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1D Dispersive Solitary Waves

The balance between the dispersion and nonlinearity 
stabilizes localized solitons in the KdV Equation.



Dispersive Solitary Waves
 Zakharov-Kuznetsov Equation

In 2D and 3D the dispersion is stronger than in 1D 

The 2 or 3D cylindrically or spherically 
symmetric solitary waves are only weakly stable.  



Dispersive Solitary Waves
 Zakharov-Kuznetsov Equation

In 2D and 3D the dispersion is stronger than in 1D 

The 2 or 3D cylindrically or spherically 
symmetric solitary waves are only weakly stable.  

Possible solutions: 
1. Weaken the dispersive forces
2. Strengthen the nonlinear forces 



1D Dispersive Solitary Waves

The balance between the dispersion and nonlinearity 
stabilizes localized compact solitons in the 
KdV compacton equation.



K22 Compacton Collision

The speed of the K22 Compacton only depends upon the height



K22 Compacton Collision



K33 Compacton Collision

The speed of the K33 Compacton only depends upon the height



Dispersive Solitary Waves

For example, the 2D and 3D symmetric solitary 
waves for the C2(2, 0+2) equation

are



C2(3, 0+3) Solitary Waves

T = 0

T = 10



C2(3, 0+3)  Hard Collision

T = 0

T = 10



Spatial Discretiztion

M2 and M4 = Number of points per wavelength needed
for a fixed accuracy for 2-nd or 4-th order finite
difference methods for linear dispersive PDEs, then

M2 = 0.4M4
2

If M4 = 50 mesh points (4th order) in each direction,
then you would need M2 =  1000 mesh points (2nd
order) to achieve the same accuracy.

We use 4 -th order finite difference methods



Spatial Discretiztion: Aliasing Errors

If the solution has N nonzero Fourier modes, then the
quadratic nonlinear terms create 2N nonzero Fourier
modes for Ut , and hence the energy in U quickly
cascades to higher and higher modes.

The numerical simulation only calculates a finite
number of modes (half the number of mesh points) and
the balance between dispersion and the nonlinearity is
lost in the highest modes.  This energy in the higher
modes is aliased and reappears in the lower modes.



Spatial Discretiztion: Aliasing Errors

δ = artificial dissipation parameter, typically order 1
h = mesh spacing
Fhpf = is a high pass filter in Fourier Space

The artificial dissipation on the right hand side of this equation
dissipates the solution in the high modes where they are not being
calculated accurately and eliminates the dissipation in the lower
modes, so they retain spectral accuracy.



Numerical Solution: Time Integration

The Time Step is restricted by

Accuracy Constraints:  The balance between the nonlinear inertial effects and
the nonlinear dispersive effects must be maintained.   This balance is both
critical at large values of U and as U approaches zero and restricts the time
steps, even for implicit time integration methods.

Numerical Stability Constraints: The third derivative restricts explicit
methods so that

Doubling the number of spatial points in each direction requires 8 times more
work in space and 8 times more integration steps = 64 times more CPU time!



Numerical Solution: Time Integration

This slows down higher wave speeds and allows a larger time step.
The new time step restriction is:

If the upper 1/2 of the frequencies of the time derivative are reduced 
 (φ=0.5) then the explicit time step can be 8 times larger.

 Flpf = Low Pass Filter where the higher frequencies are reduced,
and the lower fraction, φ, of the  frequencies unchanged. E.g.:



Numerical Solution Procedure

High Order Finite Difference Methods in Space
High Order Spectral Dealiasing in Space

Aritificial Dissipation (HPF)
High Order Spectral Wave Regularization in Time (LPF)
Explicit High Order Time Integration Method

 4th Order Adams-Bashforth-Moulton  PECE method
Validation and Verification:

Monitor Conservation Laws
Verify Traveling Wave Solutions



C2(3, 1+2) Solitary Waves

A series of compactons emerge from a long initial condition



C2(3, 1+2) Solitary Waves



N-Dimensional
Traveling Wave Compactons

Spherically symmetric compactons traveling in the x direction satisfy

Where and

λ = speed



Numerical Solution: Traveling Waves

Solve the  Boundary Value Problem for U0 and Rmax for λ = 1:
U(0) =  U0
U’(0) = 0
U(Rmax) = 0

Regularize the equation near R=0 and U = 0
Solve for U0 and Rmax by shooting for Traveling Wave

Once you have solved for U0 and Rmax , then:
Rescale to U0 and Rmax for other velocities
Solve and spin the solution in 2 and 3D for cylindrically and 

spherically symmetric compactons



C2(2, 0+2) Bessel Fcn Compactons

Initial conditions

mid collision

post collision

Traveling Wave



N-Dimensional
Traveling Wave Compactons

Explicit solution for m = 1+b,  a =1



C2(2, 1+1) collisions are less elastic

Initial conditions Post collision.  
Note the reduced height of the slow compacton



C2(3, 0+3)  Soft Collision

T = 0

T = 10

Note the exchange 
of energy in the collision

Fast compacton =>

<= fast compacton



Traveling Wave Compactons

Explicit solution for m = 2,  a  + b = 3



C2(2, 0+3) Parabolic Compactons

T=0

Faster compactons are wider



C2(2, 0+3) Parabolic Compactons

T=0

Eventually, the trailing pair of compactons combine into a single compacton



C3(2, 1+2) Parabolic Compactons

Time = 5 Time = 15
Plot down
the center
line



C3(2, 0+3) Parabolic Compactons

The emergence of 3-dimensional compactons out of an initial 3-D ball which
breaks into a sequence of rings, each which later collapses into a compacton.



Additional Movies available at:

Mac Hyman, Philip Rosenau, 
Martin Staley

http://math.lanl.gov/~mac/compacton


