Blatt 5

Abgabe: bis Montag 28.11.2016 in der Vorlesung (Abgabe alleine oder in Zweiergruppen)

Aufgabe 1 (20 Punkte): (Einbettung in $L^{\infty}(\mathbb{R}^n)$)

Zeigen Sie, dass für $s \in (\frac{n}{2}, \infty)$ eine stetige Einbettung $H^s(\mathbb{R}^n) \hookrightarrow L^{\infty}(\mathbb{R}^n)$ existiert.

Aufgabe 2 (25 Punkte): (Anwendung der Fourier-Transformation an PDEs - 1) Lösen Sie die Poisson-Gleichung in \mathbb{R}^n

$$-\Delta u(x) = f(x), \quad x \in \mathbb{R}^n$$

mit $f \in L^2(\mathbb{R}^n)$ mit Hilfe der Fourier-Transformation.

- a) Unter welcher Bedingung an \hat{f} gibt es eine Lösung $u \in H^2(\mathbb{R}^n)$?
- b) Reicht für $u \in H^2(\mathbb{R}^n)$ die Bedingung $|\hat{f}(k)| < c|k|^{\alpha}$ für alle |k| < 1 mit einem $\alpha \in \mathbb{R}$?
- c) Unter welcher Bedingung an \hat{f} gibt es eine Lösung $u \in C^2(\mathbb{R}^n)$?
- d) Wie ändern sich diese Bedingungen für die Gleichung

$$-\Delta u(x) + au(x) = f(x), \quad x \in \mathbb{R}^n$$

mit a > 0?

Hinweis: Man wendet die Fourier-Transformation erst formal (ohne Rücksicht auf die Regularität) auf die Gleichung an um eine Lösung zu konstruieren und rechtfertigt die Rechnung danach.

Aufgabe 3 (25 Punkte): (Anwendung der Fourier-Transformation an PDEs - 2) Betrachten Sie die Transportgleichung

$$\partial_t u(x,t) + c \cdot \nabla_x u(x,t) = 0, \quad (x,t) \in \mathbb{R} \times (0,\infty)$$

 $u(x,0) = f(x)$

mit $c \in \mathbb{R}^n$ und $f \in L^2(\mathbb{R}^n)$. Bestimmen Sie die Lösung mit Hilfe der Fourier-Transformation. Für welche f ist $u(\cdot,t) \in H^1(\mathbb{R}^n)$ für alle $t \geq 0$?

Hinweis: Nach der Fourier-Transformation erhält man für jedes k eine gewöhnliche Differentialgleichung, die einfach zu lösen ist. Sonst gilt der gleiche Hinweis wie bei Aufgabe 2.

Aufgabe 4 (30 Punkte): (Einbettungen)

Sei $\Omega := B_{1/2}(0) \subset \mathbb{R}^2$ und $u(x) := \log |\log |x||$. Zeigen Sie mit Hilfe dieser Funktion:

- a) Es gibt keine stetige Einbettung $H^1(\Omega) \hookrightarrow L^{\infty}(\Omega)$.
- b) Es gibt keinen stetigen Punkt-Auswertungsoperator $S: H^1(\Omega) \to \mathbb{R}$, so dass S(u) = u(0) für $u \in H^1(\Omega) \cap C(\Omega)$.

Es sei nun $\Omega = (a, b) \subset \mathbb{R}$ ein beschränktes Intervall. Zeigen Sie:

c) Im Gegensatz zu Teil b) existiert für alle $p \in [1, \infty)$ und $x \in \overline{\Omega}$ ein stetiger Punktauswertungsoperator $S_x : W^{1,p}(\Omega) \to \mathbb{R}$ mit $S_x(u) = u(x)$ für alle $u \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$.

Hinweis: Nutzen Sie in Teil c) die Aussage von Blatt 3, Aufgabe 4, die Sie ohne Beweis angepasst auf diese Situation anwenden dürfen. Beweisen Sie die Aussage zunächst für p=1 und folgern Sie daraus den allgemeinen Fall.

Teil c) kann als eindimensionale Version des Spursatzes interpretiert werden.