(\Omega-\beta_{1}\right) A_{1}+\left(\alpha_{1} \partial_{X_{1}}^{2}+\alpha_{2} \partial_{X_{2}}^{2}\right) A_{1} \\
=\sigma\left[\gamma_{1}\left|A_{1}\right|^{2} A_{1}+\gamma_{2}\left(2\left|A_{3}\right|^{2} A_{1}+A_{3}^{2} \bar{A}_{1}\right)+\gamma_{3}\left(2\left|A_{2}\right|^{2} A_{1}+A_{2}^{2} \bar{A}_{1}\right)\right], \\
\ldots \\
\left(\Omega-\beta_{2}\right) A_{3}+\alpha_{3}\left(\partial_{y_{1}}^{2}+\partial_{y_{2}}^{2}\right) A_{3} \\
=\sigma\left[\gamma_{4}\left|A_{3}\right|^{2} A_{3}+2 \gamma_{3}\left(\left|A_{1}\right|^{2}+\left|A_{2}\right|^{2}\right) A_{3}+\gamma_{3}\left(A_{1}^{2}+A_{2}^{2}\right) \bar{A}_{3}\right],
\end{array}
$$

Remark: No first-order derivative terms occur in the coupled-mode system. Similar coupled NLS equations are derived near band edges by Z.Shi and J.Yang, PRE 75, 056602 (2007).

Main theorem I

Let $W(x)$ be a bounded, piecewise-continuous, even and 2π-periodic function on $x \in \mathbb{R}$. Let $\frac{1}{4}<r<\frac{1}{2}$. The nonlinear elliptic problem has a continuous and decaying solution $U(x)$ for sufficiently small $|\epsilon|<\epsilon_{0}$ if there exists a non-trivial solution of

$$
\left\{\begin{aligned}
&\left(\Omega-\beta_{1}-\alpha_{1} p_{1}^{2}-\alpha_{2} p_{2}^{2}\right) \hat{B}_{1}(p)-\sigma \hat{Q}_{1}(p)=\epsilon^{\tilde{r}} \hat{R}_{1}(p), \\
& \ldots \\
&\left(\Omega-\beta_{2}-\alpha_{3} p_{1}^{2}-\alpha_{3} p_{2}^{2}\right) \hat{B}_{3}(p)-\sigma \hat{Q}_{3}(p)=\epsilon^{\tilde{r}} \hat{R}_{3}(p),
\end{aligned}\right.
$$

where $\tilde{r}=\min (4 r-1,1-2 r), \hat{B}_{1,2,3}(p)$ are compactly supported on the disk $D_{\epsilon}=\left\{p \in \mathbb{R}^{2}:|p|<\epsilon^{r-\frac{1}{2}}\right\} \subset \mathbb{R}^{2}, \hat{Q}_{1,2,3}(p)$ denote the cubic nonlinear terms of the coupled-mode system, and

$$
\left\|\hat{R}_{1,2,3}\right\|_{L^{1}\left(D_{\epsilon}\right)} \leq C_{1,2,3}\left(\left\|\hat{B}_{1}\right\|_{L^{1}\left(D_{\epsilon}\right)}+\left\|\hat{B}_{2}\right\|_{L^{1}\left(D_{\epsilon}\right)}+\left\|\hat{B}_{3}\right\|_{L^{1}\left(D_{\epsilon}\right)}\right) .
$$

Bloch-Fourier transform in 1D

There exists a unitary transformation
$\mathcal{T}: \phi \in L^{2}(\mathbb{R}) \mapsto \hat{\phi} \in l^{2}\left(\mathbb{N}, L^{2}(\mathbb{T})\right)$ given by

$$
\forall \phi \in L^{2}(\mathbb{R}): \quad \hat{\phi}_{n}(k)=\int_{\mathbb{R}} \bar{u}_{n}(y ; k) \phi(y) d y
$$

with the inverse transformation \mathcal{T}^{-1} :

$$
\forall \hat{\phi} \in l^{2}\left(\mathbb{N}, L^{2}(\mathbb{T})\right): \quad \phi(x)=\sum_{n \in \mathbb{N}} \int_{\mathbb{T}} \hat{\phi}_{n}(k) u_{n}(x ; k) d k
$$

