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Motivation

e Recent experiments on generation and propagation of disper sive shock waves in

Bose-Einstein condensates (BECs):
E. A. Cornell (2004) http://jilawww.colorado.edu/bec/papers.htmi

M.A. Hoefer, M.J. Ablowitz, |. Coddington, E.A. Cornell, P. Engels, & V. Schweikhard,
Phys. Rev. A (2006).

|. Carusotto, S.X. Hu, L.A. Collins, and A. Smerzi, Phys. Rev. Lett. (2006).
and in photorefractive crystals:

W. Wan, S. Jia & J.W. Fleischer, Nature Physics (2007).

e Earlier theoretical works on supersonic flow past slender bo dies in dissipationless

weakly dispersive media

A.V. Gurevich, A.L. Krylov, V.V. Khodorovskii and GE, Journ Exp Theor Phys (1995, 1996)
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Gross-Pitaevskili equation

Condensate of Bose-atoms in the mean-field approximation is described by the complex

“order parameter” W which satisfies the Gross-Pitaevskii equation

ov h?
ih— = ———— AU + g|U|*U + V(r)T,
5 o AU+ g[P7T + V(r)
where V(r) is the potential of external forces (magnetic trap or moving impurity); g is an

effective coupling constant (g > 0 : repulsive interactions, defocussing);

/ [W|%dr = N,

where N is the number of atoms in the condensate (typically ~ 10° — 107).

Normalisation:

The multi-dimenional NLS equation in an external potential: nonlinear matter waves



The NLS equation with defocussing: some highlights

e Integrable in 1D, not integrable in multidimensions.
e Has dark soliton solutions stable in 1D, unstable in 2D and 3D.

e |s a model equation for the description of the envelope of electric field in nonlinear optics:
an important parallel with BEC physics, which is widely known but only very recently
utilised in experiments on all-optical modelling of the shock wave propagation

through a BEC

Wan, Jia & Fleischer, Nature Physics (2007) — optical shocks in photorefractive crystals —

NLS with saturable nonlinearity.



Irrotational quantum hydrodynamics

We introduce the (Madelung) substitution
O(r,t
U(r, t) = \/n(r, t) exp (Z(Tr)) . u=Voe,

where n(r, ) is the density of atoms in a BEC and u(r, t) denotes its velocity field
After the passage to dimensionless variables we arrive at the reduction of the GP equation in

the form of irrotational “quantum hydrodynamics”
zny + V- (nu) =0,

1 (Vn)? An
Vxu=0.

The structure:
irrotational shallow water + external potential + quantum pressure (dispersion)



Supersonic flow past an obstacle: experiment

E. Cornell (JILA, Boulder, Colorado, 2004) http://jilawww.colorado.edu/bec/papers.htmi

Radial expansion of a BEC after switching off the transverse trap potential. The local Mach

number M = u/cs ~ 1 /ry — asymptotically does not depend on ¢ for ¢ > 1.

Solitons? Linear wave radiation?



Supersonic flow past an obstacle: numerical simulation
GE, A. Gammal & A.M. Kamchatnov, Nucl Phys A (2007)

Density plot. Obstacle: impenetrable disc of radius » = 1 placed at ((), O) in a BEC radially
expanding from the centre at (—25, 0). Initial radius R = 25; ¢t = 8.
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e Bow waves (small-amplitude ripples)

e \/-shaped dark trace behind the obstacle: what are they?



|dentification of the wave patterns generated in supersonic flow
of a BEC past an obstacle

For M > 1 there are two dominant mechanisms of energy transfer between a moving object
and a BEC: vortex formation and sound radiation . So the bow wave pattern can be
naturally identified with sound waves and the V-shaped trace with “vortex streets” (aligned

vortex-antivortex pairs).

