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0.1 Introduction

Dispersion describes the effect of distinct wavelengths propagating at different velocities. This lecture deals
primarily with the group velocity dispersion, which is based on the concept of group velocity. At the moment,
for a rough physical picture, let us, however, use the slightly ambiguous term ‘velocity’. An elementary
example of dispersion is that of light in a glass prism (or generally any other medium except for vacuum).
When light travels through a material, different wavelengths propagate at different velocities. Hence, when
white light enters, for instance, a glass prism from air, Snell’s law tells us that the different wavelength
components refract in different directions. This is called chromatic dispersion. In this lecture we will deal
only with waves propagating in one material or a periodic arrangement of materials and hence refraction at
interfaces will not play a role.

Even in a homogenous material dispersion still causes the separation of different wavelengths. For instance,
an initially localized disturbance (a wave-packet) is a combination of waves with many different wavelengths.
These waves will disintegrate and the wave-packet become gradually broader because of the different wave-
length components propagating at different velocities. This effect is called group velocity dispersion and is
of extreme relevance, e.g., in fiber optics. In long-haul optical fibers clever techniques need to be used to
counteract dispersion in order to preserve a signal. This goes under the name of dispersion management and
is based on periodically alternating the material of the fiber along the propagation direction. A group velocity
dispersion effect, which you can observe even at home, is that of water waves - more precisely capillary water
waves. When a relatively small object is dropped into water, the nearly circular waves emanating from the
disturbance will disperse and shorter wavelengths will travel faster than longer ones.

Note, however, that not all wave propagation is dispersive. For instance, sound waves in air thankfully
undergo virtually no dispersion. Hence, the music we hear five or fifty meters far from a band sounds the
same (up to dissipation).

Dispersion is also a smoothing mechanism. Singularities can be described by the presence of many waves
of different (mainly very small) wavelengths. Because these propagate at different velocities, the singularity
will get disintegrated and weaken in time.
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Linear Waves

The simplest form of a wave is the plane wave, i.e. a wave (or generally a physical quantity) for which the
temporal evolution is a simple translation and the value of which at any given time is constant over any plane
orthogonal to the direction of propagation.

A wavefront is defined as the set of points with the same phase (i.e. the same argument). For a plane
wave the wavefront at any time is a plane orthogonal to the direction of propagation and it is translated with
the propagation velocity.

The most general form of a plane wave in R"™ is thus

u(z,t) = f(v-x — st), zeR"teR (1.1)
with the direction vector v € R”, |u| = 1 and the speed s € R. Any wavefront of (L.1) at time ¢ is the set
F={xzeR":F(z):=v-2—st—c=0},

with some c € R. Since F is a level set of F', and since VF = v, we get F L v. Hence, every wavefront is an
(n — 1)-dimensional hyperplane orthogonal to wv.

Typically, however, one uses the term “plane wave” for a periodic wave, like u(x,t) = cos(k - ¢ — wt) with
keR™ weR.

A general periodic wave in R" can be written as >, _, e!bm@=wnt) with k,, € R and w,, € R for all
m € Z. We call w,, the (temporal) frequency and k,, the wave-vector of the m—th component. In the case
n = 1 the wave-vector is called the wave-number.

1.1 Hyperbolic Systems of First Order with Constant Coefficients

We consider the system
du= Y Ajdyu, zeR™t>0 (1.2)
j=1

with A; € R™*™ and w : R™ x [0,00) — R™,m € N. Shortly we will formulate a condition on the matrices
A; which makes system hyperbolic, i.e. supporting wave solutions.

System includes the classical wave equation as well as, for instance, Maxwell’s equations in vacuum
in 3D as we show next.

Example 1.1. For the wave equation

2 =N, zeR"t>0
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we let u 1= (@ﬁ) Clearly u(x,t) € R"*! so that m = n + 1 and we get

N
_ 024 _ (V'Y )
(%u = (Véﬂll) = (V(%dﬂ) = Z Aj(?_rju,
j=1

where
0..1..0

Aj= |1 = elejTH +ejriel,
0
with e; € R™ being the Euclidean unit (column) vector in the j—th direction.
Example 1.2. Maxwell’s equations in vacuum in 3D (n = 3) read

B =-VxE, 0F=cdVxB,

where E and B are the electric and magnetic fields respectively, and c is the speed of light in vacuum. Letting

U= (g),whereéch, we get

3
_(aB) _ 0 -V B) —
o= (28) = (V) (B) = X Asnyu
j=1
where 0 0 0 0 0 0
1 2 3
A1=C(QT0)7A2:C(Q%*0),A3=C(ng),
000 00 —1 010 .
where Q1 = (891(1))7622: ((1)8 0 ),and Qs = (70188) such that all A; are symmetric.

Let us consider the existence of plane waves for the general system (1.2]). Substituting u(x,t) = f(v-z—st),

we get
—sf = (Z UjAj> f, (1.3)
j=1

i.e. s has to be an eigenvalue of Z?:1 v;A; € R™*™ and f’ a corresponding eigenvector. This forces the
vector valued function f’ to have the form

') =v)é ¢:R-R,

where (s,£) is an eigenpair of Z;’zl vjAj.

For a hyperbolic system we expect m linearly independent plane waves for each direction vector v. This
requires firstly that the eigenvalues s are real (so that they describe the wave speed), and secondly the
diagonalizability of >, v;A;.

Definition 1.1. System (1.2) is called hyperbolic if for every v € R™ the matriz Z;.L:l v;A; is diagonalizable
and has only real eigenvalues.

Remark 1.1. For cosine plane waves
u(z,t) = cos(k - — wt)¢ with ¢e R™

we have v = k/|k| and s = w/|k| so that the eigenvalue problem (1.3)) becomes

—wé = (2 ij]) A
j=1
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Here and below |k|* = Z?:l k% for k e R™. Clearly, w is linear in |k|

wik) = ko (4) .

so that s = &(k/|k|). The phase velocity sv = wk/|k|?, which is also defined in Sec. thus depends only
on the direction vector k/|k|
— k&5 E
SV = @ (Ik\) .

The phase velocity is independent of |k|, hence of the wavelength, which is what we understand under a
non-dispersive wave propagation. Although in Sec. we will define dispersive problems with the help of the
group velocity, the two definitions coincide for the case of systems of the type (1.2).

1.1.1 Symmetric Hyperbolic Systems

Starting here (and in most sections thereafter) we use the Fourier transform as a main tool. An overview of
relevant definitions and results on this topic is in Appendix [A]

In this section we assume A; = AT for all j in ([.2). Clearly, when A; are symmetric, the system is
automatically hyperbolic. Let us now consider the Cauchy problem. Appending equation with the
initial data u(z,0) = ug(x) with ug € L?(R™), we perform the Fourier transform and obtain

n

ok, t) = (2 iijj> Uk, t) =: P(k)a(k,t)

=1

with the initial condition u(k,0) = Ug(k). This is an ODE problem for each k and the solution is

a(k,t) = e Pty (k).

Writing ﬁ(k) = i|k| Z?=1 v; A; with v = % and using the symmetry of A;, we get

Ao e—isl(v)\k:\t .
PO — Q0) @@
. e 1sm

with an orthogonal matrix Q(v) € R™*™ and {—s1,...,—S,,} being the eigenvalues of Z?Zl vjA;. In the
physical x—space we get the superposition of plane waves

u(a,t) = (2m) 72 ) J g; (v(k)) M@ 2= CEDD T (u(k)) o (k) dk.
ji=17R"

This representation of the solution lets us formulate two important results, namely the conservation of
the L?-norm and the finite propagation speed for symmetric hyperbolic systems.

Theorem 1.2 (Conservation of the L?-norm). The solution of (1.2) with A; = AT for all j = 1,...,n and
with u(-,0) = ug € (L?(R™))™ satisfies

m m
Z Huj('vt)H%?(]R") = Z Huo,j
j=1 j=1

%Q(Rn) forallt = 0.
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. —isy (v)|k|t
Proof. The idea is that because @ is orthogonal and e ARt .= < . ) is unitary, also

e—isn (v)|k|t

the matrix eP®)? i unitary. In detail, by Plancherel’s identity (A.1) and orthogonality of @

ZH% L2 @) =fRn *(k, t)u(k, t)dk = f 5 (k)Q ()M QT (1) Q(v)eMMQT (v)iio (k) dk

n

:J (kztuokt Z‘UOJZ

L2(R")

because QTQ = QQT = 1I. O

Theorem 1.3 (Finite propagation speed). Consider (L.2) with A; = AJT for all j = 1,....,n and with
u(-,0) = ug € (L*(R™))™. If
supp(ug) € Br = {z e R" : |z| < R}
for some R > 0, then
supp(u(+,t)) < BR+spats

Smax —max)\mdx v = max max viA;
(Biot) - meme (S0

where

lv|=

Proof. The idea is to apply the Paley-Wiener Theorem For that we need to first show that @(-,t) is
holomorphic in C". Because @(k,t) = e’ ®)tT(k), we consider 7y and e’* separately.

That g is entire on C™ follows from the Paley-Wiener theorem due to the compact support of ug and
the fact that as an L?(R™) function it is certainly in L], .(R™) and hence defines a tempered distribution.

Moreover, the Paley-Wiener theorem guarantees that there are C' > 0, NV € N so that
[io(k)| < C(1 + [k|)Ne!mWIE - for all ke C™.
Note that the definition of @ (k) for k € C™ is the same as for k € R", i.e. Uo(k) = (2m)™"/2 §,, uo(z)e #* da.

For e note that R
ks PR _ it S0 kA

is holomorphic on C™.
It remains to verify the growth condition on 7 (k,t) in Theorem We have
dap  d

dt — dt

—(u*n) = (PU)*a + u*Pu = 0*(P + P*)u = —2u (ZIm )
where in the last step the symmetry of A; was used. We obtain

dﬁ ﬂ* —Z?zllm(kj)Aj iL\A n
a7 e L < - 3 i ) il

and thus
Gk, t)] < et (= T ImEDA) 150 (1)
< et (=X s gk, )|
< et“m(k)lsmaxc(l + |]€|)N6|Im(k)|R7

where v = k/|k|. Finally, another application of Paley-Wiener Theorem guarantees supp(u(-,t)) <
BR+Smaxt' (]
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1.1.2 Wave Equation

Although, as shown above, the wave equation

8t2u:c2Au, reR™t>0
’U,(l‘,O) = f(x),@tu(c, 0) = g(l‘)

(with ¢ > 0) can be written in the form of a hyperbolic first order system , we consider this important
equation here separately and derive an explicit form of the solution wu(x,t). The results of Section m
produce only a formula for d,u and Vu. We will also be able derive more detailed information on the
qualitative properties of the solution in this section.

Using the Fourier transformation, the problem becomes

(1.4)

o7 = —Ak[*a, a(k,0) = f(k),0,a(k,0) = g(k).
This second order ODE has the solution

sin(c|k|t)
clk|

sin(c|k|t)

o) = SRD g 1o, (

~ B 5 sin(c|k|t) »
u(k,t) = cos(c|k|t) f(k) + k] —_— ) .

i ®)

We define W (k,t) := Sinilcllc’rlt). The difficulty is that for n > 1 the inverse Fourier transform of W is no

function but only a tempered distribution.
We begin with the case n = 3. It is left as an exercise to show that W is given by

1

T 4ncct

W s W) (1) fl | Vs forall g€ S(R1)

Hence, using the definition of the convolution of a distribution 7" and a Schwartz function, cf. Lemma [A77]
we get for f,g € S(R?) the Kirchhoff’s formula

Wt =g | s (;t | f(y)dy> . (15)

Note that is a solution of (with n = 3) also for f € C3(R?),g € C?(R®) as one can check by
differentiation, see [9].

From formula one can deduce several important properties of the solution. Let us assume that the
initial data are compactly supported, i.e.

suppf U suppg < Br(0) for some R > 0.
1. There is a finite speed of propagation, i.e. for each ¢t > 0 the solution wu(-,t) is compactly supported.

2. The signal has a finite lifetime at any point zg, i.e. an observer can see/hear/feel the signal only for a
bounded interval of time. At a point zp with |z| > R the solution u(xo,t) is zero if R + ct < |zg|, i-e.

t< M and if —R + ¢t > |zo], i.e. t > M, see Fig.
3. At any time t > R/c is suppu(-, t) inside a spherical shell Bryc:(0)\B_g+c:(0), see Fig.