Lemma: If $\hat{\phi} \in l_{s}^{1}\left(\mathbb{N}, L^{1}(\mathbb{T})\right)$ for $s>\frac{1}{2}$ with the norm $\|\hat{\phi}\|_{l_{s}^{1}\left(\mathbb{N}, L^{1}(\mathbb{T})\right)}=\sum_{n \in \mathbb{N}}(1+n)^{s} \int_{\mathbb{T}}\left|\hat{\phi}_{n}(k)\right| d k<\infty$, then $\phi(x)$ is a continuous and decaying function on $x \in \mathbb{R}$.

Nonlinear problem in the Bloch space

With the Bloch-Fourier transform in 2D, the elliptic problem is reduced to the form

$$
\begin{aligned}
& {\left[\rho_{n_{1}}\left(k_{1}\right)+\rho_{n_{2}}\left(k_{2}\right)-\omega_{0}-\epsilon \Omega\right] \hat{\Phi}_{n}(k)=} \\
& -\epsilon \sigma \sum_{(m, i, j) \in \mathbb{N}^{6}} \int_{\mathbb{T}^{6}} M_{n, m, i, j}(k, l, \kappa, \lambda) \hat{\Phi}_{m}(l) \overline{\hat{\Phi}}_{i}(\kappa) \hat{\Phi}_{j}(\lambda) d l d \kappa d \lambda,
\end{aligned}
$$

where

$$
M_{n, m, i, j}(k, l, \kappa, \lambda)=\left\langle u_{n}(\cdot ; k) u_{i}(\cdot ; \kappa), u_{m}(\cdot ; l) u_{j}(\cdot ; \lambda)\right\rangle_{\mathbb{R}^{2}} .
$$

Lemma: The nonlinear vector field (in 1D) is closed in space $l_{s}^{1}\left(\mathbb{N}, L^{1}(\mathbb{T})\right)$ for $s<1$, such that

$$
\|\hat{\phi} \star \hat{\varphi}\|_{l_{s}^{1}\left(\mathbb{N}, L^{1}(\mathbb{T})\right)} \leq C\|\hat{\phi}\|_{l_{s}^{1}\left(\mathbb{N}, L^{1}(\mathbb{T})\right)}\|\hat{\varphi}\|_{l_{s}^{1}\left(\mathbb{N}, L^{1}(\mathbb{T})\right)}
$$

for some $C>0$. The same is true in 2D for senarable notentials.

Decomposition in the Bloch space

Resonant Bloch modes correspond to k and n in the sets

$$
k \in\left\{\left(0, \frac{1}{2}\right) ;\left(\frac{1}{2}, 0\right) ;\left(\frac{1}{2}, \frac{1}{2}\right)\right\} \subset \mathbb{T}^{2}
$$

and

$$
n \in\{(1,3) ;(3,1) ;(2,2)\} \in \mathbb{N}^{2}
$$

The decomposition is
$\hat{\Phi}(k)=\hat{U}_{1}(k) \chi_{D_{1}}(k) e_{1,3}+\hat{U}_{2}(k) \chi_{D_{2}}(k) e_{3,1}+\hat{U}_{3}(k) \chi_{D_{3}}(k) e_{2,2}+\hat{\Psi}(k)$,
where $\left\{e_{1,3}, e_{3,1}, e_{2,2}\right\}$ are unit vectors on $\mathbb{N}^{2}, D_{1,2,3}$ are disks of radius ϵ^{r} centered at the points k of the resonant set, $\chi_{D}(k)$ is a characteristic function on $k \in \mathbb{T}^{2}$, and $\hat{\Psi}(k)$ is zero identically on $k \in D_{1,2,3}$ for the corresponding values of n.

