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Morning Glory Waves of the
Gulf of Carpentaria





Generation Mechanisms
• Interaction of the large-scale barotropic
tide with the continental slope, which
generates a meso-scale internal tide. As it
propagates shoreward (or off-shore) the
internal tide steepens and a soliton wave-
train forms, the undular bore: Modeled by
the KdV equation
• Critical flow (internal Froude number F,
the  ratio of current speed to linear long
wave speed, is close to one) over  a sill, or
through a strait, generating upstream and
downstream propagating undular bores.
Modeled by forced KdV equation



 Forced KdV (fKdV) equation

 −At −ΔΑx+ 6AA x + Axxx+ Gx(x) = 0

Here A(x, t) is the wave amplitude, Δ  = F-1
measures the  degree of criticality, and
G(x) is the projection of the   topography
onto the relevant (critical) mode.
The equation is in canonical form, for an
oncoming flow in the positive x-direction. It
has been derived for both surface and
internal waves.



Simulation at exact criticality, Δ=0, and for
positive localized forcing of amplitude 1.
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These results are for a localized forcing function G(x) =  Gmsech2(x/λ),
where the key parameter is the forcing height Gm (=1 in these plots, also λ=1).

Our interest here is when the forcing function is a single step, say G(x) =
Gm{1+tanh (x/λ)}/2, representing a step of height Gm (up when > 0).

However, since a single step causes a loss of mass in the fKdV equation, it is
convenient to consider a step up and a step down simultaneously:
         G(x) = Gm{tanh (x/λ)-tanh(x-L/λ)}/2 ,    λ<<L,

which is a step up (down) at x=0 (x=L) when  Gm >0 .
Next we show  plots for the fKdV equation:
          −At −ΔΑx+3/2AA x + 1/6Axxx+Gx(x)=0
which is the scaled version appropriate for surface waves. Here Gm=0.1, λ=4,
L=50, Δ=0, -0.2, 0.2









Anagalous simulations of full Euler equations for
surface waves:  Δ = 0  (F=1) L=50
(Zhang & Chwang 2001)



Undular Bore :  This can be modelled as the
outcome from a steepening wave-front in the
framework of a nonlinear, dispersive wave equation,
e.g. the KdV equation.

Use Whitham modulation theory, Whitham (1974)
and Gurevich & Pitaevskii (1974).



       Korteweg-de Vries equation:

                  At +6AAx+Axxx = 0

One-phase travelling periodic wave, cnoidal wave,
with 3 free parameters, say modulus m, 0<m<1,
mean level d and wavenumber k.

            A = a{b(m)+cn2(k[x-ct];m)}+d

where  b(m) = {[1-m]K(m) –E(m)}/{mK(m)}

speed:   c = 6d + 2a{[2-m]K(m) –3E(m)}/{mK(m)}
amplitude:  a = 2mk2

m→1  is the KdV solitary wave,  “sech2”
m →0 are small-amplitude sinusoidal waves



Whitham modulation theory develops equations
for the modulation of the parameters (amplitude,
wavelength, speed, mean, modulus m of the
cnoidal function) of an exact one-phase periodic
travelling wave solution. These modulation
equations are obtained by averaging
conservation laws, and form (3) nonlinear
hyperbolic equations, which are diagonalizable,
and have a similarity solution  m = m(x/t) for the
case when the initial condition is a step-
discontinuity of height H >0.
Leading edge,  m →1: Soliton with
amplitude 2H, twice that of the initial jump
Trailing edge,  m →0 :  Small-amplitude
sinusoidal waves.
Unsteady:    −6Ηt   <  x  <   4Ηt



Localized (Positive) Forcing

The key is the existence, in the transcritical regime, of a
localized steady “hydraulic” solution in the forcing region.
This is characterized by an upstream constant state A- (>0)
and a downstream constant state A+ (<0).  These states are
resolved back to the zero state by undular bores,
propagating upstream and downstream respectively.



Hydraulic approximation:

             −At −ΔΑx+ 6AA x + [Axxx] + Gx(x) = 0
 Steady state (At = 0) implies that:       -ΔA +3A2 + G(x) = C (constant)

 The  constant is determined by the criticality condition  at the peak of the
forcing, Ax ≠ 0 at Gx = 0, G = Gm (consider the evolution of the
characteristics).  Since, for localized forcing, G → 0 upstream and
downstream, it follows that A → A±   upstream and downstream, where

                     6A+ = Δ - (12Gm)1/2 < 0 < 6A- = Δ + (12Gm)1/2  .
These expressions hold in the transcritical regime:

                         - (12Gm)1/2 <  Δ  < (12Gm)1/2 .