Let us now study the case n = 2. For f € C3(R?),g € C*(R?) we can use the 3D solution formula (T.5)
with fO)(zy, 29, 23) := f(21,22) and g (21, 29, 23) := g(x1, 22). Because also the resulting u is independent
of x3, we can set e.g. 3 = 0 in ([1.5) and obtain

1 J 3 1 3 2
u(z,t) = —— g® (y)dy + o0 f O (y)dy for z € R, (1.6)
( ) 47T62t \i—y|:ct ( ) t 471'62t \ft—y|:ct )
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contains
supp ul-,t)

o R —R+et R4 et |

By

Figure 1.1: Schematic for the signal lifetime and propagation speed of the wave equation in 3D (n = 3).

where 7 := (7,0)” € R3. Clearly, if suppf,suppg  Q < R?, then suppf®), suppg® < Q x R. We suppose
that  is compact. An observer at zq € R? feels the wave for all times ¢ > tyin(70) 1= dist(20.Y) hocause the
sphere {y : |zg — y| = ct} cuts the support Q2 x R for all such ¢, see Fig. Hence the signal never dies
down. In a 2D world everyone has an earworm - always! After a variable transformation (see [9]) solution

(1.6) can be written as

1 9(y) J f(y) 2
- f R2. (1.
utet) 2me (szm (2t — |z —y[?)1/2 W+ G o—yl<et (22— |z —y|?)1/? %y oree .7

Finally, we inspect the case n = 1. Here the inverse Fourier transform of W is, in fact, a function. We
have

— sin(ckt 1 /m\1/2
Wkt = 28w = (D) @

as one easily checks. Hence

1

u(z,t) = \/% JR W(x—yvt)g(y)dyﬂLm@t JR W(z—y,t)f(y)dy !

T2

1
9(y)dy+—204 J f(y)dy.
2¢ " Jjo—y|<et

jo—yl<ect

By evaluating the derivatives, we arrive at the d’Alembert’s formula

x+ct

1 1
wet) =5 | oy + 5 (et et) — fo— ), (1)
T—ct
which is the classical solution for any f € C?(R), g€ C'(R).
We conclude that for n = 1 there is a finite propagation speed but the life time of a generic signal is
infinite as the support of g remains in the integration domain of the integral SHCE g(y)dy for all times after

xr—C

the time t, = Ldist(z, supp(g)).

T ¢

1.2 The Fundamentals of Dispersive Waves

The definition of a dispersive problem will be given a bit later but we can give away some classical examples
of dispersive equations already now.

e Schrodinger equation
idiu + Au = 0, zeR" (1.9)

e linear Korteweg-de Vries equation

Ou + adpu + 02u = 0, acR,zeR (1.10)
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X7
c,.‘_i_
-

r / rﬂ ) Ay s4(xo, V) | ';’I)(i,

v

. {1 ¥

-]

s

Figure 1.2: Schematic for the signal lifetime of the wave equation in 2D (n = 2).

e Klein-Gordon equation
02u = 0*u — au, a>=>0,zeR (1.11)

The Schrédinger equation describes the wave function (as the quantum state) of a particle in free space but
also the envelope of a classical wave packet in a homogenous medium. The linear Korteweg-de Vries equation
describes shallow water waves in the linear limit. For a full discussion see Section 2.I.Jl The Klein-Gordon
equation is a relativistic version of the Schrédinger equation but it can be also derived from the wave equation
in a waveguide as the equation describing the longitudinal dynamics. This derivation follows.

Consider the wave equation

8t2u = Au, zeN =Y xR with ¥ c R? open and bounded
and with homogenous Dirichlet or homogenous Neumann boundary conditions on 02 = 0% x R, denoted by
Ru=0 on 0N.
In addition we have initial conditions
u(z,0) = f(z), Jdwu(z,0) = g(x).

The waveguide (2 is schematically depicted in Fig. We are going to expand the solution at each (x3,t)
in the eigenfunctions of the corresponding 2D eigenvalue problem in (x1,22). The Klein-Gordon equation
will arise as the equation governing the (x3,t)-dependent coefficients in the expansion.
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Figure 1.3: A waveguide for the Klein-Gordon example.

The (symmetric elliptic) eigenvalue problem

—Agy 2 =AY on X%

RYy=0 on 0%
provides an orthonormal basis of L?(X) via its eigenfunctions (wy)reny With wy, € H} () for Dirichlet boundary
conditions and wy € H1(2) for Neumann boundary conditions. The eigenvalues are non-negative (positive in

the Dirichlet case)
My =pi >0 forall keN.

We expand the initial data at each point 25 € R and expand the solution at each (x3,t) € R x [0,00) in the
eigenfunctions:

f@) =Y fulws)wp(ar, @), g(x) = Y gr(ws)wi (w1, 22),

keN keN

u(w,t) = Z ug(xs, t)wg (1, 2).
keN

The coefficient uy, then satisfies the Klein-Gordon equation with a = p?
OFug = 02, uk — piug,
up(23,0) = fe(zs), Oruk(zs,0) = gr(zs).

1.2.1 Dispersion Relation, Phase Velocity, Group Velocity

We provide here a rather general theory of dispersive PDEs and explain the roles of the dispersion relation as
well as the phase and group velocities. This exposition is along the lines of Section 11.1 in [26] but we are a
bit more restrictive in the definition of dispersive systems in order to be able to justify the use of elementary
plane wave solutions.

1.2.1.1 Dispersion Relation and Dispersive PDEs
Systems of m € N linear PDEs with constant coefficients on R™ can be written compactly as

P04, 0pyy. .., 0z, )0 =0, xeR" >0, (1.12)
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where @ € C™ and P : R"*! — C™*™ is a matrix valued polynomial. We will limit our attention mainly to
systems which have the form

P(0t, 001y, 0n,) = A(Ozys-+,00,)0t — Q(Cuyy .-y On,),

i.e.
A(Opyy vy 0n, )0t — Q(Opyy vy O, )W =0, rzeR™ ¢t >0, (1.13)

where A,Q : C* — C™*™ are polynomials and A(l) is non-singular for each [ € C". In other words, the
equations first order in J; and the time derivative appears in each equation. Of course, if a higher order
derivative 0¥, p > 1 appears in one of the equations, the system can be transformed to a system of m +p — 1
equations of first order. Examples of are numerous and include all scalar linear equations of first order
in ¢, for instance the linear Schrédinger and the linear KdV equations or more exotic problems like the linear
Kadomtsev-Petviashvili equation

Oy (Opu + 02 w) + 02, u =0, z e R2.
It also includes many systems, e.g. the linear coupled mode equations in = € R

i(Opu + 0gu) + kv =0
(0w — 0pv) + Ku =0,

with k € R.
A large subclass of problems satisfy A = I, i.e. have the simple form

i = Q(0uy, -+, 00,)i,  TER"E>0. (1.14)

As an example the Klein-Gordon equation (1.11]) can be written in the form 0,7 = Q(0,)v for ¥ = (u, oyu)T
and Q = (2%, 0)-
Applying the Fourier transform to ([1.14]) produces

ovit = Q(iky, . .., ikn)d

for each k € R™. If Q(ik) is diagonalizable, i.e.
A1 (k)
QUiR) = X (AKX (F), Aw=< . ),Mm=@mw»wémw%
Am (k)

where £ €M) are eigenvectors to the eigenvalues Ay, ..., A, of Q(ik), then solutions have the form
ik, t) = X (k)e*®ie(k)

with some vector €€ C™. This is a linear combination of the solution modes e*®teW (k) j=1,... m. In
the physical z-space the solution u(x,t) is then a k—integral of the elementary solutions

N )tk () (1) (1.15)

weighted by the Fourier transform of the initial data. For pure wave propagation problems we expect and
require that the eigenvalues \; are imaginary so that no damping or gain appears. Therefore, we denote
from now on the spectral unknown A by —iw. We have thus shown that solutions of are built out of
elementary solutions which have the form of plane-waves

ei(k‘z—w(k)t)a (116)
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As we will see below, the nature of the wave propagation is largely determined by the form of the function
w(k). This function, being an eigenvalue of iQ)(ik), is necessarily a solution of

det (wl —iQ(iky,...,ik,)) = 0.
For the more general systems (|1.13)) this equation becomes
det (U.}A(ik’l, ce ,lk’n) — 162(1]@’17 N ,lk/’n>) = 0,

and £ (k) are eigenvectors of the generalized eigenvalue problem wA(iky, . .., ik, )é(k) = 1Q(ik1, . . ., ik, )€ (k).
We assume again that the eigenspace is m-dimensional. The solution is again an integral of elementary
solutions (|1.15]).

In the general case after the Fourier transform we get

P(0y,iky, . .., ikn)i(k,t) = 0.

We assume that there are again m solutions et *)t¢(9) (k) for each k € R with ¢ (&), ..., (™ (k) as solutions
of
being linearly independent. With p =: —iw, we obtain, once again, the plane-wave elementary solutions
(1.16). In the general system (1.12) the frequency w thus has to satisfy

det (P(—iw,iky, ..., iky)) = 0. (1.17)

Definition 1.4. Equation (1.17) is called the dispersion relation of equation (1.12]).

Being an algebraic equation of m-th degree in w, the dispersion relation (1.17) has m solutions Wy (k), ... W, (k).
This produces m elementary solutions of (1.12)).

1.2.1.2 Phase Velocity and Group Velocity
Let now
0:=k-x—W;k)
be the phase of the j—th solution mode. The wavefronts § =const. travel with the so called phase velocity.

Definition 1.5. The phase velocity of the j—th solution mode of (1.13)) is

. i(k
v (k) = M(};(Q)k.

In 1D (n = 1) this, of course, reduces to vl(,])(k) = W;(k)/k.

Dispersion roughly means is that waves with different wave numbers propagate with different velocities.
The first idea could be to define dispersive problems as those, for which Vvéj )(k) # 0. A simple example,
however, shows that this is not a suitable definition. Consider the dispersion relation w — ak — b = 0 with
the solution W (k) = ak + b. The elementary solution then has the form

e—lbtelk(;v—at) i

Although v,(k) = a + b/k is not constant in k, the corresponding equation d;u + adyu + ibu = 0 is not
dispersive because the solution of the corresponding PDE with initial data ug(z) is

u(z,t) = e_ibt(27r)_1/2f e*E=ag (k) dk = e Plug(z — t).
R

The equation is a mere transport problem with a simple phase rotation.
Dispersion is mathematically defined via the group velocity instead.
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Definition 1.6. The group velocity of the j—th solution mode of 18
v (k) = VIW; (k).
Definition 1.7. The j—th solution mode of is dispersive if
det(D?*W;) # 0.
Here det D?W; denotes the Hessian matrix of W;.

Definition 1.8. Equation (1.13) is dispersive if W;(k) € R for all j = 1,...,m, if the eigenspace of the
generalized eigenvalue problem

wA(ik)¢ = iQ(ik)¢
is m-dimensional for each k € R™ and if the eigenvalues w = W;(k) satisfy det(D*W;) # 0 for at least one
jef{l,...,m}.

In 1D the definition of a dispersive mode and equation is equivalent to the condition that W; are nonlinear
functions of k. In nD this is not the case since e.g. W (k) = k? + ko satisfies det(D?W) = 0. In nD the
definition is thus slightly more restrictive but it is the definition that yields certain asymptotic calculations
meaningful, see Section [1.2.2]

Also note that for the special case the condition of m linearly independent solutions ( (j)(k), j =
1,...,m is equivalent to the diagonalizability condition of Q(ik).

Clearly, the form of equation allows only polynomial dispersion relations. As we will see in Section
for water waves a more general dependence w(k) holds and satisfies det D?w # 0. The definition of a
dispersive problem is therefore often extended to any problem for which a dispersion relation makes sense,
has real solutions W; (k) and where det D*W; # 0 for at least one j.

1.2.2 Asymptotic Role of the Group Velocity

We consider here the scalar 1D case m = n = 1 and study the asymptotics of the solution of a dispersive

equation ((1.14) for

t — o0, =c

x
t
with a constant c € R.
The solution is
u(x,t) = (27r)*1/2f o(k)e XMt dk, y(k) = W(k) — k% (1.18)
R

For large values of ¢ the exponential e~ X(*) oscillates (for generic functions y(k)) fast in k and causes a
cancellation effect in the integral. The oscillatory behavior appears everywhere except near points k = k
where x (k) is close to constant. The largest contribution to the integral thus comes from the neighborhood
of stationary points of x, i.e. from points k = k, such that

X' (k) = W'(k) —c=0.

