
Dispersive Waves - Lecture Notes

Tomá² Dohnal

Department of Mathematics, Martin Luther University Halle-Wittenberg

April 11, 2024



Contents

0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Linear Waves 4
1.1 Hyperbolic Systems of First Order with Constant Coe�cients . . . . . . . . . . . . . . . . . . 4

1.1.1 Symmetric Hyperbolic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 The Fundamentals of Dispersive Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Dispersion Relation, Phase Velocity, Group Velocity . . . . . . . . . . . . . . . . . . . 11
1.2.2 Asymptotic Role of the Group Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.3 Local Wavenumber and Local Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.4 Energy Propagation, In�nite Speed of Propagation . . . . . . . . . . . . . . . . . . . . 21

1.3 Smoothing E�ects of Dispersion: Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . 25
1.4 Waves in Periodic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4.1 Bloch Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4.2 Application of the Bloch Transformation to the Analysis of PDEs with Periodic Coef-

�cients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.5 Water Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.5.1 Linear Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Nonlinear Waves 43
2.1 Korteweg-de Vries Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.1.1 Korteweg-de Vries Equation for Shallow Water Waves . . . . . . . . . . . . . . . . . . 44
2.1.2 The Fermi-Pasta-Ulam Problem and the Korteweg-de Vries Equation . . . . . . . . . . 49

2.2 The Nonlinear Schrödinger Equation (NLS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2.1 Universality of the NLS for Slowly Modulated Wavepackets of Small Amplitude . . . . 53
2.2.2 Justi�cation of the NLS for the Nonlinear Wave Equation . . . . . . . . . . . . . . . . 55

2.3 Hamiltonian Structure of KdV and NLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.4 Orbital Stability of the KdV 1-Soliton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A Fourier Transform and Sobolev Spaces 70
A.1 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.2 Sobolev Spaces and their De�nition in the Fourier Variables . . . . . . . . . . . . . . . . . . . 73

B Asymptotics 75
B.1 Asymptotic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
B.2 Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
B.3 Method of Stationary Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

1



CONTENTS 2

THESE LECTURE NOTES ARE UNDER CONSTRUCTION. I WILL APPRECIATE ANY REPORTS
OF TYPOS, ERRORS OR UNCLARITIES.



CONTENTS 3

0.1 Introduction

Dispersion describes the e�ect of distinct wavelengths propagating at di�erent velocities. This lecture deals
primarily with the group velocity dispersion, which is based on the concept of group velocity. At the moment,
for a rough physical picture, let us, however, use the slightly ambiguous term `velocity'. An elementary
example of dispersion is that of light in a glass prism (or generally any other medium except for vacuum).
When light travels through a material, di�erent wavelengths propagate at di�erent velocities. Hence, when
white light enters, for instance, a glass prism from air, Snell's law tells us that the di�erent wavelength
components refract in di�erent directions. This is called chromatic dispersion. In this lecture we will deal
only with waves propagating in one material or a periodic arrangement of materials and hence refraction at
interfaces will not play a role.

Even in a homogenous material dispersion still causes the separation of di�erent wavelengths. For instance,
an initially localized disturbance (a wave-packet) is a combination of waves with many di�erent wavelengths.
These waves will disintegrate and the wave-packet become gradually broader because of the di�erent wave-
length components propagating at di�erent velocities. This e�ect is called group velocity dispersion and is
of extreme relevance, e.g., in �ber optics. In long-haul optical �bers clever techniques need to be used to
counteract dispersion in order to preserve a signal. This goes under the name of dispersion management and
is based on periodically alternating the material of the �ber along the propagation direction. A group velocity
dispersion e�ect, which you can observe even at home, is that of water waves - more precisely capillary water
waves. When a relatively small object is dropped into water, the nearly circular waves emanating from the
disturbance will disperse and shorter wavelengths will travel faster than longer ones.

Note, however, that not all wave propagation is dispersive. For instance, sound waves in air thankfully
undergo virtually no dispersion. Hence, the music we hear �ve or �fty meters far from a band sounds the
same (up to dissipation).

Dispersion is also a smoothing mechanism. Singularities can be described by the presence of many waves
of di�erent (mainly very small) wavelengths. Because these propagate at di�erent velocities, the singularity
will get disintegrated and weaken in time.



Chapter 1

Linear Waves

The simplest form of a wave is the plane wave, i.e. a wave (or generally a physical quantity) for which the
temporal evolution is a simple translation and the value of which at any given time is constant over any plane
orthogonal to the direction of propagation.

A wavefront is de�ned as the set of points with the same phase (i.e. the same argument). For a plane
wave the wavefront at any time is a plane orthogonal to the direction of propagation and it is translated with
the propagation velocity.

The most general form of a plane wave in Rn is thus

upx, tq “ fpv ¨ x´ stq, x P Rn, t P R (1.1)

with the direction vector v P Rn, |v| “ 1 and the speed s P R. Any wavefront of (1.1) at time t is the set

F “ tx P Rn : F pxq :“ v ¨ x´ st´ c “ 0u,

with some c P R. Since F is a level set of F , and since ∇F “ v, we get F K v. Hence, every wavefront is an
pn´ 1q-dimensional hyperplane orthogonal to v.

Typically, however, one uses the term �plane wave� for a periodic wave, like upx, tq “ cospk ¨ x´ ωtq with
k P Rn, ω P R.

A general periodic wave in Rn can be written as
ř

mPZ e
ipkm¨x´ωmtq with km P Rn and ωm P R for all

m P Z. We call ωm the (temporal) frequency and km the wave-vector of the m´th component. In the case
n “ 1 the wave-vector is called the wave-number.

1.1 Hyperbolic Systems of First Order with Constant Coe�cients

We consider the system

Btu “

n
ÿ

j“1

AjBxj
u, x P Rn, t ą 0 (1.2)

with Aj P Rmˆm and u : Rn ˆ r0,8q Ñ Rm,m P N. Shortly we will formulate a condition on the matrices
Aj which makes system (1.2) hyperbolic, i.e. supporting wave solutions.

System (1.2) includes the classical wave equation as well as, for instance, Maxwell's equations in vacuum
in 3D as we show next.

Example 1.1. For the wave equation

B2
tψ “ ∆ψ, x P Rn, t ą 0

4
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we let u :“
´

Btψ
∇ψ

¯

. Clearly upx, tq P Rn`1 so that m “ n` 1 and we get

Btu “

´

B
2
tψ

∇Btψ

¯

“

´

∇¨∇ψ
∇Btψ

¯

“

N
ÿ

j“1

AjBxju,

where

Aj “

¨

˚

˚

˝

0 ... 1 ... 0
...
1
...
0

˛

‹

‹

‚

“ e1e
T
j`1 ` ej`1e

T
1 ,

with ej P Rm being the Euclidean unit (column) vector in the j´th direction.

Example 1.2. Maxwell's equations in vacuum in 3D (n “ 3) read

BtB “ ´∇ ˆ E, BtE “ c2∇ ˆB,

where E and B are the electric and magnetic �elds respectively, and c is the speed of light in vacuum. Letting
u :“

`

B̃
E

˘

, where B̃ “ cB, we get

Btu “

´

BtB̃
BtE

¯

“ c
`

0 ´∇ˆ
∇ˆ 0

˘ `

B̃
E

˘

“

3
ÿ

j“1

AjBxj
u,

where
A1 “ c

´

0 Q1

QT
1 0

¯

, A2 “ c
´

0 Q2

QT
2 0

¯

, A3 “ c
´

0 Q3

QT
3 0

¯

,

where Q1 “

´

0 0 0
0 0 1
0 ´1 0

¯

, Q2 “

´

0 0 ´1
0 0 0
1 0 0

¯

, and Q3 “

´

0 1 0
´1 0 0
0 0 0

¯

such that all Aj are symmetric.

Let us consider the existence of plane waves for the general system (1.2). Substituting upx, tq “ fpv¨x´stq,
we get

´sf 1 “

˜

n
ÿ

j“1

vjAj

¸

f 1, (1.3)

i.e. s has to be an eigenvalue of
řn
j“1 vjAj P Rmˆm and f 1 a corresponding eigenvector. This forces the

vector valued function f 1 to have the form

f 1pyq “ φpyqξ, φ : R Ñ R,

where ps, ξq is an eigenpair of
řn
j“1 vjAj .

For a hyperbolic system we expect m linearly independent plane waves for each direction vector v. This
requires �rstly that the eigenvalues s are real (so that they describe the wave speed), and secondly the
diagonalizability of

řn
j“1 vjAj .

De�nition 1.1. System (1.2) is called hyperbolic if for every v P Rn the matrix
řn
j“1 vjAj is diagonalizable

and has only real eigenvalues.

Remark 1.1. For cosine plane waves

upx, tq “ cospk ¨ x´ ωtqc⃗ with c⃗ P Rm

we have v “ k{|k| and s “ ω{|k| so that the eigenvalue problem (1.3) becomes

´ωc⃗ “

˜

n
ÿ

j“1

kjAj

¸

c⃗.
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Here and below |k|2 “
řn
j“1 k

2
j for k P Rn. Clearly, ω is linear in |k|

ωpkq “ |k|ω̃
´

k
|k|

¯

,

so that s “ ω̃pk{|k|q. The phase velocity sv “ ωk{|k|2, which is also de�ned in Sec. 1.2, thus depends only
on the direction vector k{|k|

sv “ k
|k|
ω̃

´

k
|k|

¯

.

The phase velocity is independent of |k|, hence of the wavelength, which is what we understand under a
non-dispersive wave propagation. Although in Sec. 1.2 we will de�ne dispersive problems with the help of the
group velocity, the two de�nitions coincide for the case of systems of the type (1.2).

1.1.1 Symmetric Hyperbolic Systems

Starting here (and in most sections thereafter) we use the Fourier transform as a main tool. An overview of
relevant de�nitions and results on this topic is in Appendix A.

In this section we assume Aj “ ATj for all j in (1.2). Clearly, when Aj are symmetric, the system is
automatically hyperbolic. Let us now consider the Cauchy problem. Appending equation (1.2) with the
initial data upx, 0q “ u0pxq with u0 P L2pRnq, we perform the Fourier transform and obtain

Btûpk, tq “

˜

n
ÿ

j“1

ikjAj

¸

ûpk, tq “: P̂ pkqûpk, tq

with the initial condition ûpk, 0q “ û0pkq. This is an ODE problem for each k and the solution is

ûpk, tq “ eP̂ pkqtû0pkq.

Writing P̂ pkq “ i|k|
řn
j“1 vjAj with v “ k

|k|
and using the symmetry of Aj , we get

eP̂ pkqt “ Qpvq

˜

e´is1pvq|k|t

. . . e´ismpvq|k|t

¸

QT pvq

with an orthogonal matrix Qpvq P Rmˆm and t´s1, . . . ,´smu being the eigenvalues of
řn
j“1 vjAj . In the

physical x´space we get the superposition of plane waves

upx, tq “ p2πq´n{2
m
ÿ

j,l“1

ż

Rn

qjpvpkqqei|k|pvpkq¨x´sjpvpkqqtqqTl pvpkqqû0pkqdk.

This representation of the solution lets us formulate two important results, namely the conservation of
the L2-norm and the �nite propagation speed for symmetric hyperbolic systems.

Theorem 1.2 (Conservation of the L2-norm). The solution of (1.2) with Aj “ ATj for all j “ 1, ..., n and

with up¨, 0q “ u0 P pL2pRnqqm satis�es

m
ÿ

j“1

}ujp¨, tq}2L2pRnq “

m
ÿ

j“1

}u0,j}
2
L2pRnq for all t ě 0.
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Proof. The idea is that because Q is orthogonal and e´iΛpkqt :“

ˆ

e´is1pvq|k|t

. . . e´isnpvq|k|t

˙

is unitary, also

the matrix eP̂ pkqt is unitary. In detail, by Plancherel's identity (A.1) and orthogonality of Q

m
ÿ

j“1

}ujp¨, tq}2L2pRnq “

ż

Rn

û˚pk, tqûpk, tqdk “

ż

Rn

û˚
0 pkqQpvqeiΛpkqtQT pvqQpvqe´iΛpkqtQT pvqû0pkqdk

“

ż

Rn

û˚
0 pk, tqû0pk, tqdk “

m
ÿ

j“1

}u0,j}
2
L2pRnq

because QTQ “ QQT “ I. □

Theorem 1.3 (Finite propagation speed). Consider (1.2) with Aj “ ATj for all j “ 1, ..., n and with

up¨, 0q “ u0 P pL2pRnqqm. If
supppu0q Ă BR “ tx P Rn : |x| ď Ru

for some R ą 0, then
supppup¨, tqq Ă BR`smaxt,

where

smax “ max
|v|“1

λmax

˜

n
ÿ

j“1

vjAj

¸

“ max
|v|“1

max
|ξ|“1

ξT

˜

n
ÿ

j“1

vjAj

¸

ξ.

Proof. The idea is to apply the Paley-Wiener Theorem A.11. For that we need to �rst show that ûp¨, tq is

holomorphic in Cn. Because ûpk, tq “ eP̂ pkqtû0pkq, we consider û0 and eP̂ t separately.
That û0 is entire on Cn follows from the Paley-Wiener theorem due to the compact support of u0 and

the fact that as an L2pRnq function it is certainly in L1
locpRnq and hence de�nes a tempered distribution.

Moreover, the Paley-Wiener theorem guarantees that there are C ą 0, N P N so that

|û0pkq| ď Cp1 ` |k|qNe| Impkq|R for all k P Cn.

Note that the de�nition of û0pkq for k P Cn is the same as for k P Rn, i.e. û0pkq “ p2πq´n{2
ş

Rn u0pxqe´ik¨x dx.

For eP̂ t note that
k ÞÑ eP̂ pkqt “ eit

řn
j“1 kjAj

is holomorphic on Cn.
It remains to verify the growth condition on ûpk, tq in Theorem A.11. We have

d|û|2

dt
“

d

dt
pû˚ûq “ pP̂ ûq˚û` û˚P̂ û “ û˚pP̂ ` P̂˚qû “ ´2û˚

˜

n
ÿ

j“1

ImpkjqAj

¸

û,

where in the last step the symmetry of Aj was used. We obtain

d|û|

dt
“
û˚

´

´
řn
j“1 ImpkjqAj

¯

û

|û|2
|û| ď λmax

˜

´

n
ÿ

j“1

ImpkjqAj

¸

|û|,

and thus

|ûpk, tq| ď etλmaxp´
řn

j“1 ImpkjqAjq|û0pk, tq|

ď et| Impkq|λmaxp´
řn

j“1 vjAjq|û0pk, tq|

ď et| Impkq|smaxCp1 ` |k|qNe| Impkq|R,

where v “ k{|k|. Finally, another application of Paley-Wiener Theorem A.11 guarantees supppup¨, tqq Ă

BR`smaxt. □
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1.1.2 Wave Equation

Although, as shown above, the wave equation

B2
t u “ c2∆u, x P Rn, t ą 0

upx, 0q “ fpxq, Btupc, 0q “ gpxq
(1.4)

(with c ą 0) can be written in the form of a hyperbolic �rst order system (1.2), we consider this important
equation here separately and derive an explicit form of the solution upx, tq. The results of Section 1.1.1
produce only a formula for Btu and ∇u. We will also be able derive more detailed information on the
qualitative properties of the solution in this section.

Using the Fourier transformation, the problem becomes

B2
t û “ ´c2|k|2û, ûpk, 0q “ f̂pkq, Btûpk, 0q “ ĝpkq.

This second order ODE has the solution

ûpk, tq “ cospc|k|tqf̂pkq `
sinpc|k|tq

c|k|
ĝpkq “

sinpc|k|tq

c|k|
ĝpkq ` Bt

ˆ

sinpc|k|tq

c|k|
f̂pkq

˙

.

We de�ne Ŵ pk, tq :“ sinpc|k|tq
c|k|

. The di�culty is that for n ą 1 the inverse Fourier transform of Ŵ is no

function but only a tempered distribution.
We begin with the case n “ 3. It is left as an exercise to show that W is given by

W : ψ ÞÑ W pψqptq “
1

4πc2t

ż

|x|“ct

ψpxqdx for all ψ P SpR3q.

Hence, using the de�nition of the convolution of a distribution T and a Schwartz function, cf. Lemma A.7,
we get for f, g P SpR3q the Kirchho�'s formula

upx, tq “
1

4πc2t

ż

|x´y|“ct

gpyqdy ` Bt

˜

1

4πc2t

ż

|x´y|“ct

fpyqdy

¸

. (1.5)

Note that (1.5) is a solution of (1.4) (with n “ 3) also for f P C3pR3q, g P C2pR3q as one can check by
di�erentiation, see [9].

From formula (1.5) one can deduce several important properties of the solution. Let us assume that the
initial data are compactly supported, i.e.

suppf Y suppg Ă BRp0q for some R ą 0.

1. There is a �nite speed of propagation, i.e. for each t ą 0 the solution up¨, tq is compactly supported.

2. The signal has a �nite lifetime at any point x0, i.e. an observer can see/hear/feel the signal only for a
bounded interval of time. At a point x0 with |x0| ą R the solution upx0, tq is zero if R ` ct ă |x0|, i.e.

t ă
|x0|´R

c and if ´R ` ct ą |x0|, i.e. t ą
|x0|`R

c , see Fig. 1.1.2.

3. At any time t ą R{c is suppup¨, tq inside a spherical shell BR`ctp0qzB´R`ctp0q, see Fig. 1.1.2.

Let us now study the case n “ 2. For f P C3pR2q, g P C2pR2q we can use the 3D solution formula (1.5)
with f p3qpx1, x2, x3q :“ fpx1, x2q and gp3qpx1, x2, x3q :“ gpx1, x2q. Because also the resulting u is independent
of x3, we can set e.g. x3 “ 0 in (1.5) and obtain

upx, tq “
1

4πc2t

ż

|x̃´y|“ct

gp3qpyqdy ` Bt

˜

1

4πc2t

ż

|x̃´y|“ct

f p3qpyqdy

¸

for x P R2, (1.6)
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Figure 1.1: Schematic for the signal lifetime and propagation speed of the wave equation in 3D pn “ 3q.

where x̃ :“ pxT , 0qT P R3. Clearly, if suppf, suppg Ă Ω Ă R2, then suppf p3q, suppgp3q Ă Ω ˆ R. We suppose

that Ω is compact. An observer at x0 P R2 feels the wave for all times t ě tminpx0q :“ distpx0,Ωq

c because the
sphere ty : |x0 ´ y| “ ctu cuts the support Ω ˆ R for all such t, see Fig. 1.1.2. Hence the signal never dies
down. In a 2D world everyone has an earworm - always! After a variable transformation (see [9]) solution
(1.6) can be written as

upx, tq “
1

2πc

˜

ż

|x´y|ďct

gpyq

pc2t2 ´ |x´ y|2q1{2
dy ` Bt

˜

ż

|x´y|ďct

fpyq

pc2t2 ´ |x´ y|2q1{2
dy

¸¸

for x P R2. (1.7)

Finally, we inspect the case n “ 1. Here the inverse Fourier transform of Ŵ is, in fact, a function. We
have

Ŵ pk, tq “
sinpcktq

ck
, W px, tq “

1

c

´π

2

¯1{2

χr´ct,ctspxq

as one easily checks. Hence

upx, tq “
1

?
2π

ż

R
W px´y, tqgpyqdy`

1
?
2π

Bt

ż

R
W px´y, tqfpyqdy “

1

2c

ż

|x´y|ďct

gpyqdy`
1

2c
Bt

ż

|x´y|ďct

fpyqdy.

By evaluating the derivatives, we arrive at the d'Alembert's formula

upx, tq “
1

2c

ż x`ct

x´ct

gpyqdy `
1

2
pfpx` ctq ´ fpx´ ctqq , (1.8)

which is the classical solution for any f P C2pRq, g P C1pRq.
We conclude that for n “ 1 there is a �nite propagation speed but the life time of a generic signal is

in�nite as the support of g remains in the integration domain of the integral
şx`ct

x´ct
gpyqdy for all times after

the time t˚ “ 1
cdistpx, supppgqq.

1.2 The Fundamentals of Dispersive Waves

The de�nition of a dispersive problem will be given a bit later but we can give away some classical examples
of dispersive equations already now.

� Schrödinger equation
iBtu` ∆u “ 0, x P Rn (1.9)

� linear Korteweg-de Vries equation

Btu` aBxu` B3
xu “ 0, a P R, x P R (1.10)
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Figure 1.2: Schematic for the signal lifetime of the wave equation in 2D pn “ 2q.

� Klein-Gordon equation
B2
t u “ B2

xu´ au, a ě 0, x P R (1.11)

The Schrödinger equation describes the wave function (as the quantum state) of a particle in free space but
also the envelope of a classical wave packet in a homogenous medium. The linear Korteweg-de Vries equation
describes shallow water waves in the linear limit. For a full discussion see Section 2.1.1. The Klein-Gordon
equation is a relativistic version of the Schrödinger equation but it can be also derived from the wave equation
in a waveguide as the equation describing the longitudinal dynamics. This derivation follows.

Consider the wave equation

B2
t u “ ∆u, x P Ω “ Σ ˆ R with Σ Ă R2 open and bounded

and with homogenous Dirichlet or homogenous Neumann boundary conditions on BΩ “ BΣ ˆ R, denoted by

Ru “ 0 on BΩ.

In addition we have initial conditions

upx, 0q “ fpxq, Btupx, 0q “ gpxq.

The waveguide Ω is schematically depicted in Fig. 1.2. We are going to expand the solution at each px3, tq
in the eigenfunctions of the corresponding 2D eigenvalue problem in px1, x2q. The Klein-Gordon equation
will arise as the equation governing the px3, tq-dependent coe�cients in the expansion.
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Figure 1.3: A waveguide for the Klein-Gordon example.

The (symmetric elliptic) eigenvalue problem

´∆x1,x2
ψ “ λψ on Σ

Rψ “ 0 on BΣ

provides an orthonormal basis of L2pΣq via its eigenfunctions pwkqkPN with wk P H1
0 pΣq for Dirichlet boundary

conditions and wk P H1pΣq for Neumann boundary conditions. The eigenvalues are non-negative (positive in
the Dirichlet case)

λk “ µ2
k ě 0 for all k P N.

We expand the initial data at each point x3 P R and expand the solution at each px3, tq P R ˆ r0,8q in the
eigenfunctions:

fpxq “
ÿ

kPN
fkpx3qwkpx1, x2q, gpxq “

ÿ

kPN
gkpx3qwkpx1, x2q,

upx, tq “
ÿ

kPN
ukpx3, tqwkpx1, x2q.

The coe�cient uk then satis�es the Klein-Gordon equation with a “ µ2
k

B2
t uk “ B2

x3
uk ´ µ2

kuk,

ukpx3, 0q “ fkpx3q, Btukpx3, 0q “ gkpx3q.

1.2.1 Dispersion Relation, Phase Velocity, Group Velocity

We provide here a rather general theory of dispersive PDEs and explain the roles of the dispersion relation as
well as the phase and group velocities. This exposition is along the lines of Section 11.1 in [26] but we are a
bit more restrictive in the de�nition of dispersive systems in order to be able to justify the use of elementary
plane wave solutions.

1.2.1.1 Dispersion Relation and Dispersive PDEs

Systems of m P N linear PDEs with constant coe�cients on Rn can be written compactly as

P pBt, Bx1 , . . . , Bxnqu⃗ “ 0, x P Rn, t ą 0, (1.12)
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where u⃗ P Cm and P : Rn`1 Ñ Cmˆm is a matrix valued polynomial. We will limit our attention mainly to
systems which have the form

P pBt, Bx1
, . . . , Bxn

q “ ApBx1
, . . . , Bxn

qBt ´QpBx1
, . . . , Bxn

q,

i.e.
ApBx1 , . . . , BxnqBtu⃗´QpBx1 , . . . , Bxnqu⃗ “ 0, x P Rn, t ą 0, (1.13)

where A,Q : Cn Ñ Cmˆm are polynomials and Aplq is non-singular for each l P Cn. In other words, the
equations �rst order in Bt and the time derivative appears in each equation. Of course, if a higher order
derivative B

p
t , p ą 1 appears in one of the equations, the system can be transformed to a system of m` p´ 1

equations of �rst order. Examples of (1.13) are numerous and include all scalar linear equations of �rst order
in t, for instance the linear Schrödinger and the linear KdV equations or more exotic problems like the linear
Kadomtsev-Petviashvili equation

Bx1
pBtu` B3

x1
uq ` B2

x2
u “ 0, x P R2.

It also includes many systems, e.g. the linear coupled mode equations in x P R

ipBtu` Bxuq ` κv “0

ipBtv ´ Bxvq ` κu “0,

with κ P R.
A large subclass of problems satisfy A “ I, i.e. have the simple form

Btu⃗ “ QpBx1
, . . . , Bxn

qu⃗, x P Rn, t ą 0. (1.14)

As an example the Klein-Gordon equation (1.11) can be written in the form Btv⃗ “ QpBxqv⃗ for v⃗ “ pu, BtuqT

and Q “

´

0 1
B
2
x´a 0

¯

.

Applying the Fourier transform to (1.14) produces

Bt
̂⃗u “ Qpik1, . . . , iknq̂⃗u

for each k P Rn. If Qpikq is diagonalizable, i.e.

Qpikq “ XpkqΛpkqX´1pkq, Λpkq “

˜

λ1pkq

. . .
λmpkq

¸

, Xpkq “

´

ξp1qpkq, . . . , ξpmqpkq

¯

,

where ξp1q, . . . , ξpmq are eigenvectors to the eigenvalues λ1, . . . , λm of Qpikq, then solutions have the form

̂⃗upk, tq “ XpkqeΛpkqtc⃗pkq

with some vector c⃗ P Cm. This is a linear combination of the solution modes eλjpkqtξpjqpkq, j “ 1, . . . ,m. In
the physical x-space the solution upx, tq is then a k´integral of the elementary solutions

eλjpkqt`ik¨xξpjqpkq (1.15)

weighted by the Fourier transform of the initial data. For pure wave propagation problems we expect and
require that the eigenvalues λj are imaginary so that no damping or gain appears. Therefore, we denote
from now on the spectral unknown λ by ´iω. We have thus shown that solutions of (1.14) are built out of
elementary solutions which have the form of plane-waves

eipk¨x´ωpkqtqc⃗. (1.16)
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As we will see below, the nature of the wave propagation is largely determined by the form of the function
ωpkq. This function, being an eigenvalue of iQpikq, is necessarily a solution of

det pωI ´ iQpik1, . . . , iknqq “ 0.

For the more general systems (1.13) this equation becomes

det pωApik1, . . . , iknq ´ iQpik1, . . . , iknqq “ 0,

and ξpjqpkq are eigenvectors of the generalized eigenvalue problem ωApik1, . . . , iknqξpkq “ iQpik1, . . . , iknqξpkq.
We assume again that the eigenspace is m-dimensional. The solution is again an integral of elementary
solutions (1.15).

In the general case (1.12) after the Fourier transform we get

P pBt, ik1, . . . , iknq̂⃗upk, tq “ 0.

We assume that there are againm solutions eµjpkqtζpjqpkq for each k P Rn with ζp1qpkq, . . . , ζpmqpkq as solutions
of

P pµj , ik1, . . . , iknqζpjqpkq “ 0

being linearly independent. With µ “: ´iω, we obtain, once again, the plane-wave elementary solutions
(1.16). In the general system (1.12) the frequency ω thus has to satisfy

det pP p´iω, ik1, . . . , iknqq “ 0. (1.17)

De�nition 1.4. Equation (1.17) is called the dispersion relation of equation (1.12).

Being an algebraic equation ofm-th degree in ω, the dispersion relation (1.17) hasm solutionsW1pkq, . . .Wmpkq.
This produces m elementary solutions of (1.12).

1.2.1.2 Phase Velocity and Group Velocity

Let now
θ :“ k ¨ x´Wjpkqt

be the phase of the j´th solution mode. The wavefronts θ “const. travel with the so called phase velocity.

De�nition 1.5. The phase velocity of the j´th solution mode of (1.13) is

vpjq
p pkq “

Wjpkq

|k|2
k.

In 1D (n “ 1) this, of course, reduces to v
pjq
p pkq “ Wjpkq{k.