Since A- > 0 > A+ the corresponding jumps are resolved by undular bores
propagating upstream and downstream respectively. Because the undular
bores must lie in x<0 (>0) respectively, it follows that:
-(12Gm)1/2 <  Δ  < -(3Gm)1/2 : upstream fully detached, downstream attached
-(3Gm)1/2 <  Δ  < (12Gm)1/2 : upstream attached,  downstream fully detached



Flow over a step
The same strategy is employed, namely we seek the locally steady
hydraulic solutions, considering positive and negative steps separately.
This is valid until the time when a disturbance from the step (down) at x=L
reaches the step (up) at x=0.  After that, the solution will readjust to the
same state just described for localized forcing.

The essential difference that will emerge is that the downstream state  A+
at x=0 (upstream state A-  at x=L) will not produce an undular bore, and
instead produces a rarefraction wave. However, the upstream state A+ at x
=0  (downstream state A+ at x=L) will still produce an undular bore.



As before, use the hydraulic approximation:

             −At −ΔΑx+ 6AA x + [Axxx] + Gx(x) = 0
 Steady state (At = 0) implies that:       -ΔA +3A2 + G(x) = C (constant)

But now, the constant C is not determined by a criticality condition;
instead it is found by considering the evolution of the characteristics
from the flat regions before and after the step.
First, consider the step up at x=0.  Then we find that:
Δ < 0,   6A- = Δ + (Δ2 + 12Gm )1/2   ,  6A+  = 0  ,
0 <  Δ < (12Gm )1/2,   6A- = Δ + (12Gm )1/2   ,  6A+  = Δ  ,
(12Gm )1/2  <   Δ  , 6A-  = 0,   6A+    =  Δ - (Δ2 - 12Gm )1/2   .
Now A- > 0 for  all Δ  < (12Gm )1/2, and so leads to an upstream propagating
undular bore. It is fully detached for Δ < -(4Gm )1/2 , but is attached for
- (4Gm )1/2 <  Δ < (12Gm )1/2 , and is zero for (12Gm )1/2  <   Δ .
On the other hand, A+ > 0 for  all Δ  > 0, and is then terminated by a
rarefraction wave; no undular bore is  needed.  For Δ < 0, A+ is zero.



Next, consider the step down at x=L.  Instead we find that:
Δ > 0,   6A+ = Δ - (Δ2 + 12Gm )1/2   ,  6A-  = 0  ,
0 > Δ > - (12Gm )1/2,   6A+ = Δ - (12Gm )1/2   ,  6A-  = Δ  ,
-(12Gm )1/2  >   Δ  , 6A+  = 0,   6A-    =  Δ + (Δ2 + 12Gm )1/2   .
Now A+ < 0 for  all Δ  > - (12Gm )1/2, and so leads to an downstream
propagating undular bore. It is fully detached for Δ > -(3Gm )1/2 , but is
attached for  - (12Gm )1/2 <  Δ < -(3Gm )1/2 , and is zero for -(12Gm )1/2  >   Δ .
On the other hand, A- < 0 for  all Δ  < 0, and is then terminated by a
rarefraction wave; no undular bore is  needed.  For Δ > 0, A+ is zero.

The properties of the respective undular bores in both cases are
completely determined by the respective values of A+  and A-



                        Results table 
 

 
 
Note:  Au = A-  upstream ,   Ad  = A+  downstream  ,     
           Awu   = wave amplitude upstream,       

                 Awd  = wave amplitude downstream 
 
 
 
 

fKdV  Theory  
Aw u  Au Aw d  Ad  Aw u  Au  Aw d  Ad  

0 . 2  0.83  0.44  0.31  -0.1 6  0.80  0.40  0.32  -0.1 6  
0 . 1  0.66  0.45  0.39  -0.2 0  0.66  0.33  0.40  -0.2 0  
0 . 0  0.50  0.30  0.51  -0.2 6  0.52  0.26  0.52  -0.2 6  
-0.1  0.39  0.22  0.64  -0.3 3  0.40  0.20  0.66  -0.3 3  
-0.2  0.30  0.16  0.84  -0.4 0  0.32  0.16  0.80  -0.4 0  
-0.3  0.24  0.13  0.64  -0.3 8  0.26  0.13  0.92  -0.4 6  
-0.4  0.19  0.10  0.00  0.00  0.20  0.10  0.00  0.00  

fKdV  Euler   
Aw u  Au Aw d  Ad  Aw u  Au  Aw d  Ad  

0 . 2  0.83  0.44  0.31  -0.1 6  0.75  0.61  0.28  -0.1 8  
0 . 1  0.66  0.45  0.39  -0.2 0  0.57  0.31  0.32  -0.2 1  
0 . 0  0.50  0.30  0.51  -0.2 6  0.44  0.33  0.37  -0.2 5  
-0.1  0.39  0.22  0.64  -0.3 3  0.32  0.20  0.43  -0.3 0  
-0.2  0.30  0.16  0.84  -0.4 0  0.23  0.13  0.53  -0.3 6  
-0.3  0.24  0.13  0.64  -0.3 8  0.16  0.08  0.57  -0.3 8  
-0.4  0.19  0.10  0.00  0.00  0.10  0.01  0.00  0.00  
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                   The end

          Thank you