This is the idea of the method of stationary phase. A rigorous discussion of this method and the asymp-
totic notation used below is in Appendix Here we provide only the main ideas of the calculation of the

asymptotics of u. Assuming 3 ~ 3
W"(k) #0 forall k£ with W(k)=c,

we have (using x” (k) = W"(k))
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oy L

Figure 1.4: Left: example of y(k) and the phase x (k). Right: the function eX(®)* (the real part is plotted)
for £ » 1 is highly oscillatory except near critical points of .

as k — k. With the help of Lemmas and like in the proof of Theorem (and with Remark ,

we get

u(z,t) ~ 2m) Y2 T ag(k)e B fRe*%W’T’E)t(k*’%)Qdk (1.19)

W' (k)=c

ast — o,7 =c. As W (as well as W’) is polynomial, we have W’'(k) = c at finitely many points ke
{k1,... km} (with k; < k;;1). In the application of the above lemmas we split the integral in (T.18) into
integrals over (—o, k1), (k1,k2), ..., and (k,,,c0). For the assumptions in Theorem and Remark [B.6| we
need @y € L'(R) n CY(R), (io/x’)" € LY (R\(k1, km)), and (To/x’) (k) — 0 for |k| — 0. As ¥’ is a polynomial,
all these are satisfied if we choose uy € S(R) (such that also ug € S(R)).

The integral on the right hand side of can be evaluated using the result of Example and a
suitable substitution. Let us, however, perform the simple calculation using Cauchy’s integral theorem for
our case separately. The integral in question has the form

o0
. 2 . 2
J e ' dx = QJ e 'Y dux.
R 0

The idea is to extend the integrand to the complex plane and integrate this holomorphic function along a
closed contour which includes the real positive axis.

For o > 0 we choose the contour C' := C; U Cs U Cj as in Fig. mwith R > 0 and let R — o0. Cauchy’s
theorem gives SC e~ dz = 0 so that

R
. 2 . 2 : 2
j e dz = —f e dz—f e dz
0 Cs C3

By a direct calculation or by the mean value theorem of complex analysis we get

For SCS we get with the substitution r = zel™/*

_J ez qy s gin/4 J‘OO e~ dr = e_i77/41 (3)1/2
Ca n 2 \a
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Figure 1.5: Contour for the integral SR e~i97” 4z with a > 0.

as R — oo.
The case a < 0 is treated analogously with the contour being the complex conjugate of the contour in

Fig. and the substitution in Sc3 being r = ze 17/,
In summary we get

o o o\ V2

J e~ dg = e7isien(e)y () . aeR\{0}}. (1.20)
R |a

Setting now a = W”(k)t/2 and using x(k) = W (k) — kx/t in (T.19), we have

Theorem 1.9. Consider (L.14) with m = n = 1 and with initial data u(-,0
velocity c € R, assume that the equation is dispersive and that W (k) # 0, uo(k)

W'(k) = c. The solution then satisfies

) = uo € S(R). Choose the
# 0 for all points k such that

1 Y v T pi(kz—w (k
u(x,t) ~ Z <tW/(];)|> Uo(k)e sign(W (k))4€ (kz—W(k)t) (121)
W'(k)=c

ast— o0, T =c.

Note that the L! condition on ug ensures (via Riemann-Lebesgue Lemma that 4y is continuous so
that the point values (k) make sense. If W”(k) = 0,W” (k) # 0, then a similar calculation leads to an
expansion in which u(z,t) behaves like t~'/3 as t — c0.

There is also an analogous result in R™. Using the stationary phase approximation from Theorem

we get

Theorem 1.10. Consider (1.13) with m = 1,n € N and with initial data u(-,0) = ug € S(R™). Choose the
velocity ¢ € R™, assume that the equation is dispersive and that det(D?*W (k)) # 0,7o(k) # 0 for all points
k € R™ such that VW (k) = €. The solution then satisfies

1/2

1 1 N S -
uw,t)~ o5 D Ty | Te(R)e Tt (1.22)
YW (k) =& ‘det (DQW(k)>‘
ast — ©, $ = ¢, where o(k) is the signature of D2W (k), i.e. the number of positive eigenvalues minus the
number of negative eigenvalues.

These results can be interpreted as follows. Asymptotically for large times the largest contribution to the
solution at & = ¢t comes from those wavenumbers k, for which v4(k) = €. In other words, an observer moving
at the group velocity v,y (k) sees waves with the wavenumber k and frequency W (k) but peaks generally keep
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passing by. On the other hand, an observer moving at the phase velocity, i.e. an observer at z = v,(k)t sees
the same crest but the local wavenumber, and hence the distance to the the next crest, as well as the local
frequency generally keep changing.

Let us now study the dispersion relations and group velocities for several simple examples including the
three examples at the beginning of Section [1.2

Example 1.3. For the Klein-Gordon equation ([1.11)) we have the dispersion relation
w? =k? +a.

Its solutions are w = +W (k) with W (k) = v/a + k2. Clearly W” = 0 so that the problem is dispersive. The

absolute value of the group velocity
k

va + k?

grows in |k| so that shorter waves propagate faster than longer ones. This means that initially localized pulses
will have disintegrated in time in such a fashion that the more oscillatory waves will have traveled further,
see Fig. Also, the group velocity is bounded, |vy(k)| < 1 for all £ € R. We will see in Theorem m

vg(k) =

.'”\ A
]
Mgl

Figure 1.6: Schematic of the dispersion effect on a localized pulse in the Klein-Gordon equation.

that the Klein-Gordon equation enjoys finite speed of propagation. This is caused by the boundedness of the
group velocity.

Example 1.4. For the Schrodinger equation in R™ the dispersion relation reads
w = k2,

so that W (k) = |k|?. Here det D?W (k) = 2™ # 0 and the problem is dispersive. The group velocity
vg(k) = 2k

is unbounded (in modulus), and again shorter waves propagate faster than longer ones. The unboundedness
of vy causes an infinite speed of propagation as shown in Theorem @

Example 1.5. The linear KdV equation ([1.10) has the dispersion relation
w=ak — k3.
Hence W” (k) = —6k # 0. The group velocity

vy (k) = a — 3k?



CHAPTER 1. LINEAR WAVES 18

is bounded from above by a but unbounded from below. Also for the KdV Theorem [I.13] guarantees infinite
speed of propagation. The maximal positive velocity is attained at & = 0 and

vy(k) >0 for |k| < (a/3)Y2, vy(k) <0 for |k| > (a/3)Y2.

If the initial data is a pulse with ug(k) localized near k = 0, then the main part of the pulse propagates to
the right at velocity v4(0) = a and shorter waves trail behind or even propagate backwards.

Example 1.6. Let us show that the standard wave equation
?u = 2 Au, xeR”

is not dispersive. For m = 1 this is obvious as the dispersion relation w? = ¢?k? has the linear solutions
W (k) = +ck. In general we have

w? = A2|k|?
with the Euclidean norm |k?| = k% + --- + k2 and solutions w = +W (k) = £c|k|. Hence the Hessian entries
are (D*W (k)i = 07k — Tt e

1 1
D*W (k) = — (I— kkT) .
) =T\~ e

Clearly D?*W (k)k = 0 and thus det(D?*W) = 0. In fact, as one easily checks, P(k) := I — ﬁkkT is a
projection onto the (n — 1)-dimensional subspace orthogonal to k.

1.2.3 Local Wavenumber and Local Frequency

As we are about to show, the concepts of wavenumber, frequency and phase can be generalized from truly
periodic functions, where they describe the function globally, to functions that are locally close to periodic.
We will refer to such functions as local wave trains. One such example is the solution of a dispersive problem
after a long time. The main ideas of this discussion come from Section 11.4 in [26].

Let us first consider the long time asymptotics of a dispersive scalar equation in 1D (i.e. m =n = 1in

Sec. and assume
W e C?((0,0)), W' (k) >0, W'(k)#0 forall k>O0. (1.23)

An example is W (k) = k2. In Theorem [1.9| the equation

W(k) = 3

(1.24)

determines the dominant wavenumber k. Let us assume that £ € W’((0,0)). Then (1.24) defines for each
point (z,t) one solution k(z,t), which we call the local wavenumber. The dispersion relation w = W (k)
then defines the local frequency w(z,t). We also define the local phase

0(z,t) = zk(z,t) — tw(z,t). (1.25)

With these definitions the asymptotic form (1.21)) for ¢ — o0 becomes

. 1 1/2 P " s
~ A(k ¢ i0(z,t) h A _ ~ —isign(W (k))4 1.9
U(Q?,t) ( (177 )at)e ) where (kat) t|W”(/€)| UO(k)E ( 6)

as t — oo.
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On the other hand, if we are given an expression
B(z, t)el?@?) (1.27)
with some functions B and 0, we can define the local wave number and local frequency as
k(x,t) := 0,0(x,t), w(x,t) = —0f(x,t). (1.28)

These formulas, of course, determine what we intuitively understand under wave number and frequency only
if B, 0,0 and 0;0 vary slowly in z and t. Under these conditions we call a local wave train. Roughly
speaking, a local wave train is a function which locally looks periodic. Note that because no asymptotic
parameter has been specified in the above slowness condition for B, 0,0 and 0,0, a local wave train is not a
rigorous mathematical object.

Let us first check that the above two definitions of local wavenumber and frequency coincide. Indeed,

from (1.25) and W'(k) = z/t,w = W (k) we get

020 = k + [x — W (k)t]o.k = k (1.29)
010 = —w + [z — W (k)t]ok = —w. (1.30)

Next we show that the asymptotic approximation (1.26]) of the solution of a dispersive problem is a local
wave train. Under the assumptions (1.23) this holds, for instance, for = in compact sets ¢ € W'([4, R)) with
arbitrary fixed 0 < § < R. From W’(k) = x/t we get

W (k)o.k =

so that
0ok = gy = O(t™)  (t — ).
Similarly
W"(k)ork = —% = —W'(k)+
so that W)
Ok = ~I) ot (t— o).

Here we have used the boundedness of W’ and the boundedness of W” away from zero. These follow because
W e C*,W"(k) # 0 for k > 0 and because £ € W’([4, R)) implies that the solution of (1.24) satisfies
k € [0, R].
From the dispersion relation we get w(z,t) = W(k(z,t)) and again, the boundedness of W’ (k) for k € [0, R]
gives
Oew = O(t™) and O = O(t™1).

Finally, for the amplitude A we first write A(k,t) = t~Y/2A(k). Hence

d

A= O Y2 A0,k = O(t~3/?) (1.31)
X
%A = O3 A+ Ot V) A'0k = O(t%?). (1.32)

1.2.3.1 Phase Velocity and Group Velocity for Local Wave Trains

Let us consider a local wave train ((1.27) with the local wave number and frequency in (1.28). First, by cross
differentiation we get
6tk + (%Cw =0.
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If the local wave train describes a solution of a PDE with the dispersion relation w = W(k), then d,w =
W' (k)0,k and k satisfies
otk + W'(k)o k = 0. (1.33)

Equation is a nonlinear hyperbolic equation if the original PDE is dispersive, i.e. if W” # 0. Interest-
ingly enough, nonlinear hyperbolic theory thus plays a role in linear dispersive PDEs. Equation reveals
the fact which we observed in Theorem for the asymptotics of dispersive PDEs, i.e. that k propagates
with the group velocity W’(k). The meaning of k has now been, however, generalized compared to Theo-
rem m and we conclude that for local wave trains the local wavenumber k(z,t) propagates at the velocity
W' (k(z,t)).

To look at the phase velocity, we choose a phase value 6y € R. The wave front F = {x € R: 0(x,t) = 6}

satisfies p
T
8359% +0:0=0

and so the front propagates at the velocity

dx 00 w(x,t)
dt 0.0  k(x,t)’

which agrees with our previous definition of phase velocity except that & and w have been generalized.

The nature of the dynamics of local wave trains can be very well visualized with the help of so called
group lines and phase lines. A group line is a level set (in the (z,t) plane) of the local wave number k(x,t).
A phase line is the level set of the local phase 6(z,t).