Projection to the coupled-mode system

The diagonal multiplication operator can be inverted since

$$
\min _{k \in \operatorname{supp}(\hat{\Psi})}\left|\rho_{n_{1}}\left(k_{1}\right)\right|_{\eta=\eta_{0}}+\left.\rho_{n_{2}}\left(k_{2}\right)\right|_{\eta=\eta_{0}}-\omega_{0} \mid \geq C \epsilon^{2 r} .
$$

If $2 r<1$, the lower bound is still larger than the perturbation terms of order ϵ. By the Implicit Function Theorem in the space $l_{s}^{1}\left(\mathbb{N}^{2}, L^{1}\left(\mathbb{T}^{2}\right)\right)$ for any $\frac{1}{2}<s<1$, there exists a unique map $\hat{\Psi}_{\epsilon}\left(\hat{U}_{1}, \hat{U}_{2}, \hat{U}_{3}\right): L^{1}\left(D_{1}\right) \times L^{1}\left(D_{2}\right) \times L^{1}\left(D_{3}\right) \mapsto l_{s}^{1}\left(\mathbb{N}^{2}, L^{1}\left(\mathbb{T}^{2}\right)\right)$ for sufficiently small ϵ, such that
$\left\|\hat{\Psi}_{\epsilon}\right\|_{l_{s}^{1}\left(\mathbb{N}^{2}, L^{1}\left(\mathbb{T}^{2}\right)\right)} \leq \epsilon^{1-2 r} C\left(\left\|\hat{U}_{1}\right\|_{L^{1}\left(D_{1}\right)}+\left\|\hat{U}_{2}\right\|_{L^{1}\left(D_{2}\right)}+\left\|\hat{U}_{3}\right\|_{L^{1}\left(D_{3}\right)}\right)$,
for some constant $C>0$ uniformly in $|\epsilon|<\epsilon_{0}$.

Extended coupled-mode system

Using the scaling transformation

$$
\hat{B}_{j}(p)=\epsilon \hat{U}_{j}\left(\frac{k-k_{0}}{\epsilon^{1 / 2}}\right), \quad \forall k \in D_{j} \subset \mathbb{T}^{2}, \quad j=1,2,3,
$$

we map all disks $D_{1,2,3}$ to the disk $D_{\epsilon}=\left\{p \in \mathbb{R}^{2}:|p|<\epsilon^{r-\frac{1}{2}}\right\}$, which covers the entire plane $p \in \mathbb{R}^{2}$ as $\epsilon \rightarrow 0$ if $2 r<1$. Note that $\left\|\hat{U}_{j}\right\|_{L^{1}\left(D_{j}\right)}=\left\|\hat{B}_{j}\right\|_{L^{1}\left(D_{\epsilon}\right)}$ for any $j=1,2,3$. The remainder terms are due to three sources:

- The component $\hat{\Psi}=\hat{\Psi}_{\epsilon}\left(\hat{U}_{1}, \hat{U}_{2}, \hat{U}_{3}\right)$ is eliminated and it has the order of $\epsilon^{1-2 r}$.
- The perturbation terms in powers of ϵ occur at the order of ϵ^{1}.
- The expansion of all coefficients in powers of $k-k_{0}$ has the order of $\epsilon^{4 r-1}$.

End of the proof

The last property is due to the bound

$$
\epsilon\left\||p|^{4} \hat{B}_{j}\right\|_{L^{1}\left(D_{\epsilon}\right)}=\epsilon \int_{D_{\epsilon}}|p|^{4}\left|\hat{B}_{j}(p)\right| d p \leq \epsilon^{4 r-1}\left\|\hat{B}_{j}\right\|_{L^{1}\left(D_{\epsilon}\right)} .
$$

The theorem is proved if $\frac{1}{4}<r<\frac{1}{2}$ with $\tilde{r}=\min (4 r-1,1-2 r)$.
Remark: If $r=\frac{1}{3}$, then $\tilde{r}=r=\frac{1}{3}$ and both remainder terms have the same order of $\epsilon^{1 / 3}$ which gives the smallest convergence rate for the approximation error.