Dispersion roughly means is that waves with di�erent wave numbers propagate with di�erent velocities.

The �rst idea could be to de�ne dispersive problems as those, for which ∇vpjq
p pkq ı 0. A simple example,

however, shows that this is not a suitable de�nition. Consider the dispersion relation ω ´ ak ´ b “ 0 with
the solution W pkq “ ak ` b. The elementary solution then has the form

e´ibteikpx´atq.

Although vppkq “ a ` b{k is not constant in k, the corresponding equation Btu ` aBxu ` ibu “ 0 is not
dispersive because the solution of the corresponding PDE with initial data u0pxq is

upx, tq “ e´ibtp2πq´1{2

ż

R
eikpx´atqû0pkqdk “ e´ibtu0px´ tq.

The equation is a mere transport problem with a simple phase rotation.
Dispersion is mathematically de�ned via the group velocity instead.
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De�nition 1.6. The group velocity of the j´th solution mode of (1.13) is

vpjq
g pkq “ ∇Wjpkq.

De�nition 1.7. The j´th solution mode of (1.13) is dispersive if

detpD2Wjq ı 0.

Here detD2Wj denotes the Hessian matrix of Wj .

De�nition 1.8. Equation (1.13) is dispersive if Wjpkq P R for all j “ 1, . . . ,m, if the eigenspace of the
generalized eigenvalue problem

ωApikqξ “ iQpikqξ

is m-dimensional for each k P Rn and if the eigenvalues ω “ Wjpkq satisfy detpD2Wjq ı 0 for at least one
j P t1, . . . ,mu.

In 1D the de�nition of a dispersive mode and equation is equivalent to the condition thatWj are nonlinear
functions of k. In nD this is not the case since e.g. W pkq “ k21 ` k2 satis�es detpD2W q ” 0. In nD the
de�nition is thus slightly more restrictive but it is the de�nition that yields certain asymptotic calculations
meaningful, see Section 1.2.2.

Also note that for the special case (1.14) the condition of m linearly independent solutions ζpjqpkq, j “

1, . . . ,m is equivalent to the diagonalizability condition of Qpikq.
Clearly, the form of equation (1.12) allows only polynomial dispersion relations. As we will see in Section

1.5, for water waves a more general dependence ωpkq holds and satis�es detD2ω ı 0. The de�nition of a
dispersive problem is therefore often extended to any problem for which a dispersion relation makes sense,
has real solutions Wjpkq and where detD2Wj ı 0 for at least one j.

1.2.2 Asymptotic Role of the Group Velocity

We consider here the scalar 1D case m “ n “ 1 and study the asymptotics of the solution of a dispersive
equation (1.14) for

t Ñ 8,
x

t
“ c

with a constant c P R.
The solution is

upx, tq “ p2πq´1{2

ż

R
û0pkqe´iχpkqt dk, χpkq “ W pkq ´ k

x

t
. (1.18)

For large values of t the exponential e´iχpkqt oscillates (for generic functions χpkq) fast in k and causes a
cancellation e�ect in the integral. The oscillatory behavior appears everywhere except near points k “ k̃
where χpkq is close to constant. The largest contribution to the integral thus comes from the neighborhood
of stationary points of χ, i.e. from points k “ k̃, such that

χ1pk̃q “ W 1pk̃q ´ c “ 0.

This is the idea of the method of stationary phase. A rigorous discussion of this method and the asymp-
totic notation used below is in Appendix B. Here we provide only the main ideas of the calculation of the
asymptotics of u. Assuming

W 2pk̃q ‰ 0 for all k̃ with W 1pk̃q “ c,

we have (using χ2pkq “ W 2pkq)

χpkq „ χpk̃q ` 1
2W

2pk̃qpk ´ k̃q2,

û0pkq „ û0pk̃q
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Figure 1.4: Left: example of û0pkq and the phase χpkq. Right: the function eiχpkqt (the real part is plotted)
for t " 1 is highly oscillatory except near critical points of χ.

as k Ñ k̃. With the help of Lemmas B.5 and B.6 like in the proof of Theorem B.7 (and with Remark B.6),
we get

upx, tq „ p2πq´1{2
ÿ

W 1pk̃q“c

û0pk̃qe´iχpk̃qt

ż

R
e´

i
2W

2
pk̃qtpk´k̃q

2

dk (1.19)

as t Ñ 8, xt “ c. As W (as well as W 1) is polynomial, we have W 1pkq “ c at �nitely many points k̃ P

tk̃1, . . . , k̃mu (with k̃j ă k̃j`1). In the application of the above lemmas we split the integral in (1.18) into

integrals over p´8, k̃1q, pk̃1, k̃2q, . . . , and pk̃m,8q. For the assumptions in Theorem B.7 and Remark B.6 we
need û0 P L1pRq XC1pRq, pû0{χ1q1 P L1pRzpk̃1, k̃mqq, and pû0{χ1qpkq Ñ 0 for |k| Ñ 8. As χ1 is a polynomial,
all these are satis�ed if we choose u0 P SpRq (such that also û0 P SpRq).

The integral on the right hand side of (1.19) can be evaluated using the result of Example B.1 and a
suitable substitution. Let us, however, perform the simple calculation using Cauchy's integral theorem for
our case separately. The integral in question has the form

ż

R
e´iαx2

dx “ 2

ż 8

0

e´iαx2

dx.

The idea is to extend the integrand to the complex plane and integrate this holomorphic function along a
closed contour which includes the real positive axis.

For α ą 0 we choose the contour C :“ C1 YC2 YC3 as in Fig. 1.2.2 with R ą 0 and let R Ñ 8. Cauchy's
theorem gives

ş

C
e´iαz2 dz “ 0 so that

ż R

0

e´iαz2 dz “ ´

ż

C2

e´iαz2 dz ´

ż

C3

e´iαz2 dz

By a direct calculation or by the mean value theorem of complex analysis we get
ż

C2

Ñ 0 as R Ñ 8.

For
ş

C3
we get with the substitution r “ zeiπ{4

´

ż

C3

e´iαz2 dz Ñ e´iπ{4

ż 8

0

e´αr2 dr “ e´iπ{4 1

2

´π

α

¯1{2
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Figure 1.5: Contour for the integral
ş

R e
´iαx2

dx with α ą 0.

as R Ñ 8.
The case α ă 0 is treated analogously with the contour being the complex conjugate of the contour in

Fig. 1.2.2 and the substitution in
ş

C3
being r “ ze´iπ{4.

In summary we get
ż

R
e´iαx2

dx “ e´i signpαq
π
4

ˆ

π

|α|

˙1{2

, α P Rzt0uu. (1.20)

Setting now α “ W 2pk̃qt{2 and using χpk̃q “ W pk̃q ´ k̃x{t in (1.19), we have

Theorem 1.9. Consider (1.14) with m “ n “ 1 and with initial data up¨, 0q “ u0 P SpRq. Choose the
velocity c P R, assume that the equation is dispersive and that W 2pk̃q ‰ 0, û0pk̃q ‰ 0 for all points k̃ such that
W 1pk̃q “ c. The solution then satis�es

upx, tq „
ÿ

W 1pk̃q“c

ˆ

1

t|W 2pk̃q|

˙1{2

û0pk̃qe´i signpW2
pk̃qq

π
4 eipk̃x´W pk̃qtq (1.21)

as t Ñ 8, xt “ c.

Note that the L1 condition on u0 ensures (via Riemann-Lebesgue Lemma A.8) that û0 is continuous so
that the point values û0pk̃q make sense. If W 2pk̃q “ 0,W3pk̃q ‰ 0, then a similar calculation leads to an
expansion in which upx, tq behaves like t´1{3 as t Ñ 8.

There is also an analogous result in Rn. Using the stationary phase approximation from Theorem B.8,
we get

Theorem 1.10. Consider (1.13) with m “ 1, n P N and with initial data up¨, 0q “ u0 P SpRnq. Choose the
velocity c⃗ P Rn, assume that the equation is dispersive and that detpD2W pk̃qq ‰ 0, û0pk̃q ‰ 0 for all points
k̃ P Rn such that ∇W pk̃q “ c⃗. The solution then satis�es

upx, tq „
1

tn{2

ÿ

∇W pk̃q“c⃗

¨

˝

1
ˇ

ˇ

ˇ
det

´

D2W pk̃q

¯
ˇ

ˇ

ˇ

˛

‚

1{2

û0pk̃qe´iσpk̃q
π
4 eipk̃¨x´W pk̃qtq (1.22)

as t Ñ 8, xt “ c⃗, where σpk̃q is the signature of D2W pk̃q, i.e. the number of positive eigenvalues minus the
number of negative eigenvalues.

These results can be interpreted as follows. Asymptotically for large times the largest contribution to the
solution at x “ c⃗t comes from those wavenumbers k, for which vgpkq “ c⃗. In other words, an observer moving
at the group velocity vgpkq sees waves with the wavenumber k and frequency W pkq but peaks generally keep
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passing by. On the other hand, an observer moving at the phase velocity, i.e. an observer at x “ vppkqt sees
the same crest but the local wavenumber, and hence the distance to the the next crest, as well as the local
frequency generally keep changing.

Let us now study the dispersion relations and group velocities for several simple examples including the
three examples at the beginning of Section 1.2.

Example 1.3. For the Klein-Gordon equation (1.11) we have the dispersion relation

ω2 “ k2 ` a.

Its solutions are ω “ ˘W pkq with W pkq “
?
a` k2. Clearly W 2 ı 0 so that the problem is dispersive. The

absolute value of the group velocity

vgpkq “
k

?
a` k2

grows in |k| so that shorter waves propagate faster than longer ones. This means that initially localized pulses
will have disintegrated in time in such a fashion that the more oscillatory waves will have traveled further,
see Fig. 1.3. Also, the group velocity is bounded, |vgpkq| ă 1 for all k P R. We will see in Theorem 1.14

Figure 1.6: Schematic of the dispersion e�ect on a localized pulse in the Klein-Gordon equation.

that the Klein-Gordon equation enjoys �nite speed of propagation. This is caused by the boundedness of the
group velocity.

Example 1.4. For the Schrödinger equation (1.9) in Rn the dispersion relation reads

ω “ |k|2,

so that W pkq “ |k|2. Here detD2W pkq “ 2n ‰ 0 and the problem is dispersive. The group velocity

vgpkq “ 2k

is unbounded (in modulus), and again shorter waves propagate faster than longer ones. The unboundedness
of vg causes an in�nite speed of propagation as shown in Theorem 1.13.

Example 1.5. The linear KdV equation (1.10) has the dispersion relation

ω “ ak ´ k3.

Hence W 2pkq “ ´6k ı 0. The group velocity

vgpkq “ a´ 3k2
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is bounded from above by a but unbounded from below. Also for the KdV Theorem 1.13 guarantees in�nite
speed of propagation. The maximal positive velocity is attained at k “ 0 and

vgpkq ą 0 for |k| ă pa{3q1{2, vgpkq ă 0 for |k| ą pa{3q1{2.

If the initial data is a pulse with û0pkq localized near k “ 0, then the main part of the pulse propagates to
the right at velocity vgp0q “ a and shorter waves trail behind or even propagate backwards.

Example 1.6. Let us show that the standard wave equation

B2
t u “ c2∆u, x P Rn

is not dispersive. For n “ 1 this is obvious as the dispersion relation ω2 “ c2k2 has the linear solutions
W pkq “ ˘ck. In general we have

ω2 “ c2|k|2

with the Euclidean norm |k2| “ k21 ` ¨ ¨ ¨ ` k2n and solutions ω “ ˘W pkq “ ˘c|k|. Hence the Hessian entries

are pD2W pkqqi,j “ δi,j
1

|k|
´

kikj
|k|3

, i.e.

D2W pkq “
1

|k|

ˆ

I ´
1

|k|2
kkT

˙

.

Clearly D2W pkqk “ 0 and thus detpD2W q ” 0. In fact, as one easily checks, P pkq :“ I ´ 1
|k|2

kkT is a

projection onto the pn´ 1q-dimensional subspace orthogonal to k.

1.2.3 Local Wavenumber and Local Frequency

As we are about to show, the concepts of wavenumber, frequency and phase can be generalized from truly
periodic functions, where they describe the function globally, to functions that are locally close to periodic.
We will refer to such functions as local wave trains. One such example is the solution of a dispersive problem
after a long time. The main ideas of this discussion come from Section 11.4 in [26].

Let us �rst consider the long time asymptotics of a dispersive scalar equation in 1D (i.e. m “ n “ 1 in
Sec. 1.2.1) and assume

W P C2pp0,8qq, W 1pkq ą 0, W 2pkq ‰ 0 for all k ą 0. (1.23)

An example is W pkq “ k2. In Theorem 1.9 the equation

W 1pkq “
x

t
(1.24)

determines the dominant wavenumber k. Let us assume that x
t P W 1pp0,8qq. Then (1.24) de�nes for each

point px, tq one solution kpx, tq, which we call the local wavenumber. The dispersion relation ω “ W pkq

then de�nes the local frequency ωpx, tq. We also de�ne the local phase

θpx, tq “ xkpx, tq ´ tωpx, tq. (1.25)

With these de�nitions the asymptotic form (1.21) for t Ñ 8 becomes

upx, tq „ Apkpx, tq, tqeiθpx,tq, where Apk, tq “

ˆ

1

t|W 2pkq|

˙1{2

û0pkqe´i signpW2
pkqq

π
4 (1.26)

as t Ñ 8.
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On the other hand, if we are given an expression

Bpx, tqeiθpx,tq (1.27)

with some functions B and θ, we can de�ne the local wave number and local frequency as

kpx, tq :“ Bxθpx, tq, ωpx, tq “ ´Btθpx, tq. (1.28)

These formulas, of course, determine what we intuitively understand under wave number and frequency only
if B, Bxθ and Btθ vary slowly in x and t. Under these conditions we call (1.27) a local wave train. Roughly
speaking, a local wave train is a function which locally looks periodic. Note that because no asymptotic
parameter has been speci�ed in the above slowness condition for B, Bxθ and Btθ, a local wave train is not a
rigorous mathematical object.

Let us �rst check that the above two de�nitions of local wavenumber and frequency coincide. Indeed,
from (1.25) and W 1pkq “ x{t, ω “ W pkq we get

Bxθ “ k ` rx´W 1pkqtsBxk “ k (1.29)

Btθ “ ´ω ` rx´W 1pkqtsBtk “ ´ω. (1.30)

Next we show that the asymptotic approximation (1.26) of the solution of a dispersive problem is a local
wave train. Under the assumptions (1.23) this holds, for instance, for x in compact sets x

t P W 1prδ,Rqq with
arbitrary �xed 0 ă δ ă R. From W 1pkq “ x{t we get

W 2pkqBxk “ 1
t

so that
Bxk “ 1

tW2pkq
“ Opt´1q pt Ñ 8q.

Similarly
W 2pkqBtk “ ´ x

t2 “ ´W 1pkq 1
t

so that

Btk “ ´
W 1pkq

tW 2pkq
“ Opt´1q pt Ñ 8q.

Here we have used the boundedness of W 1 and the boundedness of W 2 away from zero. These follow because
W P C2,W 2pkq ‰ 0 for k ą 0 and because x

t P W 1prδ,Rqq implies that the solution of (1.24) satis�es
k P rδ,Rs.

From the dispersion relation we get ωpx, tq “ W pkpx, tqq and again, the boundedness ofW 1pkq for k P rδ,Rs

gives
Bxω “ Opt´1q and Btω “ Opt´1q.

Finally, for the amplitude A we �rst write Apk, tq “ t´1{2Ãpkq. Hence

d

dx
A “ Opt´1{2qÃ1Bxk “ Opt´3{2q (1.31)

d

dt
A “ Opt´3{2qÃ`Opt´1{2qÃ1Btk “ Opt´3{2q. (1.32)

1.2.3.1 Phase Velocity and Group Velocity for Local Wave Trains

Let us consider a local wave train (1.27) with the local wave number and frequency in (1.28). First, by cross
di�erentiation we get

Btk ` Bxω “ 0.
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If the local wave train describes a solution of a PDE with the dispersion relation ω “ W pkq, then Bxω “

W 1pkqBxk and k satis�es
Btk `W 1pkqBxk “ 0. (1.33)

Equation (1.33) is a nonlinear hyperbolic equation if the original PDE is dispersive, i.e. if W 2 ı 0. Interest-
ingly enough, nonlinear hyperbolic theory thus plays a role in linear dispersive PDEs. Equation (1.33) reveals
the fact which we observed in Theorem 1.9 for the asymptotics of dispersive PDEs, i.e. that k propagates
with the group velocity W 1pkq. The meaning of k has now been, however, generalized compared to Theo-
rem 1.9 and we conclude that for local wave trains the local wavenumber kpx, tq propagates at the velocity
W 1pkpx, tqq.

To look at the phase velocity, we choose a phase value θ0 P R. The wave front F “ tx P R : θpx, tq “ θ0u

satis�es

Bxθ
dx

dt
` Btθ “ 0

and so the front propagates at the velocity

dx

dt
“ ´

Btθ

Bxθ
“
ωpx, tq

kpx, tq
,

which agrees with our previous de�nition of phase velocity except that k and ω have been generalized.
The nature of the dynamics of local wave trains can be very well visualized with the help of so called

group lines and phase lines. A group line is a level set (in the px, tq plane) of the local wave number kpx, tq.
A phase line is the level set of the local phase θpx, tq.

Let us consider the case of a smooth W pkq and

vgpkq ą vppkq ą 0, v1
gpkq ą 0, v1

ppkq ą 0 for all k ą 0

vgp0q “ vpp0q “ 0, vgpkq, vppkq Ñ 8 for k Ñ 8.
(1.34)

Then the group lines x “ vgpkqt and and the phase lines dx
dt “ vppkq look qualitatively like in Fig. 1.2.3.1.

The group lines are always straight. The phase lines cannot be straight because the condition vpp0q “ 0 would

Figure 1.7: (from [26]) Group lines (full) and phase lines (dashed) for the case (1.34).

mean that group and phase lines coincide which is impossible by vgpkq ą vppkq. For the case vgpkq ą vppkq

a phase line thus has at each px, tq a larger slope than the group line going through this point. An observer
moving with the group velocity vgpk0q sees the local wavenumber k0 and keeps overtaking crests.
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Example 1.7. An example for the case (1.34) is W pkq “ k2 such that vgpkq “ 2k ą k “ vppkq for k ą 0 and

kpx, tq “
x

2t
, ωpx, tq “ W pkpx, tqq “

´ x

2t

¯2

, θpx, tq “ xkpx, tq ´ tωpx, tq “
x2

4t
.

The group lines are thus x
t “const. and the phase lines are x2

t “const.

1.2.4 Energy Propagation, In�nite Speed of Propagation

In this section we show that asymptotically for large times the group velocity in dispersive problems is also
the velocity of propagation of the L2-energy. First of all let us note that for dispersive problems the L2-norm
is conserved in the time evolution.

Theorem 1.11 (Conservation of the L2-norm). For dispersive equations (1.13) with m “ 1 and with initial
data up¨, 0q “ u0 P L2pRnq one has

}up¨, tq}L2pRnq “ }u0}L2pRnq for all t ą 0.

Proof. Using Plancherel's identity and the formulation of the solution in Fourier space ûpk, tq “ û0pkqe´iW pkqt,
we have

}up¨, tq}L2pRnq “ }ûp¨, tq}L2pRnq “ }û0e
´iW p¨qt}L2pRnq “ }û0}L2pRnq “ }u0}L2pRnq.

□

The case m ą 1 is left as an exercise. Here, in general, a di�erent energy than the square of the L2-norm
is conserved. Of course, in Theorem 1.11 it is not necessary that the problem is dispersive. Namely, the
condition W 2 ı 0 can be dropped.

A question which we now pose is how the solution spreads in terms of the L2-norm for large times. Let
us consider the 1D scalar case m “ n “ 1 with a smooth W let x1 ă x2 P R and de�ne

Qptq :“

ż x2

x1

|upx, tq|2 dx.

Assuming that for each x P rx1, x2s the equation W 1pk̃q “ x
t has a unique solution k̃, let

k̃1,2 “ pW 1q´1p
x1,2

t q.

If, in addition W 2pkq ‰ 0 for all k P rk̃1, k̃2s, then the asymptotics (1.21) produce

Qptq „
1

t

ż x2

x1

|û0pk̃pxqq|2

|W 2pk̃pxqq|
dx pt Ñ 8q.

With the substitution k̃ “ k̃pxq we get dx “ W 2pk̃qtdk̃ and

Qptq „

ż k̃2

k̃1

signpW 2pk̃qq|û0pk̃q|2 dk̃ “

ż maxtk̃1,k̃2u

mintk̃1,k̃2u

|û0pkq|2 dk pt Ñ 8q.

If k̃1, k̃2 are t´independent, then Q1ptq „ 0. This happens if we let x1 “ x1ptq “ W 1pk̃1qt and x2 “ x2ptq “

W 1pk̃2qt. In summary we have that the L2-norm stays asymptotically constant between any two group lines.

Theorem 1.12. Consider (1.14) with m “ n “ 1 under the assumption of dispersivity and with initial data
u0 P SpRq. Let k1 ă k2 P R and W 2pkq ą 0 for all k P R. Asymptotically for t Ñ 8 the L2´norm stays
constant between the two group lines x “ W 1pk1qt and x “ W 1pk2qt and

ż W 1
pk2qt

W 1pk1qt

|upx, tq|2 dx „

ż k2

k1

|û0pkq|2 dk pt Ñ 8q.
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Note that this result holds also for m ą 1.
The above result suggests that if in 1D the group velocity W 1pkq is unbounded, then the energy can be

carried arbitrarily far within any �nite time t. Let us assume that W 1pkq is unbounded from above. Then
this is because for a given t ą 0 and an interval rx1, x2s (with arbitrarily large x1, x2) we can �nd k1 and

k2 such that x1 “ W 1pk1qt and x2 “ W 1pk2qt. Choosing then u0 such that
şk2
k1

|û0pkq|2 dk ą 0, we have
şx2

x1
|upx, tq|2 dx ą 0.
This result is, however, only asymptotic for large times. Hence, we cannot immediately conclude an

in�nite speed of propagation. This will be proved next for arbitrary dimension n using the Paley-Wiener
theorem.

Theorem 1.13. (In�nite propagation speed in dispersive problems) Consider (1.13) with m “ 1 and with an
entire solution W of the dispersion relation. If there are c ą 0, θ P p´π, 0q Y p0, πq, a ą 1, j P t1, . . . , nu and
α̃ “ pα1, . . . , αj´1, αj`1, . . . , αnq P Rn´1 so that the dispersion relation satis�es

ImpW qpα1, . . . , αj´1, kj , αj`1, . . . , αnq ą c| Impkjq|a for all kj P Czt0u with argpkjq “ θ,

then there exist initial data u0 P L8pRnq with supppu0q compact so that the solution u satis�es

supppup¨, tqq is unbounded in Rn for all t ą 0.

Remark 1.2. As we will show in the proof, u0 can be chosen, for instance, as the characteristic function of
an n´dimensional interval centered at zero.

Proof. The function u0 constructed below satis�es u0 P L8pRnq with supppu0q compact so that u0 P L2pRnq

and the solution can be written in Fourier space as

ûpk, tq “ e´iW pkqtû0pkq for all k P Rn.

Due to the compact support of u0 the Paley-Wiener theorem A.11 guarantees that the Fourier transform û0
has an (analytic) extension to the complex k P Cn and we can write

ûpk, tq “ e´i RepW qpkR`ikIqteImpW qpkR`ikIqtû0pkR ` ikIq for all k “ kR ` ikI P Cn.

For all k “ pα1, . . . , αj´1, kj , αj`1, . . . , αnq with argpkjq “ θ we have

|ûpk, tq| ą ec1| Impkq|
at|û0pkq| (1.35)

with some constant c1 ą 0, where | Impkq|2 “
řn
j“1 Impkjq

2 and where we have used the inequality c2| Impkjq| ă

| Impkq| ă c3| Impkjq| for all kj P C and some c2, c3 ą 0, which holds since all entries in k other than kj are
�xed.

Due to a ą 1 in the estimate (1.35) the Paley-Wiener theorem produces the unbounded support of up¨, tq.
It remains, however, to show the existence of u0 such that û0 does not decay fast in the direction θ so that
the growth ec1| Impkq|

at in (1.35) is not canceled out. We choose

u0pxq “ χr´1,1spxjqfpx1, . . . , xj´1, xj`1, . . . , xnq

so that

û0pα1, . . . , αj´1, kj , αj`1, . . . , αnq “ f̂pα̃q

ˆ

2

π

˙1{2
sinpkjq

kj
.

Because sinpkjq grows exponentially in |kj | in all directions argpkjq except argpkjq P t0, πu, the growth of

ec1| Impkq|
at in (1.35) is not canceled out if f̂pα̃q ‰ 0. It remains to �nd f P L8pRn´1q with supppfq compact

and f̂pα̃q ‰ 0.
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If for all i P I :“ t1, . . . , j ´ 1, j ` 1, . . . , nu it is αi R πZ, then we can choose

fpx1, . . . , xj´1, xj`1, . . . , xnq “ ΠiPIχr´1,1spxiq

so that

f̂pα̃q “

ˆ

2

π

˙

n´1
2

ΠiPI
sinpαiq

αi
‰ 0.

If αi P πZ for all i P I0 Ă I and αi R πZ for all i P IzI0 , then we can set

fpx1, . . . , xj´1, xj`1, . . . , xnq “ ΠiPI0χr´1{2,1{2spxiqΠiPIzI0χr´1,1spxiq

so that

f̂pα̃q “

ˆ

2

π

˙

n´1
2

ΠiPI0
sinp 1

2αiq

αi
ΠiPIzI0

sinpαiq

αi
‰ 0,

where the value of sinpaxq{x for x “ 0 is de�ned as a via the limit. We have thus constructed u0 such that

|û0pα1, . . . , αj´1, kj , αj`1, . . . , αnq| “ |f̂pα̃q|

ˆ

2

π

˙1{2
sinpkjq

kj
Ñ 8

for |kj | Ñ 8, argpkjq “ θ. The solution satis�es for k “ pα1, . . . , αj´1, kj , αj`1, . . . , αnq with argpkjq “ θ

|ûpk, tq| ą ec1| Impkq|
at with a ą 1

and, as mentioned above, the Paley-Wiener theorem, implies an unbounded support of up¨, tq. □

Remark 1.3. The growth condition on ImpW q in Theorem 1.13 is satis�ed by generic dispersion rela-
tions with an unbounded group velocity. For instance, in one dimension, n “ 1, every polynomial W pkq “
řp
j“0 ajk

j with p ě 2, pap P Czt0uq satis�es this condition. To see this note that apk
p “ |ap||k|peipargpapq`pθq

if θ :“ argpkq. For θ ‰ 0, π it is kR “ cotpθqkI and apk
p “ |ap|p1 ` cot2pθqqp{2eipargpapq`pθq|kI |p. The growth

condition holds if sinpargpapq ` pθq ą 0 and θ P p´π, 0q Y p0, πq. One can choose, e.g.

argpapq ` pθ “ π
2 , i.e. θ “ π

2p ´
arg ap
p if argpapq R tπ2 , πp 1

2 ˘ pqu,

argpapq ` pθ “ π
4 , i.e. θ “ π

4p ´
arg ap
p if argpapq P tπ2 , πp 1

2 ˘ pqu.

Example 1.8. For the 1D Schrödinger equation iBtu ` B2
xu “ 0 the dispersion relation is W pkq “ k2. For

argpkq “ θ “ π{4 we get W pkq “ pkI ` ikIq2, such that ImpW qpkq “ 2k2I and Theorem 1.13 applies.

For equations with bounded group velocities one expects, on the other hand, a �nite speed of propagation.
For the Klein-Gordon equation this can be proved quite easily using the Paley-Wiener theorem.

Theorem 1.14. (Finite speed of propagation for the Klein-Gordon equation) Let f, g P L2pRq, supppfq Ă BR
and supppgq Ă BR with some R ą 0. Then the solution of the Klein-Gordon equation B2

t u´B2
xu`au “ 0, a ą 0

with upx, 0q “ fpxq, Btupx, 0q “ gpxq satis�es

supppup¨, tqq Ă BR`t for all t ě 0.