Let us consider the case of a smooth W (k) and

vp(k) > 0,v;(k) > 0,v,(k) >0 forall k>0
vg(0) = vp(0) =0,

Then the group lines z = vy(k)t and and the phase lines % = v, (k) look qualitatively like in Fig. [1.2.3.1
The group lines are always straight. The phase lines cannot be straight because the condition v,(0) = 0 would

(1.34)
vg(k),vp(k) = oo for k — oo.

1

ks
——
..
~
AN

Figure 1.7: (from [26]) Group lines (full) and phase lines (dashed) for the case (1.34).

mean that group and phase lines coincide which is impossible by vg(k) > v, (k). For the case vy(k) > v, (k)
a phase line thus has at each (z,t) a larger slope than the group line going through this point. An observer
moving with the group velocity vy (ko) sees the local wavenumber k¢ and keeps overtaking crests.
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Example 1.7. An example for the case (1.34) is W (k) = k? such that v, (k) = 2k > k = v,(k) for k > 0 and

2

k(z,t) = % Wz, t) = W(k(z, 1)) = (%)2 Oz, 1) = ak(z,t) — tw(z, t) = %

The group lines are thus ¥ =const. and the phase lines are 172 =const.

1.2.4 Energy Propagation, Infinite Speed of Propagation

In this section we show that asymptotically for large times the group velocity in dispersive problems is also
the velocity of propagation of the L2-energy. First of all let us note that for dispersive problems the L?-norm
is conserved in the time evolution.

Theorem 1.11 (Conservation of the L2-norm). For dispersive equations (1.13) with m = 1 and with initial
data u(-,0) = ug € L*(R™) one has

lu(, )Lz @ny = [uolrz@ny ~ for all t>0.

Proof. Using Plancherel’s identity and the formulation of the solution in Fourier space @(k,t) = g (k)e W (R,

we have

—iW ()t

lu(-, ) L2@ny = [@(-,t)|L2@ny = [Toe |2 @ny = [to]L2@ny = [uolL2®n)-

O

The case m > 1 is left as an exercise. Here, in general, a different energy than the square of the L?-norm

is conserved. Of course, in Theorem [1.11] it is not necessary that the problem is dispersive. Namely, the
condition W” 2 0 can be dropped.

A question which we now pose is how the solution spreads in terms of the L?-norm for large times. Let
us consider the 1D scalar case m = n = 1 with a smooth W let z1 < x5 € R and define

Q) = f lu(z, 1) da

Assuming that for each = € [21, 23] the equation W' (k) = 7 has a unique solution k, let

ko = (W) 7H(B2).

t

If, in addition W” (k) # 0 for all k € [k, ko], then the asymptotics (T.21)) produce

1 *2 |7 ‘]; 2
Qt) ~ ,J de (t — o).
t ey W7 (k(2))|
With the substitution k = k(z) we get dz = W”(k)tdk and
ko B 5 B max{fcl,fsg}
QO ~ [ s EaBP = [ @bEae @),
k1 min{kl,kz}

If l~cl~, ky are t—independent, then Q’(t) ~ 0. This happens if we let x; = 1(t) = W’(ki)t and zo = xo(t) =
W'(k2)t. In summary we have that the L2-norm stays asymptotically constant between any two group lines.

Theorem 1.12. Consider (1.14) with m = n = 1 under the assumption of dispersivity and with initial data
up € S(R). Let k1 < ko € R and W"(k) > 0 for all k € R. Asymptotically for t — oo the L>—norm stays
constant between the two group lines x = W'(k1)t and x = W' (ka)t and

W’(kg)t ko
f lu(z, ) da ~ f o)Ak (t — o0).
W’ (ky)t k1
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Note that this result holds also for m > 1.

The above result suggests that if in 1D the group velocity W’(k) is unbounded, then the energy can be
carried arbitrarily far within any finite time ¢. Let us assume that W’(k) is unbounded from above. Then
this is because for a given ¢t > 0 and an interval [z1, 2] (with arbitrarily large x1,z2) we can find k; and
ko such that z; = W/(ky)t and x5 = W'(ks)t. Choosing then wug such that S:f [t (k)|?> dk > 0, we have
Sif |u(z,t)|* dx > 0.

This result is, however, only asymptotic for large times. Hence, we cannot immediately conclude an

infinite speed of propagation. This will be proved next for arbitrary dimension n using the Paley-Wiener
theorem.

Theorem 1.13. (Infinite propagation speed in dispersive problems) Consider (1.13)) with m = 1 and with an
entire solution W of the dispersion relation. If there are ¢ > 0,6 € (—m,0) U (0,7),a > 1,5 € {1,...,n} and
&= (a1, ., 0j—1,Qj41,...,0,) € R"™! 50 that the dispersion relation satisfies

Im(W)(an,...,aj-1,kj,a41,...,00) > c|Im(k;)|*  for all k; € C\{0} with arg(k;) =0,
then there exist initial data ug € L (R™) with supp(ug) compact so that the solution u satisfies
supp(u(-,t)) is unbounded in R™ for all t > 0.

Remark 1.2. As we will show in the proof, ug can be chosen, for instance, as the characteristic function of
an n—dimensional interval centered at zero.

Proof. The function ug constructed below satisfies ug € L®(R™) with supp(ug) compact so that uy € L?(R")
and the solution can be written in Fourier space as

Uk, t) = e VWG, (k) for all ke R".

Due to the compact support of ug the Paley-Wiener theorem guarantees that the Fourier transform
has an (analytic) extension to the complex k € C"” and we can write

Uk, t) = e ReWkrtiknt Jm(W)(kr kDt T (fp i) for all k = kg + iky € C™.
For all k = (a1, ..., aj—1,kj, ajq1, ..., ap) with arg(k;) = 0 we have

Gk, )] > e ! m®t g, (k)| (1.35)

with some constant ¢; > 0, where | Im(k)[*> = 377_, Tm(k;)? and where we have used the inequality co| Im(k;)| <
| Im(k)| < c3|Im(k;)| for all k; € C and some ¢z, c3 > 0, which holds since all entries in k other than k; are
fixed.

Due to a > 1 in the estimate (1.35) the Paley-Wiener theorem produces the unbounded support of u(-, t).
It remains, however, to show the existence of ug such that 7y does not decay fast in the direction 6 so that

the growth ec!!™®)I" in (T.35) is not canceled out. We choose

ug(z) = X[fl,l](l’j)f(ﬂ?lw-~,$j—1,$j+17~-~790n)

so that

~ ~ (2 Y2 Sin(k;
uo(al,...,ozj_l,kj,ozj+1,...,an)=f(a) <> ( ]).
™ k‘j
Because sin(k;) grows exponentially in |k;| in all directions arg(k;) except arg(k;) € {0,n}, the growth of
ect!m)I"t iy (T.35)) is not canceled out if f(&) # 0. It remains to find f € L®(R"') with supp(f) compact

~

and f(&) # 0.
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IfforallieI:={1,...,j—1,7+1,...,n} it is o; ¢ 7Z, then we can choose

flxe, ooz, 2500, 20) = ierxp—1,17(2:)
so that .
~ 2\ 2 sin(qy;
fla) = () Hiely # 0.
7T (673

If o enZ for all i € Iy = I and «; ¢ 7Z for all i € I\Ij , then we can set

[z, .. yLj—1, Lj41ly--- yTn) = HiEIoX[—1/2,1/2] (mi)HiEI\IOX[—l,l] €]

so that »
. 2\ 2 sin(La;) sin(ay
fla) = () Wie, —2—1ien s, sin(s) # 0,
™ (o7} Q;

where the value of sin(az)/x for z = 0 is defined as a via the limit. We have thus constructed wug such that

12 .
~ ~ 2 sin(k;
[to(cu, ... a1, kj, g, ..., o) = | f(Q)] () (k) — 0

™ k]‘

for |k;| — oo, arg(k;) = 6. The solution satisfies for k = (a1,...,a;-1,kj,a511,...,0p) with arg(k;) =0
[k, t)| > et !™®I" with ¢ > 1
and, as mentioned above, the Paley-Wiener theorem, implies an unbounded support of u(-, t). (|

Remark 1.3. The growth condition on Im(W) in Theorem is satisfied by generic dispersion rela-
tions with an unbounded group velocity. For instance, in one dimension, n = 1, every polynomial W (k) =
Yo a;k? with p > 2, (a, € C\{0}) satisfies this condition. To see this note that a,k? = |a,||k|Pel(®&(a»)+p0)
if 0 := arg(k). For 6 # 0,7 it is kg = cot(0)k; and a,k? = |a,|(1 + cot?(9))P/2el@elan)+p0) |k [P, The growth
condition holds if sin(arg(a,) + pf) > 0 and 6 € (—m,0) U (0,7). One can choose, e.g.

ie. 0= — 8% if arg(a,) ¢ {5, 7(5 £p)},

™
2
arg(ap) +pb = 7, ie. 6= — % if arg(ay) € {5, 7(3 £ p)}.

arg(ap) + pf =

Example 1.8. For the 1D Schrédinger equation id;u + 02u = 0 the dispersion relation is W (k) = k2. For
arg(k) = 0 = /4 we get W (k) = (k; + ik;)?, such that Im(W)(k) = 2k? and Theorem applies.

For equations with bounded group velocities one expects, on the other hand, a finite speed of propagation.
For the Klein-Gordon equation this can be proved quite easily using the Paley-Wiener theorem.

Theorem 1.14. (Finite speed of propagation for the Klein-Gordon equation) Let f, g € L*(R), supp(f) = Br
and supp(g) = Br with some R > 0. Then the solution of the Klein-Gordon equation 0?u—02u+au = 0,a > 0
with u(z,0) = f(x), diu(x,0) = g(x) satisfies

supp(u(+,t)) € Bryt for allt = 0.
Proof. In the Fourier variables the problem reads %ﬂ = —(a + k*)4, 1(k,0) = f(k), L(k,0) = §(k). The

’ dt
solution is
N ~ . .sin(tva + k?)
k,t) = f(k)cos(t +k2) + (k) ——n—"=.
(k. £) = F(k) cos(tv/a 1 2) + (k)™

First we show the analyticity of u(-,¢). The functions f(k) and g(k) are entire due to the assumption of
compact support of f and g and the Paley-Wiener theorem. The inner function k + a + k2 is clearly entire.



CHAPTER 1. LINEAR WAVES 24

For z — cos(y/z) and z — Siff‘zﬁ note that /z := \/|z[e!'##%/2 for arg(z) € (-, n| is analytic everywhere
except along the ray arg(z) = 7 where it is discontinuous. For zy with arg(zg) = 7 the two distinct limits
of \/z for z — zy are /2o and —1/z9 and because the functions z — cos(z) and z — % are even, the
compositions z — cos(4/z) and z — % are entire.
Next we check the growth condition on |u(k,t)|, namely we need to show
[k, t)| < c(t)(1 + |k|)Ne BB for some N € N, ¢(t) >0 and all ke C. (1.36)

Let z = u + iv. For |cos(u + iv)| we have

—_

| cos(u + iv)| = 5\61(““”) + etV 5(6_” +e¥) <ell.

Let us now look at % The case |u + iv| = 1 is analogous since % < |sin(u + iv)| < el?l. The
case |u + iv| < 1 needs a little more care. Using the identity sin(u + iv) = sin(u) cosh(v) + icos(u) sinh(v) we

get
2

sinh(v) < 2cosh?(v) < 2621V,

v

. L2 . 2
sin(u + iv) - sin(u) coshz(v) + cos?(u)

u + iv

where in the second inequality one uses |sinh(v)| < |v| cosh(v). Setting
u+iv =t a+ k?, (1.37)

we have
" / 2
bln(t a + ]f )’ < t\/i@lvl
va+ k?

Writing k = kg + ik, it remains to show that with the definition [1.3

|cos(tv/a + k2)| < eVl

|’U| < t|k[|.

From t?(a + k?) = (u +iv)? we have t*(a + k% — k%) = u*> —v? and t*krk; = uv, which can be combined into
v (t%(a + k% — k?) + v?) = t*k%k? and rewritten as

2 2 2
(U2+t2a+k§—k%) _p (a+k:%,+k?) tak? < ot (a+k%+k%)
2 2 h 2 ’

where the inequality holds due to @ > 0. This implies v* < t?k% and thus |v| < t|k;]|.

o~

For f(k) and g(k) The Paley-Wiener theorem implies
1F(R)), 1g(k)| < C(1 + |k|)Ne™* ! for some C' > 0,N € N and all k € C.