Remark: The proof does not work if the potential is not separable (the range $\frac{1}{2}<s<1$ may become empty), if the function $W(x)$ is not piecewise-continuous (analyticity of expansions in powers of k may be lost), or if the new band gap is not smallest (eigenvalues can be multiple and analyticity of expansions in ϵ may be lost).

Reversible solutions

A solution $\left(A_{1}, A_{2}, A_{3}\right)$ of the coupled-mode system is called a reversible solution if it satisfies one of the constraints

$$
\begin{array}{ll}
A\left(y_{1}, y_{2}\right)=s_{1} A\left(-y_{1}, y_{2}\right)=s_{2} A\left(y_{1},-y_{2}\right), & \text { or } \\
A\left(y_{1}, y_{2}\right)=s_{1} \bar{A}\left(-y_{1}, y_{2}\right)=s_{2} \bar{A}\left(y_{1},-y_{2}\right), & \text { or } \\
A\left(y_{1}, y_{2}\right)=s_{1} A\left(y_{2}, y_{1}\right)=s_{2} A\left(-y_{2},-y_{1}\right), & \text { or } \\
A\left(y_{1}, y_{2}\right)=s_{1} \bar{A}\left(y_{2}, y_{1}\right)=s_{2} \bar{A}\left(-y_{2},-y_{1}\right), &
\end{array}
$$

for each function $\left(A_{1}, A_{2}, A_{3}\right)$, where $s_{1}, s_{2}= \pm 1$.
Remark: The reversible constraints are inherited from the nonlinear elliptic problem with the symmetric potential function

$$
V\left(x_{1}, x_{2}\right)=V\left(-x_{1}, x_{2}\right)=V\left(x_{1},-x_{2}\right)=V\left(x_{2}, x_{1}\right) \text { on } x \in \mathbb{R}^{2} .
$$

Main Theorem II

Let $\left(A_{1}, A_{2}, A_{3}\right)$ be a reversible solution of the differential coupled-mode system $\mathbf{F}(\mathbf{A})=0$ such that their Fourier transforms satisfy $\hat{\mathbf{A}} \in L_{q}^{1}\left(\mathbb{R}^{2}, \mathbb{C}^{3}\right)$ for some $q \geq 0$. Let Ω belong to the interior of the band gap of the coupled-mode system $\mathrm{F}(\mathbf{A})=0$. Assume that the Jacobian operator $D_{\mathrm{A}} \mathbf{F}(\mathbf{A})$ has a three-dimensional kernel with the eigenvectors $\left\{\partial_{y_{1}} \mathbf{A}, \partial_{y_{2}} \mathbf{A}, i \mathbf{A}\right\}$. Then, there exists a reversible solution of the extended coupled-mode system such that $\left(\hat{B}_{1}, \hat{B}_{2}, \hat{B}_{3}\right) \in L^{1}\left(D_{\epsilon}, \mathbb{C}^{3}\right)$ and

$$
\forall|\epsilon|<\epsilon_{0}: \quad\left\|\hat{B}_{j}-\hat{A}_{j}\right\|_{L^{1}\left(D_{\epsilon}\right)} \leq C_{j} \epsilon^{\tilde{r}}, \quad \forall j=1,2,3 .
$$

Corollary: The reversible solution $U(x)$ satisfies the bound

$$
\left\|U-\epsilon^{1 / 2}\left(A_{1} \phi_{1}-A_{2} \phi_{2}-A_{3} \phi_{3}\right)\right\|_{C_{b}^{0}\left(\mathbb{R}^{2}\right)} \leq C \epsilon^{\tilde{r}+1 / 2}
$$

where $\phi_{1,2,3}(x)$ are resonant Bloch modes.

