Discrete Cavity Solitons

Institute of Condensed Matter Theory and Solid State Optics Friedrich-Schiller-Universität Jena, Germany

mail: falk.lederer@uni-jena.de web: www.photonik.uni-jena.de

Credits

Most of the work was done by Oleg Egorov

- U. Peschel, O. Egorov, and F. Lederer, 'Discrete cavity solitons', Opt. Lett. 29 (2004) 1909
- O. Egorov, U. Peschel, and F. Lederer, 'Mobility of discrete cavity solitons', Phys. Rev. E 72 (2005) 066603
- O. Egorov, U. Peschel, and F. Lederer, 'Discrete quadratic cavity solitons' Phys. Rev. E 71 (2005) 056612
- O. Egorov and F. Lederer, and K. Staliunas, 'Sub-diffractive discrete cavity solitons', Opt. Lett. (to appear August 1)
- O. Egorov and F. Lederer, and Y. S. Kivshar,' How does an inclined holding beam affect discrete modulational instability and soliton formation in arrays of nonlinear cavities? ' Opt. Exp. 15 (07) 4149

The work was supported by a grant of the Deutsche Forschungsgemeinschaft, Forschergruppe 532.

Credits - Collaborations

- U. Peschel, O. Egorov, and F. Lederer, 'Discrete cavity solitons', Opt. Lett. 29 (2004) 1909
- O. Egorov, U. Peschel, and F. Lederer, 'Mobility of discrete cavity solitons', Phys. Rev. E 72 (2005) 066603
- O. Egorov, U. Peschel, and F. Lederer, 'Discrete quadratic cavity solitons' Phys. Rev. E 71 (2005) 056612
- O. Egorov and F. Lederer, and K. Staliunas, 'Sub-diffractive discrete cavity solitons', Opt. Lett. (to appear August 1)
- O. Egorov and F. Lederer, and Y. S. Kivshar,' How does an inclined holding beam affect discrete modulational instability and soliton formation in arrays of nonlinear cavities? ' Opt. Exp. 15 (07) 4149

The work was supported by a grant of the Deutsche Forschungsgemeinschaft, Forschergruppe 532.

Outline

- 1. Introduction
- 2. Resting Discrete Cavity Solitons (DCS)
- 3. Mobility of Resting DCS vs. Moving DCS
- 4. Sub-diffractive DCS

Outline

1. Introduction

- 2. Resting Discrete Cavity Solitons (DCS)
- 3. Mobility of Resting DCS vs. Moving DCS
- 4. Sub-diffractive DCS

Cavity Solitons

wide aperture passive resonators

$$\left[i\frac{\partial}{\partial t} + \frac{1}{2}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) + i\alpha + \Delta + \chi_{\rm NL}(|u|^2)\right]u(t,x) = u_{\rm in}(t,x)$$

6 µm 5 cm

F. Lederer, et al. Phys. Rev. A56, R3366 (1998) L. Lugiato et al. Phys. Rev. Lett. 79, 2042 (1998)

EU project FUNFACS

J. Tredicce, M. Giudici, Univ. Nice

Discrete Solitons

waveguide array

 $i\frac{\partial u_n}{\partial z} + C(u_{n+1} + u_{n-1}) + \gamma |u_n|^2 u_n = 0$

D. N. Christodoulides and R. I. Joseph, Opt. Lett. 13 (1988) 794

Y. Silberberg et al., Phys. Rev.Lett. 91(98) 3383

Array of Nonlinear Waveguide Resonators

fast quadratic nonlinearity W. Sohler, Paderborn AlGaAs below half band gap

fast cubic nonlinearity

I.S.Aitchison,Toronto

Array of Coupled Defects in PCs Lithium Niobate – quadratic NL

Single Cavity Response

Array of Coupled Cavities

Mean-field and tight-binding approximations

$$i\frac{\partial u_n}{\partial T} + C\left(u_{n+1} + u_{n-1} - 2u_n\right) + (i+\Delta)u_n + \gamma \left|u_n\right|^2 u_n = E_0$$

coupling or discrete diffraction

Array of Coupled Cavities - Limits

Mean-field and tight-binding approximations

$$i\frac{\partial u(x)}{\partial T} + D\frac{\partial^2}{\partial x^2}u(x) + (i+\Delta)u(x) + \gamma |u|^2 u(x) = E_0$$

'ordinary' continuous model for wide beams and normal incidence

"continuous" limit $C \rightarrow \infty$ Cavity Solitons

Array of Coupled Cavities - Limits

Mean-field and tight-binding approximations

$$i\frac{\partial u_n}{\partial T} + C\left(u_{n+1} + u_{n-1} - 2u_n\right) + (i+\Delta)u_n + \gamma \left|u_n\right|^2 u_n = E_0$$