In summary we get (1.36) with c(t) = Cv/2(1 + ). O
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1.3 Smoothing Effects of Dispersion: Schrodinger Equation

Similarly to parabolic equations certain dispersive equations possess a smoothing property. A singularity
can be qualitatively described by the presence of large local wavenumbers at the singularity location. While
in parabolic equations smoothing happens via a strong damping of large wavenumbers, in dispersive prob-
lems energy is conserved and smoothing occurs due to the different velocities (group velocities) of distinct
wavenumbers. The heuristic idea is that a singularity is characterized by a wide range of local wavenumbers
- in particular by the presence of many large wavenumbers. Due to their different velocities in dispersive
problems the singularity vanishes. For problems where the group velocity diverges to infinity for |k| — oo the
smoothing is instantaneous.
Here we restrict our attention to the Schrodinger equation

idiu + Au =0, zeR"t>0

u(-,0) =up € L*(R™) (1.38)

and present some classical rigorous results on its smoothing properties. In particular, we show below the
local smoothing result
ug € L2(R™) = u(-,t) € HY?(R") for almost all t > 0

loc

as well as the global smoothing result
L 1 1 n
upe LF (R"),p' e[1,2], -+ - =1 = u(,t)e LP(R") for all t > 0.
p P

Let us denote the solution operator of the Cauchy problem for the Schrodinger equation by
A LA(R™) — LA(R™),  u(-,t) = ePug.

It is the operator which produces the solution u(-,t) for given initial data uo.
As we have seen in Sec. [1.2.1] the solution of (1.38) can be written very succinctly using the Fourier
transform .
Uk, t) = et (k). (1.39)
Therefore, if ug € S(R™), Lemma can be used to get the solution formula in physical space: u(z,t) =
(2m) /2 <(e*i|'|2t)v* uo) (z). A direct calculation using ([1.20) produces for uy € S(R™)

. 1 n/2 Cz—yl?

u(z,t) = P ug(z) = <> J e T ug(y)dy. (1.40)
4rit n

This can be compared with the solution of the Cauchy problem for the heat equation in R™, where u(z,t) =

o2
(ﬁ)n/ 2 San e~ ug(y)dy. Hence, formally, the solution of the Schridinger equation can be obtained from
the solution of the heat equation by replacing ¢ ~~ it. Note that the expression on the right hand side of
(1.40) makes sense also for ug € L'(R™) but then it may generally not be the classical solution of (1.38)). We,
however, have

Theorem 1.15. If ug € L*(R™) n L*(R™) and §, |z|™|uo(z)|dz < oo for some m = 2, then

1 \"? Jo—y|?
u(x,w:( ) [ e watwy

4rit

solves i0,u + Au = 0 in the classical sense and u(-,t) € C™(R™) for all t # 0. If, in addition, ug € CL(R™),
then u(x,t) — ug(z) ast — 0 for each x € R™.
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Proof. The condition ug € L*(R™) ensures that the integral formula (1.40) makes sense. Since

[ o= uluotwlay < <

for all p < m, the Lebesgue dominated convergence theorem implies that (1.40) can be differentiated m
times in x under the integral sign. By the same argument the integral can also be differentiated in ¢ under
the integral sign. A direct calculation then produces i0;u + Au = 0. The Lebesgue dominated convergence

theorem also guarantees continuity of all the derivatives up to order m due to the continuity of polynomials
. |lxz— 2
in z —y and of i 7

The initial condition u(x,t) — wo(x) follows directly from the n—dimensional version of the stationary
phase approximation in Theorem [B.8 O

Theorem [I.15] shows that decay of initial data translates into smoothness of the solution. This smoothing
can be heuristically understood based on dispersion. Because planewaves with large k travel faster for the
Schrodinger equation, the large local wavenumbers at singularities travel fast away to infinity. At the same
time, large wavenumbers may come from infinity and spoil the smoothness of u. When, however, the solution
is initially well localized, less can come from infinity.

Distributional Solution of (1.38) We call u € S’(R"*!) a distributional solution of the differential

equation in (1.38) if
—iu(0pp) + u(Ap) =0 for all p € S(R™).

It is left as an exercise to show that for ug € L2(R™) the Fourier representation (1.39) generates via

u(z,t) = (27T)_7L/2J- eik‘xe_ilk‘ztdo(k)dk (1.41)

n

a distributional solution and that the initial data are satisfied in the L*-sense, i.e. [u(-,0) —uo(-)|L2rn) = 0.

1.3.0.1 Properties of the Solution Operator ¢*2

We investigate now some properties of the solution operator e*® : L2(R") — L?*(R"),uo — u defined by
(1.41). The proof of the following properties is left as an exercise.

1. Isometry .
HfiltAfHL“‘(w) = Hf”L?(Rn) for all f e LQ(Rn)a
2. o 4 o _
elthelsh — (it+9)A  ypg (e‘m) —e A forallt,seR,
3.

€98 = 1d,
4. for a fixed f e L*(R") the map ®; : R — L?(R"), defined by
Dyt Op(t) = Af,
is continuous, i.e. it describes a curve in L?(R"™).

Remark 1.4. Any operator family {T;}er which satisfies the properties (2-4) is called a one parameter
operator group. If {T}ier satisfies only Ty s = Ty o Ty for all t,s > 0, Ty = Id, and T;f : R — L*(R")
continuous for any f € L*(R™), then it is called a one parameter operator semigroup. For example, the
solution operator of the heat equation forms a semigroup.
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As the next lemma shows, e!*2 is an isometry not only in L?(R") but also in H*(R").

Lemma 1.16. The operator ¢'® is an isometry in H*(R"),s > 0, i.e. [ f|gemn) = |fllz=®n) for all
fe H*(R™).

Proof.

HeitAfHHs _ H(l + |k|s)e—i\k\ tjf\HLg = ||(1 + |k“s)ﬂ‘L2 = HfHHg
[l

This simple lemma has the important consequence that the Schrodinger equation flow does not possess
global smoothing in the sense of H*(R™), i.e. if ug € H*(R™) and ug ¢ H"(R™) for some r > s, then
eBug e H3(R™) and e*®ug ¢ H™(R™).
1.3.0.2 Local Smoothing of the Schrédinger Equation

Here we prove the already advertised result

ug € L2(R™) = u(-,t) e Hﬁ)/f(R") for almost all ¢ > 0.

The proof comes essentially from [14]. The first step is the following

Theorem 1.17. There is a constant ¢ > 0 such that for n =1

Q0
Supf D2 f(2)Pdt < e f72mnys (1.42)
zeR J—o0
and for n =2 and every j € {1,...,n}
su%f |Dglc§ZeitAf(I)‘2dm vy dy e dy, dE < chH%Q(Rn), (1.43)
TjE n

where D%Qg(x,t) = (|k; %G (k,t)) Tz, t).

Proof. For n = 1 we write

Dglg/2eitAf _ <|k_‘1/26—ik2tf>v: <|k|1/2e—ik2tj?+)v+ (|k|1/2€—ik2tj?_>v’

~ S

S ~

~- ~~
=:h4 =:h_

where fi(k) = XRy (k)f(k) Because
D22 [P < g 2+ [h-? + 2lh || < 2R | + A ?)

and R R R
1£132 = 1£1Z2 = 1F+ 122 + 1 /=132,

it suffices to show §; |hy (2, 1)[2dt < chi_r |2.. We present in detail the estimate for h. For h_ the calculation
is analogous.

2

0 0
J|h+(m,t)\2dt=f \Di/QeitAer\th:(Zw)’lJ f|k|1/261kxe*ik2tf+(k)dk dt.
R —0 —oo [JR
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Using the substitution r = k2 (such that dk = 1r—2dr), we get

2
dt.

o0 X 0
J |DY2etA f, 2dt = cJ.
—w —w

Because ﬁr(k) = 0 for k£ < 0, the inner integral equals v/2m (r*1/4ei$ﬁf+(ﬁ))A(t). The Plancherel identity
thus yields

o0
J T_1/4€ix\/77€_imf+<\/’;)d7“
0

a0 o0 0
| e p i = e [ e F (P = [ R
—0 0 0
Undoing the substitution, we get
| e e = c | 1F 0Pk = el e
—o0 0

For h_ the calculation is analogous and one uses the substitution r = —k?2.
For n > 2 the same idea applies. Without loss of generality let us set j = 1. We define

Fe(k) = xgy (k) F(K), T:i= (22, 20)T, = (kay... ko).

Once again, we perform the proof only for f,. We use the transformation (r, k) := (k?+---+k2 ko, ..., k) =:
®(k) so that
2k 2ko ... 2k,
0 1 0
det® = | | .. .| =2k
0 0o ... 1

and dk = dkdk = | det ®|~'drdk = (2|k1|)~drdk. We obtain

| e g @paza = |||
R™ R™

g

where only the branch ky = 4/r 2 was used since f+( ) = 0 for k; < 0. The inner integral equals

2
. S2, o~
1lc-a:|k ‘1/2 —i|k| thr(k)dk

- R B 2
J IR (g — |B[2) A BT £ (7 (r ) )drdR| dEdt,

( ) VTR (@ B ) (1),

By the Plancherel identity

f |Di{2€itAf+ (z)|2dzdt = cf
R"L

Rn

=C
n

and finally undoing the change of variables,
f |D;{2€itAf+(l‘)‘2dfdt = CJ
R?L Rn

with ¢ independent of z;. For f_ the calculation is analogous and one uses the substitution ®(k) =
(— k|2, kay .o Kon). O

_ ‘ = _2 .
(r— |k}~ Ve Vr=IME F(@7 (k)| drdk

~

— 2 _ _
@ )| (r = R~ 2drdk,

~ 2
(B)| dk = el £+ 132qan)
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Corollary 1.18. For all f € L?>(R") and R > 0
0 . 2
J J D2 | drdt < cRIf 3 e,
|lz|<R

where Dgl/zg(x,t) = (|k|1/2fq\(k,t))v(x,t).
Proof. (of Corollary |1.18]) For n = 1 the statement follows directly from (|1.42).

For n > 1 let us first define the sectors D; := {k € R" : |k;| > \/%—nwﬂ},j =1,...,n. It is easy to see that

u?_;Dj = R™"\{0}. We choose next a partition of unity {¢;}}_; on the open set R™\{0} such that

p; € C*, suppp; < D;, 0<¢; <1, Zgojzl.

To prove the statement we need to somehow carry the estimates on each partial half-derivative D;éQ in

(1.43) over to an estimate on the Dgla/ 2 derivative. The main idea is that this can be done in each sector D;
due to the estimate |k| < c|k;|.
For f € L?*(R") define
fj = f@j, g:= |k|1/2f, §j = <Pj§~

Clearly, f= Z;-lzl fj We also have the estimate
k3125 2@y < el Flzgn) (1.44)
because |[k;|~/2G; |2 @n) = 1172651 120,y < el Ikl725 2y < el k17252 ny = ¢ Fllp2an), where

the last step follows from [g;] = |¢;3| < |9].
We can now estimate

” ) 2
J J 1mg| dxdt < ¢ Z J J 1mg | dxdt = ¢ Z J f |/€j|1/2e_’t|k|2|kj\_1/2§j)’ dadt
—00 \z\éR z\<R |z|<R

2

RCZ 11851 2G517 2 )
Jj=1

where the last step follows from the 1D estimate (1.42)) and the Plancherel identity. Using now (1.44), we
obtain

|k ‘1/2 —1t|k|2‘k | 1/2~ T’ dxdt

0
i 2 7
J j le tAg‘ dxdt < chHing(Rn).
|z|<R

This is the estimate in the corollary because e*®g = (|k|1/26_it|k|2f>v= DYeitA ¢,
O

The shift invariance = ~— = + 29,29 € R™ of the Schrédinger equation implies that e f(- 4+ o) =
(e £)(- + x0) such that

0 . 2
sup f f ’D;/2e‘tAf' dadt < cR|f|72@ny
z€BRr(xo)

xoER™ J—
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itA

and hence HD}U/Qe“AfHLIz < oo for almost all ¢ € R. From the L2-isometry of e!*> we also have [e*® f| .2 =

| flzz < oo for all ¢ € R. In summary

A fe Hllo/c2 for almost all ¢ € R,

where
HY (R") ={u:R" - C:¢ue H*(R") for all ¢ € C(R")}.