T. Winiecki, B. Jackson, J.F. McCann, and C.S. Adams, (1999, 2000)
Are there dark solitons at all?

Reasoning : classical gas-dynamics problem of supersonic steady 2D flow past body —

formation of shock waves. Dispersion instead of dissipation — formation of solitons:
Supersonic flow past slender body in the KdV approximation

e Karpman, JETP Lett (1967)

e Mei, J Fluid Mech(1968)

e Gurevich, Krylov, Khodorovskii & El, Journ Exp Theor Phys (1995, 1996)



Dark solitons in a BEC

General paradigm: 1D and 2D dark solitons in a BEC are inherently unstable with respect to

small 2D and 3D perturbations respectively:

“Snake” instability, decay into vortex-antivortex pairs (apparently consistent with the
identification of the V-shaped traces behind the obstacle with vortex streets by Winiecki et al.
1999)

e E.A. Kuznetsov and S.K. Turitsyn (1982) - general theory
e A.V. Mamaey, M. Saffman and A.A. Zozulya, Phys. Rev. Lett. (1996) - nonlinear optics
e B.P. Anderson et. al., Phys. Rev. Lett. (2001). - BEC

e and many more...

This instability statement, however, applies to certain configurations. What about supersonic

flow of a BEC past an obstacle?
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1. Oblique dark solitons in supersonic flow of a BEC
GE, A. Gammal & A.M. Kamchatnov, Phys. Rev. Lett. (2006).

2D stationary irrotational quantum hydrodynamics equations for the density n(:c, y) and two
components of the velocity field u = (u(z, y), v(x,y)):

(nu), + (nv), = 0,

+ + n, + Pat Ry M £y,
U, + VU Ny — — =
Y 8n 2 4n

(1)

2 2
uvw—kvvy—i—ny—l—( y I —|—7’Lyy> =0,
y

8n?2 4n

Boundary conditions at infinity

n—1, uv—M>0, v—0 as ||+ |yl — oc.
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Bernoulli integral:

5(“ v )—I_n—l_%(nw—'_ny) %(nxx+nyy)_ 7+1-

Looking for the “travelling wave” solution
n=mn(0), u=ud), v=uvd),
where § = x — ay, and a denotes a slope of the wave crests with respect to y-axis.

Then, after a chain of elementary integrations, one obtains

M (1 + a’n) aM (1 —n)
u = , V= — :
(14 a?)n (14 a?)n
1 —
n(0) =1- ——5—— ,
cosh”[\/1 —p0/v1+ a?]
where
M2
p_ 1 ‘|—CL27

— a stationary oblique dark soliton  with the slope a with respect to y-axis.

Is this solution physical? What about stability?
12



2D supersonic uniform flow past an obstacle: numerical
simulation

Let the order parameter 1) in the Gross-Pitaevskii equation

o1 2
i = =3 A+ V()Y + [

satisfy the initial condition
¢($, y)|t:0 — eXp(iMCE)a

that is the BEC flow with density n = 1 and velocity u = M is “switched on” at ¢ = 0.

The potential V' (, y) corresponds to the interaction of the condensate with the obstacle

which is modelled by an impenetrable disk with radius r = 1.
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Numerics: r =1, M =5
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Comparison of the numerical profiles of density with the formula for the oblique dark soliton.
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x=20 numerics
x=60 numerics

sses x=20 a=10 eq. (11) |
ircles  X=60 a=10 eq. (11)

The oblique dark solitons indeed persist in the supersonic B EC flow past an obstacle.

Vortex streets at free ends of solitons! 14



Closer look: vortex street — oblique dark soliton dynamics

Kamchatnov, Gammal and GE, in progress
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r=1, M = 2, t = 25 : emission of vortex — antivortex pairs  : vortex street

Observation : for sufficiently large M the rate of emission of vortex - antivortex pairs is
greater than their separation rate so they gradually get “trapped” in the oblique dark soliton

profile with certain slope a: the process opposite to decay of a dark soliton into
vortex-antivortex pairs!
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Increasing the size of the obstacle

r=25 M=5, t=30:“an” of obliqgue dark solitons
y

-50 0 50 100 150 200

Oblique dark solitons serve as “building blocks” in wave patterns occurring in supersonic BEC

flow past obstacles.

