Klassische Theorie der Partiellen Differentialgleichungen

Blatt 5

Abgabe: bis Freitag 20.5.2016, 12 Uhr

(Abgabe alleine oder in Zweiergruppen im Fach von L. Helfmeier, Raum 631-637)

Aufgabe 1: (15 P) Sei $\Omega \subset \mathbb{R}^n$ ein beschränktes Lipschitz-Gebiet und $a \in C(\overline{\Omega}, \mathbb{R})$ mit $a(x) \geq 0$ für alle $x \in \Omega$.

(a) Zeige, dass das Problem

$$-\Delta u + au = 0$$
, in Ω ,
 $u = 0$, auf $\partial \Omega$

nur die trivilae Lösung besitzt.

(b) Zeige, dass das Problem

$$-\Delta u + au = 0, \text{ in } \Omega,$$
$$\partial_{\nu} u = 0, \text{ auf } \partial\Omega,$$

wobei ν der äußere Normaleneinheitsvektor an $\partial\Omega$ ist, nur die triviale Lösung besitzt, falls a in mindestens einem Punkt in Ω positiv ist. Welche nichttriviale Lösungen gibt es, falls $a \equiv 0$?

Hinweis: Teste die Gleichungen mit einer passenden Funktion. (Testen bedeutet das Multiplizieren der Gleichung mit einer Funktion und das Integrieren über Ω .)

Aufgabe 2: (15 P)

Zeige, dass eine in \mathbb{R}^n harmonische Funktion $u \in L^2(\mathbb{R}^n, \mathbb{R})$ notwendigerweise die Nullfunktion $(u \equiv 0)$ ist.

Hinweis: Mittelwerteigenschaft und die Cauchy-Schwarz-Ungleichung.

Aufgabe 3: (25 P)

(a) Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt, $q \in C(\overline{\Omega}, \mathbb{R})$ und $\phi \in C(\partial\Omega, \mathbb{R})$. Angenommen die Funktionen $u_1, u_2 \in C^2(\Omega, \mathbb{R}) \cap C(\overline{\Omega}, \mathbb{R})$ erfüllen

$$-\Delta u_1 \le q$$
 in Ω , $-\Delta u_2 \ge q$ in Ω , $u_1 \le \phi$ auf $\partial \Omega$, $u_2 \ge \phi$ auf $\partial \Omega$,

zeige, dass $u_1 \leq u_2$ in $\overline{\Omega}$.

(b) Sei $\Omega \subset \mathbb{R}^n$ offen, so dass $\Omega \subset B_R(x_0)$ für ein $x_0 \in \mathbb{R}^n$ und R > 0. Außerdem seien $q \in C(\overline{\Omega}, \mathbb{R})$ und $\phi \in C(\partial\Omega, \mathbb{R})$ und u eine klassische Lösung von

$$-\Delta u = q$$
 in $\Omega, u = \phi$ auf $\partial \Omega$.

Klassische Theorie der Partiellen Differentialgleichungen

Zeige, dass dann für alle $x \in \overline{\Omega}$ gilt, dass

$$m + \frac{k}{2n}(R^2 - |x - x_0|^2) \le u(x) \le M + \frac{K}{2n}(R^2 - |x - x_0|^2),$$

wobei

$$m:=\min_{x\in\partial\Omega}\phi(x),\ M:=\max_{x\in\partial\Omega}\phi(x),\ k:=\min_{x\in\overline{\Omega}}\{q(x),0\},\ K:=\max_{x\in\overline{\Omega}}\{q(x),0\}.$$

Aufgabe 4: (30 P)

Sei $\Omega := \mathbb{R}^n \setminus \overline{B_R(0)}$ für ein R > 0 und $u \in C(\overline{\Omega}, \mathbb{R})$ harmonisch in Ω .

(a) Angenommen $\lim_{|x|\to\infty} u(x) = 0$, zeige dass

$$\sup_{\Omega}|u|=\max_{\partial\Omega}|u|.$$

(b) Ohne die Bedingung $\lim_{|x|\to\infty} u(x) = 0$ gilt das obige Maximumprinzip nicht. Finde eine Beispielfunktion, die dies bestätigt.

Hinweis zu (a): Betrachte die zwei Fälle $K := \max_{\partial\Omega} |u| > 0$ und K = 0. Für den ersten Fall untersuche den Ring $B_{\tilde{R}}(0) \setminus \overline{B_{R}(0)}$, der so gewählt ist, dass |u| < K auf $\mathbb{R}^{n} \setminus B_{\tilde{R}}(0)$.

Aufgabe 5: (15 P)

Formuliere und beweise die stetige Abhängigkeit von den Daten (also von h) für das Randwertproblem

$$-\Delta u = 0$$
 in Ω , $u = h$ auf $\partial \Omega$

für $\Omega \subset \mathbb{R}^n$ offen beschränkt und $h \in C(\partial\Omega, \mathbb{R})$.

Bemerkung: In der Vorlesung wurde bereits die Eindeutigkeit der Lösung gezeigt. Zusammen mit der Existenz (kommt noch in der Vorlesung - mit zusätzlicher Bedingung an $\partial\Omega$) erhalten wir also mit der stetigen Abhängigkeit von den Daten ein Wohlgestelltheitsresultat für das Dirichletproblem.