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Oregon Coast - Colombia River

Internal Solitary Waves (May 2
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Figure 2. (Upper) A color contour time series of temperature profiles from the surface to 35m depth measured by
the LMP over a one-day period. The 10°C span color contour scale is shown the right of the time series panel. The
low frequency, semidiurnal internal tide displacement can clearly be seen along the yellow isotherm. (Lower) A
profile time series of the first 1.7 hours of the time series shown in Figure la. White areas indicate times with no

data. [From Stanton and Ostrovsky, 1998]
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STRAIT OF MESSINA
October 25, 1995
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Atlas of Oceanic Internal Solitary Waves (February 2004
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Strait of Messina

Figure 5. ERS-1 (C-band VV) SAR image of the Strait of Messina acquired on 11
July 1993 at 0941 UTC (orbit LO3R7, frame 2835). The image shows intemal wave
signatures radiating out of the strait in both the northerm and southem directions.
Northwards propagating  intermal waves are less frequently observed than
southward propagating ones. Imaged area is 65 km x 65 km. ©ESA 1993, [From
The Tropical and Subtropical Ocean Viewed by ERS SAR hup /www. ifim.uni-
hamburg de/ers-sar/]



Morning Glory Waves of the
Gulf of Carpentaria




Atmospheric internal waves
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MODIS TERRA image Mozambique channel (16 AUG 2002)




Generation Mechanisms

 Interaction of the large-scale barotropic
tide with the continental slope, which
generates a meso-scale internal tide. As it
propagates shoreward (or off-shore) the
internal tide steepens and a soliton wave-
train forms, the undular bore: Modeled by
the KdV equation

e Critical flow (internal Froude number F,
the ratio of current speed to linear long
wave speed, is close to one) over a sill, or
through a strait, generating upstream and
downstream propagating undular bores.
Modeled by forced KdV equation



Forced KdV (fKdV) equation
-A,-AA +6AA +A _ +G (X)=0

Here A(X, t) is the wave amplitude, A = F-1
measures the degree of criticality, and
G(x) is the projection of the topography
onto the relevant (critical) mode.

The equation is Iin canonical form, for an
oncoming flow in the positive x-direction. It
has been derived for both surface and
internal waves.



Simulation at exact criticality, A=0, and for
positive localized forcing of amplitude 1.
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These results are for a localized forcing function G(x) = G, sech?(x/)),
where the key parameter is the forcing height G_ (=1 in these plots, also A=1).

Our interest here is when the forcing function is a single step, say G(x) =
G, {1+tanh (x/\)}/2, representing a step of height G, (up when > 0).

However, since a single step causes a loss of mass in the fKdV equation, it is
convenient to consider a step up and a step down simultaneously:

G(x) = G, .{tanh (x/MA)-tanh(x-L/\)}/2 , A<<L,
which is a step up (down) at x=0 (x=L) when G, >0.
Next we show plots for the fKdV equation:

-A,-AA +3/2AA , + 1/6A,,,+G, (x)=0

which is the scaled version appropriate for surface waves. Here G_=0.1, A=4,
L=50, A=0, -0.2, 0.2
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Anagalous simulations of full Euler equations for
surface waves: A=0 (F=1) L=50
(Zhang & Chwang 2001)
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Undular Bore : This can be modelled as the

outcome from a steepening wave-front in the
framework of a nonlinear, dispersive wave equation,

e.g. the KdV equation.

\vrv\ f

Use Whitham modulation theory, Whitham (1974)
and Gurevich & Pitaevskii (1974).



Korteweg-de Vries equation:
A, +6AA +A =0

One-phase travelling periodic wave, cnoidal wave,
with 3 free parameters, say modulus m, O<m<1,
mean level d and wavenumber k.

A = a{b(m)+cn?(k[x-ct];m)}+d
where b(m) = {[1-m]K(m) —=E(m)}¥{mK(m)}

speed: c¢ =6d + 2a{[2-m]K(m) -3E(m)}/{mK(m)}
amplitude: a =2mk?

m—1 is the KdV solitary wave, “sech?”

m —0 are small-amplitude sinusoidal waves



develops equations
for the modulation of the parameters (amplitude,
wavelength, speed, mean, modulus m of the
cnoidal function) of an exact one-phase periodic
travelling wave solution. These modulation
equations are obtained by averaging
conservation laws, and form (3) nonlinear
hyperbolic equations, which are diagonalizable,
and have a similarity solution m = m(x/t) for the
case when the initial condition is a step-
discontinuity of height H >0.

Leading edge, m —1: Soliton with
amplitude 2H, twice that of the initial jump

Trailing edge, m —0 : Small-amplitude
sinusoidal waves.

Unsteady: -6Ht < x < 4Ht



Localized (Positive) Forcing

The key is the existence, in the transcritical regime, of a
localized steady “hydraulic” solution in the forcing region.
This is characterized by an upstream constant state A_ (>0)
and a downstream constant state A, (<0). These states are
resolved back to the zero state by undular bores,
propagating upstream and downstream respectively.