Question: Amplitudes, slopes and number of oblique solitons in terms of M and r?
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2. Bow ripples

17



Radiation of “ship waves”

Yu.G. Gladush, GE, A. Gammal, and A.M. Kamchatnov, Phys Rev A (2007)
Kelvin’s theory applied to the GP equation.

Linear dispersion relation for 2D upwind stationary waves in a BEC

n—1~u—M~uv~exp(ilkzx + kyy)), ks <O:

kQ
G(kx,ky)szerk\/HZ = 0.
9:/ k-dr,
0

The wave phase

where
Ok _ % —0
oy or
Centred solution of (2)
y 0G0k,

x  0G/0ky

18
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Lines of constant phase 6 are specified parametrically in Cartesian coordinates

r = @cosn(l—M cos2n), Y= @Smn(ZM cos“n — 1). (3)
Virr—1i< Y <yMr—1
T
Numerical simulation M = 2, r = 1. Comparison for the wavelength A at y = 0
Dashed line : analytical solution (3)
2+ \\\
> 0 A \\\\\

e “Ship waves” are generated outside the Mach cone

e Linear theory works well for reasonably large values of M.
19



Reconciliation of different wave patterns in the framework of
hypersonic flow past slender body problem
GE and A.M. Kamchatnov, Phys Lett A (2006)

e Classical dissipative gas dynamics: formation of two shock s (oblique jumps of

compression).

Shock

Shock

M>1 /v - \

e Dispersion instead of dissipation: resolution of shocks in to expanding nonlinear

wave structures — dispersive shock waves
20



Oscillatory profile of the dispersive shock wave
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Modulated periodic solution of the GP equation. The oscillatory zone expands with .

Asymptotic description: Gurevich-Pitaevskii (1974) approach in the framework of the Whitham
modulation theory.

e General theory of dispersive shock waves in 1+1 NLS equation : A. Gurevich & A.
Krylov (1987), GE & A. Krylov (1995), G. Biondini & Yu. Kodama (2006)

e Blast waves in BECs : A. Kamchatnov et al (2004), M. Hoefer et al (2006)

e Dispersive shock waves in photorefractive crystals : 1+1 NLS equation with saturable
nonlinearity : GE, A. Gammal, E. Khamis, R. Kraenkel & A. Kamchatnov (2007)
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2D steady irrotational NLS flow past a large obstacle
2D steady flow  9/0t =0, n=n(z,y), u= (u(z,y),v(z,y))
Obstacle profile: y = F(z) >0, F(0)=0, F(L)=0, |[F'(x)]<oo, L>1.

Governing equations :

(nu)z + (nv)y, =0,  uy —vy; =0,

2 2
ng + ny _nm—l—nyy> _ 0
— Y
xr

Ulgy + VUy + Ng + < 32 in

2 2
UV + VU, + Ny + <8n2yn ;nyy> — 0.
Y

Boundary conditions:
Impenetrability at body surface v=uF'(z) on y=F(z).

Uniform flow atinfinity : n—1, u— M, v—0 as |z|+ |y — oo,

22



Hypersonic reduction, M > 1 (paraxial approximation)

Asymptotic expansions

w=M+u +0O(1/M), T=z/2M, Y=y, M>1.

Then to leading order the 2+0 GP equation reduces to

%nT + (nv)y =0,

2
1 ny 0
vor +ovy +ny + | — ——— ) =0.
Y
System (4) represents the hydrodynamic form of 1+1 defocusing NLS equation

ior + dyy — 2|9[°p =0

for the complex field variable  ¢(Y,T') = \/nexp(i fY v(Y', T)dY")

23
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Transformation of boundary conditions

Under the hypersonic transformation
u=M+u +0O(1 /M), T=z/2M, Y=y, M>1":

e Impenetrability condition at the body surface y = F' (:1:) asymptotically as M — oo
transforms into the kinematic condition at a “piston” , where the motion of the piston is

specified by the body surface function

v:%% at Y = f(T), where f(T)=F(2MT)

provided aM = O(1) where @ = max |F’(x)| < 1 - slender body

e Condition of the uniform flow at infinity  becomes:

n—1, v—0, as Y — 0.