Proof. In the Fourier variables the problem reads d2

dt2 û “ ´pa ` k2qû, ûpk, 0q “ f̂pkq, d
dt ûpk, 0q “ ĝpkq. The

solution is

ûpk, tq “ f̂pkq cospt
a

a` k2q ` ĝpkq
sinpt

?
a` k2q

?
a` k2

.

First we show the analyticity of ûp¨, tq. The functions f̂pkq and ĝpkq are entire due to the assumption of
compact support of f and g and the Paley-Wiener theorem. The inner function k ÞÑ a` k2 is clearly entire.
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For z ÞÑ cosp
?
zq and z ÞÑ

sin
?
z

?
z

note that
?
z :“

a

|z|ei arg z{2 for argpzq P p´π, πs is analytic everywhere

except along the ray argpzq “ π where it is discontinuous. For z0 with argpz0q “ π the two distinct limits

of
?
z for z Ñ z0 are

?
z0 and ´

?
z0 and because the functions z ÞÑ cospzq and z ÞÑ

sinpzq

pzq
are even, the

compositions z ÞÑ cosp
?
zq and z ÞÑ

sin
?
z

?
z

are entire.

Next we check the growth condition on |ûpk, tq|, namely we need to show

|ûpk, tq| ď cptqp1 ` |k|qNepR`tq| Impkq| for some N P N, cptq ą 0 and all k P C. (1.36)

Let z “ u` iv. For | cospu` ivq| we have

| cospu` ivq| “
1

2
|eipu`ivq ` e´ipu`ivq| ď

1

2
pe´v ` evq ď e|v|.

Let us now look at | sinpu`ivq|

|u`iv|
. The case |u ` iv| ě 1 is analogous since | sinpu`ivq|

|u`iv|
ď | sinpu ` ivq| ď e|v|. The

case |u` iv| ă 1 needs a little more care. Using the identity sinpu` ivq “ sinpuq coshpvq ` i cospuq sinhpvq we
get

ˇ

ˇ

ˇ

ˇ

sinpu` ivq

u` iv

ˇ

ˇ

ˇ

ˇ

2

ď

ˇ

ˇ

ˇ

ˇ

sinpuq

u

ˇ

ˇ

ˇ

ˇ

2

cosh2pvq ` cos2puq

ˇ

ˇ

ˇ

ˇ

sinhpvq

v

ˇ

ˇ

ˇ

ˇ

2

ď 2 cosh2pvq ď 2e2|v|,

where in the second inequality one uses | sinhpvq| ď |v| coshpvq. Setting

u` iv :“ t
a

a` k2, (1.37)

we have

| cospt
a

a` k2q| ď e|v|,

ˇ

ˇ

ˇ

ˇ

sinpt
?
a` k2q

?
a` k2

ˇ

ˇ

ˇ

ˇ

ď t
?
2e|v|.

Writing k “ kR ` ikI , it remains to show that with the de�nition 1.37

|v| ď t|kI |.

From t2pa` k2q “ pu` ivq2 we have t2pa` k2R ´ k2I q “ u2 ´ v2 and t2kRkI “ uv, which can be combined into
v2pt2pa` k2R ´ k2I q ` v2q “ t4k2Rk

2
I and rewritten as

ˆ

v2 ` t2
a` k2R ´ k2I

2

˙2

“ t4
ˆ

a` k2R ` k2I
2

˙2

´ t4ak2I ď t4
ˆ

a` k2R ` k2I
2

˙2

,

where the inequality holds due to a ą 0. This implies v2 ď t2k2I and thus |v| ď t|kI |.

For f̂pkq and ĝpkq The Paley-Wiener theorem implies

|f̂pkq|, |ĝpkq| ď Cp1 ` |k|qNeR|kI | for some C ą 0, N P N and all k P C.

In summary we get (1.36) with cptq “ C
?
2p1 ` tq. □
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1.3 Smoothing E�ects of Dispersion: Schrödinger Equation

Similarly to parabolic equations certain dispersive equations possess a smoothing property. A singularity
can be qualitatively described by the presence of large local wavenumbers at the singularity location. While
in parabolic equations smoothing happens via a strong damping of large wavenumbers, in dispersive prob-
lems energy is conserved and smoothing occurs due to the di�erent velocities (group velocities) of distinct
wavenumbers. The heuristic idea is that a singularity is characterized by a wide range of local wavenumbers
- in particular by the presence of many large wavenumbers. Due to their di�erent velocities in dispersive
problems the singularity vanishes. For problems where the group velocity diverges to in�nity for |k| Ñ 8 the
smoothing is instantaneous.

Here we restrict our attention to the Schrödinger equation

iBtu` ∆u “0, x P Rn, t ą 0

up¨, 0q “u0 P L2pRnq
(1.38)

and present some classical rigorous results on its smoothing properties. In particular, we show below the
local smoothing result

u0 P L2pRnq ñ up¨, tq P H
1{2
loc pRnq for almost all t ą 0

as well as the global smoothing result

u0 P Lp
1

pRnq, p1 P r1, 2s,
1

p
`

1

p1
“ 1 ñ up¨, tq P LppRnq for all t ą 0.

Let us denote the solution operator of the Cauchy problem for the Schrödinger equation by

eit∆ : L2pRnq Ñ L2pRnq, up¨, tq “ eit∆u0.

It is the operator which produces the solution up¨, tq for given initial data u0.
As we have seen in Sec. 1.2.1, the solution of (1.38) can be written very succinctly using the Fourier

transform
ûpk, tq “ e´i|k|

2tû0pkq. (1.39)

Therefore, if u0 P SpRnq, Lemma A.7 can be used to get the solution formula in physical space: upx, tq “

p2πq´n{2
´´

e´i|¨|2t
¯

q˚ u0

¯

pxq. A direct calculation using (1.20) produces for u0 P SpRnq

upx, tq “ eit∆u0pxq “

ˆ

1

4πit

˙n{2 ż

Rn

ei
|x´y|2

4t u0pyqdy. (1.40)

This can be compared with the solution of the Cauchy problem for the heat equation in Rn, where upx, tq “
`

1
4πt

˘n{2 ş

Rn e
´

|x´y|2

4t u0pyqdy. Hence, formally, the solution of the Schrödinger equation can be obtained from
the solution of the heat equation by replacing t ⇝ it. Note that the expression on the right hand side of
(1.40) makes sense also for u0 P L1pRnq but then it may generally not be the classical solution of (1.38). We,
however, have

Theorem 1.15. If u0 P L1pRnq X L2pRnq and
ş

Rn |x|m|u0pxq|dx ă 8 for some m ě 2, then

upx, tq “

ˆ

1

4πit

˙n{2 ż

Rn

ei
|x´y|2

4t u0pyqdy

solves iBtu ` ∆u “ 0 in the classical sense and up¨, tq P CmpRnq for all t ‰ 0. If, in addition, u0 P C1
c pRnq,

then upx, tq Ñ u0pxq as t Ñ 0 for each x P Rn.
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Proof. The condition u0 P L1pRnq ensures that the integral formula (1.40) makes sense. Since

ż

Rn

|x´ y|p|u0pyq|dy ă 8

for all p ď m, the Lebesgue dominated convergence theorem implies that (1.40) can be di�erentiated m
times in x under the integral sign. By the same argument the integral can also be di�erentiated in t under
the integral sign. A direct calculation then produces iBtu ` ∆u “ 0. The Lebesgue dominated convergence
theorem also guarantees continuity of all the derivatives up to order m due to the continuity of polynomials

in x´ y and of ei
|x´y|2

4t .
The initial condition upx, tq Ñ u0pxq follows directly from the n´dimensional version of the stationary

phase approximation in Theorem B.8. □

Theorem 1.15 shows that decay of initial data translates into smoothness of the solution. This smoothing
can be heuristically understood based on dispersion. Because planewaves with large k travel faster for the
Schrödinger equation, the large local wavenumbers at singularities travel fast away to in�nity. At the same
time, large wavenumbers may come from in�nity and spoil the smoothness of u. When, however, the solution
is initially well localized, less can come from in�nity.

Distributional Solution of (1.38) We call u P S1pRn`1q a distributional solution of the di�erential
equation in (1.38) if

´iupBtφq ` up∆φq “ 0 for all φ P SpRn`1q.

It is left as an exercise to show that for u0 P L2pRnq the Fourier representation (1.39) generates via

upx, tq “ p2πq´n{2

ż

Rn

eik¨xe´i|k|
2tû0pkqdk (1.41)

a distributional solution and that the initial data are satis�ed in the L2-sense, i.e. }up¨, 0q ´u0p¨q}L2pRnq “ 0.

1.3.0.1 Properties of the Solution Operator eit∆

We investigate now some properties of the solution operator eit∆ : L2pRnq Ñ L2pRnq, u0 ÞÑ u de�ned by
(1.41). The proof of the following properties is left as an exercise.

1. Isometry
}eit∆f}L2pRnq “ }f}L2pRnq for all f P L2pRnq,

2.
eit∆eis∆ “ eipt`sq∆ and

`

eit∆
˘´1

“ e´it∆ for all t, s P R,

3.
ei0∆ “ Id,

4. for a �xed f P L2pRnq the map Φf : R Ñ L2pRnq, de�ned by

Φf : t ÞÑ Φf ptq “ eit∆f,

is continuous, i.e. it describes a curve in L2pRnq.

Remark 1.4. Any operator family tTtutPR which satis�es the properties (2-4) is called a one parameter
operator group. If tTtutPR satis�es only Tt`s “ Tt ˝ Ts for all t, s ě 0, T0 “ Id, and Ttf : R Ñ L2pRnq

continuous for any f P L2pRnq, then it is called a one parameter operator semigroup. For example, the
solution operator of the heat equation forms a semigroup.
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As the next lemma shows, eit∆ is an isometry not only in L2pRnq but also in HspRnq.

Lemma 1.16. The operator eit∆ is an isometry in HspRnq, s ą 0, i.e. }eit∆f}HspRnq “ }f}HspRnq for all
f P HspRnq.

Proof.

}eit∆f}Hs “ }p1 ` |k|sqe´i|k|
2tf̂}L2 “ }p1 ` |k|sqf̂}L2 “ }f}Hs .

□

This simple lemma has the important consequence that the Schrödinger equation �ow does not possess
global smoothing in the sense of HspRnq, i.e. if u0 P HspRnq and u0 R HrpRnq for some r ą s, then
eit∆u0 P HspRnq and eit∆u0 R HrpRnq.

1.3.0.2 Local Smoothing of the Schrödinger Equation

Here we prove the already advertised result

u0 P L2pRnq ñ up¨, tq P H
1{2
loc pRnq for almost all t ą 0.

The proof comes essentially from [14]. The �rst step is the following

Theorem 1.17. There is a constant c ą 0 such that for n “ 1

sup
xPR

ż 8

´8

|D1{2
x eit∆fpxq|2dt ď c}f}2L2pRnq, (1.42)

and for n ě 2 and every j P t1, . . . , nu

sup
xjPR

ż

Rn

|D1{2
xj
eit∆fpxq|2dx1 . . . dxj´1dxj`1 . . . dxndt ď c}f}2L2pRnq, (1.43)

where D
1{2
xj gpx, tq :“

`

|kj |
1{2ĝpk, tq

˘

qpx, tq.

Proof. For n “ 1 we write

D1{2
x eit∆f “

´

|k|1{2e´ik2tf̂
¯

q“

´

|k|1{2e´ik2tf̂`

¯

q

l jh n

“:h`

`

´

|k|1{2e´ik2tf̂´

¯

q

l jh n

“:h´

,

where f̂˘pkq :“ χR˘
pkqf̂pkq. Because

|D1{2
x eit∆f |2 ď |h`|2 ` |h´|2 ` 2|h`||h´| ď 2p|h`|2 ` |h´|2q

and
}f}2L2 “ }f̂}2L2 “ }f̂`}2L2 ` }f̂´}2L2 ,

it su�ces to show
ş

R |h˘px, tq|2dt ď c}f̂˘}2L2 .We present in detail the estimate for h`. For h´ the calculation
is analogous.

ż

R
|h`px, tq|2dt “

ż 8

´8

|D1{2
x eit∆f`|2dt “ p2πq´1

ż 8

´8

ˇ

ˇ

ˇ

ˇ

ż

R
|k|1{2eikxe´ik2tf̂`pkqdk

ˇ

ˇ

ˇ

ˇ

2

dt.
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Using the substitution r “ k2 (such that dk “ 1
2r

´1{2dr), we get

ż 8

´8

|D1{2
x eit∆f`|2dt “ c

ż 8

´8

ˇ

ˇ

ˇ

ˇ

ż 8

0

r´1{4eix
?
re´irtf̂`p

?
rqdr

ˇ

ˇ

ˇ

ˇ

2

dt.

Because f̂`pkq “ 0 for k ă 0, the inner integral equals
?
2π

´

r´1{4eix
?
rf̂`p

?
rq

¯

p̂tq. The Plancherel identity

thus yields
ż 8

´8

|D1{2
x eit∆f`|2dt “ c

ż 8

0

|r´1{4eix
?
rf̂`p

?
rq|2dr “ c

ż 8

0

|f̂`p
?
rq|2r´1{2dr.

Undoing the substitution, we get

ż 8

´8

|D1{2
x eit∆f`|2dt “ c

ż 8

0

|f̂`pkq|2dk “ c}f`}2L2pRq.

For h´ the calculation is analogous and one uses the substitution r “ ´k2.
For n ě 2 the same idea applies. Without loss of generality let us set j “ 1. We de�ne

f̂˘pkq :“ χR˘
pk1qf̂pkq, x :“ px2, . . . , xnqT , k :“ pk2, . . . , knqT .

Once again, we perform the proof only for f`. We use the transformation pr, kq :“ pk21`¨ ¨ ¨`k2n, k2, . . . , knq “:
Φpkq so that

detΦ “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2k1 2k2 . . . 2kn
0 1 0
...

...
. . .

...
0 0 . . . 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 2k1

and dk “ dk1dk “ |detΦ|´1drdk “ p2|k1|q´1drdk. We obtain

ż

Rn

|D1{2
x1
eit∆f`pxq|2dxdt “c

ż

Rn

ˇ

ˇ

ˇ

ˇ

ż

Rn

eik¨x|k1|1{2e´i|k|
2tf̂`pkqdk

ˇ

ˇ

ˇ

ˇ

2

dxdt

“c

ż

Rn

ˇ

ˇ

ˇ

ˇ

ż

Rn

eix1

?
r´|k|2pr ´ |k|2q´1{4eipk¨x´rtqf̂`pΦ´1pr, kqqdrdk

ˇ

ˇ

ˇ

ˇ

2

dxdt,

where only the branch k1 “

b

r ´ |k|2 was used since f̂`pkq “ 0 for k1 ă 0. The inner integral equals

p2πqn{2
´

pr ´ |k|2q´1{4eix1

?
r´|k|2 f̂`pΦ´1pr, kqq

¯̂
pt,´xq.

By the Plancherel identity
ż

Rn

|D1{2
x1
eit∆f`pxq|2dxdt “ c

ż

Rn

ˇ

ˇ

ˇ
pr ´ |k|2q´1{4eix1

?
r´|k|2 f̂`pΦ´1pr, kqq

ˇ

ˇ

ˇ

2

drdk

“ c

ż

Rn

ˇ

ˇ

ˇ
f̂`pΦ´1pr, kqq

ˇ

ˇ

ˇ

2

pr ´ |k|2q´1{2drdk,

and �nally undoing the change of variables,
ż

Rn

|D1{2
x1
eit∆f`pxq|2dxdt “ c

ż

Rn

ˇ

ˇ

ˇ
f̂`pkq

ˇ

ˇ

ˇ

2

dk “ c}f`}2L2pRnq

with c independent of x1. For f´ the calculation is analogous and one uses the substitution Φpkq “

p´|k|2, k2, . . . , knq. □
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Corollary 1.18. For all f P L2pRnq and R ą 0

ż 8

´8

ż

|x|ďR

ˇ

ˇ

ˇ
D1{2
x eit∆f

ˇ

ˇ

ˇ

2

dxdt ď cR}f}2L2pRnq,

where D
1{2
x gpx, tq :“

`

|k|1{2ĝpk, tq
˘

q

px, tq.

Proof. (of Corollary 1.18) For n “ 1 the statement follows directly from (1.42).
For n ą 1 let us �rst de�ne the sectors Dj :“ tk P Rn : |kj | ą 1?

2n
|k|u, j “ 1, . . . , n. It is easy to see that

Yn
j“1Dj “ Rnzt0u. We choose next a partition of unity tφju

n
j“1 on the open set Rnzt0u such that

φj P C8, suppφj Ă Dj , 0 ď φj ď 1,
n

ÿ

j“1

φj “ 1.

To prove the statement we need to somehow carry the estimates on each partial half-derivative D
1{2
xj in

(1.43) over to an estimate on the D
1{2
x derivative. The main idea is that this can be done in each sector Dj

due to the estimate |k| ď c|kj |.
For f P L2pRnq de�ne

f̂j :“ f̂φj , ĝ :“ |k|1{2f̂ , ĝj :“ φj ĝ.

Clearly, f̂ “
řn
j“1 f̂j . We also have the estimate

}|kj |
´1{2ĝj}L2pRnq ď c}f̂}L2pRnq (1.44)

because }|kj |
´1{2ĝj}L2pRnq “ }|kj |

´1{2ĝj}L2pDjq ď c}|k|´1{2ĝj}L2pRnq ď c}|k|´1{2ĝ}L2pRnq “ c}f̂}L2pRnq, where
the last step follows from |ĝj | “ |φj ĝ| ď |ĝ|.

We can now estimate

ż 8

´8

ż

|x|ďR

ˇ

ˇeit∆g
ˇ

ˇ

2
dxdt ď c

n
ÿ

j“1

ż 8

´8

ż

|x|ďR

ˇ

ˇeit∆gj
ˇ

ˇ

2
dxdt “ c

n
ÿ

j“1

ż 8

´8

ż

|x|ďR

ˇ

ˇ

ˇ
p|kj |

1{2e´it|k|
2

|kj |
´1{2ĝjqq

ˇ

ˇ

ˇ

2

dxdt

ď c
n

ÿ

j“1

ż

|xj |ďR

ż

Rn

ˇ

ˇ

ˇ
p|kj |

1{2e´it|k|
2

|kj |
´1{2ĝjqq

ˇ

ˇ

ˇ

2

dxdt

ď Rc
n

ÿ

j“1

}|kj |
´1{2ĝj}

2
L2pRnq,

where the last step follows from the 1D estimate (1.42) and the Plancherel identity. Using now (1.44), we
obtain

ż 8

´8

ż

|x|ďR

ˇ

ˇeit∆g
ˇ

ˇ

2
dxdt ď Rcn}f̂}2L2pRnq.

This is the estimate in the corollary because eit∆g “

´

|k|1{2e´it|k|
2

f̂
¯

q“ D
1{2
x eit∆f .

□

The shift invariance x ÞÑ x ` x0, x0 P Rn of the Schrödinger equation implies that eit∆fp¨ ` x0q “

peit∆fqp¨ ` x0q such that

sup
x0PRn

ż 8

´8

ż

xPBRpx0q

ˇ

ˇ

ˇ
D1{2
x eit∆f

ˇ

ˇ

ˇ

2

dxdt ď cR}f}2L2pRnq
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and hence }D
1{2
x eit∆f}L2

loc

ă 8 for almost all t P R. From the L2-isometry of eit∆ we also have }eit∆f}L2 “

}f}L2 ă 8 for all t P R. In summary

eit∆f P H
1{2
loc for almost all t P R,

where
Hs

locpRnq “ tu : Rn Ñ C : ψu P HspRnq for all ψ P C8
0 pRnqu.

Clearly, functions f P Hs
locpRnq are those, for which f |Ω “ g|Ω with some g P HspRnq for every compact set

Ω Ă Rn.

1.3.0.3 Global Smoothing of the Schrödinger Equation

As we mentioned already after Lemma 1.16, the Schrödinger group eit∆ does not have global smoothing in
the sense of HspRnq, i.e. in general f P HspRnq does not imply eit∆f P HrpRnq with r ą s. There is,
however, a global smoothing in Lp spaces.

Theorem 1.19. Let 1
p ` 1

p1 “ 1, p1 P r1, 2s and t ‰ 0. Then the operator eit∆ : Lp
1

pRnq Ñ LppRnq is
continuous and

}eit∆f}LppRnq ď c|t|
´ n

2 p
1
p1 ´

1
p q

}f}Lp1
pRnq.

Note that for p1 ă 2 is p ě p1 so that eit∆f is, indeed, more regular than f in the sense that the blowup
at singularities must be milder. If f P L1, then Theorem 1.19 implies eit∆f P L8. For p1 “ 2 the theorem
provides nothing else than what we already know from the isometry property of eit∆ in L2.

One can easily show that the result is sharp, i.e. that for a given p ě 2 and r ą p there are f P Lp such
that eit∆f R Lr. Take namely g P Lp

1

zLr with 1{p ` 1{p1 “ 1 and let f :“ e´it∆g. Then f P Lp due to
Theorem 1.19 and eit∆f “ g R Lr.

To prove Theorem 1.19, we need the Riesz-Thorin interpolation theorem and a simple form of the Young's
inequality for convolutions. Here we prove only the latter one.

Theorem 1.20. (Riesz-Thorin interpolation theorem) Let T be bounded as an operator T : Lp0pRnq Ñ

Lq0pRnq as well as T : Lp1pRnq Ñ Lq1pRnq with 1 ď p0, p1, q0, q1 ď 8. De�ne

M0 :“ }T }Lp0ÑLq0 and M1 :“ }T }Lp1ÑLq1 .

Then is T : Lpθ pRnq Ñ Lqθ pRnq bounded and

Mθ ď M1´θ
0 Mθ

1 ,

where
1

pθ
“

1 ´ θ

p0
`

θ

p1
,

1

qθ
“

1 ´ θ

q0
`

θ

q1
, θ P p0, 1q, (1.45)

and Mθ :“ }T }Lpθ ÑLqθ .

For the proof see Theorem 2.1 in [14].

Lemma 1.21. (Young's inequality for convolutions) Let f P L1pRnq, g P LppRnq and 1 ď p ď 8. Then

}f ˚ g}LppRnq ď }f}L1pRnq}g}LppRnq.

Proof. The case p “ 8 is simple

|pf ˚ gqpxq| “

ˇ

ˇ

ˇ

ˇ

ż

Rn

fpx´ yqgpyqdy

ˇ

ˇ

ˇ

ˇ

ď }g}L8pRnq

ż

Rn

|fpx´ yq|dy “ }g}L8pRnq}f}L1pRnq.
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For 1 ď p ă 8 one argues using the Hölder inequality. With 1
p ` 1

p1 “ 1 we get

ż

Rn

|fpx´ yqgpyq|dy “

ż

Rn

|fpx´ yq|
1
p1 |fpx´ yq|

1
p |gpyq|dy

ď

ˆ
ż

Rn

|fpx´ yq|dy

˙
1
p1

ˆ
ż

Rn

|fpx´ yq||gpyq|pdy

˙
1
p

“ }f}
1
p1

L1pRnq

ˆ
ż

Rn

|fpx´ yq||gpyq|pdy

˙
1
p

such that
ż

Rn

ˇ

ˇ

ˇ

ˇ

ż

Rn

|fpx´ yqgpyq|dy

ˇ

ˇ

ˇ

ˇ

p

dx ď }f}

p

p1

L1pRnq

ż

Rn

ż

Rn

|fpx´ yq||gpyq|pdydx

“ }f}

p

p1

L1pRnq

ż

Rn

ż

Rn

|fpx´ yq|dx|gpyq|pdy “ }f}
p
L1pRnq

}g}
p
LppRnq

,

where Tonelli's theorem for non-negative functions has been used to interchange the order of integration. □

Let us now prove Theorem 1.19.
Proof. (of Theorem 1.19) The case p “ p1 “ 2 follows by the isometry of eit∆. For p1 “ 1, p “ 8 we have

}eit∆f}L8 “ }p4πitq´n{2ei
|¨|2

4t ˚ f}L8 ď }p4πitq´n{2ei
|¨|2

4t }L8 }f}L1 ď c|t|´
n
2 }f}L1 .

Hence, we have that eit∆ is bounded as an operator eit∆ : L2pRnq Ñ L2pRnq with M1 :“ }eit∆}L2ÑL2 “ 1
and as an operator eit∆ : L1pRnq Ñ L8pRnq with M0 :“ }eit∆}L1ÑL8 “ c|t|´

n
2 .

For p1 P p1, 2q we can thus use the Riesz-Thorin Theorem 1.20 with p1 “ q1 “ 2, p0 “ 1, q0 “ 8 and
pθ “ p1, qθ “ p. Indeed, we show that there is θ P p0, 1q such that (1.45) holds. The second equation in (1.45)
reads 1{p “ θ{2 which holds if we set θ :“ 2{p. Clearly, θ P p0, 1q as p P p2,8q. The �rst equation reads
1 ´ θ{2 “ 1{p1, which hold due to the choice of θ and 1{p` 1{p1 “ 1.

In conclusion eit∆ is bounded as eit∆ : Lp
1

Ñ Lp with

}eit∆f}Lp ď M1´θ
0 Mθ

1 }f}Lp1 “ c|t|
´ n

2 p
1
p1 ´

1
p q

}f}Lp1 .

□

Much more can be said about the smoothing properties of the Schrödinger equation and of other linear
dispersive equations with unbounded group velocities. For example, the linear Korteweg-de Vries equation
Btu ` B3

xu “ 0, x P R satis�es a property similar to the above local smoothing of the Schrödinger equation;
namely for s P r0, 1s and u0 P L2pRq one has

sup
xPR

ż

R
|Dsupx, tq|2dt ď c|t|

1´s
3 }u0}L2pRnq,

see [5].
Many results go under the name of Strichartz estimates, see e.g. [14] and [23]. For example, for the

Schrödinger equation one has
}eit∆f}Lq

tL
r
xpRˆRnq ď c}f}L2pRnq

if 2 ď q, r ď 8, 2{q ` n{r “ n{2 and pq, r, nq ‰ p2,8, 2q, see Theorem 2.3 in [23].
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1.4 Waves in Periodic Structures

As a natural generalization of wave problems in homogenous media we consider those in periodic media, i.e.
those modeled by PDEs with spatially periodic coe�cients. This setting is also physically highly relevant
with some classical examples being light in photonic crystals, electron waves in atomic crystalline structures,
elastic waves in periodically arranged mechanic constructions or Bose-Einstein condensates in optical lattices.

For the sake of simplicity of the presentation we restrict here to waves in one spatial dimension.

1.4.1 Bloch Transformation

A basic tool in the analysis of waves in periodic media is the Bloch transformation. It is a generalization
of the Fourier transformation. Its de�nition is motivated by the following calculation. For f P SpRq and an
arbitrary constant L ą 0 we get by a simple calculation

fpxq “ p2πq´1{2

ż

R
eikxf̂pkqdk “ p2πq´1{2

ÿ

mPZ

ż

π
L

´
π
L

eipk`m
2π
L qxf̂pk `m 2π

L qdk “ p2πq´1{2

ż

π
L

´
π
L

eikxf̃px, kqdk,

(1.46)
where

f̃px, kq :“
ÿ

mPZ
f̂

`

k `m 2π
L

˘

eim
2π
L x (1.47)

and where in the last step of the calculation the order of integration and summation was exchanged using
Fubini's theorem with the counting mass.

The Bloch transformation is the operator T : f ÞÑ T pfq :“ f̃ .
Next we prove some simple properties of T which are useful for the analysis of PDEs with periodic

coe�cients.

Lemma 1.22. For all f P SpRq, x, k P R, and p P N is

(i) f̃px` L, kq “ f̃px, kq,

(ii) f̃
`

x, k ` 2π
L

˘

“ e´i
2π
L xf̃ px, kq,

(iii) T pBpxfqpx, kq “ pBx ` ikqpf̃px, kq,

(iv) T pV fqpx, kq “ V pxqf̃px, kq if V P CpRq, piecewise C1pRq and V px` Lq “ V pxq for all x P R.