Clearly, functions f € H (R") are those, for which f|o = g|o with some g € H*(R"™) for every compact set
Q c R

1.3.0.3 Global Smoothing of the Schrédinger Equation

As we mentioned already after Lemma [1.16] the Schrodinger group e*® does not have global smoothing in
the sense of H*(R™), i.e. in general f € H*(R™) does not imply e*”f ¢ H"(R") with » > s. There is,
however, a global smoothing in LP spaces.

Theorem 1.19. Let % + % = 1,p/ € [1,2] and t # 0. Then the operator ¢ : L (R") — LP(R") is
continuous and

. nel 1
[ oy < lt]™ 2P £ L -

Note that for p’ < 2 is p > p’ so that e'*2 f is, indeed, more regular than f in the sense that the blowup
at singularities must be milder. If f € L', then Theorem implies e f € L®. For p’ = 2 the theorem
provides nothing else than what we already know from the isometry property of e*® in L2.

One can easily show that the result is sharp, i.e. that for a given p > 2 and r > p there are f € LP such
that e f ¢ L". Take namely g € L \L" with 1/p + 1/p/ = 1 and let f := e *2g. Then f € L? due to
Theorem and e f =g¢ L.

To prove Theorem [1.19] we need the Riesz-Thorin interpolation theorem and a simple form of the Young’s
inequality for convolutions. Here we prove only the latter one.

Theorem 1.20. (Riesz-Thorin interpolation theorem) Let T be bounded as an operator T : LP°(R™) —
L% (R™) as well as T : LP*(R™) — L9 (R"™) with 1 < po,p1,490, 1 < . Define

MQ = HT”LPU—J/IU and Ml = HT“LPl—»qu .
Then is T : LP¢(R™) — L% (R™) bounded and
My < M3~ MY,

where 1 1-60 6 1 1-0 0
=t =, —=——"14—, 0e(0,1), (1.45)
Do Po D1 qe q0 q1

and Mg = ”THLpeﬁLqe.
For the proof see Theorem 2.1 in [14].
Lemma 1.21. (Young’s inequality for convolutions) Let f € L'(R™),g € LP(R™) and 1 < p < . Then
If * glze@ry < [flzr@mllgle @n)-

Proof. The case p = o is simple

[(f # g)(x)| =

Fo y)g(y)dy] < gl @ f (@ = 9)ldy = gl o | £l .

R
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For 1 < p < o one argues using the Holder inequality. With 1 >t = =1 we get

| 1@ = wgtids = | 15 = 0IP 156 - ) lowdy

< ([ 1 =mia) " ([ 16 y>|g<y>|1’dy)’1’
ey ([ 1160~ y>||g<y>pdy);

o < I || Ve =w)llatw) Py
P
Uiy [ ] 15 = wldela)Py = 11 o ol ey

such that

J.

[ 176 - o]

where Tonelli’s theorem for non-negative functions has been used to interchange the order of integration. [J

Let us now prove Theorem [1.19
Proof. (of Theorem [1.19) The case p = p’ = 2 follows by the isometry of e**. For p = 1,p = o0 we have

e flie = [(4mit) e w f o < | (dmit) 2 e £ < el F ] o

Hence, we have that ¢'*® is bounded as an operator €' : L2(R") — L2(R™) with M; := [el*®|2 2 = 1
and as an operator e*® : L'(R") — L®(R™) with My := |[e*®| 110 = c|t|™%

For p’ € (1,2) we can thus use the Riesz-Thorin Theorem With pr=q =2, po=1,q0 = o0 and
po = p',qo = p. Indeed, we show that there is 6 € (0, 1) such tha holds. The second equation in
reads 1/p = 6/2 Wthh holds if we set 6 := 2/p. Clearly, 6 € (0, 1) as p € (2,00). The first equation reads
1—6/2 =1/p', which hold due to the choice of § and 1/p + 1/p’ = 1.

In conclusion €'*2 is bounded as €' : LF' — L? with

i 5( )
[ fllze < MEOME|f L = cltl 2P £ .
O

Much more can be said about the smoothing properties of the Schrédinger equation and of other linear
dispersive equations with unbounded group velocities. For example, the linear Korteweg-de Vries equation
diu + 03u = 0,7 € R satisfies a property similar to the above local smoothing of the Schrédinger equation;
namely for s € [0,1] and up € L?(R) one has

1—s
sup [ [D*u(e, Ot < clt] T Juol e
rzeR JR
see [3].

Many results go under the name of Strichartz estimates, see e.g. [I4] and [23]. For example, for the
Schrédinger equation one has

12 £l parr mxrny < el flzz@n
if 2<q,r <0,2/qg+n/r =n/2 and (¢,r,n) # (2,0,2), see Theorem 2.3 in [23].



CHAPTER 1. LINEAR WAVES 32

1.4 Waves in Periodic Structures

As a natural generalization of wave problems in homogenous media we consider those in periodic media, i.e.

those modeled by PDEs with spatially periodic coefficients. This setting is also physically highly relevant

with some classical examples being light in photonic crystals, electron waves in atomic crystalline structures,

elastic waves in periodically arranged mechanic constructions or Bose-Einstein condensates in optical lattices.
For the sake of simplicity of the presentation we restrict here to waves in one spatial dimension.

1.4.1 Bloch Transformation

A basic tool in the analysis of waves in periodic media is the Bloch transformation. It is a generalization
of the Fourier transformation. Its definition is motivated by the following calculation. For f € S(R) and an
arbitrary constant L > 0 we get by a simple calculation

f(x) = (2n)” WJ eF f(k)dk = (2m) 712 EJ i(k+m T )a f(k—&—m%’r)dk:(%r)_l/zji R f(x, k) dk

meZ - T
(1.46)

where

Fak) == F(k+mZ) o (1.47)

meZ

and where in the last step of the calculation the order of integration and summation was exchanged using
Fubini’s theorem with the counting mass. ~

The Bloch transformation is the operator T : f — T(f) := f.

Next we prove some simple properties of 7 which are useful for the analysis of PDEs with periodic
coefficients.

Lemma 1.22. For all f € S(R), 2,k e R, and pe N is
(i) flz+L.k) = f(z,k),

(ii) f (m,k + ”) = eii%ﬂwf(x,k),
(iii) T(ORf)(w, k) = (0 + k)P f (2, k),
(iv) T(Vf)(x, k) =V (z)f(x,k) if Ve C(R), piecewise C*(R) and V(x + L) = V(z) for all z € R.

Proof. Properties (i) and (ii) follow directly from the definition (1.47). For (iii) we use property (A.3) for the
Fourier transform of the derivative:

T@ ) (k) = 3 ¥ (k + 223)7 F (s 4 2mm) L

meZ

= 3 (0 + k) ( (k + 2mm) 572" ’“)—(aerik)pf(a:,k).

meZ

For (iv) we write first V' as a Fourier series (which converges pointwise due to the assumptions on V):

52T
z) = > V;eL*, VyeCforall jeZ

jez
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L2 - ~
Using the relation (e”L'f(-)> (k) = f (k—j2E), we obtain

TWH@E) =S S ViF(k+ (m—j)2) T

MEZ jEL
N2m .
=SV N Pk (n— §)2) E DT = V() o ).
JEZ meZ

O

In other words, the Bloch transformation produces a family of L-periodic functions parametrized by
€ (—n/L,m/L]. We denote this interval by

B:= (—n/L,nw/L].

In Section [1.4.2] we will study the application of this transform to problems with L—periodic coefficients. In
that setting B is called the first Brillouin zone. The restriction to k € B is possible due to the periodicity
relation in Lemma|[L.22] (ii). The Bloch transform commutes with L—periodic functions and its action on the
derivative produces the shifted derivative 0, + ik.

In order to put the Bloch transform in a proper functional analytic setting, we define the spaces

Hi\(R) = fu € H*(R) : Jul s ) = uplie ) < 0, where p(z) = (1 -+ 22)™2),
Zy, =Hp (B, H*(0, L)) = closuregm g, g+ (0,1))Crp(B, H*(0, L)),
Cpp(B,H*(0, L)) :={u:B — H*(0,L), k> u(-, k) : Jve C*(R,H*(0, L))

2
with v (z,k + 2F) = e T Ty (2, k) ,u= ’U|ke[ﬂg} ,

and prove the following theorem (cf. Lemma 5.4 in [21]).
Theorem 1.23. For each s,m € Ny the Bloch transform T is an isomorphism from HE (R) to Z3,.

Remark 1.5. This should be compared with the Fourier transform, which is an isomorphism from HE (R)
to HT'(R). Also note that for m = 0 the isomorphism is from H*(R) to Lgp(IB%, H*(0,L)).

Proof. Let us first denote the operator given by as Ty : f — f. It is a direct calculation to show that
for u e S(R) is T1Tu = u and for w e Cy (B, H°(0, L)) is TThu = 4.

The idea of the proof is to first show that 7 and 7; are uniformly continuous maps defined on S and
ng respectively and because S is dense in H;, and ng is dense in Z7,, Lemma m provides continuous

extensions on the larger spaces. The fact that 73 = 7! on the dense subspace then guarantees that the
extensions are also the inverse of each other.
We first show the L2-isometry (up to the factor L).

HUHL2(R =[ulr2®) = ZJ ‘ dk = f Z |u (k +m3F) | dk

meZ T meZ
£ ~ 2 L2
:f 2, |U($’k)| dadk = ZH“HLQ(IB,Lz(O,L))v
-

where the sum and the integral were exchanged using the Fubini theorem with the counting mass and where

. 2
in the one but last step Sé [u(z, k)|?de = LY, o0 |t (k+ m%”)‘z follows from S§ ML — 0 for all
m,n € Z,m #n.
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For the proof of the uniform continuity of 77 : ng — S we use the following relations for the Fourier
transform F. For all p,j € Ny

TN )(@) = (i) f(x), FTHELS) () = (<ix)Pel f(w).
Hence, for some constants c,,é, > 0,p€ {0,...,m} and all u € Crp

m

el @y ZJ elu(@)P(1 + 2?)"da = ZCPZJ (30 Buf2dk = Zcpzf 28 (k) T) [Pk
J=0 = =
<3 ZJ & apm—chzzf ) o (1 + )
7=0

p=0 7=0nez

S S

L 27 | AP+ C o % L - 2 C 2
fﬂ S (n22)¥ |00 (k + n2r) | dk—ZE > f«f %0 a(e, k) [*dedk = - |4l
p=0;=0Y—T Y0

Zs,

Analogously, one shows that |a]zs < caulms &) for all u € S and some ¢z > 0. Clearly, T : S — Cp7 is
uniformly continuous since |7 (f — g)H zs < \/7 If = gllz:, and similarly 77 : Cyy — S is uniformly continuous.
Using Lemma _ there is a unique continuous extension of 7* to Z$, and of T to H:,. We denote these
extensions again by 7; and 7T respectively.

It remains to show that 71 = 7 1. Note that 7;7 = I and 771 = I on dense subspaces. Let u € H?, and
choose an approximating sequence (uy)nen < S such that |[u, —ufgs — 0 as n — co. Then

g, + [un —ulms) =0

Hs + H7—1Tun - un|

m

ITiTu —u|ps, < lim (HTlTun TiTul
n—oo

because 71T u, = u, and 717 is continuous. Analogously one shows 77 = I. O

Lemma 1.24. Let X and Y be two metric spaces, where Y is complete. Let A = X be a dense subset and
f A=Y be uniformly continuous. Then f has a unique continuous extension g : X — Y.

For the proof see e.g. Theorem 1.6.17 in [g].

1.4.2 Application of the Bloch Transformation to the Analysis of PDEs with
Periodic Coefficients

Let us consider for the sake of simplicity only scalar equations in one spatial dimension of the form
p .
Oru + Z a;j(x)lu=0, zeR,t>0, u(z,0) = up(x) (1.48)
with
aj(x + L) =aj(zx) forall xeR.
After the application of T to (1.48) we get the following periodic system parametrized by k € B
P

O + 2 )(0r +ik) 0 =0,2€[0,L],  a(x,k,0) = do(z, k). (1.49)

Assuming that the operator

per per

L(-k): HS,.(0,L) — H.7(0, L), zp] (00 + ik a(-, k)
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is skew symmetric and has a compact resolvent, i.e.

