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The balance between the dispersion and nonlineari
stabilizes localized solitons 1n the KAV Equation.



In 2D and 3D the dispersion 1s stronger than in 11

The 2 or 3D cylindrically or spherically
symmetric solitary waves are only weakly stable.



Dispersive Solitary Waves
Z.akharov-Kuznetsov Equation

up + [u” 4+ Ay = 0

In 2D and 3D the dispersion 1s stronger than in 11

The 2 or 3D cylindrically or spherically
symmetric solitary waves are only weakly stable.

Possible solutions:
1. Weaken the dispersive forces
2. Strengthen the nonlinear forces
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The balance between the dispersion and nonlineari
stabilizes localized compact solitons in the
KdV compacton equation.
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Cy(m,a+b): |
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For example, the 2D and 3D symmetric solitary
waves for the C,(2, 0+2) equation

up + [u” + - Au 1y =0
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C,(3, 0+3) Solitary Waves
up + [u? + A0, =0
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C,(3, 0+3) Hard Collision
e + [u? + 3Au?]; =0
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M, and M, = Number of points per wavelength need
for a fixed accuracy for 2-nd or 4-th order finite
difference methods for linear dispersive PDEs, then

M, = 0.4M,2

If M, =50 mesh points (4th order) in each direction,
then you would need M, = 1000 mesh points (2nd
order) to achieve the same accuracy.
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ur + [u? +2Au 1 =0

If the solution has N nonzero Fourier modes, then th
quadratic nonlinear terms create 2N nonzero Fouri¢
modes for U,, and hence the energy in U quickly
cascades to higher and higher modes.

The numerical simulation only calculates a finite
number of modes (half the number of mesh points) ¢
the balance between dispersion and the nonlinearity
lost in the highest modes. This energy in the higher
modes is aliased and reappears in the lower modes.
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0 = artificial dissipation parameter, typically order ]
h = mesh spacing
Fppr = 18 a high pass filter in Fourier Space

3 hpf — 0 for k < oKmaer and
F, hpf = 1 f or k> oKpmax

The artificial dissipation on the right hand side of this equation
dissipates the solution in the high modes where they are not ber
calculated accurately and eliminates the dissipation in the lower



The Time Step 1s restricted by

Accuracy Constraints: The balance between the nonlinear inertial effects
the nonlinear dispersive effects must be maintained. This balance 1s both
critical at large values of U and as U approaches zero and restricts the time

steps, even for implicit time integration methods.

Numerical Stability Constraints: The third derivative restricts explicit

methods so that
AT
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Doubling the number of spatial points in each direction requires 8 times r
work 1n snace and & times more integration stens = 64 times more CPUJ t1



ZLf—I—ngf [’ZL =+ Auzll = ()

F),r = Low Pass Filter where the higher frequencies are reducec
and the lower fraction, ¢, of the frequencies unchanged. E.g.:

szf — 1 fOT Aﬁ < (/)I{—"TTZ(LQF (I’fld
Frpr=(1— o?A)~! otherwise

T'his slows down higher wave speeds and allows a larger time ste
I'he new time step restriction 1s:

W_f}?g = O(1)

If the upper 1/2 of the frequencies of the time derivative are redu
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High Order Finite Difference Methods 1n Space
High Order Spectral Dealiasing 1n Space
Aritificial Dissipation (HPF)
High Order Spectral Wave Regularization in Time (LPF
Explicit High Order Time Integration Method
4th Order Adams-Bashforth-Moulton PECE meth
Validation and Verification:
Monitor Conservation Laws
Verity Traveling Wave Solutions



C,(@3, 1+2) Solitary Waves

I E-D 0 ®

I-k-0 0 ®

A series of compactons emerge from a long initial conditio



C,(3, 1+2) Solitary Waves

up + [u’ + %’U,A”LLQ] =0
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Spherically symmetric compactons traveling in the x direction satisfy

, l—a , , m— | N—-1d b
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Where s=1x— At and R=s?+ 9%+ 22

A = speed
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Solve the Boundary Value Problem for U, and R, for A = 1:
U) = U,
U’ 0)=0
URpa) =0

Regularize the equation near R=0 and U =0

Solve for U, and R,_.. by shooting for Traveling Wave

Once you have solved for U, and R, , then:

Rescale to U, and R ., for other velocities

Solve and spin the solution 1n 2 and 3D for cylindrically and
spherically symmetric compactons



C,(2, 0+2) Bessel Fen Compactons
ut + [u? + 5Au%), =0

U = \/)\[1 — CJ()(\/§R)] Traveling Way
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N-Dimensional
Traveling Wave Compactons

Cn(m,a—+b):
w + (U + 3 [u(V2ub)], =0
Explicit solution for m = 1+b, a =1

C'n(m=1+0b,1+ b) solution:

u = )\1)[1 —_ I—;(]]??*))]b O0< R < R.
2D: F(R) = Jy( \/[_)R R=s?+y?+ 2°

3D: F(R) = sin( \/I_)R ) /bR

u = (0 beyond R., the first trough of F(R)



C,(2, 1+1) collisions are less elastic

ur + [u? + uAul, =0

Initial conditions Post collision.
Note the reduced height of the slow comp



C,(3, 0+3) Soft Collision
g + [u? + sAu?), =0

Fast compac T=0
Note the excha
of energy in the
T=10

ast compac




Traveling Wave Compactons
Cax(m,a—+ b):
wp + (U + Fut(V2ub)], = 0

Explicit solution form=2, a +b=3

C'n(m =2,a+ b= 3) parabolic solution:

u=ry[AMy —R?, 0<R<R,= My
R=s?+y?+ z°
For example in 2D: C'y (2,0 + 3) :
Ay =54+ N)?
Ky = 6(4 + f\"v)]_l



C,(2, 0+3) Parabolic Compactons
up + [u? + 2Au?]y = 0




C,(2, 0+3) Parabolic Compactons
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C;(2, 1+2) Parabolic Compactons
ug + [u” + %’U,A’U,Q] =0
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the center Time =5
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C;(2, 0+3) Parabolic Compactons
up + [u? + 2Au?]y = 0

The emergence of 3-dimensional compactons out of an 1nitial 3-D ball wh
breaks into a sequence of rings, each which later collapses into a compact



Additional Movies available at:

http://math.lanl.gov/~mac/compacton
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