Proof. Properties (i) and (ii) follow directly from the de�nition (1.47). For (iii) we use property (A.3) for the
Fourier transform of the derivative:

T pBpxfqpx, kq “
ÿ

mPZ
ip

`

k ` 2mπ
L

˘p
f̂

`

k ` 2mπ
L

˘

ei
2mπ
L x

“
ÿ

mPZ
pBx ` ikq

p

ˆ

f̂
`

k ` 2mπ
L

˘

ei
2mπ
L x

˙

“ pBx ` ikqpf̃px, kq.

For (iv) we write �rst V as a Fourier series (which converges pointwise due to the assumptions on V ):

V pxq “
ÿ

jPZ
Vje

ij
2π
L x, Vj P C for all j P Z.



CHAPTER 1. LINEAR WAVES 33

Using the relation

ˆ

eij
2π
L ¨fp¨q

˙̂
pkq “ f̂

`

k ´ j 2πL
˘

, we obtain

T pV fqpx, kq “
ÿ

mPZ

ÿ

jPZ
Vj f̂

`

k ` pm´ jq 2π
L

˘

eim
2π
L x

“
ÿ

jPZ
Vje

ij
2π
L x

ÿ

mPZ
f̂

`

k ` pm´ jq 2π
L

˘

eipm´jq
2π
L x

“ V pxqf̃px, kq.

□

In other words, the Bloch transformation produces a family of L-periodic functions parametrized by
k P p´π{L, π{Ls. We denote this interval by

B :“ p´π{L, π{Ls.

In Section 1.4.2 we will study the application of this transform to problems with L´periodic coe�cients. In
that setting B is called the �rst Brillouin zone. The restriction to k P B is possible due to the periodicity
relation in Lemma 1.22 (ii). The Bloch transform commutes with L´periodic functions and its action on the
derivative produces the shifted derivative Bx ` ik.

In order to put the Bloch transform in a proper functional analytic setting, we de�ne the spaces

Hs
mpRq :“tu P HspRq : }u}Hs

mpRq :“ }uρ}HspRq ă 8, where ρpxq “ p1 ` x2qm{2u,

Zsm :“Hm
bppB, Hsp0, Lqq “ closureHmpB,Hsp0,LqqC

8
bppB, Hsp0, Lqq,

C8
bppB, Hsp0, Lqq :“ tu : B Ñ Hsp0, Lq, k ÞÑ up¨, kq : Dv P C8pR, Hsp0, Lqq

with v
`

x, k ` 2π
L

˘

“ e´i
2π
L xv px, kq , u “ v|kPB

*

,

and prove the following theorem (cf. Lemma 5.4 in [21]).

Theorem 1.23. For each s,m P N0 the Bloch transform T is an isomorphism from Hs
mpRq to Zsm.

Remark 1.5. This should be compared with the Fourier transform, which is an isomorphism from Hs
mpRq

to Hm
s pRq. Also note that for m “ 0 the isomorphism is from HspRq to L2

bppB, Hsp0, Lqq.

Proof. Let us �rst denote the operator given by (1.46) as T1 : f̃ ÞÑ f . It is a direct calculation to show that
for u P SpRq is T1T u “ u and for ũ P C8

bppB, Hsp0, Lqq is T T1ũ “ ũ.
The idea of the proof is to �rst show that T and T1 are uniformly continuous maps de�ned on S and

C8
bp respectively and because S is dense in Hs

m and C8
bp is dense in Zsm, Lemma 1.24 provides continuous

extensions on the larger spaces. The fact that T1 “ T ´1 on the dense subspace then guarantees that the
extensions are also the inverse of each other.

We �rst show the L2-isometry (up to the factor L).

}u}2L2pRq “}û}L2pRq “
ÿ

mPZ

ż π
L

´ π
L

ˇ

ˇû
`

k `m 2π
L

˘ˇ

ˇ

2
dk “

ż π
L

´ π
L

ÿ

mPZ

ˇ

ˇû
`

k `m 2π
L

˘ˇ

ˇ

2
dk

“
1

L

ż π
L

´ π
L

ż L

0

|ũpx, kq|2dxdk “
1

L
}ũ}2L2pB,L2p0,Lqq,

where the sum and the integral were exchanged using the Fubini theorem with the counting mass and where

in the one but last step
şL

0
|ũpx, kq|2dx “ L

ř

mPZ
ˇ

ˇû
`

k `m 2π
L

˘
ˇ

ˇ

2
follows from

şL

0
eipm´nq

2π
L x

“ 0 for all
m,n P Z,m ‰ n.
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For the proof of the uniform continuity of T1 : C8
bp Ñ S we use the following relations for the Fourier

transform F . For all p, j P N0

F´1pB
p
kf̂qpxq “ p´ixqpfpxq, F´1pB

p
kB̂
j
xfqpxq “ p´ixqpBjxfpxq.

Hence, for some constants cp, c̃p ą 0, p P t0, . . . ,mu and all ũ P C8
bp

}u}2Hs
mpRq “

s
ÿ

j“0

ż

R
|Bjxupxq|2p1 ` x2qmdx “

m
ÿ

p“0

cp

s
ÿ

j“0

ż

R
|B
p
kB̂
j
xu|2dk “

m
ÿ

p“0

cp

s
ÿ

j“0

ż

R
|B
p
kppikqj ûq|2dk

ď

m
ÿ

p“0

c̃p

s
ÿ

j“0

ż

R
k2j |Bpkû|2dk “

m
ÿ

p“0

c̃p

s
ÿ

j“0

ÿ

nPZ

ż

π
L

´
π
L

`

k ` n 2π
L

˘2j ˇ

ˇB
p
kû

`

k ` n 2π
L

˘
ˇ

ˇ

2
dk

ďc
m
ÿ

p“0

s
ÿ

j“0

ż

π
L

´
π
L

ÿ

nPZ

`

n 2π
L

˘2j ˇ

ˇB
p
kû

`

k ` n 2π
L

˘
ˇ

ˇ

2
dk “

c

L

m
ÿ

p“0

s
ÿ

j“0

ż

π
L

´
π
L

ż L

0

|BjxB
p
kũpx, kq|2dxdk “

c

L
}ũ}2Zs

m
.

Analogously, one shows that }ũ}Zs
m

ď c2}u}Hs
mpRq for all u P S and some c2 ą 0. Clearly, T : S Ñ C8

bp is
uniformly continuous since }T pf´gq}Zs

m
ď

?
c2}f´g}Zs

m
and similarly T1 : C8

bp Ñ S is uniformly continuous.

Using Lemma 1.24 there is a unique continuous extension of T 1 to Zsm and of T to Hs
m. We denote these

extensions again by T1 and T respectively.
It remains to show that T1 “ T ´1. Note that T1T “ I and T T1 “ I on dense subspaces. Let u P Hs

m and
choose an approximating sequence punqnPN Ă S such that }un ´ u}Hs

m
Ñ 0 as n Ñ 8. Then

}T1T u´ u}Hs
m

ď lim
nÑ8

`

}T1T un ´ T1T u}Hs
m

` }T1T un ´ un}Hs
m

` }un ´ u}Hs
m

˘

“ 0

because T1T un “ un and T1T is continuous. Analogously one shows T T1 “ I. □

Lemma 1.24. Let X and Y be two metric spaces, where Y is complete. Let A Ă X be a dense subset and
f : A Ñ Y be uniformly continuous. Then f has a unique continuous extension g : X Ñ Y .

For the proof see e.g. Theorem I.6.17 in [8].

1.4.2 Application of the Bloch Transformation to the Analysis of PDEs with

Periodic Coe�cients

Let us consider for the sake of simplicity only scalar equations in one spatial dimension of the form

Btu`

p
ÿ

j“0

αjpxqBjxu “ 0, x P R, t ą 0, upx, 0q “ u0pxq (1.48)

with
αjpx` Lq “ αjpxq for all x P R.

After the application of T to (1.48) we get the following periodic system parametrized by k P B

Btũ`

p
ÿ

j“0

αjpxqpBx ` ikqj ũ “ 0, x P r0, Ls, ũpx, k, 0q “ ũ0px, kq. (1.49)

Assuming that the operator

Lp¨, kq : Hs
perp0, Lq Ñ Hs´p

per p0, Lq, ũ ÞÑ

p
ÿ

j“0

αjp¨qpBx ` ikqj ũp¨, kq
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is skew symmetric and has a compact resolvent, i.e.

pLp¨, kq ´ λIq´1 : Hs
perp0, Lq Ñ Hs

perp0, Lq

is compact for some λ in the resolvent set of Lp¨, kq (and hence automatically for all λ in the resolvent set),
then a standard result of functional analysis is that

� the spectrum σpLp¨, kqq is imaginary, at most countable, has no accumulation points and is given by

σpLp¨, kqq “ YnPNtiωnpkqu, where ωnpkq P R for all n P N,

� for each k P B the eigenfunctions ppnp¨, kqqnPN of Lp¨, kq form (after a proper normalization) an or-
thonormal basis of L2p0, Lq.

Therefore, we have for any f P L2p0, Lq the expansion fpxq “
ř

nPN Fnpkqpnpx, kq with some pFnpkqqnPN Ă C.
Applying this expansion to ũp¨, k, tq and ũ0p¨, kq such that

ũpx, k, tq “
ÿ

nPN
Unpk, tqpnpx, kq, ũ0px, kq “

ÿ

nPN
U0,npkqpnpx, kq,

problem (1.49) becomes

BtUnpk, tq ` iωnpkqUnpk, tq “ 0, k P B, n P N, t ą 0, Unpk, 0q “ U0,npkq.

This is a (in�nite dimensional) system of decoupled ODEs parametrized by k P B. The solution is clearly

Unpk, tq “ e´iωnpkqtU0,npkq.

For the transformed variable ũ we get ũpx, k, tq “
ř

nPN pnpx, kqU0,npkqe´iωnpkqt and hence the solution of
(1.48) is given by

upx, tq “ p2πq´1{2

ż

B

ÿ

nPN
pnpx, kqU0,npkqeipkx´ωnpkqtqdk.

In analogy with constant coe�cient problems discussed in Section 1.2.1, the sequence pωnpkqqnPN plays the
role ofW pkq, i.e. of the solution of the dispersion relation. The image YnPNωnpBq is called the band structure.
The pair pωnpkq, pnpx, kqq is for each k P B, n P N an eigenpair of the Bloch eigenvalue problem

Lpx, kqpnpx, kq “ iωnpkqpnpx, kq, x P p0, Lq

pnpL, kq “ pnp0, kq.
(1.50)

The functions Ψ
pkq
n px, tq :“ pnpx, kqeipkx´ωnpkqtq are called Bloch waves and are a generalization of the plane

waves eipkx´ωtq in the constant coe�cient case. The group velocity of the Bloch wave is given by ω1
npkq.

1.4.2.1 Asymptotics for t Ñ 8, xt “ c P R

Just like in Section 1.2.2 for constant coe�cient problems, we show here that an observer moving at the
velocity c sees after a long time basically only Bloch waves with the group velocity equal to c. Indeed, writing
the solution as

upx, tq “ p2πq´1{2

ż

B

ÿ

nPN
pnpx, kqU0,npkqe´iχnpkqtdk, χnpkq “ ωnpkq ´ k xt ,

we use the method of stationary phase (Theorem B.7) for t Ñ 8, x{t “ c to get

upx, tq „
ÿ

tpn,k̃qPNˆB:ω1
npk̃q“cu

ˆ

1

t|ω2
npk̃q|

˙1{2

U0,npk̃qpnpx, k̃qe´isignpω2
npk̃qq

π
4 eipk̃x´ωnpk̃qtq

if ω2
npkq ‰ 0 for all pn, kq P N ˆ B such that ω1

npk̃q “ c.
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1.5 Water Waves

In this section we derive equations for waves at a free interface of air and a �uid. We make several simplifying
assumptions. Firstly, we consider only incompressible inviscid �uids in a constant gravitational �eld. Water
in a standard situation satis�es these conditions to a high extent.

The starting point of our derivation are the Euler equations

Btu⃗` pu⃗ ¨ ∇qu⃗ “ ´
1

ρ
∇p´ gj⃗, (1.51a)

∇ ¨ u⃗ “0, (1.51b)

where u⃗ “ pu1, u2, u3qT is the �uid velocity vector, p is the pressure, g is the acceleration due to gravity
(« 9.8m{s2), ρ is the density, and j⃗ “ p0, 0, 1qT . Equation (1.51a) describes the conservation of momentum
while (1.51b) is the incompressibility condition.

Note that pu⃗ ¨ ∇qu⃗ “ p
ř3
j“1 ujBju1,

ř3
j“1 ujBju2,

ř3
j“1 ujBju3qT coincides with p∇u⃗qu⃗, where ∇u⃗ is the

Jacobian matrix of u⃗.
In the �eld of �uid mechanics it is common to use the notation of the material derivative Dtw⃗ :“

Btw⃗ ` pu⃗ ¨ ∇qw⃗. The following calculation motivates this concept by showing that the rate of change of a
quantity at a material point (i.e. a �uid paricle) �owing with the �uid is given by the material derivative.
Let xpt;x0q be the position of a particle (material point) moving with the �uid and being at the point x0 at
t “ 0. Then

Btxpt;x0q “ u⃗pxpt;x0q, xq, xp0;x0q “ x0.

Let now w⃗px, tq be a physical quantity at px, tq. w⃗pxpt;x0q, tq is then this quantity at the above material
point and the chain rule yields

d

dt
w⃗pxpt;x0q, tq “Btw⃗pxpt;x0q, tq ` Btx1pt;x0qBx1

w⃗pxpt;x0q, tq ` ¨ ¨ ¨ ` Btx3pt;x0qBx3
w⃗pxpt;x0q, tq

“Btw⃗pxpt;x0q, tq ` pu⃗pxpt;x0q, tq ¨ ∇q w⃗pxpt;x0q, tq “ pDtw⃗qpxpt;x0q, tq.

The material derivative of a quantity w⃗ thus describes the temporal rate of change of w⃗ along the trajectory
of particles �owing with the �uid.

Applying Dt to the velocity �eld u⃗, the Euler equation (1.51a) reads

Dtu⃗ “ ´
1

ρ
∇p` gj⃗. (1.52)

We restrict our attention to irrotational �ows, i.e. we have zero vorticity

∇ ˆ u⃗ ” 0.

This is justi�ed by the following discussion in which we show that if a �ow is irrotational at the initial time,
then it remains so for all times. First, a direct calculation, see e.g. [16], produces for the vorticity ω⃗ :“ ∇ˆ u⃗

Dtω⃗ “ pω⃗ ˆ ∇qu⃗.

We will apply the following general result from [16].

Lemma 1.25. Let xpt;x0q be the trajectory of a material point in a smooth velocity �eld u⃗px, tq, such that

Btxpt;x0q “ u⃗pxpt;x0q; tq, xp0;x0q “ x0, (1.53)

and let h⃗px, tq be a smooth vector �eld. Then

Dth⃗ “ p⃗h ¨ ∇qu⃗, h⃗px0, 0q “ h⃗0px0q (1.54)

if and only if
h⃗pxpt;x0q, tq “ ∇x0xpt;x0q⃗h0px0q.
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Proof. Di�erentiating equation (1.53) with respect to x0, we have

d

dt
∇x0

xpt;x0q “ ∇u⃗pxpt;x0q, tq∇x0
xpt;x0q,

where ∇u⃗ and ∇x0x are 3 ˆ 3 Jacobian matrices. Hence

d

dt
∇x0

xpt;x0qh⃗0px0q “ ∇u⃗pxpt;x0q, tq∇x0
xpt;x0qh⃗0px0q.

Equation (1.54) is equivalent to

Dth⃗ “
d

dt
h⃗pxpt;x0q, tq “ ∇u⃗pxpt;x0q, tq⃗hpxpt;x0q, tq

because p⃗h ¨ ∇qu⃗ “ p∇u⃗q⃗h.

Hence, h⃗pxpt;x0q, tq and ∇x0
xpt;x0qh⃗0px0q satisfy the same initial value ODE problem with the initial

data
h⃗0px0q.

Due to the uniqueness of the ODE solutions, we have the equivalence. □

Applying this lemma to h⃗ “ ω⃗ with ω⃗p¨, 0q ” 0, we get ω⃗p¨, tq ” 0 for all t ą 0.

Using now the Helmholtz decomposition

u⃗ “ ∇ ˆ ψ⃗ ` ∇φ

with ψ⃗px, tq P R3, φpx, tq P R, the zero vorticity condition allows us to set u⃗ equal to a gradient

u⃗ “ ∇φ.

In other words, we can consider the so called potential �ow. Equation (1.51a) now becomes

∇
ˆ

Btφ`
1

2
|∇φ|2 `

p´ p0
ρ

` gx3

˙

“ 0

for an arbitrary constant p0 P R. Thus

Btφ`
1

2
|∇φ|2 ` gx3 “

p0 ´ p

ρ
`Bptq

for arbitrary scalar functions Bptq. Because adding an x´independent function to φ does not alter u⃗, we can

replace φpx, tq by φpx, tq `
şt

0
Bpsqds and obtain the �nal form

Btφ`
1

2
|∇φ|2 ` gx3 “

p0 ´ p

ρ
, (1.55a)

∆φ “0. (1.55b)

1.5.0.1 Free Interface of Water and Air

We consider water on a perfectly �at bottom. The depth of the water at rest is h0 ą 0, measured along the
vertical direction x3. The surface of the water at rest is the plane x3 “ 0 and in general it is described by

x3 “ ηpx1, x2, tq.

We make now three standard assumptions. Firstly it is the kinematic condition that water particles on
the surface stay there for all time. Secondly, the dynamic condition says that the interface has no mass and
lastly we assume no �ow through the bottom at x3 “ ´h0.
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Figure 1.8: A schematic of a free interface between air and water.

1. The kinematic condition, i.e. that water particles on the surface stay on the surface for all time can be
formulated as

vF “ vI on x3 “ ηpx1, x2, tq, (1.56)

where vF is the speed of the water in the normal direction to the surface and vI is the speed of the
surface itself in the normal direction. The interface is de�ned as

F px1, x2, x3, tq :“ x3 ´ ηpx1, x2, tq “ 0,

i.e. as the level set F “ 0. The normal n of the interface is thus the gradient of F

n “ ∇F “
1

a

pBx1
ηq2 ` pBx2

ηq2 ` 1

ˆ

´Bx1η

´Bx2
η

1

˙

.

Hence we have

vI “ n ¨ ˙⃗x “ n ¨

ˆ

ẋ1
ẋ2

ẋ1Bx1
η`ẋ2Bx2

η`Btη

˙

“
Btη

a

pBx1
ηq2 ` pBx2

ηq2 ` 1

and

vF “ n ¨ u⃗ “
u3 ´ u1Bx1η ´ u2Bx2η

a

pBx1
ηq2 ` pBx2

ηq2 ` 1
.

Condition (1.56) is thus

u3 “ Btη ` u1Bx1
η ` u2Bx2

η on x3 “ ηpx1, x2, tq. (1.57)

Note that (1.57) can be obtained much faster using the material derivative notation since the condition
that particles at the interface stay at the interface means DtF “ 0, which is precisely (1.57).

2. The dynamic condition states that the interface has no mass so that the forces on either side of the
interface are equal, i.e.

p0 ´ p “ 2TH on x3 “ ηpx1, x2, tq, (1.58)

where p0 and p are the pressure of air and water respectively, 2TH is the surface tension, T is the
coe�cient of surface tension and H is the mean curvature of the interface. The mean curvature is given
by

2H “|∇F |´3
`

∇FD2F p∇F qT ´ |∇F |2tracepD2F q
˘

“p1 ` pBx1ηq2 ` pBx2ηq2q´3{2
“

p1 ` pBx2ηq2qB2
x1
η ` p1 ` pBx1ηq2qB2

x2
η ´ 2Bx1ηBx2ηBx1Bx2η

‰

.
(1.59)
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3. Finally, the condition of no �ow through the bottom x3 “ ´h0 is simply

u3 “ Bx3
φ “ 0 on x3 “ ´h0. (1.60)

In summary, combining (1.55), (1.57), (1.58), and (1.60), we have the following system for the free interface
problem between an inviscid incompressible irrotational �uid and air

∆φ “ 0, ´h0 ă x3 ă ηpx1, x2, tq, (1.61a)

Bx3
φ “ 0, x3 “ ´h0, (1.61b)

Btφ`
1

2
|∇φ|2 ` gη ´

T

ρ

p1 ` pBx2
ηq2qB2

x1
η ` p1 ` pBx1

ηq2qB2
x2
η ´ 2Bx1

ηBx2
ηBx1

Bx2
η

p1 ` pBx1
ηq2 ` pBx2

ηq2q3{2
“ 0, x3 “ ηpx1, x2, tq,

(1.61c)

Btη ` Bx1
φBx1

η ` Bx2
φBx2

η “ Bx3
φ, x3 “ ηpx1, x2, tq. (1.61d)

Equation (1.61c) is called the Bernoulli equation. In many case the surface tension can be neglected, as, for
instance, for long waves, where the mean curvature is very small. Then equation (1.61c) reduces to

Btφ`
1

2
|∇φ|2 ` gη “ 0, x3 “ ηpx1, x2, tq. (1.62)

1.5.1 Linear Theory

We study here small solutions of (1.61) so that only the linearization of the system is important. For the
linearized system we derive the dispersion relation and explore it in several interesting asymptotic regimes.

1.5.1.1 Without Surface Tension

Let us �rst consider the case without surface tension. Water waves are then often called gravity waves since
the only restoring force is gravity. It can be shown that the linearization of the system (1.61a), (1.61b),
(1.61d) and (1.62) is

∆φ “0, ´h0 ă x3 ă 0, (1.63a)

Bx3φ “0, x3 “ ´h0, (1.63b)

B2
tφ` gBx3

φ “0, x3 “ 0, (1.63c)

η `
1

g
Btφ “0, x3 “ 0. (1.63d)

We consider plane waves propagating in the horizontal directions px1, x2, 0q, i.e. we set

η “ Aeipk1x1`k2x2´ωtq ` c.c., φ “ Y px3qeipk1x1`k2x2´ωtq ` c.c. (1.64)

with a constant A P C and a scalar function Y : r´h0,8q Ñ C and where c.c. stands for the complex
conjugate of the expression preceeding it.

From (1.63a), (1.63b) we get

Y 2px3q ´ |k|2Y px3q “ 0 for ´ h0 ă x3 ă 0, Y 1p´h0q “ 0

such that Y px3q “ C coshp|k|px3`h0qq, C P C. Here |k| denotes the Euclidean norm of the vector k “ pk1, k2q.
Equation (1.63d) implies A “ iω

g Y p0q and thus

Y px3q “
´ig

ω
A
coshp|k|px3 ` h0qq

coshp|k|h0q
.
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With the expression for Y we can recover from equation (1.63c) the dispersion relation for water waves
without surface tension

ω2 “ g|k| tanhp|k|h0q. (1.65)

The solutions of (1.65) have the form

ω “ ˘W pkq :“ ˘Up|k|q, where Upsq “
a

gs tanhpsh0q.

The group velocity vgpkq “ ˘∇W pkq has the form

vgpkq “ ˘U 1p|k|q
k

|k|

such that |vgpkq| “ |U 1p|k|q|. One can see that |vgpkq| is decreasing in |k|, i.e. shorter waves are slower.
Let us now look at two asymptotic cases of the horizontal waves.

(a) Deep water waves: |k|h0 " 1

In this asymptotic regime the wavelength is much smaller than the depth (but still large enough such
that surface tension can be neglected). We obtain

W pkq „
a

g|k| p|k|h0 Ñ 8q

such that

|vppkq| „

ˆ

g

|k|

˙1{2

, |vgpkq| „
1

2

ˆ

g

|k|

˙1{2

.

This regime is clearly dispersive and, as mentioned above, longer waves propagate faster.

A physical example of deep water gravity waves are wind generated waves in the ocean. These have
the typical wavelength λ of 60 to 150 m. With a typical depth of h0 “ 4000m we get |k|h0 „ 2πh0

λ
approximately between 65 ad 168, i.e. values much larger than 1. Another example is waves generated
by explosions, as shown in Fig. 1.9(a). In the �gure one clearly observes that longer waves have traveled
further than shorter ones.

(b) Shallow water waves: |k|h0 ! 1

Here
W pkq „

`

g|k|ph0|k| ´ 1
3 p|k|h0q3q

˘1{2
„

a

gh0|k| p|k|h0 Ñ 0q.

Hence, in the asymptotics the dispersion relation is equivalent to that of the wave equation

B2
t η ´ gh0pB2

x1
η ` B2

x2
ηq “ 0.

The phase and group velocities are

|vppkq| „
a

gh0, |vgpkq| „
a

gh0 p|k|h0 Ñ 0q

such that the problem is not dispersive in this asymptotic regime.

Though it may sound surprising, an example of shallow water waves are tsunamis in the free ocean.
This is not due a small depth but rather due to the large wavelength, which is typically about 200 km.
By a depth of 4km we get |k|h0 « 8π{200 ! 1. One can very easily approximate the propagation speed
of such a tsunami wave

|vgpkq| „
a

gh0 «
?
40000m/s “ 200m/s “ 720km/h!
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1.5.1.2 With Surface Tension

In the presence of surface tension the full system (1.61) has to be linearized. The linearization of the mean
curvature in (1.59) is 2H “ B2

x1
η ` B2

x2
η and we obtain

∆φ “0, ´h0 ă x3 ă 0, (1.66a)

Bx3
φ “0, x3 “ ´h0, (1.66b)

Btφ` gη ´
T

ρ
pB2
x1
η ` B2

x2
ηq “0, x3 “ 0, (1.66c)

Btη ´ Bx3φ “0, x3 “ 0. (1.66d)

Considering again horizontal waves (1.64), we get from (1.63a), (1.63b) once again Y px3q “ C coshp|k|px3`

h0qq. Equation (1.66d) now implies ´iωA “ Y 1p0q “ c|k| sinhp|k|px3 ` h0qq such that

Y px3q “ ´iωA
coshp|k|px3 ` h0qq

|k| sinhp|k|h0q
.

Finally, from (1.66c) we get the dispersion relation for water waves with surface tension

ω2 “ g|k|

ˆ

1 `
T

ρg
|k|2

˙

tanhp|k|h0q. (1.67)

Note that for |k| ! 1 this dispersion relation reduces to (1.65) as expected since long waves have small
mean curvature. Surface tension is thus relevant for |k| " 1 and for intermediate values of |k|. First we take a
look at the case of capillary waves |k| " 1. Here surface tension is the dominant restoring force. A typical
physical example are waves generated by rain drops.

One obtains

ω2pkq „
T

g
|k|3 tanhp|k|h0q p|k| Ñ 8q (1.68)

such that

|vgpkq| „
3

2

ˆ

T

ρ
|k| tanhph0|k|q

˙1{2 ˆ

1 `
2h0|k|

3 sinhp2h0|k|q

˙

.

Clearly, for |k| large the norm of vgpkq grows with |k| such that shorter waves are faster, see Fig. 1.9 (b) for
an example of a capillary wave generated by a water drop. The faster propagation of shorter waves is well
visible.

Also for capillary waves we can study the two asymptotic scenarios of deep and shallow water, i.e. |k|h0 " 1
and |k|h0 ! 1 respectively.

(a) Deep water capillary waves: |k|h0 " 1

When |k|h0 " 1 (and |k| " 1), we get from (1.68) the asymptotics W p|k|q „

´

T
ρ

¯1{2

|k|3{2 for p|k|h0 Ñ

8q and

|vppkq| „

ˆ

T

ρ

˙1{2

|k|1{2, |vgpkq| „
3

2

ˆ

T

ρ

˙1{2

|k|1{2 p|k|h0 Ñ 8q.

(b) Shallow water capillary waves: |k|h0 ! 1

When |k|h0 ! 1 (and |k| " 1), we get from (1.68) the asymptoticsW p|k|q „

´

Th0

ρ

¯1{2

|k|2 for p|k|h0 Ñ 0q

|vppkq| „ 2

ˆ

Th0
ρ

˙1{2

|k|, |vgpkq| „ 2

ˆ

Th0
ρ

˙1{2

|k| p|k|h0 Ñ 0q.
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Figure 1.9: (a) deep water gravity wave from an underwater explosion at point E; (b) capillary waves
generated by a drop of water. Picture in (a) is from [22]. It shows the e�ect of an Italian airplane trying
to bomb the United, a British submarine at A, creating an explosion at E; (b) is a photo of a class room
experiment.