(L( k) =)' HE(0,L) — HE,.(0,L)

per per

is compact for some A in the resolvent set of £(-, k) (and hence automatically for all A in the resolvent set),
then a standard result of functional analysis is that

e the spectrum o(L(+, k)) is imaginary, at most countable, has no accumulation points and is given by

o(L(-,k)) = Unen{iwn(k)}, where w,(k) e R for all n € N,

e for each k € B the eigenfunctions (p,(,k))neny of L(-, k) form (after a proper normalization) an or-
thonormal basis of L?(0, L).

Therefore, we have for any f € L?(0, L) the expansion f(z) = >, Fn.(k)pn(z, k) with some (F, (k))nen < C.
Applying this expansion to (-, k,t) and @g(+, k) such that

i,k t) = O Un(k,t)pn(x, k), do(a,k) = > Uon(k)pn(, k),

neN neN

problem ([1.49) becomes
OtU, (K t) +iw, (k) Up (K, t) =0, keB,neN;t>0, Un(k,0) = Up,n(E).
This is a (infinite dimensional) system of decoupled ODEs parametrized by k € B. The solution is clearly

Un(k,t) = e @m0t (k).

—iwn (k)t

For the transformed variable @ we get u(z,k,t) = >, Pn(x, k)Uon(k)e and hence the solution of

(1.48) is given by
u(z,t) = (27r)*1/2f D pn(@, k) Up (k) o= D g,
B neN
In analogy with constant coefficient problems discussed in Section [1.2.1] the sequence (wy(k))nen plays the
role of W (k), i.e. of the solution of the dispersion relation. The image U,enws, (B) is called the band structure.
The pair (w,,(k), pn(z, k)) is for each k € B,n € N an eigenpair of the Bloch eigenvalue problem
L(z, k)pp(z, k) = iw, (k)pn(z, k),x € (0,L)

(L, k) = pn(0, k). (1.50)

The functions ¥ (z,t) := pp(z, k)elFz=«n () are called Bloch waves and are a generalization of the plane
waves €l(F=w%) in the constant coefficient case. The group velocity of the Bloch wave is given by !, (k).

1.4.2.1 Asymptotics for t —» 0, 7 =ceR

Just like in Section for constant coefficient problems, we show here that an observer moving at the
velocity c sees after a long time basically only Bloch waves with the group velocity equal to c. Indeed, writing
the solution as

w(w,t) = (27r)_1/2fB S b k) Vo (K)e ™ Ok, x (k) = wn (k) — b,

neN

we use the method of stationary phase (Theorem [B.7)) for ¢ — o0, z/t = ¢ to get

1 e 7. =\ —isign(w” (ENT i(kr—w,, (k
e~ L (t|w(k)> Uon(k)pa (x, k)e ™82 (RN g gilka—wn (B0
{(n,k)eNxB:w/, (k)=c} n

if (k) # 0 for all (n, k) € N x B such that w!,(k) = c.
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1.5 Water Waves

In this section we derive equations for waves at a free interface of air and a fluid. We make several simplifying
assumptions. Firstly, we consider only incompressible inviscid fluids in a constant gravitational field. Water
in a standard situation satisfies these conditions to a high extent.

The starting point of our derivation are the Euler equations

1 B

V-u

0, (1.51b)

where @ = (ug,ug,u3)? is the fluid velocity vector, p is the pressure, g is the acceleration due to gravity
(~ 9.8m/s?), p is the density, and j = (0,0,1)”. Equation describes the conservation of momentum
while is the incompressibility condition.

Note that (i - V)i = (Y_; u;05u1, Xy u;fjua, Yy u;0;us)T coincides with (Vil)i, where Vil is the
Jacobian matrix of .

In the field of fluid mechanics it is common to use the notation of the material derivative Dy =
0yl + (4 - V). The following calculation motivates this concept by showing that the rate of change of a
quantity at a material point (i.e. a fluid paricle) flowing with the fluid is given by the material derivative.
Let x(t; 20) be the position of a particle (material point) moving with the fluid and being at the point z( at
t = 0. Then

Orx(t; xo) = u(x(t;x0),x), x(0;20) = xp.

Let now w(x,t) be a physical quantity at (x,t). @W(x(t;20),t) is then this quantity at the above material
point and the chain rule yields
d
alﬁ(m(t; x0),t) =0 (x(t;x0),t) + Orx1(t; x0)O0ny W(x(t;20),t) + + - - + Orx3(t; To) Oy W(x(t; 20), t)
=0y (x(t; 20), t) + (W(x(t; o), t) - V) w(a(t; z0), t) = (Dew)(x(t; 20), t).

The material derivative of a quantity w thus describes the temporal rate of change of @ along the trajectory
of particles flowing with the fluid.
Applying D; to the velocity field @, the Euler equation (1.51a)) reads

1 -

We restrict our attention to érrotational flows, i.e. we have zero vorticity
V x4 =0.

This is justified by the following discussion in which we show that if a flow is irrotational at the initial time,
then it remains so for all times. First, a direct calculation, see e.g. [16], produces for the vorticity & := V x @

D& = (& x V).
We will apply the following general result from [16].
Lemma 1.25. Let z(t;xg) be the trajectory of a material point in a smooth velocity field i(x,t), such that
Orx(t; o) = u(x(t;20);t), x(0;20) = 20, (1.53)
and let h(z,t) be a smooth vector field. Then
Dih = (h-V)id, h(zo,0) = ho(xo) (1.54)
if and only if

—

h(x(t; o), t) = Vo z(t; 20)ho(20).
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Proof. Differentiating equation (1.53)) with respect to xg, we have

d
@Vmox(t; xo) = Vi(x(t;x0), t) Ve x(t; o),

where Vi and Vo are 3 x 3 Jacobian matrices. Hence

d - . -
avwox(t; xo)ho(xo) = Va(x(t;20), t) Ve x(t; o) ho(zo).

Equation (|1.54)) is equivalent to
Dih = —h(z(t; 20), t) = Vii(z(t; zo), t)h(z(t; 20), 1)

because (h - V)i = (Vii)h.
Hence, h(x(t;x0),t) and Va,x(t; 20)ho(zo) satisfy the same initial value ODE problem with the initial
data .
h()((E(]).

Due to the uniqueness of the ODE solutions, we have the equivalence. ]
Applying this lemma to h = & with @(-,0) =0, we get J(-,t) =0 for all ¢t > 0.
Using now the Helmholtz decomposition
=V x zZ + Vo
with z/j(x, t) € R3 p(x,t) € R, the zero vorticity condition allows us to set @ equal to a gradient
U= V.
In other words, we can consider the so called potential flow. Equation now becomes

1 —
\Y (613(,0 + E‘VQPP + % + gx3> =0

for an arbitrary constant py € R. Thus

Po—Pp

1
Orp + §|V<p|2 + g3 = + B(t)

for arbitrary scalar functions B(t). Because adding an z—independent function to ¢ does not alter @, we can
replace ¢(x,t) by ¢(x,t) + SS B(s)ds and obtain the final form

1 _
Ovp + §‘V<P|2 + g3 :pop £, (1.55a)

Agp =0. (1.55b)

1.5.0.1 Free Interface of Water and Air

We consider water on a perfectly flat bottom. The depth of the water at rest is hg > 0, measured along the
vertical direction x3. The surface of the water at rest is the plane 3 = 0 and in general it is described by

x3 = n(z1, T2, t).

We make now three standard assumptions. Firstly it is the kinematic condition that water particles on
the surface stay there for all time. Secondly, the dynamic condition says that the interface has no mass and
lastly we assume no flow through the bottom at zg = —hy.
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Figure 1.8: A schematic of a free interface between air and water.

1. The kinematic condition, i.e. that water particles on the surface stay on the surface for all time can be
formulated as
vp =v; on xz=n(ry,xs,t), (1.56)

where vr is the speed of the water in the normal direction to the surface and v; is the speed of the
surface itself in the normal direction. The interface is defined as

F(x1,x9,x3,t) := x3 — n(x1, 22, t) = 0,
i.e. as the level set F' = 0. The normal n of the interface is thus the gradient of F’

0y
n=VF = ! (_aQZ).
V()2 + (Gagm)®+ 1\ 1

Hence we have

. A 0
'UI_n.f_n.(. E'L‘g" )_ t7]
1719.7:1 7]+w20m277+at77 \/(axl’n)Q + (aIQ’I’])2 —+ ]_

and
L uz — U1y — U0z,
vp=n-U= )
AV (@uy)? + (92,m)% + 1
Condition ([1.56) is thus
Uz = 0N + u10z, M + U20,,m  on x3 = n(x1, T2, 1). (1.57)

Note that (1.57)) can be obtained much faster using the material derivative notation since the condition
that particles at the interface stay at the interface means D;F' = 0, which is precisely (1.57]).

2. The dynamic condition states that the interface has no mass so that the forces on either side of the
interface are equal, i.e.
po—p=2TH onxz=n(x,xs,t), (1.58)

where pg and p are the pressure of air and water respectively, 2T H is the surface tension, T is the
coefficient of surface tension and H is the mean curvature of the interface. The mean curvature is given
by

2H =|VF|™* (VFD*F(VF)" — |VF|*trace(D*F))

) (1.59)
=(1+ (00,0)? + (B2am)®) ™2 [(1 + (Guam)®)Z, 1 + (1 + (32,0)?) 02,10 — 200, 100,10, O] -
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3. Finally, the condition of no flow through the bottom x3 = —hg is simply

uz = Ogyp =0 on zz = —hg. (1.60)

In summary, combining (1.55), (1.57)), (1.58)), and (1.60)), we have the following system for the free interface
problem between an inviscid incompressible irrotational fluid and air

Ap =0, —hy<uzz<n(x,xzs,t), (1.61a)
Ousp =0, w3 = —h, (1.61b)
1 T (1+ (02,m)?)07,m + (1 + (02,1)*) 03,1 — 202,102,100, O,
0,0+ =V 2+ = 2 T 1 T2 1 2 1Y T2 :07 _ 72, 1),
1o+ 5IVel” +gn 5 T o)+ )2 x5 = (21, T2, 1)
(1.61c)
aﬂl + azﬁﬁaﬂﬂln + (7z2805m77 = 013@, x3 = U(xl,fl%t)- (161d)

Equation (|1.61c) is called the Bernoulli equation. In many case the surface tension can be neglected, as, for
instance, for long waves, where the mean curvature is very small. Then equation (|1.61c) reduces to

1
orp + §|V<P|2 +gn =0, x3=n(z1,22,1). (1.62)

1.5.1 Linear Theory

We study here small solutions of (1.61]) so that only the linearization of the system is important. For the
linearized system we derive the dispersion relation and explore it in several interesting asymptotic regimes.
1.5.1.1 Without Surface Tension

Let us first consider the case without surface tension. Water waves are then often called gravity waves since
the only restoring force is gravity. It can be shown that the linearization of the system (1.61a)), (1.61b)),

and (L62) is

Ag@ =0, —hg < w3 < 0, (1.63&)
awg@ =0, =3 = —ho, (163b)
20+ gOpyp =0, x3 =0, (1.63c)
1
n+ —0ip =0, x3=0. (1.63d)
g
We consider plane waves propagating in the horizontal directions (x1,x2,0), i.e. we set
n = Aellhimithaza=wt) L ¢ o = Y (gg)elkimithaze—wt) 4o (1.64)

with a constant A € C and a scalar function Y : [—hg,00) — C and where c.c. stands for the complex
conjugate of the expression preceeding it.

From (|1.63a)), (1.63b]) we get
Y"(x3) — [k|*Y (23) =0 for —hg <ax3<0, Y'(=hg)=0

such that Y (x3) = C cosh(|k[(z3+ho)), C € C. Here |k| denotes the Euclidean norm of the vector k = (k1, k2).
Equation (1.63d) implies A = *#Y'(0) and thus

_ —ig ,cosh(|k|(z3 + ho))
Y(zs) = — cosh(|k|ho)
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With the expression for Y we can recover from equation (1.63c) the dispersion relation for water waves
without surface tension
w? = g|k|tanh(|k|ho). (1.65)

The solutions of ([1.65) have the form

w=+tW(k):= +U(|k|), where U(s) = +/gstanh(sho).
The group velocity vg(k) = £VW (k) has the form

k
vg(k) = iU’(lkDm
such that |vg(k)| = [U’(|k|)|- One can see that |vy(k)| is decreasing in |k[, i.e. shorter waves are slower.

