Übungsblatt 6

Dozent: Tomáš Dohnal

SoSE 2015

Abgabe: 29.6.2015; wird besprochen: 30.6.2015

Problem 1: (Abbildungsgrad in 1d) Zeige, dass für $f \in C([a,b],\mathbb{R})$ mit a < b und $y_0 \notin \{f(a), f(b)\}$ durch $d(f, (a,b), y_0) := \frac{1}{2} \left[\operatorname{sign}(f(b) - y_0) - \operatorname{sign}(f(a) - y_0) \right]$ der Abbildungsgrad definiert wird, d.h. überprüfe die Eigenschaften aus der Definition des Abbildungsgrades.

Problem 2: (Anwendungen des Abbildungsgrades im endlich-dimensionalen)

(a) Beweise Proposition 19 aus der Vorlesung, d.h. für einen Banachraum X und $G \subset X$ offen und $f : \overline{G} \to X$ stetig mit $X \ni y_0 \notin f(\partial G)$ gilt $(d(f, G, y_0) \neq 0 \implies y_0 \in f(G))$.

Hinweis: Benutze das Ausschneiden mit der leeren Menge.

(b) Beweise folgende Aussage:

Sei $f: B \to \mathbb{R}^n$, wobei $B := B_1(0) \subset \mathbb{R}^n$ die offene Einheitskugel ist. Falls auf ∂B der Vektor f(x) nie in der Gegenrichtung zu x zeigt, d.h.

$$f(x) \neq \lambda x \quad \forall \lambda < 0 \ \forall x \in \partial B,$$

dann ist f(x) = 0 für ein $x \in B$.

Hinweis: Homotopie.

(c) Beweise folgende Aussage:

Sei $f \in C(\mathbb{R}^n, \mathbb{R}^n)$ mit $\frac{f(x) \cdot x}{|x|} \to \infty$ für $|x| \to \infty$. Dann ist f surjektiv.

Hinweis: Zu gegebenem Punkt $y \in \mathbb{R}^n$ betrachte f(x) - y und zeige, dass $(f(x) - y) \cdot x \ge 0$ auf einer Sphäre. Verwende dann (b).

Problem 3: Für $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (x^3 - 3xy^2, -y^3 + 3x^2y)$ berechne für $B_2(0) = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 4\}$ den Grad $d(f, B_2(0), (1, 0))$.

Hinweis: Verwende die Darstellung des Abbildungsgrades als Summe über die Vorzeichen von Funktionaldeterminanten (und zeige, dass diese Darstellung hier erlaubt ist).

Problem 4:

(a) Beweise folgende Aussage:

Sei X ein Banachraum und $B := B_1(0) \subset X$ die offene Einheitskugel. Falls $f : \overline{B} \to X, f = Id + \phi$ mit ϕ kompakt und mit $\|\phi(x)\| < 1$ für alle $x \in \partial B$, dann hat f eine Nullstelle in B.

Hinweis: Abbildungsgrad (Existenz angenommen - für allgemeine Banachräume wird sie in der Vorlesung später bewiesen); Homotopie.

(b) Betrachte das Anfangswertproblem (AWP)

$$\frac{du}{dt}(t) = F(u(t), t), \quad t > 0$$
$$u(0) = u_0$$

Dozent: Tomáš Dohnal

SoSe 2015

mit $u_0 \in \mathbb{R}^n$, $F : \mathbb{R}^n \to \mathbb{R}^n$ stetig. Zeige, dass falls $|F(\xi,t)| < 1$ für alle $t \in [0,1]$ und alle $\xi \in \{\xi \in \mathbb{R}^n : |\xi - x_0| \le 1\}$, dann existiert eine Lösung von AWP auf dem ganzen Intervall [0,1].

Hinweis: Wende (a) an.