Finally, for the intermediate values of |k| in (1.65), one needs to analyze this full dispersion relation. An
interesting observation is that in the deep water asymptotics |k|h0 Ñ 8 there is a wavenumber, namely

|k| “

ˆ

2 ´
?
3

?
3

˙1{2
´ ρ

T
g

¯1{2

,

at which the group velocity is minimized. For water at 15 ˝C the surface tension coe�cient is T « 0.073N{m
and density ρ « 1000kg{m3. The resulting wavelength λ “ 2π

|k|
is about 4.36 cm.



Chapter 2

Nonlinear Waves

Under nonlinear waves we understand simply waves described by nonlinear PDEs. We will restrict our
attention to those PDEs whose linear part is dispersive. One of the important properties of nonlinear
dispersive probems which distinguishes it from linear dispersive ones is the possibility of coherent propagation
of localized waves, i.e. waves whose spatially localized shape is invariant under the time evolution. In other
words, in nonlinear problems the dispersion induced destruction of pulses can be arrested. This occurs when
the shape of the solution achieves a perfect balance between dispersion and nonlinearity. There are a number
of possible e�ects of nonlinearity. The most common ones are focusing, e.g in the nonlinear Schrödinger
equation, and steepening, e.g. in the Korteweg-de Vries equation.

Let us list a few classical but also physically highly relevant nonlinear dispersive models.

1. The Korteweg-de Vries (KdV) equation

Btu` 6uBxu˘ B3
xu “ 0, x P R, t ą 0

describes, e.g., one dimensional shallow water waves of relatively small amplitude as well as long waves
in the Fermi-Pasta-Ulam problem. A formal derivation of KdV in these contexts is carried out in
Sections 2.1.1 and 2.1.2.

2. The nonlinear Schrödinger equation

iBzu´ αB2
t u` γ|u|2u “ 0, t P R, z ą 0, α, γ P R

is a description of optical pulses in Kerr nonlinear photonic �bers with the longitudinal direction
denoted by z. It is, however, also a universal asymptotic model for slowly varying wave packets of small
amplitude in rather general nonlinear dispersive problems, which we explain in Section 2.2.1.

3. The Gross-Pitaevskii equation

iBtu`
ℏ2

2m
∆u´ V pxqu` γ|u|2u “ 0, x P Rn, t ą 0

for n P t1, 2, 3u models Bose-Einstein condensates (BECs) in an external potential described by V .
BECs are systems of identical bosons in the same quantum mechanical state. ℏ is the Planck's constant
and m is the mass of the boson. For n “ 1, 2 the same mathematical form of the equation is also an
asymptotic model for slowly modulated optical beams in photonic crystals.

4. The Sine-Gordon equation
B2
t u´ B2

xu` sinpuq “ 0, x P R, t ą 0

is a model of the Josephson e�ect, i.e. the tunneling electric current between two superconductors.

43
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5. The Coupled Mode Equations

ipBtu` Bzuq ` κv ` Γp|u|2 ` 2|v|2qu “ 0

ipBtv ´ Bzvq ` κu` Γp|v|2 ` 2|u|2qv “ 0

for z P R, t ą 0, κ,Γ P R are an asymptotic description of pulses in optical �bers with a Bragg grating,
i.e. a speci�c periodic structure in the longitudinal direction z.

2.1 Korteweg-de Vries Equation

2.1.1 Korteweg-de Vries Equation for Shallow Water Waves

Here we carry out a formal asymptotic derivation of KdV for one dimensional shallow water waves along the
lines of Chapter 5 in [1].

Shallow water waves have an especially important place in the history of understanding nonlinear disper-
sive waves. This is due to the �rst scienti�c record of a solitary wave done by Sir John Scott Russell in 1834
on a canal near Edinburgh, where he observed a wave generated by a ship which came to a sudden halt. The
wave continued traveling in the direction of the ship's movement and did not change its shape over a large
distance [20]. Here are his own words

I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when
the boat suddenly stopped-not so the mass of water in the channel which it had put in motion; it accumulated round
the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth and well-de�ned heap of water, which continued its
course along the channel apparently without change of form or diminution of speed. I followed it on horseback, and
overtook it still rolling on at a rate of some eight or nine miles an hour [14 km/h], preserving its original �gure some
thirty feet [9 m] long and a foot to a foot and a half [300-450 mm] in height. Its height gradually diminished, and after
a chase of one or two miles [2-3 km] I lost it in the windings of the channel. Such, in the month of August 1834, was
my �rst chance interview with that singular and beautiful phenomenon which I have called the Wave of Translation.

Let us recall system (1.61a), (1.61b), (1.61d) and (1.62) for the free interface of water and air under the
assumptions of incompressibility, no viscosity, no surface tension and an irrotational �ow. We consider only
waves propagating solely in the x1-direction with a pro�le that is independent of x2. Such waves are possible,
for instance, in a narrow channel of uniform width. Hence, we set

φ “ φpx1, x3, tq and η “ ηpx1, tq.

The �rst step in the derivation is to make the equations dimensionless. This step is important for the
subsequent asymptotic analysis where orders of magnitude of terms have to be identi�ed. A choice of units
can, of course, arti�cially change the size of a given term.

Let us consider waves with a typical wavelength λ and a typical amplitude a. We de�ne the two numbers

ε1 :“
h0
λ
, ε2 :“

a

h0
.

Later we will assume smallness of ε1,2 but at the moment these are simply new names.
Next, we de�ne the following dimensionless (primed) variables

x1
3 :“ x3

h0
, x1

1 :“ x1

λ “ ε1
h0
x1, t1 :“

?
gh0

λ t “ ε1
b

g
h0
t

η1 :“ η
a “

η
ε2h0

, φ1 :“
?
gh0

λga φ “ ε1
ε2h0

?
gh0

φ.
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After a simple calculation one �nds that in dimensionless form system (1.61a), (1.61b), (1.61d) and (1.62)
for one dimensional waves reads

ε21B2
x1
1
φ1 ` B2

x1
3
φ1 “0, ´1 ă x1

3 ă ε2η
1,

Bx1
3
φ1 “0, x1

3 “ ´1,

Bt1φ1 `
ε2
2

„

pBx1
1
φ1q2 `

1

ε21
pBx1

3
φ1q2

ȷ

` η1 “0, x1
3 “ ε2η

1,

ε21
`

Bt1η1 ` ε2Bx1
1
φ1Bx1

1
η1

˘

“Bx1
3
φ1, x1

3 “ ε2η
1.

Now we make our asymptotic assumptions. Namely, we consider shallow water such that ε1 ! 1 and waves
with small amplitude: ε2 ! 1. In order to balance the e�ects of as many terms as possible (�Kruskal's
principle of maximal balance�), we choose the relation

ε2 “ ε21 “: ε.

With this choice the leading order parts of all the op1q terms (as ε1, ε2 Ñ 0) are of the same order.
With this de�nition of ε and dropping the primes, we obtain

εB2
x1
φ` B2

x3
φ “0, ´1 ă x3 ă εη, (2.1a)

Bx3
φ “0, x3 “ ´1, (2.1b)

Btφ`
ε

2
pBx1φq2 `

1

2
pBx3φq2 ` η “0, x3 “ εη, (2.1c)

ε pBtη ` εBx1
φBx1

ηq “Bx3
φ, x3 “ εη. (2.1d)

Let us attempt to �nd an approximation of φ via the regular perturbation ansatz

φ “ φ0 ` εφ1 ` ε2φ2 ` . . . .

At Op1q we have from equation (2.1a)

B2
x3
φ0 “ 0, ´1 ă x3 ă εη

resulting in
φ0 “ A`Bpx3 ` 1q with arbitrary functions pA,Bq “ pA,Bqpx1, tq.

From the boundary condition (2.1b) we get B “ 0 such that φ0px1, x3, tq “ Apx1, tq.
At Opεq we obtain

B2
x1
φ0 ` B2

x3
φ1 “ 0, ´1 ă x3 ă εη,

i.e. B2
x3
φ1 “ ´B2

x1
A. Using (2.1b), the solution reads φ1 “ ´

px3`1q
2

2 B2
x1
A`D with an arbitrary D “ Dpx1, tq.

The �constant� D can be absorbed in A because for A “ Op1q is also A` εD “ Op1q. Hence

φ1 “ ´
px3 ` 1q2

2
B2
x1
A.

The last order, which we consider, is Opε2q. It consists of

B2
x1
φ1 ` B2

x3
φ2 “ 0, ´1 ă x3 ă εη,

which leads to

φ2 “
px3 ` 1q4

4!
B4
x1
A

after, once again, applying (2.1b) and absorbing the integration constant in A.
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In conclusion, we formally have

φ “ A´ ε
px3 ` 1q2

2
B2
x1
A` ε2

px3 ` 1q4

4!
B4
x1
A`Opε3q, ´1 ă x3 ă εη

with A “ Apx1, tq.
Next we use equations (2.1c) and (2.1d) to provide an expansion for η and an equation for the currently

free function A.
From (2.1c) we get

BtA´
ε

2
p1 ` εηq2B2

x1
BtA`

ε

2

´

Bx1A´
ε

2
p1 ` εηq2B3

x1
A

¯2

`
1

2

`

εp1 ` εηqB2
x1
A

˘2
` η “ Opε2q

and hence
η “ ´BtA`

ε

2

`

B2
x1

BtA´ pBx1Aq2
˘

`Opε2q. (2.2)

Finally, (2.1d) produces

B2
tA´ B2

x1
A “ ε

„

1

2
B2
x1

B2
tA´ 2Bx1

ABx1
BtA´

1

6
B4
x1
A´ B2

x1
BtA

ȷ

`Opε2q. (2.3)

Remark 2.1. It is interesting to note that the linear part of equation (2.3) is up to Opε2q equivalent to
the Boussinesq equation B2

tA ´ B2
x1
A “ ε

3B2
x1

B2
tA. This follows by applying the equation itself, i.e. B2

x1
A “

B2
tA`Opεq, to replace B4

x1
A “ B2

x1
pB2
x1
Aq by B2

x1
B2
tA`Opεq.

The last step of the asymptotic discussion is to provide an ε-independent problem from (2.3). At the
leading order equation (2.3) is the wave equation. Hence, we expect that A depends on the characteristic
variables x1 ` t and x1 ´ t. We make a multiscale asymptotic ansatz for A

Apx1, tq “ A0pξ, ν, T q ` εA1pξ, ν, T q `Opε2q, (2.4)

where ξ :“ x1 ´ t, ν :“ x1 ` t, and T :“ εt. This transformation of variables leads to

Bx1
“ Bξ ` Bν , B2

x1
“ B2

ξ ` B2
ν ` 2BξBν ,

Bt “ Bν ´ Bξ ` εBT , B2
t “ B2

ξ ` B2
ν ´ 2BξBν ` 2εpBνBT ´ BξBT q ` ε2B2

T ,

Bx1
Bt “ B2

ν ´ B2
ξ ` εpBT Bξ ` BT Bνq.

Inserting ansatz (2.4) in (2.3) yields at Op1q

´4BξBνA0 “ 0

such that
A0 “ F pξ, T q `Gpν, T q

for arbitrary functions F and G. At Opεq we obtain

´4BξBνA1 ` 2 pBνBT ´ BξBT qA0 “
1

2
pBξ ` Bνq2pBξ ´ Bνq2A0 ´

1

6
pBξ ` Bνq4A0

´ 2pBξ ` BνqA0pB2
ν ´ B2

ξ qA0 ´ pBξ ` Bνq2A0pBν ´ BξqA0.

Using BξBνA0 “ 0 this reduces to

´4BξBνA1 “
1

3
pB4
ξF ` B4

νGq ´ BξFB2
νG` BνGB2

ξF ` 3BξFB2
ξF ´ 3BνGB2

νG` 2pBξBTF ´ BνBTGq.
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Due to the linearity of the problem we can write A1 “ A
paq

1 `A
pbq

1 `A
pcq

1 , where

´4BξBνA
paq

1 “ ´ BξFB2
νG` BνGB2

ξF,

´4BξBνA
pbq

1 “2BξBTF `
1

3
B4
ξF ` 3BξFB2

ξF “: P1,

´4BξBνA
pcq

1 “ ´ 2BνBTG`
1

3
B4
νG´ 3BνGB2

νG “: P2.

These equations can be easily integrated to give

A
paq

1 “
1

4
pFBνG´GBξF q ` αpξ, T q ` βpν, T q, (2.5)

A
pbq

1 “ ´
1

4

„

2BTF `
1

3
B3
ξF `

3

2
pBξF q2

ȷ

ν, (2.6)

A
pcq

1 “ ´
1

4

„

´2BTG`
1

3
B3
νG´

3

2
pBνGq2

ȷ

ξ (2.7)

with arbitrary integration constants αpξ, T q and βpν, T q. Note that it is not necessary to include integration

constants in A
pbq

1 and A
pcq

1 since only the sum A
paq

1 ` A
pbq

1 ` A
pcq

1 is relevant for us. In fact, since the initial
data for φ and η have not been prescribed, we are free to choose αpξ, T q and βpν, T q. For a localized solution

with φpx1, tq, ηpx1, tq Ñ 0 as |x1| Ñ 8 we actually need α “ β “ 0 since otherwise A
paq

1 does not decay as
|x1| Ñ 8.

Although the solutions φ and η are unknown, we look for bounded solutions which requires A to be

bounded in x1. Clearly, because F is independent of ν and G is independent of ξ, the above functions A
pbq

1

and A
pcq

1 are unbounded (grow linearly) unless the expressions in the squared brackets in (2.6) and (2.7)
vanish. Polynomially growing terms in asymptotic expansions of bounded solutions of di�erential equations
are called secular terms. The occurrence of these secular terms is no surprise since the right hand sides P1

and P2 lie in the kernel of the adjoint of the operator BξBν on the left hand side. In other words P1 and P2 are
in resonance with the homogeneous solution. While setting the squared brackets equal zero would provide
for a bounded expansion (up to Opεq), the same can be achieved by setting

P1 “ P2 “ 0,

which is the more traditional approach. It is also formally a weaker assumption because it is an assumption
on derivatives of the squared brackets. De�ning then

U :“ BξF and V :“ BνG,

we get the Korteweg-de Vries (KdV) equations

2BTU `
1

3
B3
ξU ` 3UBξU “ 0, (2.8a)

2BTV ´
1

3
B3
νV ` 3V BνV “ 0, (2.8b)

where the equation for U is that for right propagating waves and that for V is for left propagating ones.
A suitable scaling

upξ, T q :“ αUpβξ, γT q, vpξ, T q “ αV pβξ, γT q

for some α, β, γ ą 0 transforms (2.8) to the standard KdV equations

BTu` 6uBξu` B3
ξu “ 0, (2.9a)

BT v ` 6vBξv ´ B3
ξv “ 0. (2.9b)
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To obtain an approximation of η, we can use (2.2) to get

ηpx1, tq “ ´BtA0pξ, ν, T q `Opεq “ ´BtF pξ, tq ´ BtGpν, tq `Opεq.

Due to Bt “ Bν ´ Bξ ` εBT we have

η “ BξF ´ BνG`Opεq “ U ´ V `Opεq. (2.10)

The above derivation of the KdV equations is, of course, formal and does not guarantee that the truncated
expansion of φ and η, with U and V given by solutions of KdV, is close (in a suitable norm) to a true solution
pη, φq of (2.1) for ε small. For a rigorous justi�cation of KdV for shallow water waves see e.g. the book
[13]. Below in Sec. 2.2.2 we address this justi�cation question in detail for a simpler case, namely for slowly
modulated wavepackets in the 1D nonlinear wave equation. In this case the envelope is shown to be e�ectively
described by the nonlinear Schrödinger equation.

2.1.1.1 KdV in Dimensional Form

Let us now look at the KdV in the dimensional variables. Restricting to the right propagating waves, we
have from (2.10) the approximation η “ U ` Opεq. Going back to the dimensional variables (denoted once
again by the same letters), we get then from (2.8a) the dimensional KdV equation

1
?
gh0

Btη ` Bx1η `
h20
6

B3
x1
η `

3

2h0
ηBx1η “ 0. (2.11)

The linear part of (2.11) can be also obtained directly by expanding the one dimensional version (i.e.
k “ k1) of the dispersion relation (1.65) (which becomes ω2 “ gk1 tanhpk1h0q) in the small parameter
|k1h0| ! 1. We leave this as a simple exercise.

2.1.1.2 KdV for Water Waves with Surface Tension

When surface tension is taken into account, the full form of the Bernoulli equation (1.61c) needs to be used.
Considering, however, only one dimensional waves, we obtain

Btφ`
1

2

`

pBx1φq2 ` pBx3φq2
˘

` gη ´
T

ρ

B2
x1
η

p1 ` pBx1ηq2q
3{2

“ 0, x3 “ ηpx1, tq.

An analogous asymptotic calculation to that for the zero surface tension case produces the following dimen-
sional KdV for right propagating waves

1
?
gh0

Btη ` Bx1
η ` γB3

x1
η `

3

2h0
ηBx1

η “ 0, γ “
h20
6

´
T

2ρg
. (2.12)

The qualitatively new e�ect compared to (2.11) is that the coe�cient γ of the dispersive term becomes
negative for large enough values of the surface tension coe�cient T .

The dimensionless form of (2.12) is

BTu` 6suBξu` B3
ξu “ 0, s “ signpγq. (2.13)

2.1.1.3 Solitary Waves of the KdV

The KdV is one of the equations which support solitary wave solutions.

De�nition 2.1. A solitary wave is a localized wave of constant shape.
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Let us thus search for a solution upξ, T q “ fpyq, y :“ ξ ´ cT, c P R. For the localization we require
fpξq, f 1pξq, f2pξq Ñ 0 for |ξ| Ñ 8. This ansatz produces in (2.13)

´cf 1 ` 6sff 1 ` f3 “ 0.

After an integration (from ´8 to ξ), multiplication by f 1 and another integration we get

pf 1q2 “ f2pc´ 2sfq. (2.14)

Note that the integration constants vanish due to the decay assumptions.
Since the left hand side in (2.14) is non-negative and since fpξq Ñ 0 for |ξ| Ñ 8, we conclude that

c ě 0.

The integration of (2.14) yields
ż

df

fpc´ 2sfq1{2
“ ˘py ´ x0q

with an arbitrary x0 P R. With the substitution f “ s c2 sech
2θ and using pc´ 2sfq1{2 “

?
c| tanhpθq|, we get

´
2

?
c

ż

tanhpθq

| tanhpθq|
dθ “ ˘py ´ x0q

such that
|θ| “ ˘

?
cpy ´ x0q.

As a result, because sech2 is even , we have fpyq “ s c2 sech
2
p
?
cpy ´ x0qq. In conclusion

upξ, T q “ s
c

2
sech2p

?
cpξ ´ cT ´ x0qq, c ě 0, x0 P R. (2.15)

Clearly, for s “ 1 the solution (2.15) is positive, a so called wave of elevation, cf., e.g., the �great wave of
translation� of J.S.Russell [20], which was �rst observed (and documented) in water in 1834. For s “ ´1 the
solution is negative and it is called a wave of depression. It was �rst observed only in 2002 in mercury, the
surface tension of which is large enough to produce γ ă 0, see [10].

While (2.15) is the only solution of the KdV (2.13) which �ts the ansatz upξ, T q “ fpyq, y “ ξ ´ cT, c P R
with f localized, the KdV has in�nitely many other solutions which consist of traveling localized components.
These are the famous N -solitons which consist of N P N pulses, each of which propagates like a solitary wave
with a distinct velocity and when these pulses collide, they are not destroyed but rather continue propagating
with the same shape and velocity. The only footprint of the interaction is a spatial shift and a shift of the
phase of the pulses. Solution (2.15) is the special and rather boring 1´soliton. The existence of solitons and
their properties can be obtained via the technique of the inverse scattering transformation [6, 2].

2.1.2 The Fermi-Pasta-Ulam Problem and the Korteweg-de Vries Equation

2.1.2.1 The Fermi-Pasta-Ulam Problem

The Fermi-Pasta-Ulam (FPU) Problem is of historical importance in the area of nonlinear dispersive problems
and soliton theory. In the years 1954-55 Enrico Fermi, John Pasta, and Stanislaw Ulam [11] at the Los
Alamos Laboratories performed numerical experiments simulating a chain of particles coupled by strings
with a nonlinear restoring force. Their aim was to understand the dynamics of a crystalline atomic structure
towards a thermal equilibrium.

Consider a chain of N P N particles (along a line) with identical mass m coupled by springs. Denoting by
yn the displacement of the n´th particle (ordered from left to right), Newton's second law says

m
d2yn
dt2

“ FRpnq ´ FLpnq, n P t1, . . . , Nu
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where FR,Lpnq is the force acting on the n´th particle from the right/left respectively.
Before we discuss the FPU problem, where FR,N are nonlinear functions of y⃗, let us recall the linear

problem. A classical model of linear springs is Hooke's law, which states

FRpnq “ ´Kpyn ´ yn`1q, FLpnq “ ´Kpyn´1 ´ ynq with some K ą 0.

This leads to the system

m
d2yn
dt2

“ Kpyn`1 ´ 2yn ` yn´1q, n P t1, . . . , Nu, (2.16)

i.e.

d2y⃗

dt2
“ Ay⃗, A “

K

m

¨

˚

˝

´2 1
1 ´2 1

. . .
. . .

. . .
1 ´2 1

1 ´2

˛

‹

‚

P RNˆN ,

where y⃗ “ py1, y2, . . . , yN qT . System (2.16) has 2N linearly independent solutions (modes) e˘iωjtξpjq, j P

t1, . . . , Nu, where pωj , ξ
pjqq are eigenpairs of A

Aξpjq “ ωjξ
pjq.

In fact, the eigenvalues can be calculated explicitly: ωj “

b

2K
m

´

1 ´ cos
´

jπ
N`1

¯¯1{2

.

An important feature of any linear dynamics is that there is no exchange of energy between modes. Let
us restrict to real solutions. When the initial data are composed of M ă N complex conjugate pairs

ˆ

y⃗p0q

dy⃗
dt p0q

˙

“
ÿ

jPtj1,...,jMuĂt1,...,Nu

cj

´

ξpjq

iωjξ
pjq

¯

` cj

´

ξpjq

´iωjξ
pjq

¯

,

then clearly
y⃗ptq “

ÿ

jPtj1,...,jMu

pcje
iωjt ` e´iωjtcjqξ

pjq,

such that only the modes j1, . . . , jM come into play.
In a nonlinear case this changes dramatically. When the system is nonlinear, no principle of superposition

holds, of course. There is no concept of solution modes either. When initial data are composed of certain
linear modes, then one expects that due to the nonlinearity all other linear modes will be excited in the time
evolution.

Fermi, Pasta and Ulam considered a quadratic nonlinearity as a correction of the linear Hooke's law:

FRpnq “ Kpyn`1 ´ ynq ` αKpyn`1 ´ ynq2, FLpnq “ Kpyn ´ yn´1q ` αKpyn ´ yn´1q2 with α ą 0

leading to

m
d2yn
dt2

“ Kpyn`1 ´ 2yn ` yn´1q `Kα
“

pyn`1 ´ ynq2 ´ pyn ´ yn´1q2
‰

, n P t1, . . . , Nu (2.17)

and they used periodic boundary conditions, i.e. y0 “ yN , yN`1 “ y1. Arguing based on the ergodicity of
Brownian motion, i.e. that every state has the same probability, they even expected that after a long time
there will be an equipartition of energy between all the linear modes. What they observed in their numerical
experiments (with N “ 32, α “ 1{4) was that practically only 5 linear modes got excited and the energy
oscillated among these in a nearly periodic fashion. The amount of energy in the remaining linear modes was
negligible.

This surprising result initiated a �urry of research on nonlinear PDEs and is sometimes considered the
birth of nonlinear physics. A mathematical explanation of this phenomenon in the case of the FPU-problem
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is based on an asymptotic approximation of the FPU system (2.17) by the Korteweg-de Vries equation. This
continuum approximation is valid for waves that are long compared to the distance of the particles. Since all
initial data in the KdV lead to an m´soliton (m P N) plus a radiation wave of amplitude Opt´1{3qpt Ñ 8q,
with periodic boundary conditions the form of a soliton repeats periodically on the �nite spatial interval.
Hence a nearly periodic solution is observed in the simulation.

2.1.2.2 KdV Approximation of long waves in the FPU Problem

Here we formally derive the KdV equation as a continuum approximation of the FPU problem (2.17). Let us
�rst assume that the spacing between articles at rest is h ! 1 and denote the locations at rest by xn :“ nh. In
a continuum approximation one assumes the existence of a smooth function ypx, tq such that ypxn, tq “ ynptq.
Taylor-expanding then y in x around xn, we have

yn`1ptq “ ypxn`1, tq “ ypxn, tq ` hBxypxn, tq ` h2

2 B2
xypxn, tq ` h3

6 B3
xypxn, tq ` h4

24 B4
xypxn, tq ` h5

5! B5
xypxn, tq `Oph6q,

yn´1ptq “ ypxn´1, tq “ ypxn, tq ´ hBxypxn, tq ` h2

2 B2
xypxn, tq ´ h3

6 B3
xypxn, tq ` h4

24 B4
xypxn, tq ´ h5

5! B5
xypxn, tq `Oph6q,

such that
yn`1 ´ 2yn ` yn´1 “ h2B2

xypxn, tq ` h4

12 B4
xypxn, tq `Oph6q,

pyn`1 ´ ynq2 ´ pyn ´ yn´1q2 “ 2h3Bxypxn, tqB2
xypxn, tq `Oph5q.

Equation (2.17) then implies

m

Kh2
B2
t y ´ B2

xy “ h2

12 B4
xy ` 2αhBxyB2

xy `Oph3q.

The KdV equation is obtained if one assumes that the nonlinearity coe�cient α scales like h, i.e.

α “ Ophq, α ‰ ophq ph Ñ 0q.

Denoting then ε :“ 2αh and κ :“ h2

2ε , and rescaling time by de�ning τ :“
b

K
mht, ỹpx, τq :“ ypx, pKm q

´
1
2h´1τq

and dropping the tilde, we arrive at

B2
τy ´ B2

xy “ εpBxyB2
xy ` κB4

xyq `Opε3{2q. (2.18)

It is now left as an exercise to formally derive the KdV using a perturbation expansion for right traveling
waves in (2.18).

2.2 The Nonlinear Schrödinger Equation (NLS)

The KdV holds a very prominent place in the history of the science of nonlinear dispersive waves. Of course,
it remains to be physically highly relevant even today. Another fundamental equation describing nonlinear
dispersive waves is the nonlinear Schrödinger equation (NLS)

iBtu` ∆u` γ|u|2u “ 0, x P Rn. (2.19)

As we show in Section 2.2.1, the NLS is extremely universal being an e�ective approximative model for slowly
modulated wavepackets of small amplitude in a large class of nonlinear dispersive equations. As such, the
NLS is often used as a prototype model for studying nonlinear wave phenomena.

Let us mention two classical physical applications of the NLS.
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1. wavepackets on deep water

Consider the water/air interface problem (1.61) without surface tension, i.e. T “ 0, in the deep water
limit h0 “ ´8 and restrict to one dimensional waves. With the wavepacket ansatz

φ „εApεpx1 ´ vgtq, ε
2tqeipkx1´ωpkqtq`|k|x3 ` c.c.,

η „εBpεpx1 ´ vgtq, ε
2tqeipkx1´ωpkqtq ` c.c.

for ε Ñ 0, where ωpkq is the dispersion relation for waves propagating in the x1 direction, one obtains
after some calculation the following e�ective NLS equations for the envelopes A and B

iBTA`
ω2pkq

2
B2
ξA´

2k4

ωpkq
|A|2A “ 0

iBTB `
ω2pkq

2
B2
ξB ´ 2k2ωpkq|B|2B “ 0

with T :“ ε2t, ξ :“ εpx1 ´ vgtq, see Sec. 6.4, 6.5 in [1].