"anti-continuous" limit C=0arbitrary shapes

Discrete Diffraction

1D waveguide array

NM: Bloch waves \rightarrow DR: $k_z = \beta + 2C(\omega)\cos(k_x d)$

Outline

- 1. Introduction
- 2. Resting Discrete Cavity Solitons (DCS)
- 3. Mobility of Resting DCS vs. Moving DCS
- 4. Sub-diffractive DCS

Effect of an Inclined Holding Beam

inclined holding beam

$$i\frac{\partial u_n}{\partial T} + C\left(u_{n+1} + u_{n-1} - 2u_n\right) + (i+\Delta)u_n + \gamma \left|u_n\right|^2 u_n = E_0 e^{iqn}$$

Effect of an Inclined Holding Beam

inclined holding beam

$$i\frac{\partial u_n}{\partial T} + C\left(u_{n+1} + u_{n-1} - 2u_n\right) + (i+\Delta)u_n + \gamma \left|u_n\right|^2 u_n = E_0 e^{iqn}$$

Stability of Discrete Plane Waves

Discrete model

$$i\frac{\partial u_n}{\partial T} + C\left(u_{n+1} + u_{n-1} - 2u_n\right) + (i+\Delta)u_n + \gamma \left|u_n\right|^2 u_n = E_0 e^{iqn}$$

cw plane wave solution

$$u_n = b e^{iqn}$$

O. Egorov and F. Lederer, and Y. S. Kivshar, Opt. Exp. 15 (07) 4149

Stability of discrete plane waves

Discrete model

$$i\frac{\partial u_n}{\partial T} + C\left(u_{n+1} + u_{n-1} - 2u_n\right) + (i+\Delta)u_n + \gamma \left|u_n\right|^2 u_n = E_0 e^{iqn}$$

perturbed plane wave

bistability condition

$$u_n = \left(b + a \exp(\lambda T + iQn)\right) e^{iqm}$$
perturbation

 $\gamma \Big[\Delta + 2C \big(\cos q - 1 \big) \Big] < -\sqrt{3}$

modulational instability $\rightarrow \Re(\lambda) > 0$

$$\lambda(Q,q) = -1 \pm \sqrt{\left(2C\left(\cos Q \cos q - 1\right) + \Delta + \gamma \left|b\right|^{2}\right)\left(2C\left(\cos Q \cos q - 1\right) + \Delta + 3\gamma \left|b\right|^{2}\right)} - 2iC\sin Q \sin q$$

Soliton Solutions

Outline

- 1. Introduction
- 2. Resting Discrete Cavity Solitons (DCS)
- 3. Mobility of Resting DCS vs. Moving DCS
- 4. Sub-diffractive DCS

Mobility - Continuous Model → Translational Mode

Linear stability analysis:

 $u(x) = U_{s}(x) + \delta u(x)e^{\lambda T}$ $v(x) = V_{s}(x) + \delta v(x)e^{\lambda T}$

1) continuous case (translational symmetry)

 $\left. \begin{array}{l} \lambda = 0 \\ \delta u(x) = \partial_x U_s(x) \\ \delta v(x) = \partial_x V_s(x) \end{array} \right\}$ translational mode

2) Discrete case

(loss of translational symmetry)

 $\begin{array}{ll} \lambda \neq 0 & \text{quasi-}\\ \delta u(x) \approx \partial_x U_s(x) & \text{translational}\\ \delta v(x) \approx \partial_x V_s(x) & \text{mode} \end{array}$

O. Egorov, U. Peschel, and F. Lederer PRE 72 (05) 066603

Quasi-Continuous Approach

O. Egorov, U. Peschel, and F. Lederer PRE 72 (05) 066603

- aim: to establish an analytical model
- idea: to derive a quasi-continuous model for the DCS envelope by keeping properties of discrete diffraction (phase difference, coupling strength)

 \rightarrow soliton can be narrow

Quasi-Continuous Approach O. Egorov, U. Peschel, and F. Lederer PRE 72 (05) 066603

Continuous envelope:

$$i\frac{\partial u}{\partial T} + i\boldsymbol{D}_{u}^{(1)}\frac{\partial u}{\partial x} + \boldsymbol{D}_{u}^{(2)}\frac{\partial^{2} u}{\partial x^{2}} + i\boldsymbol{D}_{u}^{(3)}\frac{\partial^{3} u}{\partial x^{3}} + \left[i + \left(\Delta_{1} + \boldsymbol{D}_{u}^{(0)}\right)\right]u + \gamma \left|u\right|^{2}u = E_{0}$$

domains of resting DCSs $\Delta' < -3$ C = 1 $\gamma = 1$

Outline

- 1. Introduction
- 2. Resting Discrete Cavity Solitons (DCS)
- 3. Mobility of Resting DCS vs. Moving DCS
- 4. Sub-diffractive DCS

Conclusions

- MI and discrete cavity soliton formation depend strongly on the holding beam inclination
- beyond a critical inclination resting solitons start to move
- a quasi-continuous approach permits to identify moving DCSs
- subdiffractive DCS exist if second order diffraction dissapears