Generation of a dispersive shock in 1+1 dispersive hydrodyn amics due to piston

motion.

24



Piston analogy for the hypersonic flow past body in dispersive

media
1D “unsteady”
) : 2D steady
dispersive shock
Spersiv \ 14 dispersive shock
A
y /]
“piston”

F ()

M>>1 M
— >

25



The piston problem for the NLS equation:

Y
ior -+ vy ~2oPo =0, o= vaexp(i [ o(v',T)aY)

o(f(T),T)=f(T)/2, n(Y -00)—1, v(Y —00)—0.

An equivalent initial-value problem

n(Y,0) =7,  o(Y,0) =7

26



The piston problem for the NLS equation: semi-classical
reformulation

Let Ty = L/(2M) > 1 be a large parameter (long body) so that f(7") — f(T/Tp).
Introduce
e=1/To <1, Y =¢€¢Y, T'=¢T

and consider the same piston problem. Then, on omitting primes we have
iepr + € dyy —2[¢[*p =0, e<1
o(f(T),T)=f(T)/2, n(Y -00)—1, v(Y —00)—0.

In the semi-classical limit, as € — 0, the solution, outside the dispersive shock wave regions,
is described by the (1+1) shallow-water equations (the dispersionless limit of the NLS

equation) - -
+ ==
8—T‘|_V:|:()\_|_,)\_)8—Y —O,
M =2totvn, Vi=3XL+A_, V_=3 _+)\,.

-2
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Equivalent initial conditions in terms of A\, =

Y/ (T .
it 0 vm

Y,(T)

i)

\

a

1

1 1-a

A.(Y,00-1 Y ]
. (Y.0)- Piston curve

Projection, along the “dispersionless” characteristics, of the data at the piston onto Y -axis
yields:
A= -1,

fir)+1, Y=[f(r)—Gf(1)+2)r.

28
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Large 1’ wave distribution: the semi-classical limit of the Zakharov-Shabat scattering problem

A.(0.0) Continuous spectrum:

linear radiation

/

Discrete spectrum:
dark solitons

S\

A(Y,00=-1

Discrete spectrum: generalized Bohr-Sommerfeld quanization rule  for the defocusing NLS
equation (Jin, Levermore & McLaughlin (1999); Kamchatnov, Kraenkel, Umarov (2002)):

7{\/()\k—)\(}r)()\k—)\Q)dY:27r(k+%), k=0,1,..., K,

Density profile in the "dark” \j- spatial soliton:
122
cosh’[\/1 — X2 (y — (\p/M)zx)]

Position of the soliton centres in the upper xy-plane are given by

nk(xay) =1-

y= A/ M)x, k=0,1,... K.
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Reconciliation

y Linear}'r‘adi'ation ‘

" Cerenkov cones

x=+IM? -1y = constant

Dark solitons

e Two dispersive shocks are formed as intermediate wave states for finite x

e Asymptotic behaviour as x — ©C:

— the leading dispersive shock wave transforms into a linear wave packet (“ship waves”).

— the trailing dispersive shock wave transforms into oblique dark soliton fan.

e Full asymptotic description of the arising wave pattern as M — oo, a — 0,
Ma = O(1) —is available in the framework of the single-phase Whitham modulation
theory for the defocusing 1D NLS equation: general solution constructed in
A. Gurevich, A. Krylov and GE (1992), GE & A. Krylov (1995)
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Conclusions
Supersonic flow of a BEC past an obstacle is very rich phenomenologically

Two main ingredients of the asymptotic wave pattern for sufficiently large M :

— Oblique dark solitons — inside the Mach cone. The stability has been established

numerically

— Small-amplitude “ship waves” — outside the Mach cone

The two contrasting wave patterns above are reconciled in the asymptotic setting as the
“long-distance” outcomes of two dispersive shock waves generated in the highly

supersonic NLS flow past slender body.

Optical counterparts of the described wave patterns can be observed and described

analytically (work in progress)

31