2. wavepacket-pulses in cubically nonlinear optical �bers

As optical pulses are electromagnetic phenomena, the starting model are typically the Maxwell's equa-
tions. In the second order formulation for the electric �eld we have

∇ ˆ ∇ ˆ E⃗ `
1

c2
B2
t E⃗ “ ´

1

c2ϵ0
B2
t P⃗ , c “ pϵ0µ0q´1{2,

where ϵ0, µ0 and c are the electric permittivity, magnetic permeability and speed of light in vacuum
respectively while P⃗ is the polarisation which describes the response of the medium to the �eld. For
media with a so called inversion symmetry and with further isotropic symmetries on the atomic level
(valid, for instance, for glass used in photonic �bers) the polarisation can be written in the form

P⃗ px, tq “ ϵ0

ż

R
χ1pt´ sqE⃗px, sqds` ϵ0

ż

R
χ3pt´ s1, t´ s2, t´ s3qpE⃗px, s1q ¨ E⃗px, s2qqE⃗px, s3qds1ds2ds3,

where the scalars χ1,3 are the linear and the cubic susceptibilities of the medium, see [17]. In more
general media (without isotropy) the cubic susceptibility χ3 is a tensor. For a �ber with x3 being
its longitudinal direction we can assume the cylindrical symmetry such that χ1,3 “ χ1,3pr, tq, r :“
px21 ` x22q1{2.

For the wavepacket ansatz

E⃗ „ U⃗prqApεpt´ vgx3q, ε2x3qeipkpωqx3´ωtq ` c.c., vgpkq “ k1pωq,

where kpωq is the (inverse of) the dispersion relation for the Maxwell's equation, a lengthy calculation
produces the following NLS as an e�ective model for the envelope A

iBZA´
1

2
k2pωqB2

τA` γ|A|2A “ 0,

where Z “ ε2x3, τ “ εpt´ vgx3q. The full derivation can be found in [17].
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2.2.1 Universality of the NLS for Slowly Modulated Wavepackets of Small Am-

plitude

As we show below, the NLS is not limited to any set of speci�c physical situations. It describes the asymptotics
of wavepackets in a large class of nonlinear dispersive problems by being the e�ective equation for the
corresponding envelopes.

To keep the calculations reasonably simple, let us restrict to a scalar PDE

LpBt,∇qu` fpuq “ 0, x P Rn (2.20)

with a smooth function L : Rn`1 Ñ R and with the following behavior of fpuq near u “ 0

fpuq „ αu3 as u Ñ 0 with α P Rzt0u.

Typically, L is a polynomial but the following calculation allows a general smooth L.
As the following analysis shows, the NLS is an e�ective asymptotic model for wavepacket envelopes when

the wavepacket has the following form

upx, tq « εApεpx´ vgpk0qtq, ε2tqeipk0¨x´ω0tq ` c.c. “: εuapppx, tq ` c.c. (2.21)

for some ε ą 0 small, where ω0, k0, vgpk0q P R come from the dispersion relation of (2.20), i.e. from

Lp´iω, ikq “ 0 (2.22)

with the solution ω “ ωpkq. We de�ne ω0 :“ ωpk0q, vgpkq :“ ∇ωpkq. Note that while (2.21) may seem highly
special, it is in fact the only ansatz for a broad wavepacket with the carrier wave eipk0¨x´ω0tq such that the
nonlinear and dispersive e�ects of (2.20) are asymptotically balanced.

Let us now calculate the group velocity vgpkq as well as the Hessian matrix D2ωpkq, which will be needed
later. By di�erentiating (2.22) in k we get

´ipB1Lqp´iωpkq, ikqvgpkq ` ip∇Lqp´iωpkq, ikq “ 0. (2.23)

Di�erentiating twice leads to

ipB1Lqp´iωpkq, ikqpD2ωqpkq “ 2p∇B1Lqp´iωpkq, ikqvTg pkq ´ pD2Lqp´iωpkq, ikq ´ pB2
1Lqp´iωpkq, ikqvgpkqvTg pkq,

(2.24)

where we are using the notation B1L “ BsL,∇L “ ∇ξ⃗L,D
2L “ ∇ξ⃗∇ξ⃗L for L “ Lps, ξ⃗q with ξ⃗ P Rn.

In order for (2.20) to be a dispersive equation, we assume

ωpkq P R, vgpkq P Rn, for all k P Rn and detpD2ωqpk0q ‰ 0.

Next we carry out a formal asymptotic analysis for the ansatz (2.21) and seek an e�ective equation for the
envelope A.

Let us �rst work only on the linear part of (2.20). This can be done more easily in Fourier variables.
Hence, we apply the Fourier transform to LpBt,∇quapp and get

pLpBt,∇quappq̂pk, tq “ LpBt, ikqûapppk, tq.

Next, with the substitution y :“ εpx´ vgtq

ûapppk, tq “ p2πq´n{2e´iω0tε´n

ż

Rn

Apy, ε2tqeipk0´kq¨p y
ε `vgtqdy

“ p2πq´n{2e´ipω0`pk´k0q¨vgqtε´n

ż

Rn

Apy, ε2tqe´i
k´k0

ε ¨ydy “ ε´ne´ipω0`εκ¨vgqt1

Âpκ, T q,
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where κ :“ k´k0
ε , t1 :“ t, and T :“ ε2t. We see that the Fourier transform of a small wavepacket, broad in x,

is a tightly localized function in k of large amplitude and the localization is near the carrier wavevector k0.

The scaling of the amplitude and the width can be best seen in the simple identity f̂pε¨qpkq “ ε´nf̂pεkq.
Using the new variables t1, T , and κ, we have

LpBt, ikq “ LpBt1 ` ε2BT , ipk0 ` εκqq.

This operator can be expanded in a Taylor series in ε assuming that the function to which the operator is
applied is smooth enough:

LpBt, ikq “ LpBt1 , ik0q ` ε2pB1LqpBt1 , ik0qBT ` iεκ ¨ p∇LqpBt1 , ik0q ´
ε2

2
κT pD2LqpBt1 , ik0qκ`Opε3q. (2.25)

Because the derivative Bt1 acts only on the exponential factor e´ipω0`εκ¨vgqt1

in ûapp, we get

LpBt1 , ik0qûapp “ε´n

„

Lp´iω0, ik0qÂ´ iεκ ¨ vgpB1Lqp´iω0, ik0qÂ´
ε2

2
pκ ¨ vgq2pB2

1Lqp´iω0, ik0qÂ`Opε3q

ȷ

e´ipω0`εκ¨vgqt1

“ε´n

„

´iεκ ¨ vgpB1Lqp´iω0, ik0qÂ´
ε2

2
κ ¨ pvgv

T
g qκpB2

1Lqp´iω0, ik0qÂ`Opε3q

ȷ

e´ipω0`εκ¨vgqt1

.

Remark 2.2. Note that if L is a polynomial, one can, of course, use the Leibniz rule. For some q P N we
have then

LpBt1 , ik0qpfgq “

q
ÿ

j“0

ajpik0qB
j
t1 pfgq “

q
ÿ

j“0

ajpik0q

j
ÿ

l“0

ˆ

j

l

˙

B
j´l
t1 fBlt1g.

Because we apply this formula to f “ e´iω0t
1

, g “ e´iεκ¨vgt
1

and because Opε3q terms will be neglected, we are
interested in at most second derivatives of g. Terms with the �rst derivative are

q
ÿ

j“0

ajpik0qjBj´1
t1 fBt1g “ Bt1gpB1LqpBt1 , ik0qf

and terms with the second derivative are

q
ÿ

j“0

ajpik0q 1
2jpj ´ 1qB

j´2
t1 fB2

t1g “ 1
2B2
t1gpB2

1LqpBt1 , ik0qf.

We continue with a calculation of the terms in (2.25):

ε2pB1LqpBt1 , ik0qBT ûapp “ ε´n
”

ε2pB1Lqp´iω0, ik0qBT Â`Opε3q

ı

e´ipω0`εκ¨vgqt1

,

iεκ ¨ p∇LqpBt1 , ik0qûapp “ε´n
”

iεκ ¨ p∇Lqp´iω0, ik0qÂ` ε2pκ ¨ vgqκ ¨ p∇B1Lqp´iω0, ik0qÂ`Opε3q

ı

e´ipω0`εκ¨vgqt1

“ε´n

„

iεκ ¨ p∇Lqp´iω0, ik0qÂ` ε2κ ¨
`

p∇B1Lqp´iω0, ik0qvTg κ
˘

Â`Opε3q

ȷ

e´ipω0`εκ¨vgqt1

,

and

´
ε2

2
κT pD2LqpBt1 , ik0qκûapp “ ´ε´n

„

ε2

2
κT pD2Lqp´iω0, ik0qκÂ`Opε3q

ȷ

e´ipω0`εκ¨vgqt1

.
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The sum of the terms underlined by the dashed line vanishes due to (2.23) and the ones underlined by the
full line add up to

i
ε2

2
pB1Lqp´iω0, ik0qpκT pD2ωqpk0qκqÂ

due to (2.24). As a result

LpBt, ikqûapp “ ε´n

„

ε2pB1Lqp´iω0, ik0q

ˆ

BT Â` iκT
pD2ωqpk0q

2
κÂ

˙

`Opε3q

ȷ

e´ipω0`εκ¨vgqt1

.

With the inverse Fourier transform we get

LpBt,∇qεuapp “ ε3pB1Lqp´iω0, ik0q

„

BTA´ i∇ ¨

ˆ

pD2ωqpk0q

2
∇A

˙ȷ

eipk0¨x´ω0tq `Opε4q.

The nonlinear term fpuq in (2.20) is simpler. We get

fpuq “ ε3αpuapp ` uappq3 `Opε4q “ ε3α
”

3|A|2Aeipk0¨x´ω0tq `A3e3ipk0¨x´ω0tq ` c.c.
ı

`Opε4q.

The aim is to make the residual LpBt,∇qpuapp`uappq`fpuapp`uappq of Opε4q. The Opε3q terms proportional
to e˘ipk0¨x´ω0tq vanish if we require

iBTA`
1

2
∇ ¨

`

pD2ωqpk0q∇A
˘

` γ|A|2A “ 0, (2.26)

where γ “ 3iα
pB1Lqp´iω0,ik0q

. Typically, it is γ P R.
To eliminate also Opε3q terms proportional to e˘3ipk0¨x´ω0tq, we modify the ansatz uapp by adding an

Opε3q correction. Namely, assuming the non-resonance condition

Lp´3iω0, 3ik0q ‰ 0, (2.27)

we set

εuapppx, tq :“ εApεpx´vgpk0qtq, ε2tqeipk0¨x´ω0tq ´ε3
α

Lp´3iω0, 3ik0q
A3pεpx´vgpk0qtq, ε2tqe3ipk0¨x´ω0tq. (2.28)

Equation (2.26) is a slight generalization of the nonlinear Schrödinger equation (2.19). In the isotropic
case when D2ωpk0q “ αI, α P R we get ∇ ¨

`

pD2ωqpk0q∇
˘

“ α∆ and recover (2.19).

2.2.2 Justi�cation of the NLS for the Nonlinear Wave Equation

In contrast to Section 2.2.1, where the NLS was only formally derived and no proof was given, we want to
be rigorous in this section. The question we want to address is whether the above εuapp, with A a solution
of the NLS, provides an approximation of a solution u of (2.20) - and in which norm. Note that we need the
approximation to be valid on a time interval of length Opε´2q because changes in the envelope A occur on
the time scale Opε2q.

To keep the analysis and the notation reasonably simple, we restrict to one speci�c example of (2.20),
namely the following nonlinear wave equation

B2
t u´ ∆u` u´ u3 “ 0, x P Rn. (2.29)
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2.2.2.1 Justi�cation in One Spatial Dimension in H1pRq

In one spatial dimension the problem becomes

B2
t u´ B2

xu` u´ u3 “ 0, x P R. (2.30)

Hence, with the notation of (2.20) we have LpBt, Bxqu “ B2
t u´ B2

xu` u, fpuq “ ´u3. The dispersion relation
is

ω2 “ k2 ` 1

such that

ω1pkq “
k

ωpkq
, ω2pkq “

ωpkq ´ kω1pkq

ω2pkq
“

1 ´ pω1pkqq2

ωpkq
.

Choosing a wavenumber k0 P R, we de�ne the corresponding frequency and group velocity

ω0 :“ ωpk0q, vg :“ ω1pk0q “
k0
ω0
.

The wavepacket ansatz corresponding to (2.28) is

uaspx, tq “ εApX,T qeipk0x´ω0tq ` ε3
A3pX,T q

9k20 ´ 9ω2
0 ` 1

e3ipk0x´ω0tq ` c.c., (2.31)

where X “ εpx´ vgtq, T “ ε2t and the e�ective NLS as given by (2.26) is

iBTA`
1

2

1 ´ v2g
ω0

B2
XA`

3

2ω0
|A|2A “ 0, (2.32)

where we have used the fact that pB1Lqp´iω0, ik0q “ ´2iω0. The non-resonance condition (2.27) now reads
9ω2

0 ‰ 9k20 ` 1, which holds because 9ω2pkq “ 9k2 ` 9.
Our aim is to show that if upx, 0q “ uaspx, 0q, Btupx, 0q “ Btuaspx, 0q and A solves (2.32) on an interval

r0, T0s, then }up¨, tq ´ uasp¨, tq}H1pRq ď cεα with some α ą 0 for all t P r0, T0ε
´2s and ε ą 0 small enough. It

turns out that the optimal value of α is 3{2. Therefore, we de�ne the error as

ε3{2Rpx, tq :“ upx, tq ´ uaspx, tq

and aim to show }Rp¨, tq}H1pRq ď c for all t P r0, T0ε
´2s. The residual is

Respx, tq :“ B2
t uaspx, tq ´ B2

xuaspx, tq ` uaspx, tq ´ u3aspx, tq.

The equation for R is easily derived: we arrive at the Cauchy problem

B2
tR “ B2

xR ´R ` fpRq, x P R, t ą 0 where fpRq :“ 3u2asR ` 3ε3{2uasR
2 ` ε3R3 ´ ε´3{2Res

Rpx, 0q “ BtRpx, 0q “ 0,
(2.33)

where the trivial initial data follow from the assumption upx, 0q “ uaspx, 0q, Btupx, 0q “ Btuaspx, 0q.
We proceed in two steps. First we use a �xed point argument to show the existence and uniqueness of the

solution to (2.33) on a time interval of length Op1q (ε Ñ 0) such that on this time interval it is bounded by a
(ε-independent) constant in the H1 norm. Afterwards a Gronwall argument shows that, in fact, the interval
can be extended to r0, T0ε

´2s by rede�ning the constant and by making ε small enough.

For the Banach �xed point argument let us �rst consider the following inhomogeneous linear equation
(posed in Rn, n P N because there is no additional di�culty compared to R).

B2
t u´ ∆u` u “ F px, tq, x P Rn, t ą 0

upx, 0q “ gpxq, Btupx, 0q “ hpxq.
(2.34)
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In Fourier variables problem (2.34) becomes

B2
t û` p|k|2 ` 1qû “ F̂ pk, tq, k P Rn, t ą 0

ûpk, 0q “ ĝpkq, Btûpk, 0q “ ĥpkq,

which has the solution

ûpk, tq “ ĝpkq cosp
a

|k|2 ` 1tq `
sinp

a

|k|2 ` 1tq
a

|k|2 ` 1
ĥpkq `

ż t

0

F̂ pk, τq
sinp

a

|k|2 ` 1pt´ τqq
a

|k|2 ` 1
dτ. (2.35)

This representation makes it easy to prove the following energy estimate.

Lemma 2.2. If F P L2p0, T˚, H
s´1pRnqqXCpr0, T s, L2pRnqq, s ě 2, then (2.35) gives the unique Cpr0, T˚s, HspRnqqX

C1pr0, T˚s, Hs´1pRnqq solution of (2.34), i.e. B2
t u´∆u`u “ F p¨, tq in L2pRnq for all t P p0, T˚sq. Moreover

}up¨, tq}HspRnq ` }Btup¨, tq}Hs´1pRnq ď c

«

}g}HspRnq ` }h}Hs´1pRnq `
?
t

ˆ
ż t

0

}F p¨, τq}Hs´1pRnqdτ

˙1{2
ff

for all t P r0, T˚s.

Proof. The solution property is equivalent to B2
t û`p|k|2`1qû “ F̂ p¨, tq in L2pRq for all t P p0, T˚q. This follows

by di�erentiating (2.35). The derivative with respect to t inside the integral is treated using the Lebesgue

dominated convergence theorem. For instance, τ ÞÑ F̂ pk, τq
sinp

?
|k|2`1pt´τqq

?
|k|2`1

is measurable for all t P r0, T˚s

and almost all k P Rn, t ÞÑ F̂ pk, τq
sinp

?
|k|2`1pt´τqq

?
|k|2`1

and t ÞÑ F̂ pk, τq cosp
a

|k|2 ` 1pt ´ τqq is continuous on

r0, T˚s for almost all τ P p0, T˚q and k P Rn and F̂ pk, ¨q P L1p0, T˚q for almost all k by the Cauchy-Schwarz

inequality since F̂ pk, ¨q P L2p0, T˚q and p0, T˚q is bounded.
Next, we show the estimate. By the de�nition of the Hs norm

}up¨, tq}2HspRnq “

ż

Rn

|ûpk, tq|2p1 ` |k|sq2dk

ď 3

«

ż

Rn

|ĝpkq|2p1 ` |k|sq2dk `

ż

Rn

|ĥpkq|2
p1 ` |k|sq2

1 ` |k|2
dk `

ż

Rn

ˆ
ż t

0

|F̂ pk, τq|dτ

˙2
p1 ` |k|sq2

1 ` |k|2
dk

ff

,

where the estimate follows from 2ab ď a2 ` b2 for any a, b P R. Because there are constants c1, c2 ą 0 such
that c1p1 ` a2qs ď p1 ` asq2 ď c2p1 ` a2qs for all a P R, we have

}up¨, tq}2HspRnq ď c

„

}g}2HspRnq ` }h}2Hs´1pRnq ` t

ż t

0

}F p¨, τq}2Hs´1pRnqdτ

ȷ

,

where we have also used the Cauchy-Schwarz inequality p
şt

0
|F pk, τq|dτq2 ď t

şt

0
|F pk, τq|2dτ . Similarly, be-

cause

Btûpk, tq “ ´
a

|k|2 ` 1ĝpkq sinp
a

|k|2 ` 1tq ` ĥpkq cosp
a

|k|2 ` 1tq `

ż t

0

F̂ pk, τq cosp
a

|k|2 ` 1pt´ τqqdτ,

we get also

}Btup¨, tq}2Hs´1pRnq ď c

„

}g}2HspRnq ` }h}2Hs´1pRnq ` t

ż t

0

}F p¨, τq}2Hs´1pRnqdτ

ȷ

.

Hence the result follows. □
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For our �xed point argument for (2.33) we choose the solution space

Xpt˚q :“ Cpr0, t˚s, H2pRqqXC1pr0, t˚s, H1pRqq with the norm }u}X :“ sup
tPr0,t˚s

`

}up¨, tq}H2pRq ` }Btup¨, tq}H1pRq

˘

.

For a given ρ P Xpt˚q we denote by Φpρq the solution of (2.34) with F :“ fpρq and the initial data upx, 0q “

Btupx, 0q “ 0. Fixed points of Φ are then solutions R of (2.33). By Banach �xed point theorem a �xed point
will exist if there are constants r, t˚ ą 0 and L P p0, 1q such that

(i) ΦpBrq Ă Br, where Br :“ tu P Xpt˚q : }u}X ď ru,

(ii) }Φpρ1q ´ Φpρ2q}X ď L}ρ1 ´ ρ2}X for all ρ1, ρ2 P Xpt˚q.

Moreover, if (i) and (ii) hold, the �xed point in Br is unique. The basic assumption we will need in order to
prove (i) and (ii) is the existence of a T0 ą 0 such that

A P C2pr0, T0s, H1pR,Cqq X C1pr0, T0s, H3pR,Cqq.

Lemma 2.2 provides the estimate

}Φpρq}X ď ct˚ sup
tPr0,t˚s

}fpρqp¨, tq}H1 . (2.36)

Hence, we need to control }fpρqp¨, tq}H1pRq. Let us start with the residual, which is explicitly

Res “ ´ ε4
6ik0

9k20 ´ 9ω2
0 ` 1

BXpA3qe3iθ ` ε5
ˆ

B2
TAe

iθ ´
1

9k20 ´ 9ω2
0 ` 1

`

B2
XpA3q ` 6iω0BT pA3q

˘

˙

` ε7
1

9k20 ´ 9ω2
0 ` 1

B2
T pA3qe3iθ `

ÿ

jPt5,7,9u

εjNjpA,Aq ` c.c.,
(2.37)

where θ :“ k0x´ω0t and Nj is a polynomial in A and A of total degree j. The polynomials εjNj come from
the nonlinear term pεAeiθ ` ε3A3e3iθ ` c.c.q. Therefore all the functions G1 :“ BXpA3q, G2 :“ B2

TA,G3 :“
B2
XpA3q, G4 :“ BT pA3q, G5 :“ B2

T pA3q and G6 :“ N5, G7 :“ N7, G8 :“ N9 consist of functions of A (and its
derivatives) which depend only on the variables εpx ´ vgtq and ε2t. These terms are possibly multiplied by
emiθ with m P N. Hence, we have

}Resp¨, tq}H1pRq ď cε4
ÿ

m

}Gmpε¨, ε2tq}H1

“ cε7{2
ÿ

m

}Gmp¨, ε2tq}H1 ď Cε7{2

because A P C2pr0, T0s, H1pR,Cqq X C1pr0, T0s, H3pR,Cqq. For instance, for the term with B2
XpA3q we have

}B2
XpA3qp¨, T q}H1 ď cp}Ap¨, tq}2C1

b
}B2
XAp¨, tq}H1 ` }Ap¨, tq}C1

b
}pBXAq2p¨, tq}H1q

ď cp}Ap¨, tq}2C1
b
}Ap¨, tq}H3 ` }Ap¨, tq}2C2

b
}Ap¨, tq}H2q

ď c}Ap¨, tq}3H3

because of the embedding HspRnq ↪Ñ Ckb pRnq for s ą n{2 ` k.
The above loss of an ε1{2 in the estimate of Gm is caused by the L2-part of the norm and follows from

`ş

R |Gmpεx, ε2tq|2dx
˘1{2

“ ε´1{2
`ş

R |Gmpy, ε2tq|2dy
˘1{2

. The remaining terms in fpρq can be estimated as
follows.

}u2asρ}H1 ď }uas}
2
C1

b
}ρ}H1 ď cε2}ρ}H1 for all t P r0, T0ε

´2s,
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}uasρ
2}H1 ď }uas}C1

b
}ρ}C1

b
}ρ}H1 ď }uas}C1

b
}ρ}H2}ρ}H1 ď cε}ρ}H2}ρ}H1 for all t P r0, T0ε

´2s

using again the embedding HspRq ↪Ñ Ckb pRq for s ą 1{2 ` k. Similarly,

}ρ3}H1 ď c}ρ}2C1
b
}ρ}H1 ď c}ρ}2H2}ρ}H1 for all t P r0, T0ε

´2s.

In summary, there is a c ą 0 such that

}fpρqp¨, tq}L2pRq ď c
´

ε2}ρ}H1 ` ε5{2}ρ}H2}ρ}H1 ` ε3}ρ}2H2}ρ}H1 ` ε2
¯

for all t P r0, T0ε
´2s.

Note that alternatively one can use the algebra property of H1pRq, more generally HspRnq is an algebra
for s ą n{2, i.e.

}φψ}HspRnq ď c}φ}HspRnq}ψ}HspRnq if s ą n{2,

see Theorem 4.39 in [3]. This leads to

}fpρqp¨, tq}H1pRq ď c
´

ε2}ρ}H1 ` ε5{2}ρ}2H1 ` ε3}ρ}3H1 ` ε2
¯

for all t P r0, T0ε
´2s.

Hence

}Φpρq}X ď ct˚ sup
tPr0,t,˚s

}fpρqp¨, tq}L2 ď ct˚

´

ε2}ρ}X ` ε5{2}ρ}2X ` ε3}ρ}3X ` ε2
¯

ď ct˚pε2r ` ε5{2r2 ` ε3r3 ` ε2q if ρ P Br

ď r for ε ą 0 small enough and r, t˚ “ Op1qpε Ñ 0q.

In other words (i) holds for �xed t˚, r ą 0 if ε ą 0 is chosen small enough.
For the contraction property (ii) we estimate

}Φpρ1q ´ Φpρ2q}X ď c
?
t˚

ż t˚

0

}fpρ1qp¨, τq ´ fpρ2qp¨, τq}H1dτ

ď c
?
t˚

ż t˚

0

ε2}pρ1 ´ ρ2qp¨, τq}H1 ` ε5{2}pρ21 ´ ρ22qp¨, τq}H1 ` ε3}pρ31 ´ ρ32qp¨, τq}H1dτ

ď ct˚

´

ε2 ` ε5{2}ρ1 ` ρ2}X ` 2ε3p}ρ1}2X ` }ρ2}2Xq

¯

}ρ1 ´ ρ2}X ,

where the algebra property of H1pRq and H2pRq and the identity ρm1 ´ ρm2 “ pρ1 ´ ρ2q
řm´1
k“0 ρ

k
1ρ
m´1´k
2 for

m “ 3 have been used. For ρ1, ρ2 P Br we have

}Φpρ1q ´ Φpρ2q}X ď ct˚

´

ε2 ` 2ε5{2r ` 4ε3r2
¯

}ρ1 ´ ρ2}X .

Clearly, for ε ą 0 small enough and t˚, r “ Op1q is ct˚
`

ε2 ` 2ε5{2r ` 4ε3r2
˘

ă 1.
We conclude that for each t˚, r ą 0 there exists ε0 ą 0 such that (2.33) with ε P p0, ε0q has a unique

solution R P Br Ă Xpt˚q, i.e.

sup
tPr0,t˚s

`

}Rp¨, tq}H2pRq ` }BtRp¨, tq}H1pRq

˘

ď r.

Next, the aim is to show that the estimate can be extended onto r0, T0ε
´2s. We will, however, restrict

only to the H1 norm of Rptq and the L2 norm of BtRptq. We show that there exist K ą 0 and ε0 ą 0 such
that

Eptq :“ }Rp¨, tq}2H1pRq ` }BtRp¨, tq}2L2pRq ď K for all t P r0, T0ε
´2s and ε P p0, ε0q.

The idea is to formulate an integral inequality for Eptq and apply a Gronwall's inequality argument.
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As Eptq “
ş

RpBtRq2px, tq ` pBxRq2px, tq `R2px, tqdx, we get

1

2

d

dt
Eptq “

ż

R
BtRB2

tR ` BxRBtBxR `RBtRdx “

ż

R
BtRpB2

xR ´R ` fpRqq ` BxRBtBxR `RBtRdx

“

ż

R
´BtBxRBxR ` fpRqBtR ` BxRBtBxRdx “

ż

R
fpRqBtRdx,

where the di�erential equation in (2.33) and partial integration have been used. This leads to

d

dt
Eptq ď 2}fpRq}L2pRq}BtR}L2pRq ď 2c}BtR}L2

´

ε2}R}L2 ` ε5{2}R}2H1 ` ε3}R}3H1 ` ε2
¯

ď 2cpε2 ` ε5{2E1{2 ` ε3EqE ` 2cε2E1{2

because }R}2H1 , }R}2L2 , }BtR}2L2 ď E. Estimating now E1{2 ď 1 ` E in the last term, we arrive at

d

dt
Eptq ď 2cp2ε2 ` ε5{2E1{2 ` ε3EqE ` 2cε2

and after integration (due to Ep0q “ 0)

Eptq ď 2ctε2 ` 2c

ż t

0

p2ε2 ` ε5{2E1{2pτq ` ε3EpτqqEpτqdτ.

Based on the above �xed point argument we know that if we select t˚,K ą 0, then there is ε0 ą 0 such
that Eptq ď K for all ε P p0, ε0q and t P r0, t˚s. Then also

Eptq ď 2ctε2 ` 2c

ż t

0

´

2ε2 ` ε2pε1{2K1{2 ` εKq

¯

Epτqdτ.

If we now choose ε0 so small that ε
1{2
0 K1{2 ` ε0K ď 1, then Gronwall's inequality produces

Eptq ď 2ctε2e6cε
2t.