<
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Hydraulic approximation:
-A,-AA +6AA +[A, ., ]l+G,(x)=0
Steady state (A, = 0) implies that: -AA +3A2 + G(x) = C (constant)

The constant is determined by the criticality condition at the peak of the
forcing, A, = 0 at G, = 0, G = G,, (consider the evolution of the
characteristics). Since, for localized forcing, G — 0 upstream and
downstream, it follows that A — A, upstream and downstream, where

6A,=A-(12G_)"2<0<6A =A+(12G_)"2 .
These expressions hold in the transcritical regime:

-(12G,)"2< A < (12G,)"2.

Since A_> 0> A, the corresponding jumps are resolved by undular bores

propagating upstream and downstream respectively. Because the undular
bores must lie in x<0 (>0) respectively, it follows that:

-(12G,)"? < A <-(3G,))"? : upstream fully detached, downstream attached

-(3G,))"?2< A <(12G,)"? : upstream attached, downstream fully detached



Flow over a step

The same strategy is employed, namely we seek the locally steady
hydraulic solutions, considering positive and negative steps separately.
This is valid until the time when a disturbance from the step (down) at x=L

reaches the step (up) at x=0. After that, the solution will readjust to the
same state just described for localized forcing.

= \

The essential difference that will emerge is that the downstream state A,
at x=0 (upstream state A_ at x=L) will not produce an undular bore, and
instead produces a rarefraction wave. However, the upstream state A_ at x
=0 (downstream state A, at x=L) will still produce an undular bore.



As before, use the hydraulic approximation:
-A,-AA +6AA +[A, ., ]l+G,(x)=0
Steady state (A, = 0) implies that: -AA +3A2 + G(x) = C (constant)

But now, the constant C is not determined by a criticality condition;
instead it is found by considering the evolution of the characteristics
from the flat regions before and after the step.

First, consider the step up at x=0. Then we find that:
A<0, 6A.=A+(A2+12G_ )2, 6A, =0 ,

0< A<(12G_,)"?2, 6A.=A+(12G_)"2 , 6A, =A ,
(12G,,)"2 < A ,6A. =0, 6A, = A-(A%2-12G_ )" .

Now A_> 0 for all A <(12G_,)"?, and so leads to an upstream propagating
undular bore. It is fully detached for A <-(4G,,)"2, but is attached for
-(4G_ )2 < A< (12G_ )2, and is zero for (12G_ )2 < A.

On the other hand, A_> 0 for all A >0, and is then terminated by a
rarefraction wave; no undular bore is needed. For A <0, A_is zero.



Next, consider the step down at x=L. Instead we find that:
A>0, 6A,=A-(A2+12G_ )2, 6A. =0 ,

0>A>-(12G, )2, 6A,=A-(12G_ )2, 6A.=A ,

-(12G )2 > A ,6A, =0, 6A. = A+ (A>+12G_)"2 .

Now A, <0 for all A >-(12G_, )2, and so leads to an downstream
propagating undular bore. It is fully detached for A >-(3G_,)"2, but is
attached for - (12G_)"2< A<-3G_)"?, and is zero for -(12G )2 > A.

On the other hand, A. <0 for all A <0, and is then terminated by a
rarefraction wave; no undular bore is needed. For A >0, A_is zero.

The properties of the respective undular bores in both cases are
completely determined by the respective values of A, and A_



Results table

A fKdV Theonr
Aw u Au Aw d Ad Aw u Au Aw d Ad
0.2 0.83 0.44 | 0.31 -0.16 | 0.80 0.40 0.32 -0.16
0.1 0.66 0.45 | 0.39 -0.20 | 0.66 0.33 0.40 -0.20
0.0 0.50 0.30 | 0.51 -0.26 | 0.52 0.26 0.52 -0.2 6
-0.1 0.39 0.22 | 0.64 -0.33 | 0.40 0.20 0.66 -0.33
-0.2 0.30 0.16 | 0.84 -0.40 | 0.32 0.16 0.80 -0.40
-0.3 0.24 0.13 | 0.64 -0.38 | 0.26 0.13 0.92 -0.4 6
-0.4 0.19 0.10 | 0.00 0.00 0.20 0.10 0.00 0.00
Note: A,= A._ upstream , Ayq = A;: downstream ,
A.. = wave amplitude upstream,
A4 = wave amplitude downstream
A fKdV Euler
Aw u Au Aw d Ad Aw u Au Aw d Ad

0.2 0.83 0.44 | 0.31 -0.16 | 0.75 0.61 0.28 -0.18
0.1 0.66 0.45 | 0.39 -0.20 | 0.57 0.31 0.32 -0.2 1
0.0 0.50 0.30 | 0.51 -0.26 | 0.44 0.33 0.37 -0.25
-0.1 0.39 0.22 | 0.64 -0.33 | 0.32 0.20 0.43 -0.3 0
-0.2 0.30 0.16 | 0.84 -0.40 | 0.23 0.13 0.53 -0.3 6
-0.3 0.24 0.13 | 0.64 -0.38 | 0.16 0.08 0.57 -0.3 8
-0.4 0.19 0.10 | 0.00 0.00 0.10 0.01 0.00 0.00
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