Proof of Theorem 2

First, consider the extended system $\hat{\mathbf{F}}(\hat{\mathbf{B}})=\epsilon^{\tilde{r}} \hat{\mathbf{R}}(\hat{\mathbf{B}})$ on $p \in \mathbb{R}^{2}$ and use $\hat{\mathbf{B}}=\hat{\mathbf{A}}+\hat{\mathrm{b}}$ to represent the system in the form $\hat{J} \hat{\mathbf{b}}=\hat{\mathbf{N}}(\hat{\mathbf{b}})$, where

$$
\hat{J}=D_{\hat{\mathbf{A}}} \hat{\mathbf{F}}(\hat{\mathbf{A}}), \quad \hat{\mathbf{N}}(\hat{\mathbf{b}})=\epsilon^{\tilde{\tau}} \hat{\mathbf{R}}(\hat{\mathbf{A}}+\hat{\mathbf{b}})-[\hat{\mathbf{F}}(\hat{\mathbf{A}}+\hat{\mathbf{b}})-\hat{J} \hat{\mathbf{b}}] .
$$

The desired bound follows by the Implicit Function Theorem in space $\hat{\mathbf{b}} \in L_{q}^{1}\left(\mathbb{R}^{2}, \mathbb{C}^{3}\right)$. Then, estimate the truncated terms on $p \in \mathbb{R}^{2} \backslash D_{\epsilon}$. The largest truncated terms are bounded by

$$
\|\hat{\mathbf{b}}\|_{L_{q+2}^{1}\left(D, c_{c}^{\perp}, \mathbb{C}^{3}\right)} \leq\|\hat{\mathbf{b}}\|_{L_{q+2}^{1}\left(\mathbb{R}^{2}, \mathbb{C}^{3}\right)} \leq C\|\hat{\mathbf{N}}(\hat{\mathbf{b}})\|_{L_{q}^{1}\left(\mathbb{R}^{2}, \mathbb{C}^{3}\right)} \leq \tilde{C} \epsilon^{\tilde{r}},
$$

for any $\hat{\mathbf{b}}=\hat{J}^{-1} \hat{\mathbf{N}}(\hat{\mathbf{b}}) \in L_{q}^{1}\left(\mathbb{R}^{2}, \mathbb{C}^{3}\right)$. Therefore, the truncated terms are comparable with the residual terms of the extended coupled-mode system.

Numerical example 1

One-component gap solitons:

$$
\sigma=1: \quad A_{1}=A_{2}=0, A_{3}=R(r) e^{i m \theta}
$$

with $m=0$ (radially symmetric positive soliton):

and $m=1$ (vortex of charge one):

Numerical example 2

A symmetric coupled two-component gap soliton

$$
\sigma=-1: \quad A_{1}\left(y_{1}, y_{2}\right)= \pm A_{2}\left(y_{2}, y_{1}\right) \in \mathbb{R}, A_{3}=0
$$

is shown here:

Numerical example 3

A $\pi / 2$-phase delay coupled two-component gap solitons:

$$
\sigma=-1: \quad A_{1}\left(y_{1}, y_{2}\right)= \pm i A_{2}\left(y_{2}, y_{1}\right) \in i \mathbb{R}, A_{3}=0
$$

is shown here:

Numerical example 4

Two-component coupled vortex of charge one

$$
\sigma=-1: \quad A_{1}\left(y_{1}, y_{2}\right)= \pm i \bar{A}_{2}\left(y_{2}, y_{1}\right) \in \mathbb{C}, A_{3}=0
$$

is shown here:

Similar bifurcation problems

Our technique can be extended with some modifications to the following bifurcation problems:

- Bifurcations from band edges
- Bifurcations in the higher-order band gaps
- Bifurcations in anisotropic separable potentials
- Bifurcations in finite-gap potentials
- Bifurcations in super-lattices with 4π-periodic perturbations
- Bifurcations in three-dimensional separable potentials.

Additionally, we can apply this technique to prove persistence of time-dependent solutions on a finite-time interval and to study convergence of the nonlinear elliptic problem with large potential functions to the nonlinear lattice equation.