It remains to make sure that Eptq ď K for all t P r0, ε´2T0s. This can be easily done by the choice of K.
The sequence of steps is

1. de�ne K :“ 2cT0e
6cT0 ,

2. choose ε0 ą 0 so small that ε
1{2
0 K1{2 ` ε0K ď 1.

Then for all ε P p0, ε0q

Eptq ď K for all t P r0, T0ε
´2s,

which translates into an estimate for R because }Rp¨, t}H1 ď
a

Eptq.
We have thus proved

Theorem 2.3. Let A P C2pr0, T0s, H1pR,Cqq X C1pr0, T0s, H3pR,Cqq with some T0 ą 0 be a solution of the
NLS (2.32) and u be a solution of (2.30) with upx, 0q “ uaspx, 0q, Btupx, 0q “ Btuaspx, 0q with uas given by
(2.31). There exist K, ε0 ą 0 such that for all ε P p0, ε0q

}up¨, tq ´ uasp¨, tq}H1pRq ď Kε3{2 for all t P r0, T0ε
´2s.

The existence of smooth NLS solutions A can be found, for instance in Prop. 3.8 of [23].
In fact, as we can see by the triangle inequality even the �rst term in the asymptotic ansatz (2.31) produces

an approximation with an error of the same order.
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Corollary 2.4. With the same assumption as in Theorem 2.3 it is also

}up¨, tq ´ up0q
as

p¨, tq}H1pRq ď pK ` 1qε3{2 for all t P r0, T0ε
´2s,

where u
p0q
as px, tq :“ εApεpx´ vgtq, ε

2tqeipk0x´ω0tq ` c.c..

Proof. Clearly, by the triangle inequality it su�ces to estimate }uasp¨, tq ´ u
p0q
as p¨, tq}H1pRq.

}uasp¨, tq ´ up0q
as p¨, tq}H1 “

ε3

9k20 ´ 9ω2
0 ` 1

}A3pεp¨ ´ vgtq, ε
2tqe3ipk0¨´ω0tq ` c.c.}H1

ď cε3}A3pε¨, ε2tq}H1 ď cε5{2}A3p¨, ε2tq}H1 ď Cε5{2}Ap¨, ε2tq}3H1 ,

where the last step follows by the algebra property and the one but last by the scaling property of the L2

norm: }Bpε¨q}L2 “
`

ε´1
ş

R |Bpyq|2dy
˘1{2

“ ε´1{2}B}L2 . □

As we have shown, the approximation error is Opε3{2q in the H1-norm. This can be considered as

satisfactory because the approximation uas (and u
p0q
as ) is one order larger, namely Opε1{2q in the H1-norm.

This is again due to the scaling property of the L2 norm: }εApε¨, ε2tq}L2pRq “ ε1{2}Ap¨, ε2tq}L2pRq.
Note that Theorem 2.3 assumes upx, 0q “ uaspx, 0q, Btupx, 0q “ Btuaspx, 0q. This can be easily generalized

to upx, 0q “ uaspx, 0q `φpxq, Btupx, 0q “ Btuaspx, 0q `ψpxq, where }ψ}H2pRq, }ψ}H1pRq ď cε3{2. This generates

no di�culties as the estimate in (2.36) is simply extended by Opε3{2q terms independent of ρ.

2.2.2.2 Justi�cation in Higher Spatial Dimension in HspRnq

Let us now consider the n´dimensional problem (2.29). As we will see, the di�culty of a justi�cation in
HspRnq is the scaling property of the L2-norm

}fpε¨q}L2pRnq “ ε´
n
2 }f}L2pRnq,

due to which n
2 powers of ε are lost in the estimate of the residual (and hence also the error).

In Rn the dispersion relation ω2 “ |k|2 ` 1 leads to

∇ωpkq “
1

ω
k, D2ωpkq “

1

ω
pI ´ ∇ωpkqp∇ωpkqqT q.

We select again k0 P R and set ω0 :“ ωpk0q, vg :“ ∇ωpk0q. Ansatz (2.31) generalizes to

uaspx, tq “ εApX,T qeipk0¨x´ω0tq ` ε3
A3pX,T q

9|k0|2 ´ 9ω2
0 ` 1

e3ipk0¨x´ω0tq ` c.c. (2.38)

and the e�ective NLS is

iBTA`
1

2ω0
∇ ¨

`

pI ´ vgv
T
g q∇A

˘

`
3

2ω0
|A|2A “ 0. (2.39)

The error is now denoted by
εαR :“ u´ uas,

where the optimal α P R is to be determined. The ansatz is now Opε1´
n
2 q in } ¨ }L2 (and any } ¨ }Hs , s ě 0,)

because }εApε¨, ε2tq}L2pRnq “ ε1´n{2}Ap¨, ε2tq}L2pRnq. Hence, we would like to show that for some α ą 1´n{2
it is }Rp¨, tq}HspRnq “ Op1q for t P r0, T0ε

´2s and ε small enough assuming that A is a smooth solution of
(2.39) on the time interval r0, T0s. The equation for R is analogously to (2.33)

B2
tR “ ∆R ´R ` fpRq, x P Rn, t ą 0 where fpRq :“ 3u2asR ` 3εα`1uasR

2 ` ε2αR3 ´ ε´αRes

Rpx, 0q “ BtRpx, 0q “ 0.
(2.40)
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Once again, the �rst step is to apply a �xed point argument in order to show the existence of a solution
of (2.40) on an interval r0, t˚s with t˚ ą 0. However, the H1 solution space, which we used in the case n “ 1,
is not su�cient since it is not an algebra in Rn, n ě 2. Hence, we choose

Xpt˚q :“ Cpr0, t˚s, HspRnqq X C1pr0, t˚s, Hs´1pRnqq, s ą n{2

as the solution space. For the estimates below we need an assumption on the solution A of (2.39). We require

A P C2pr0, T0s, Hs`1`
n
2 pRnqq for some T0 ą 0. (2.41)

For the estimate of }fpρqp¨, tq}Hs´1pRnq we start again with the residual. It has the same form as in (2.37)
except for the spatial derivatives replaced by their higher dimensional counterparts. For the L2 norm we get

}Resp¨, tq}L2pRnq ď ε4
ÿ

m

ˆ

ε´n

ż

Rn

|G̃mpy, ε2tq|2dy

˙1{2

“ cpAqε4´n{2 for all t P r0, T0ε
´2s,

where G̃m are the analogues to Gm in Sec. 2.2.2.1 and cpAq is a constant dependent only of the L2 norm of
A and its derivatives. The same ε scaling as for the L2 norm applies also for Hs and hence

}Resp¨, tq}HspRnq ď c̃pAqε4´n{2 for all t P r0, T0ε
´2s,

where

c̃pAq “ c̃

¨

˝ max
0ďpď2

0ďqď2

sup
TPr0,T0s

}B
q
TAp¨, T q}Hs`qpRnq

˛

‚.

For the other terms in fpρq we have

}u2asρ}Hs´1 ď c}u2as}C⌈s´1⌉
0

}ρ}Hs´1 ď cε2}ρ}Hs´1

}uasρ
2}Hs´1 ď c}uas}C⌈s´1⌉

0
}ρ2}Hs ď cε}ρ}2Hs

}ρ3}Hs´1 ď }ρ3}Hs ď cε}ρ}3Hs ,

where in the �rst and second line assumption (2.41) has been used and ⌈s⌉ is the smallest integer larger or
equal to s. In summary

}fpρqp¨, tq}Hs´1pRnq ď c
´

ε2}ρ}Hs´1 ` εα`1}ρ}2Hs ` ε2α}ρ}3Hs ` ε4´
n
2 ´α

¯

(2.42)

and the �xed point argument follows in complete analogy to the case n “ 1. Once again, we can conclude that
for each t˚, r ą 0 there exists ε0 ą 0 such that (2.40) with ε P p0, ε0q has a unique solution R P Br Ă Xpt˚q,
i.e.

sup
tPr0,t˚s

`

}Rp¨, tq}HspRnq ` }BtRp¨, tq}Hs´1pRnq

˘

ď r.

It remains to extend the interval on which we can control the Hs norm of R onto an interval of length
Opε´2q. We attempt this again using a Gronwall argument. Let us de�ne the energy

Eptq :“

ż

Rn

|R̂pk, tq|2p1 ` |k|2qs ` |BtR̂pk, tq|2p1 ` |k|2qs´1dk.

Note that although the integrals in E do not exactly match the Hs and Hs´1 norms of Rp¨, tq and BtRp¨, tq
as de�ned in De�nition A.13, we have the equivalence (with some c1, c2 ą 0)

c1p}Rp¨, tq}HspRnq ` }BtRp¨, tq}Hs´1pRnqq ď Eptq ď c2p}Rp¨, tq}HspRnq ` }BtRp¨, tq}Hs´1pRnqq.
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To obtain an inequality for E, we �rst di�erentiate

E1ptq “ 2Re

ż

Rn

R̂pk, tqBtR̂pk, tqp1 ` |k|2qs ` BtR̂pk, tqB2
t R̂pk, tqp1 ` |k|2qs´1dk

“ 2Re

ż

Rn

BtR̂pk, tqf̂pRqpk, tqp1 ` |k|2qs´1dk

ď 2}BtR̂p¨, tqp1 ` | ¨ |2q
s´1
2 }L2pRnq}f̂pRqp¨, tqp1 ` | ¨ |2q

s´1
2 }L2pRnq ď c}BtR}Hs´1pRnq}fpRq}Hs´1pRnq.

With (2.42) this leads to

E1ptq ď c}BtR}Hs´1pRnq

´

ε2}R}Hs´1 ` εα`1}R}2Hs ` ε2α}R}3Hs ` ε4´
n
2 ´α

¯

ď cE1{2
´

ε2E1{2 ` εα`1E ` ε2αE3{2 ` ε4´
n
2 ´α

¯

.

After integration and using E1{2 ď 1 ` E for the term cE1{2ε4´
n
2 ´α, we arrive at

Eptq ď ctε4´
n
2 ´α

` c

ż t

0

´

ε2 ` ε4´
n
2 ´α

` εα`1E1{2psq ` ε2αEpsq
¯

Epsqds. (2.43)

Next, we choose t˚ ą 0 and K ą 0 and exploiting the existence result obtained by the �xed point
argument, we know that there is ε0 ą 0 such that Eptq ď K for all ε P p0, ε0q ad t P r0, t˚s. Hence

Eptq ď ctε4´
n
2 ´α

` c

ż t

0

´

ε2 ` ε4´
n
2 ´α

` εα`1K1{2 ` ε2αK
¯

Epsqds for all t P r0, t˚s, ε P p0, ε0q.

In order to be able to extend the estimate Eptq ď K for some suitable ε-independent K to an interval of

length Opε´2q, we certainly need ε´2ε4´
n
2 ´α

“ Op1q, i.e. 2 ´ n{2 ´ α ě 0. Let us set

α :“ 2 ´ n{2 ´ γ with γ ě 0.

Then

Eptq ď ctε2`γ ` c

ż t

0

´

ε2 ` ε2`γ ` ε2pε1´
n
2 ´γK1{2 ` ε2´n´2γKq

¯

Epsqds for all t P r0, t˚s, ε P p0, ε0q.

(2.44)

In order to be able to rede�ne K such that Eptq ď K on r0, T0ε
´2s for ε small enough, we need ε1´

n
2 ´γK1{2`

ε2´n´2γK to be bounded by a K´independent Op1q constant. This can be achieved by choosing ε small but
only if 1 ´ n

2 ´ γ ą 0 and 2 ´ n´ 2γ ą 0, i.e. if γ ă 1 ´ n
2 . This is impossible for n ě 2 because γ ě 0.

Apparently, for n ě 2 an estimate on r0, T0ε
´2s cannot be obtained. The problem lies in the residual

- if the residual was of higher order in ε, the argument would work on r0, T0ε
´2s. A smaller residual can

be achieved only by improving the ansatz (2.38). In other words, in the formal derivation in Sec. 2.2.1
the expansions have to carried out to a higher order in ε such that the residual at the higher order can be
calculated and set to zero by a suitable extension of the ansatz. We refrain from this tedious calculation here.

Nevertheless, for n “ 2 we can obtain an estimate on r0, T1ε
´2s with some T1 ď T0, which is independent

of ε. If we set γ “ 0, i.e. α “ 2 ´ n{2 “ 1, then (2.44) becomes

Eptq ď ctε2 ` c

ż t

0

ε2
´

2 `K1{2 `K
¯

Epsqds for all t P r0, t˚s, ε P p0, ε0q.

By Gronwall's inequality Eptq ď ctε2ectε
2

p2`K1{2
`Kq. Because

cT1e
cT1p2`K1{2

`Kq ď K for some K ą 0 if T1 ą 0 is small enough,

we have an estimate on r0, T1ε
´2s. In detail, one �rst �nds T1 ą 0 such that cT1e

cT1p2`K1{2
`Kq ď K for one

K ą 0. An arbitrary such K is then selected. This leads to
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Theorem 2.5. Let s ą 1, let A P C2pr0, T0s, Hs`2pR2qq with some T0 ą 0 be a solution of the NLS (2.39)
with n “ 2 and u be a solution of (2.29) with n “ 2, upx, 0q “ uaspx, 0q, Btupx, 0q “ Btuaspx, 0q with uas
given by (2.38). There exist T1 P p0, T0s,K “ KpT1q ą 0, and ε0 ą 0 such that for all ε P p0, ε0q

}up¨, tq ´ uasp¨, tq}HspR2q ď Kε for all t P r0, T1ε
´2s.

Remark 2.3. Note that the estimate E1{2 ď 1 `E, which we have used above, is relatively crude. Unfortu-
nately, improving on this step does not lead to a better �nal error estimate. Without this step we get instead
of (2.43) the inequality

Eptq ď c

ż t

0

ε2
´

ε2´
n
2 ´α

` E1{2psq ` εα´1Epsq ` ε2pα´1qE3{2psq
¯

E1{2psqds.

If α ě 1 and 2 ´ n
2 ´ α ě 1 (which can be satis�ed only for n ď 2 and for n “ 2 it requires α “ 1), then

Eptq ď c

ż t

0

ε2
´

1 `K1{2 `K `K3{2
¯

E1{2psqds for all t P r0, t˚s, ε P p0, ε0q.

We can now use a nonlinear version of Gronwall's inequality in Lemma 2.6 and get

Eptq ď

´ c

2
tε2

´

1 `K1{2 `K `K3{2
¯¯2

for all t P r0, t˚s, ε P p0, ε0q.

Again, by a choice of small enough T1 ď T0 we can achieve Eptq ď K for all t P r0, T1ε
´2s and ε P p0, ε0q. In

summary, we arrive again at Theorem 2.5.
Since for n ą 2 the conditions α ě 1 and 2 ´ n

2 ´ α ě 1 cannot be satis�ed, this approach works only for
n ď 2.

Lemma 2.6 (Nonlinear Gronwall's inequality). If uptq ď
şt

0
apsq

a

upsqds for some a P Cpp0,8q, r0,8qq, then

uptq ď 1
4 p

şt

0
apsqdsq2.

Proof. Letting vptq :“
şt

0
apsq

a

upsqds, we get v1ptq “ aptq
a

uptq ď aptq
a

vptq and hence

d

dt

a

vptq “

´

2
a

vptq
¯´1

v1ptq ď
1

2
aptq

such that after integration
a

vptq ď 1
2

ż t

0

apsqds.

The statement follows because uptq ď vptq. □

Remark 2.4. For n ą 2 ansatz (2.38) produces an estimate only on a time scale Opε´βq, β ă 2. For this
time scale we need in (2.43) 4 ´ n

2 ´ α ´ β ě 0. Setting α :“ 4 ´ n
2 ´ β, we have

Eptq ď ctεβ ` c

ż t

0

´

ε2 ` εβ ` εβpε5´
n
2 ´2βK1{2 ` ε8´n´3βK

¯

Epsqds for all t P r0, t˚s, ε P p0, ε0q.

If β ă mint 5
2 ´ n

4 ,
8
3 ´ n

3 u, then we can

(1) set K :“ cT0e
3cT0 ,

(2) choose ε0 ą 0 such that ε
5´

n
2 ´2β

0 K1{2 ` ε8´n´3β
0 K ă 1
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and with Gronwall's inequality obtain

Eptq ď ctεβe3ctε
β

ď cT0e
3cT0 “ K for all t P r0, T0ε

´βs, ε P p0, ε0q.

This leads to

Theorem 2.7. Let s ą n{2, β ă mint2, 52 ´ n
4 ,

8
3 ´ n

3 u, let A P C2pr0, T0s, Hs`1`
n
2 pRnqq with some T0 ą 0 be

a solution of the NLS (2.39) and u be a solution of (2.29), upx, 0q “ uaspx, 0q, Btupx, 0q “ Btuaspx, 0q with
uas given by (2.38). There exist K ą 0 and ε0 ą 0 such that for all ε P p0, ε0q

}up¨, tq ´ uasp¨, tq}HspRnq ď Kε4´
n
2 ´β for all t P r0, T0ε

´βs.

Of course, the time scale Opε´βq, β ă 2 is not satisfactory as the time scale of the modulation in uas is
Opε´2q.

2.2.2.3 Justi�cation in L1pRnq in the Fourier Variables

An alternative approach to Sec. 2.2.2.1 and 2.2.2.2 is to consider the problem in Fourier variables and
estimate the error in the L1pRnq norm. Via the Riemann-Lebesgue lemma (Theorem A.8) this then implies
an estimate of the supremum norm of the error. A major advantage of this approach is the fact that in L1

no powers of ε are lost when estimating terms of the form gpxq :“ fpεxq. Indeed,

ĝpkq “ ε´nf̂pkε q

such that
}ĝ}L1pRnq “ }ε´nf̂p ¨

ε q}L1pRnq “ }f̂}L1pRnq.

Of course, this approach gives no estimate on derivatives of the error.
This approach is carried out, for example, in Section 2 of [12].

2.3 Hamiltonian Structure of KdV and NLS

The KdV and NLS are examples of Hamiltonian partial di�erential equations as we show below. Let us �rst
recall the de�nition of Hamiltonian ODEs.

De�nition 2.8. An ODE system dy
dt “ fpyq with f : RM Ñ RM for some M P N is called Hamiltonian if

there exists a function H : RM Ñ R and a skew-symmetric matrix ω P RMˆM such that

f “ ω∇H.

H is called the Hamiltonian function.

Darboux's theorem on symplectic manifolds [7] implies that there is always a transformation to the
canonical variables, i.e. φ : y Ñ pq, p, c1, . . . , crq with q, p P RN , 2N ` r “ M such that

d

dx

ˆ

q
p

˙

“

ˆ

0 IN
´IN 0

˙

∇H̃pq, pq,
dcj
dt

“ 0, j “ 1, . . . , r,

where H̃pq, p, c1, . . . , crq “ Hpφ´1pq, p, c1, . . . , crqq.
The Hamiltonian function is a conserved quantity of the ODE dy

dt “ fpyq “ ω∇H because

d

dt
Hpyq “ ∇HpyqT

dy

dt
“ ∇HpyqTωHpyq “ ´pω∇HpyqqT∇Hpyq “ ´

ˆ

dy

dt

˙T

∇Hpyq
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and hence d
dtHpyq “ 0.

Hamiltonian PDEs are de�ned analogously as problems of the form

Btu “ B∇Hpuq,

where up¨, tq P XM ,M P N, X is a real Hilbert space, up¨, tq : Rn Ñ RM for some n,M P N, B is a skew-adjoint
operator, H : XM Ñ R is a functional and

∇Hpuq “ pBu1Hpuq, . . . , BuM
HpuqqT ,

where Buj
Hpuq, j “ 1, . . . ,M is the so called variational derivative of H with respect to uj , i.e. Buj

Hpuq

satis�es
xBujHpuq, wyL2pRnq “ DujHpuqxwy for all w P X

and DujH is the Fréchet derivative of H with respect to uj .
Let us brie�y recall the concept of the Fréchet derivative. It can be de�ned using the more general

Gâteaux derivative.

De�nition 2.9. Let ej be the j´th Euclidean unit vector in RM . If duj
Hpuqxwy :“ limεÑ0

Hpu`εwejq´Hpuq

ε
exists for every w P X, then we call duj

Hpuq : X Ñ R, w ÞÑ duj
Hpuqxwy the Gâteaux derivative of H with

respect to u and duj
Hpuqxwy the Gâteaux derivative of H with respect to u in the direction w.

De�nition 2.10. When u ÞÑ dujHpuq is continuous, then dujH is called the Freéchet derivative of H with
respect to uj.

Remark 2.5. Note that ∇Hpuq is not the variational gradient of H. The variational gradient is de�ned
as the Riesz representation of DuHpuq, i.e. as the element v of XM such that xv, wyXM “ DuHpuqxwy :“
řM
j“1Duj

Hpuqxwjy for all w P XM .

As we see next, it is easy to show that H is a conserved quantity also for Hamiltonian PDEs:

dHpuq

dt
“ DuHpuqxBtuy “

ż

Rn

∇Hpuq ¨ Btudx “

ż

Rn

∇Hpuq ¨ pB∇Hpuqqdx

“ x∇Hpuq, B∇HpuqyL2pRnq “ ´xB∇Hpuq,∇HpuqyL2pRnq “ ´

ż

Rn

Btu ¨ ∇Hpuqdx “ ´
dHpuq

dt
.

As we show next, the KdV
Btu “ ´B3

xu´ 6uBxu, x P R

is Hamiltonian with

H “

ż

R

1

2
pBxuq2 ´ u3dx.

In the general de�nition of Hamiltonian PDEs we thus have M “ 1 and, for example X “ H1pRq. To check
that H is really the corresponding Hamiltonian functional, we have per de�nition of the Fréchet derivative

DuHpuqxwy “ lim
εÑ0

ε´1

ż

R

1

2
pBxpu` εwqq

2
´ pu` εwq3 ´

1

2
pBxuq

2
` u3dx

“ lim
εÑ0

ε´1

ż

R
εBxuBxw ´ 3u2w `Opε2qdx “

ż

R

`

´B2
xu´ 3u2

˘

wdx,
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such that BuH “ ´B2
xu´ 3u2. Clearly, KdV is equivalent to

Btu “ BBuHpuq with B “ Bx.

For the cubic NLS
iBtψ “ ´∆ψ ` γ|ψ|2ψ, γ P R, x P Rn

we �rst pose the equation in the real variables u :“ Repψq, v :“ Impψq

Btu “ ´∆v ` γpu2 ` v2qv

Btv “ ∆u´ γpu2 ` v2qu.

Here the corresponding Hamiltonian is

Hpu, vq :“

ż

Rn

1

2

`

|∇u|2 ` |∇v|2
˘

`
γ

4
pu2 ` v2q2dx

because

DuHpu, vqxwy “ lim
εÑ0

ε´1

ż

Rn

ε∇u ¨ ∇w ` γεpuwv2 ` u2vwq `Opε2qdx

“

ż

Rn

`

´∆u` γupv2 ` u2q
˘

wdx,

such that BuHpu, vq “ ´∆u` γpv2 ` u2qu. Similarly, BvHpu, vq “ ´∆v ` γpv2 ` u2qv. This leads to

Bt p uv q “ B∇Hpu, vq, where B :“
`

0 I
´I 0

˘

.

2.4 Orbital Stability of the KdV 1-Soliton

Before discussing the stability of PDE solutions, let us recall Lyapunov's result on stability of critical points
yc P Rn of autonomous ODE systems

dy

dt
“ fpyq, f P CpRn,Rnq,

where fpycq “ 0.
The critical point yc is called stable if for every ε ą 0 one can �nd δ ą 0 such that if |yp0q ´ yc| ă δ, then

|yptq ´ yc| ă ε for all t ą 0. Lyapunov proved [25]

Theorem 2.11. If there is a function V P C1pRnq such that V pycq “ 0 and a neighborhood Upycq Ă Rn, for
which

(i) V pyq ą 0 for every y P Upycqztycu,

(ii) ∇V pyq ¨ fpyq ď 0 for every y P Upycq,

then yc is stable.

A function satisfying the assumption of the theorem is called a Lyapunov function (on the neighborhood
U).

Critical points of Hamiltonian ODE systems are given by extrema of the Hamiltonian function H. For
minima and maxima of H a simple shift of H then produces a Laypunov function.

Theorem 2.12. Let dy
dt “ ω∇Hpyq be a Hamiltonian ODE-system. Local maxima and minima of H are

stable critical points.
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Proof. Let us �rst consider the case that yc is a local minimum ofH. Then V pyq :“ Hpyq´Hpycq is a Lyapunov
function on a neighborhood of yc because clearly V pycq “ 0, V pyq ą 0 on a punctured neighborhood of yc
and

∇V pyq ¨ fpyq “ ∇Hpyq ¨ pω∇Hpyqq “ 0

since ω “ ´ωT .
For a local maximum one de�nes V pyq :“ Hpycq ´Hpyq. □

Let us now turn to PDEs. We consider the KdV

Btu` B3
xu` 6uBxu “ 0, x P R

and study the satbility of localized traveling waves of the form

upx, tq “ ucpx, tq :“ gcpx´ ctq with c P R, gpnq
c pxq Ñ 0 for n “ 0, 1, 2 as |x| Ñ 8.

As shown in Section 2.1.1.3, the only nontrivial solution is

gcpξq “
c

2
sech2p

?
cξq, c ą 0, (2.45)

modulo an arbitrary constant shift in the argument, see (2.15).

The pro�le gc satis�es pg2
c ´ cgc ` 3g2c q1 “ 0 and because of the decay of g

pnq
c , n “ 0, 1, 2 we have after

integration
g2
c ´ cgc ` 3g2c “ 0. (2.46)

As we have shown above, KdV is Hamiltonian with

Hpuq “

ż

R

1
2 pBxuq2 ´ u3dx.

One can easily check that another conserved quantity is

Npuq :“

ż

R
u2dx.

The pro�le gc is a critical point of H under the constraint of �xed L2-norm, i.e. restricted to tw P H1pRq :
Npwq “ Npgcqu. This follows from the Lagrange multiplier rule because for Epw, λq :“ Hpwq ` λpNpwq ´

Npgcqq we get
BwEpgc, cq “ ´g2

c ´ 3g2c ` cgc “ 0 due to (2.46),

BcEpgc, cq “ Npwq ´Npgcq “ 0.

In analogy to ODEs one could expect that minima and maxima of H restricted to tw P H1pRq : Npwq “

Npgcqu are stable. One can hope hat because H is a conserved quantity, if |Hpup¨, 0qq ´ Hpgcq| is small,
then up¨, tq stays close to ucp¨, tq. The problem is that in in�nite dimensional problems the smallness of
|Hpup¨, tqq ´Hpucp¨, tqq| does not imply the smallness of }up¨, tq ´ ucp¨, tq}H1 (or in any other generic norm).
In particular, any perturbation of the initial data which leads to a change in the velocity of the solution means
that u propagates at a di�erent velocity than uc and even if the shape of u remains close to that of the shape
of uc, the di�erence }up¨, tq´ucp¨, tq}H1 does not remain small. In fact it converges to }up¨, tq}H1 `}ucp¨, tq}H1

as t Ñ 8.
This motivates a generalized de�nition of stability, which describes stability of the shape of u.

De�nition 2.13. uc is orbitally stable if for each ε ą 0 one can �nd δ ą 0 such that if }up¨, 0q´gc}H1pRq ă δ,
then

dpup¨, tq, ucp¨, tqq :“ inf
x0PR

}up¨ ` x0, tq ´ ucp¨, tq}H1pRq ă ε for all t ą 0. (2.47)
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Orbital stability of uc was proved by Benjamin in 1972, cf. [4]. The main result is the following statement.
Let A ą 0. Then there are constants α, β ą 0 such that

0 ď αdpg, gcq
2 ď Hpgq´Hpgcq ď β}g´gc}

2
H1pRq for all g P tw P H1pRq : Npwq “ Npgcq, }w´gc}H1pRq ď Au.

(2.48)
We prove only the second inequality in (2.48). We write g “ gc ` φ and because Npgq “ Npgcq, we have

Hpgq ´Hpgcq “

ż

R
BxgcBxφ`

1

2
pBxφq2 ´ 3g2cφ` 3gcφ

2 ´ φ3dx`
c

2

ż

R
pgc ` φq2 ´ g2cdx

“

ż

R

`

´B2
xuc ´ 3g2c ` cgc

˘

l jh n

“0

φdx`

ż

R

1
2 pBxφq2 ´ φ3 ` p c2 ´ 3gcqφ

2dx

ď 1
2}Bxφ}2L2pRq ` p c2 ` 3}gc}C0

b pRqq}φ}2L2pRq ` }φ}C0
b pRq}φ}2L2pRq ď c1}φ}2H1pRq ` c2}φ}3H1pRq

ď pc1 ` c2Aq}φ}2H1pRq because }φ}H1pRq ď A.

In the one but last step we have used the Sobolev embedding in Theorem A.14.
The proof of the inequality dpg, gcq

2 ď Hpgq ´Hpgcq is substantially lengthier, see [4].

1) Orbital stability within initial data tw P H1pRq : Npwq “ Npgcqu Orbital stability within initial
data that have the same L2 norm as ucp¨, tq (i.e. as gc) follows directly from (2.48) and the conservation of
H:

αdpup¨, tq, ucp¨, tqq2 ď Hpup¨, tqq ´Hpucp¨, tqq “ Hpup¨, 0qq ´Hpucp¨, 0qq ď β}up¨, 0q ´ ucp¨, 0q}2H1pRq.

2) Orbital stability within H1pRq Here we use the property that for any c ą 0 and any δ ą 0 small
enough and initial data up¨, 0q such that }up¨, 0q ´ gc}H1pRq ă δ there exists c˚ ą 0 with Npgc˚

q “ Npup¨, 0qq

and }gc ´ gc˚
}H1pRq Ñ 0 as δ Ñ 0. This can be checked directly from the explicit form gcpξq “ c

2 sech
2
p
?
cξq,

for which Npgcq “ 8
3c

2{3. Clearly, N is continuous and surjective onto p0,8q and gc is smooth in c.
In other words, for any initial data δ´close (in } ¨ }H1) to gc there is a soliton gc˚

with the same L2 norm
as up¨, 0q and op1q close to gc as δ Ñ 0.

Using step 1, we have
dpup¨, tq, uc˚

p¨, tqq Ñ 0 as δ Ñ 0.

By the triangle inequality of Lemma 2.14, we get

dpup¨, tq, ucp¨, tqq ď dpup¨, tq, uc˚
p¨, tqq ` dpuc˚

p¨, tq, ucp¨, tqq
l jh n

“:d2

Ñ d2 as δ Ñ 0.

Finally, for d2 we have

d2 “ inf
x0PR

}gcp¨ ´ ctq ´ gc˚
p¨ ` x0 ´ c˚tq}H1pRq “ inf

x0PR
}gcp¨q ´ gc˚

p¨ ` x0q}H1pRq Ñ 0 as δ Ñ 0

because }gc ´ gc˚
}H1pRq Ñ 0 as δ Ñ 0. This concludes the proof of the orbital stability of uc for any c ą 0.

Lemma 2.14. The distance function d in (2.47) satis�es the triangle inequality.

Proof. For any u, v, w P H1pRq

dpu, vq ď }up¨ ` aq ´ vp¨ ` bq}H1pRq for all a, b P R
ď }up¨ ` aq ´ wp¨q}H1pRq ` }wp¨q ´ vp¨ ` bq}H1pRq for all a, b P R.

Taking the in�mum over a, b P R yields the result. □



Appendix A

Fourier Transform and Sobolev Spaces

Let us �rst recall the standard de�nitions of the weak derivative and the Sobolev space Hs.

De�nition A.1. For u P L1
loc

pRnq and a multiindex α P Nn0 a function v is a weak α-derivative if

ż

Rn

uDαφdx “ p´1q|α|

ż

Rn

vφdx for all φ P C8
c pRnq.

We denote a weak derivative by v “ Dαu. We are using the standard notation Dαu “ Bα1
x1

Bα2
x2
. . . Bαn

xn
u.

Weak derivatives are unique up to sets of measure zero.

De�nition A.2. The Sobolev space HspRnq is

HspRnq “ tu : Rn Ñ C such that Dαu P L2pRnq for all α P Nn0 with |α| ď s.u

The corresponding norm is

}u}HspRnq “

¨

˝

ÿ

|α|ďs

}Dαu}L2pRnq

˛

‚

1
2

.

A.1 Fourier Transform

One of the major tools in the mathematics of waves is the Fourier transformation.

De�nition A.3. For u P L1pRnq we de�ne the forward and backward Fourier transforms

ûpkq “ p2πq´n{2

ż

Rn

e´ik¨xupxqdx for k P Rn,

qupxq “ p2πq´n{2

ż

Rn

eik¨xupkqdk for x P Rn

respectively.

The Fourier transformation can be also applied to L2 functions by choosing an approximating sequence
pujqjPN Ă L2pRnq X L1pRnq such that uj Ñ u in L2 as j Ñ 8 and de�ning û :“ limjÑ8 ûj , see Sec. 4.3.1 in
[9]. In other words there exists a unique bounded linear extension of ̂ to L2pRnq. The same holds for q.

70
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The following properties of the Fourier transform for arbitrary functions u, v P L2pRnq will be fundamental
for our analysis.

}u}L2pRnq “ }û}L2pRnq “ }qu}L2pRnq, (A.1)

pu, vq “ pû, v̂q where p¨, ¨q is the standard inner product in L2pRnq, (A.2)

D̂αupkq “ pikqαûpkq for all multi-indices α P Nn0 with |α| ď s if u P HspRnq, (A.3)

p̂u ˚ vq “ p2πqn{2ûv̂, p̂uvq “ p2πq´n{2û ˚ v̂ if u, v P L1pRnq X L2pRnq, (A.4)

u “ qû. (A.5)

The identity (A.1) is called the Plancherel identity. For the proofs see Sec. 4.3.1 in [9]. Here we show the
proofs of (A.2), (A.3), and (A.5).

First, using the Plancherel identity and the polarization identity we prove (A.2). Proof. (of (A.2)) The
polarization identity is

pu, vq “ 1
2

`

}u` v}2L2 ´ i}u` iv}2L2 ´ p1 ´ iq}u}2L2 ´ p1 ´ iq}v}2L2

˘

.

Using the Plancherel identity, we thus get

pu, vq “ 1
2

`

}û` v̂}2L2 ´ i}û` iv̂}2L2 ´ p1 ´ iq}û}2L2 ´ p1 ´ iq}v̂}2L2

˘

“ pû, v̂q.

□

The identity (A.3) shows that the Fourier transform acts on weak derivatives the same way as it does on
classical derivatives. We prove this next.

Proof. (of (A.3)) First we note that for φ P C8
c pRnq it is clear by integration by parts that D̂αφpkq “

pikqαφ̂pkq We calculate next for all φ P C8
c pRnq

pD̂αu, φ̂q “ pDαu, φq “ p´1q|α|pu,Dαφq “ p´1q|α|pû, D̂αφq “ p´1q|α|i|α|pû, kαφ̂q “ i|α|pkαû, φ̂q,

where the �rst and the third equation hold by the A.2. Hence with ĥ :“ D̂αu´ i|α|kαû

0 “ pĥ, φ̂q “ ph, φq for all φ P C8
c pRnq.

Because C8
c pBRq is dense in L2pBRq for all R ą 0, we get h “ 0 almost everywhere in BR for all R ą 0

and hence h “ 0 almost everywhere in Rn.
For (A.5) we �rst note that for u, v P L1pRnq X L2pRnq it is

p2πq´n{2

ż

Rn

ż

Rn

upxqvpyqeix¨y dxdy “

ż

Rn

quv dx “

ż

Rn

uqv dx

thanks to the theorems of Tonelli and Fubini (use Tonelli to show
ş

R2n |uppxq||vpyq| dpx, yq ă 8. Then
ş

R2n uppxqvpyqeix¨y dpx, yq “
ş

Rn upxq
ş

Rn vpyqeix¨y dy dx “
ş

Rn vpyq
ş

Rn upxqeix¨y dxdy by Fubini). Let now
u, v P L2pRnq. The identity

ż

Rn

quv dx “

ż

Rn

uqv dx (A.6)

holds also in that case as can be shown by approximation in L1 X L2.
Besides, the de�nition of theq-transform implies

qv “ v̂. (A.7)
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Finally
ż

Rn

qûv dx
(A.6)

“

ż

Rn

ûqv dx
(A.7)

“

ż

Rn

ûv̂ dx
(A.2)

“

ż

Rn

uv dx “

ż

Rn

uv dx.

Since v P L2 is arbitrary, we are done. □

The Fourier transform can be de�ned also for tempered distributions. Let us �rst de�ne the Schwartz
space and the space of tempered distributions.

De�nition A.4. The Schwartz space in Rn is SpRnq “ tφ P C8pRnq : supxPRn |xαDβφpxq| ă 8 for all α, β P

Nn0 u.

The space SpRnq is a complete metric space with the metric dpφ,ψq :“
ř8

|p|,|q|“0 2
´|p|´|q| }φ´ψ}p,q

1`}φ´ψ}p,q
, where

}η}p,q :“ supxPRn xp|Dqpφqpxq|, see Sec. 7.3 in [19].

De�nition A.5. The space of tempered distributions S1pRnq is the dual space of SpRnq, i.e. the space of all
linear continuous mappings from SpRnq to C.

Note that any locally integrable function f P L1
locpRnq de�nes a tempered distribution Tf via

Tf pφq “

ż

Rn

fpxqφpxqdx for all φ P SpRnq.

The Fourier transform is a bijection from SpRnq to SpRnq, see Theorem IX.1 in [18]. Hence, the following
de�nition of the Fourier transform for tempered distributions makes sense.

De�nition A.6. For any T P S1pRnq we de�ne the Fourier transform T̂ via

T̂ pψq “ T pψ̂q for all ψ P SpRnq.

The Fourier transform is also a bijection from S1pRnq to S1pRnq, see Theorem IX.2 in [18].
As the following lemma shows, the product rule (A.4) for the Fourier transform generalizes also to distri-

butions.

Lemma A.7. Let φ P SpRnq and T P S1pRnq and de�ne

pT ˚ φqpxq :“ T pφpx´ ¨qq.

Then T ˚ φ P C8pRnq X S1pRnq and

T̂ ˚ φ “ T̂ φ̂, where T̂ φ̂ P S1pRnq, pT̂ φ̂qpψq :“ T̂ pφ̂ψq for all ψ P SpRnq.

The proof is left as an exercise.
A fundamental result relating decay in the physical space with smoothness in the Fourier space is the

Riemann-Lebesgue lemma, cf. Theorem IX.7 in [18].

Theorem A.8. (Riemann-Lebesgue lemma) The Fourier transform is a bounded map from L1pRnq to
C8pRnq, i.e. the space of continuous functions k ÞÑ fpkq decaying to 0 as |k| Ñ 8.

An easy important corollary of the Riemann-Lebesgue lemma is

Corollary A.9. If f P CpΩq for some compact Ω Ă Rn, then
ż

Ω

e´ik¨xfpxqdx Ñ 0 as |k| Ñ 8.
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Finally, we state an important result relating the support of a function (or generally a tempered distri-
bution) in the physical x´space and the smoothness of its Fourier transform. This is one of the famous
Paley-Wiener theorems. First, let us, however, de�ne the support of a tempered distribution

De�nition A.10. The support of T P S1pRnq is

supppT q “ Rnz
ď

tV Ă Rn : T pφq “ 0 for all φ P SpRnq with supppφq Ă V u.

It is an easy exercise to check that for a function T this de�nition coincides with the de�nition of the
support for functions.

Theorem A.11. (Paley-Wiener Theorem) The following two statements are equivalent

1. ψ P S1pRnq, supppψq Ă BR “ tx P Rn : |x| ď Ru for some R ą 0,

2. ψ̂ : Cn Ñ C is an entire function on Cn and there are C ą 0, N P N such that

|ψ̂pkq| ď Cp1 ` |k|qNeR| Impkq| for all k P Cn.

For the proof see Theorem IX.12 in [18] and Theorem 7.23 in [19].

A.2 Sobolev Spaces and their De�nition in the Fourier Variables

As the following theorem shows, Sobolev spaces can be characterized via the decay rate in Fourier variables.

Theorem A.12. (Characterization of Sobolev spaces in Fourier Variables) Let u P L2pRnq and s P N0.

1.
u P HspRnq if and only if p1 ` |k|sqû P L2pRnq.

2. There are constants c1, c2 ą 0 such that

c1}u}HspRnq ď }p1 ` |k|sqû}L2pRnq ď c2}u}HspRnq

for all u P HspRnq.

Proof. First let u P HspRnq. Identity (A.3) implies kαû P L2pRnq for all α P Nn0 such that |α| ď s. Choosing
α “ qej with N0 Q q ď s, j P t1, . . . , nu, we have by the Plancherel identity

ż

Rn

k2qj |û|2dk “

ż

Rn

|Dqeju|2dx.

From this we get
ş

Rn |k|2q|û|2dk ď c
řn
j“1

ş

Rn |Dqeju|2dx because |k|2q “ pk21 ` . . . , k2nqq ď cpk2q1 ` ¨ ¨ ¨ ` k2qn q.
We thus have

ż

Rn

p1 ` |k|sq2|û|2dk ď c}u}2HspRnq.

This proves the implication ñ in 1. and one part of the norm equivalence in 2.
Now assume p1 ` |k|sqû P L2pRnq. For |α| ď s

}pikqαû}2L2pRnq ď

ż

Rn

|k|2α|û|2dk ď c}p1 ` |k|sqû}2L2pRnq, (A.8)

where the �rst inequality follows from |pikqα|2 “ k2α1
1 k2α2

2 . . . k2αn
n ď pk21 ` ¨ ¨ ¨ ` k2nqα1`¨¨¨`αn “ |k|2|α|. We

set next
uα :“ ppikqαûqq.
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Note that uα P L2pRnq. For all φ P C8
c pRnq we obtain

pDαφ, uq “ pD̂αφ, ûq “ ppikqαφ̂, ûq “ p´1q|α|pφ̂, pikqαûq “ p´1q|α|pφ, uαq,

i.e. uα is the weak derivative Dαu. From (A.8) we conclude that }u}HspRnq ď c}p1 ` |k|sqû}L2pRnq, which
proves the implication ð in 1. as well as the other inequality in 2. □

Theorem A.12 lets us de�ne Sobolev spaces for real (positive) indices s.

De�nition A.13. For s P p0,8q we de�ne

HspRnq :“ tu P L2pRnq : }u}2HspRnq :“

ż

Rn

p1 ` |k|sq2|ûpkq|2dk ă 8u.

The Fourier representation and the theorem of Riemann-Lebesgue allow a simple proof of the following
Sobolev embedding result.

Theorem A.14. Let s ą n{2. Then there is a constant c ą 0 such that for each f P HspRnq we have

f P CpRnq, }f}C0
b pRnq ď c}f}HspRnq, fpxq Ñ 0 as |x| Ñ 8.

Proof. By the Cauchy-Schwarz inequality

ż

Rn

|f̂pkq|dk “

ż

Rn

p1 ` |k|2qs{2|f̂pkq|p1 ` |k|2q´s{2dk ď

ˆ
ż

Rn

p1 ` |k|2qs|f̂pkq|2dk

˙1{2 ˆ
ż

Rn

p1 ` |k|2q´sdk

˙1{2

ď K}f}HspRnq

for some K P p0,8q, where in the last step we used the fact that
ş

Rnp1 ` |k|2q´sdk ă 8 for s ą n{2.

Hence f̂ P L1pRnq and by Theorem A.8 we have the continuity and decay of f . The estimate of the
supremum norm follows from the above calculation and the de�nition of the inverse Fourier transform fpxq “

p2πq´n{2
ş

Rn f̂pkqeik¨xdk:

}f}C0
b pRnq ď p2πq´n{2

ż

Rn

|f̂pkq|dk ď Kp2πq´n{2}f}HspRnq.

□



Appendix B

Asymptotics

B.1 Asymptotic Notation

Let f, g : X Ñ Y, where X,Y P {R,C}.

De�nition B.1. f is big-O of g as x Ñ x0 if

i) D neighborhood U of x0 in X

ii) D M ą 0: x P U ùñ |fpxq| ď M ¨ |gpxq|

Notation: fpxq “ Opgpxqq as x Ñ x0.

Remark B.1. When gpxq ‰ 0 in a punctured neighborhood Upx0qztx0u, then fpxq “ Opgpxqq as x Ñ x0 if

and only if lim sup
xÑx0

|fpxq|

|gpxq|
ă 8.

De�nition B.2. (little o) f is little-o of g as x Ñ x0 if @ε ą 0 DUεpx0q Ă X : x P Uε ùñ |fpxq| ď

ε ¨ |gpxq|.

Notation: fpxq “ opgpxqq as x Ñ x0.

Remark B.2. When gpxq ‰ 0 in a punctured neighborhood Upx0qztx0u, then fpxq “ opgpxqq as x Ñ x0 if

and only if lim
xÑx0

|fpxq|

|gpxq|
“ 0.

The meaning of fpxq “ opgpxqq is that (in the given limit) f is asymptotically negligible with respect to g.

De�nition B.3. f is asymptotically equivalent to g as x Ñ x0 if f ´ g “ opgq as x Ñ x0.

Notation: f „ g as x Ñ x0.

Remark B.3. If gpxq ‰ 0 on a punctured neighborhood Upx0qztx0u,

then f „ g as x Ñ x0 ðñ lim
xÑx0

fpxq

gpxq
“ 1.

Remark B.4. „ is an equivalence relation since

� f „ f

� f „ g ùñ g „ f

� f „ g, g „ h ùñ f „ h.

75
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B.2 Gamma Function

The Gamma function is de�ned via

De�nition B.4. For z P C with ´Repzq R N :“ t0, 1, 2, . . . u we de�ne

Γpzq :“

$

’

&

’

%

Γ`pzq “
8
ş

0

e´ttz´1 dt, Repzq ą 0

Γ`pz`nq

zpz`1q¨...¨pz`n´1q
, ´n ă Repzq ď ´n` 1, z ‰ ´n` 1, n P N

Some basic properties of the Gamma function are

Γpnq “ pn´ 1q! for all n P N,
Γpz ` 1q “ zΓpzq for all z P C with ´ Repzq R N,

Γp 1
2 q “

?
π.

Example B.1. Let α P p0, 1q, x ą 0. Then

8
ż

0

eixttα´1 dt “
iαΓpαq

xα
.

Proof. De�ne f : C Ñ C via fpzq :“ eixzzα´1. f is discontinuous across the branch cut on the negative
real axis. We choose a contour as in Fig. B.2. Inside the contour f is holomorphic, so that Cauchy Integral

Figure B.1: from [24]

Theorem yields

0 “

R
ż

r

fpzqdz `

ż

CR

fpzqdz `

ir
ż

iR

fpzqdz `

ż

Cr

fpzqdz.

We have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

CR

fpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

π{2
ż

0

|e´xR sin θ`iR cos θRα´1R|dθ “ Rα
π{2
ż

0

e´xR sin θ dθ ď Rα
π{2
ż

0

e´xR 2θ
π dθ

“ Rα´1 π

2x
p1 ´ e´xRq

RÑ8
ÝÑ 0 since α ă 1.

For the curve Cr we argue similarly and get
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Cr

fpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď rα
π

2x

ˆ

1 ´ e´xr

r

˙

rÑ8
ÝÑ 0 since α ą 0.
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Hence for r Ñ 0 and R Ñ 8

8
ż

0

fpzqdz “ ´

ir
ż

iR

fpzqdz “ ´i

0
ż

8

fpitqdt “ iα
8
ż

0

e´xttα´1 dt “
iαΓpαq

xα
.

□

B.3 Method of Stationary Phase

Consider

Ipxq “

b
ż

a

eixhptqfptqdt,

where a, b P R, x P R, and h : R Ñ R.
The aim is to determine the asymptotics of Ipxq as x Ñ 8. The main idea is that for large values of x the

function eixhptq is highly oscillatory in t so that cancellation occurs in the integral. The main contribution to
the integral thus comes from the neighborhood of points t, where h1ptq “ 0, i.e. where the phase is stationary.

Example B.2. A common example is the Fourier transform integral
ş

R
eikxĝpkqdt “ gpxq for large values of

x.

Lemma B.5. Let a, b P R, a ă b and f P Cpra, bsq, h P C1pra, bsq, fh1 P C1pra, bsq with h1ptq ‰ 0 on ra, bs.
Then

b
ż

a

eixhptqfptqdt „
i

x

„

eixhpaqfpaq

h1paq
´
eixhpbqfpbq

h1pbq

ȷ

px Ñ 8q.

Let a P R. If f P Cpra,8qq, h P C1pra,8qq with h1ptq ‰ 0 on ra,8q,
´

f
h1

¯1

P L1pa,8q and fptq
h1ptq Ñ 0 as

t Ñ 8, then
8
ż

a

eixhptqfptqdt „
i

x

eixhpaqfpaq

h1paq
px Ñ 8q.

Proof. For the statement on the compact interval use the substitution t “ h´1psq and partial integration to
get

ż b

a

fptqeixhptq dt “

ż hpbq

hpaq

eixs
fph´1psqq

h1ph´1psqq
ds

“ ´
i

x

„

eixs
fph´1psqq

h1ph´1psqq

ȷhpbq

hpaq

`
i

x

ż hpbq

hpaq

eixs
d

ds

ˆ

fph´1psqq

h1ph´1psqq

˙

ds.

Since f
h1 P C1pra, bsq, the integral on the right hand side converges to zero for x Ñ 8 by the Riemann-Lebesgue

lemma A.8. Hence the result follows.

For the unbounded interval the same calculation applies. We note that
´

f
h1

¯1

P L1pa,8q is equivalent to

d
ds

´

fph´1
psqq

h1ph´1psqq

¯

P L1phpaq, limbÑ8 hpbqq. Thus the last integral converges to zero due the Riemann-Lebesgue

lemma again. With fptq
h1ptq Ñ 0 as t Ñ 8 we get the result. □
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Lemma B.6. If f „ g and g is bounded as x Ñ x0, then

ef „ eg as x Ñ x0.

Proof. Let ε ą 0. Then D δ ą 0 so that

|x´ x0| ă δ ùñ |fpxq ´ gpxq| ă
ε

M
|gpxq| ă ε,

where M :“ max
xPrx0´δ,x0`δs

|gpxq|. This implies lim
xÑx0

pfpxq ´ gpxqq “ 0. The continuity of expp¨q then yields

1 “ e0 “ lim
xÑx0

pefpxq´gpxqq “ lim
xÑx0

efpxq

egpxq
.

□

Note that it is not generally true that if fpxq „ gpxq as x Ñ x0 and if H is a continuous function, then
Hpfpxqq „ Hpgpxqq as x Ñ x0. A counterexample is fpxq “ x, gpxq “ π,Hpyq “ sinpyq and x0 “ π because,
clearly, | sinpxq ´ sinpπq| ą ε sinpπq “ 0 for all x in a punctured neighborhood of π and all ε ą 0.

Theorem B.7. Let a P R, b P R Y t8u, let suppf “ S Ă R be compact and f P C1pSq, h P CN pSq. If

‚ fpaq ‰ 0,

‚ h1ptq ‰ 0 @t P Sztau,

‚ h1paq “ ¨ ¨ ¨ “ hpN´1qpaq “ 0, hpNqpaq ‰ 0 for some N ě 2,

then

Ipxq :“

b
ż

a

eixhptqfptqdt “
1

N
Γ

ˆ

1

N

˙

fpaqeixhpaq

ˆ

iN !

hpNqpaqx

˙
1
N

` opx´1{N q px Ñ 8q

“
1

N
Γ

ˆ

1

N

˙

fpaqeixhpaqei
π
2N signphpNq

paqq

ˆ

N !

|hpNqpaq|x

˙
1
N

` opx´1{N q px Ñ 8q.

Proof. Using Lemma B.6, we have

eixphptq´hpaqq fptq

fpaq
„ eixh

pNq
paq

pt´aqN

N! “: F px, tq pt Ñ a`q.

That means

eixphptq´hpaqqfptq “ fpaq pF px, tq `Rpx, tqq with Rpx, tq “ opF px, tqq pt Ñ a`q.

Choosing x ą 0, there exists δ ą 0 small enough so that if a ď t ă a` δ, then

|Rpx, tq| ď
1

x
|F px, tq|. (B.1)

We split Ipxq into

Ipxq “

a`δ
ż

a

eixhptqfptqdt

l jh n

I1pxq

`

b
ż

a`δ

eixhptqfptqdt

l jh n

I2pxq

.
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For I2 we use LemmaB.5 to conclude I2pxq “ O
`

1
x

˘

since |h1ptq| ą α2 ą 0 @t P ra` δ, bq XS. For I1 we get

I1pxq “ eixhpaqfpaq

a`δ
ż

a

F px, tq `Rpx, tqdt
(B.1)

“ eixhpaqfpaq

a`δ
ż

a

F px, tqdt`O

ˆ

1

x

˙

.

We write next
a`δ
ş

a

F px, tqdt “
8
ş

a

F px, tqdt ´
8
ş

a`δ

F px, tqdt. By another application of LemmaB.5 the latter

integral satis�es
8
ż

a`δ

F px, tqdt “ O

ˆ

1

x

˙

as pt´ aqN has no extrema in ra` δ,8q. It can be checked that all assumptions of Lemma B.5 (mainly the

L1 condition) are satis�ed in the application to
8
ş

a`δ

F px, tqdt.

Note that the existence of
8
ş

a`δ

F px, tqdt follows from the existence of
8
ş

a

F px, tqdt shown next.

For the former integral, with the substitution u “ |hpNqpaq|
pt´aq

N

N ! , we have

8
ż

a

F px, tqdt “

¨

˝

8
ż

0

eixu signphpNq
paqqup 1

N ´1q du

˛

‚

1

N

ˆ

N !

|hpNqpaq|

˙
1
N

“
1

N

ˆ

N !

|hpNqpaq|

˙
1
N

`

i sign
`

hpNqpaq
˘˘

1
N Γ

`

1
N

˘

x
1
N

,

where the identity
8
ş

0

eixttα´1 dt “ iα Γpαq

xα has been used. □

Remark B.5. Similarly for an extremum of order N in the right end point t “ b P R with analogous
assumptions as above we get

Ipxq “
1

N
Γ

ˆ

1

N

˙

fpbqeixhpbqep´1q
N i

π
2N signphpNq

pbqq

ˆ

N !

|hpNqpbq|x

˙
1
N

` opx´1{N q px Ñ 8q.

For an internal extremum in c P pa, bq one needs to add the contributions from pa, cs and rc, bq. The resulting
asymptotics for x Ñ 8 are

Ipxq „
2

N
Γ

ˆ

1

N

˙

fpcqeixhpcq cos
´ π

2N

¯

ˆ

N !

|hpNqpcq|x

˙
1
N

for N odd,

„
2

N
Γ

ˆ

1

N

˙

fpcqeixhpcqei
π
2N signphpNq

pcqq

ˆ

N !

|hpNqpcq|x

˙
1
N

for N even.

Remark B.6. Also note that the condition of compact support of f is not necessary. The proof of Theorem

B.7 can be easily adapted for the case f P C1pra,8qq X L1ppa,8qq, h P CN pra,8qq with
´

f
h1

¯1

P L1pa` δ,8q

for each δ ą 0 and fptq
h1ptq Ñ 0 as t Ñ 8. These conditions are satis�ed, e.g., if f P SpRq, h grows at most

exponentially and if for each δ ą 0 there is α ą 0 s.t. |h1ptq| ą α ą 0 for all t P ra` δ,8q.

There is also a multidimensional version of the stationary phase method. A classical result [15] is
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Theorem B.8. Let f P C1pRn,Rq have a compact support S Ă Rn and y0 P S. Let also h P C2pS,Rq. If

‚ fpy0q ‰ 0,

‚ ∇hpy0q “ 0, ∇hpxq ‰ 0 @x P Szty0u,

‚ detpD2hpy0qq ‰ 0,

then
ż

Rn

eiµhpxqfpxqdx “

ˆ

2π

µ

˙n{2
fpy0q

|detpD2hpy0qq|
1
2

eipµhpy0q`σπ{4q ` opµ´n{2q pµ Ñ 8q,

where D2h is the Hessian matrix of h and where σ is the signature of D2hpy0q, i.e. the number of positive
eigenvalues minus the number of negative eigenvalues.
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