Let us now look at two asymptotic cases of the horizontal waves.

(a) Deep water waves: |k|hg > 1

In this asymptotic regime the wavelength is much smaller than the depth (but still large enough such
that surface tension can be neglected). We obtain

W (k) ~ /glkl| (|klho — )

lvp (k)| ~ <|Z|)1/2, lvg (k)| ~ % <|Z|>1/Z.

This regime is clearly dispersive and, as mentioned above, longer waves propagate faster.

such that

A physical example of deep water gravity waves are wind generated waves in the ocean. These have
the typical wavelength A of 60 to 150 m. With a typical depth of hy = 4000m we get |k|ho ~ @
approximately between 65 ad 168, i.e. values much larger than 1. Another example is waves generated
by explosions, as shown in Fig. a). In the figure one clearly observes that longer waves have traveled
further than shorter ones.
(b) Shallow water waves: |k|ho < 1
Here 1/2
W (k) ~ (glk|(holk| — 5([k|ho)*)) "™ ~ +/gholk]| (|k|ho — 0).

Hence, in the asymptotics the dispersion relation is equivalent to that of the wave equation
ain — gho(d3,m + d3,1) = 0.
The phase and group velocities are

[op(B)| ~ v/ gho,  |vg(k)| ~ \/gho ([k[ho — 0)

such that the problem is not dispersive in this asymptotic regime.

Though it may sound surprising, an example of shallow water waves are tsunamis in the free ocean.
This is not due a small depth but rather due to the large wavelength, which is typically about 200 km.
By a depth of 4km we get |k|hg ~ 87/200 « 1. One can very easily approximate the propagation speed
of such a tsunami wave

lvg(K)| ~ v/ gho ~ v40000m /s = 200m /s = 720km /h!
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1.5.1.2 With Surface Tension

In the presence of surface tension the full system (1.61) has to be linearized. The linearization of the mean
curvature in (L.59) is 2H = 02 n + 02,1 and we obtain

A(p :0, 7h0 <xr3 < O7 (166&)
Ozsp =0, 3 = —hy, (1.66b)
T
O + gn — ;(0?;177 +a2,m) =0, x3=0, (1.66¢)
0t — duzp =0, x5 =0. (1.66d)

Considering again horizontal waves ([1.64)), we get from ([1.63a)), (1.63b]) once again Y (z3) = C cosh(|k|(z3+
ho)). Equation (1.66d) now implies —iwA = Y’ (0) = c|k| sinh(|k|(x3 + ho)) such that

cosh(|k|(z35 + ho))

Y(x3) = —iwA
(z3) lw |k| sinh(|k|ho)

Finally, from (|1.66c) we get the dispersion relation for water waves with surface tension
2 T o
w=glk| 1+ @|k| tanh(|k|ho). (1.67)

Note that for |k| « 1 this dispersion relation reduces to as expected since long waves have small
mean curvature. Surface tension is thus relevant for |k| » 1 and for intermediate values of |k|. First we take a
look at the case of capillary waves |k| » 1. Here surface tension is the dominant restoring force. A typical
physical example are waves generated by rain drops.

One obtains

W (k) ~ ?k\stanhukmo) (k| — =) (1.68)

3 /T 1/2 2ho k|
~Z (= h U+ ssnnehain )
[ug (K| 5 (p |k| tan (h0|k|)> ( + 3sinh(2ho|k|)>

Clearly, for |k| large the norm of vy(k) grows with |k| such that shorter waves are faster, see Fig. (b) for
an example of a capillary wave generated by a water drop. The faster propagation of shorter waves is well
visible.

Also for capillary waves we can study the two asymptotic scenarios of deep and shallow water, i.e. |k|hg > 1
and |k|ho « 1 respectively.

such that

(a) Deep water capillary waves: |k|hg » 1

1/2
When |k|hg » 1 (and |k| » 1), we get from (1.68) the asymptotics W (|k|) ~ (%) |k|3/2 for (|k|ho —
o0) and
T 3 (T

1/2 1/2
o~ () W2 Rt~ 3 ()R (ko — o),

(b) Shallow water capillary waves: |k|ho < 1

1/2
When |k|ho « 1 (and |k| » 1), we get from (1.68)) the asymptotics W (|k|) ~ (%) |k|? for (|k|ho — 0)

The\ The \ /2
@l ~2(00) I ol ~2 (T (ko —0)
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Figure 1.9: (a) deep water gravity wave from an underwater explosion at point E; (b) capillary waves
generated by a drop of water. Picture in (a) is from [22]. It shows the effect of an Italian airplane trying
to bomb the United, a British submarine at A, creating an explosion at E; (b) is a photo of a class room
experiment.

Finally, for the intermediate values of |k| in (|1.65)), one needs to analyze this full dispersion relation. An
interesting observation is that in the deep water asymptotics |k|hg — oo there is a wavenumber, namely

H=(50) )"

at which the group velocity is minimized. For water at 15°C the surface tension coefficient is 7' ~ 0.073N /m

and density p ~ 1000kg/m3. The resulting wavelength \ = % is about 4.36 cm.




Chapter 2

Nonlinear Waves

Under nonlinear waves we understand simply waves described by nonlinear PDEs. We will restrict our
attention to those PDEs whose linear part is dispersive. One of the important properties of nonlinear
dispersive probems which distinguishes it from linear dispersive ones is the possibility of coherent propagation
of localized waves, i.e. waves whose spatially localized shape is invariant under the time evolution. In other
words, in nonlinear problems the dispersion induced destruction of pulses can be arrested. This occurs when
the shape of the solution achieves a perfect balance between dispersion and nonlinearity. There are a number
of possible effects of nonlinearity. The most common ones are focusing, e.g in the nonlinear Schrédinger
equation, and steepening, e.g. in the Korteweg-de Vries equation.
Let us list a few classical but also physically highly relevant nonlinear dispersive models.

1. The Korteweg-de Vries (KdV) equation
6tu+6u6mui&iu =0, zeR,t>0

describes, e.g., one dimensional shallow water waves of relatively small amplitude as well as long waves
in the Fermi-Pasta-Ulam problem. A formal derivation of KdV in these contexts is carried out in

Sections 2.1.1] and 2121
2. The nonlinear Schrédinger equation
i0,u — ad?u+ylufPu=0, teR z>0,0,7eR

is a description of optical pulses in Kerr nonlinear photonic fibers with the longitudinal direction
denoted by z. It is, however, also a universal asymptotic model for slowly varying wave packets of small
amplitude in rather general nonlinear dispersive problems, which we explain in Section [2.2.1

3. The Gross-Pitaevskii equation
. h2 2 n
i0iu + Q—Au—V(x)u—k’ﬂu\ u=0, zeR"t>0
m

for n € {1,2,3} models Bose-Einstein condensates (BECs) in an external potential described by V.
BECs are systems of identical bosons in the same quantum mechanical state. h is the Planck’s constant
and m is the mass of the boson. For n = 1,2 the same mathematical form of the equation is also an
asymptotic model for slowly modulated optical beams in photonic crystals.

4. The Sine-Gordon equation
0?u — %u +sin(u) =0, xeR,t>0

is a model of the Josephson effect, i.e. the tunneling electric current between two superconductors.

43
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5. The Coupled Mode Equations

(0w + 0,u) + kv + T(Jul> + 2/v*)u = 0
(0w — 0,0) + ku + T(|v> + 2/ul*)v = 0

for ze R,t > 0,k,I € R are an asymptotic description of pulses in optical fibers with a Bragg grating,
i.e. a specific periodic structure in the longitudinal direction z.

2.1 Korteweg-de Vries Equation

2.1.1 Korteweg-de Vries Equation for Shallow Water Waves

Here we carry out a formal asymptotic derivation of KdV for one dimensional shallow water waves along the
lines of Chapter 5 in [I].

Shallow water waves have an especially important place in the history of understanding nonlinear disper-
sive waves. This is due to the first scientific record of a solitary wave done by Sir John Scott Russell in 1834
on a canal near Edinburgh, where he observed a wave generated by a ship which came to a sudden halt. The
wave continued traveling in the direction of the ship’s movement and did not change its shape over a large
distance [20]. Here are his own words

I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when
the boat suddenly stopped-not so the mass of water in the channel which it had put in motion; it accumulated round
the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its
course along the channel apparently without change of form or diminution of speed. I followed it on horseback, and
overtook it still rolling on at a rate of some eight or nine miles an hour [14 km/h], preserving its original figure some
thirty feet [9 m[ long and a foot to a foot and a half [300-450 mm] in height. Its height gradually diminished, and after
a chase of one or two miles [2-8 km] I lost it in the windings of the channel. Such, in the month of August 1834, was
my first chance interview with that singular and beautiful phenomenon which I have called the Wave of Translation.

Let us recall system (1.61al), (1.61b]), (1.61d]) and (1.62) for the free interface of water and air under the
assumptions of incompressibility, no viscosity, no surface tension and an irrotational flow. We consider only
waves propagating solely in the z;-direction with a profile that is independent of x5. Such waves are possible,
for instance, in a narrow channel of uniform width. Hence, we set

o =@(r1,23,t) and n=n(x1,t).

The first step in the derivation is to make the equations dimensionless. This step is important for the
subsequent asymptotic analysis where orders of magnitude of terms have to be identified. A choice of units
can, of course, artificially change the size of a given term.

Let us consider waves with a typical wavelength A and a typical amplitude a. We define the two numbers

ho a

g1 = 77 Eg 1= hio

Later we will assume smallness of ¢; 5 but at the moment these are simply new names.
Next, we define the following dimensionless (primed) variables

/. x3 /. X1 _ E1 /. Nghoy _ 9
Ty =Rk, Ty =N = T ti= St =c14/ 50t
/. nm _ 1 /. Ngho  _ €1

nm=x eohg? L2 Aga ® ezhm/gho(p'
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After a simple calculation one finds that in dimensionless form system (1.61a)), (1.61b)), (1.61d)) and (1.62)
for one dimensional waves reads

8%5211@/ + aiégo’ =0, —-1<uzf<ea,

ax&so/ =0, xé’) =-1,

135} 1

v’ + [(59;;@’)2 + g(awg@/)Q +1' =0, a5 = e,
1 (0vn + €200, 0p ) =0, @ = ean)'.

Now we make our asymptotic assumptions. Namely, we consider shallow water such that e « 1 and waves

with small amplitude: €5 « 1. In order to balance the effects of as many terms as possible (“Kruskal’s

principle of maximal balance”), we choose the relation

62:&‘% =:!E€.

With this choice the leading order parts of all the o(1) terms (as £1,e9 — 0) are of the same order.
With this definition of € and dropping the primes, we obtain

€02 p+ 02,0 =0, —1<uzg<en, (2.1a)
61390 :Ov xr3 = _la (21b)
€ o 1 2
Opp + 5(693190) + 5(6%90) +n=0, xz3=en, (2.1c)
€ (0 + €0y, 90z M) =0sytp, X3 = €MN. (2.1d)

Let us attempt to find an approximation of ¢ via the regular perturbation ansatz
C,OIQO0+€Q01+€2(,02+....
At O(1) we have from equation (2.1a)
(}igoo =0, —-l<az<en
resulting in
wo = A+ B(zg+ 1) with arbitrary functions (A4, B) = (4, B)(x1,1).

From the boundary condition (2.1b) we get B = 0 such that ¢g(x1,z3,t) = A(z1,1).
At O(g) we obtain
812-1900 + (353(,01 =0, —-1<ux3<en,

Le. 07,1 = —02 A. Using (2.1b)), the solution reads ¢; = —W&glA—FD with an arbitrary D = D(x1,1).
The “constant” D can be absorbed in A because for A = O(1) is also A +¢eD = O(1). Hence

(173 + 1)2

2
A.
2 Oy

$1=—
The last order, which we consider, is O(g?). It consists of
&ilgol + (7353@2 =0, —-1<ux3<en,

which leads to ( )4
T3+ 1 4
o= g A

after, once again, applying (2.1b)) and absorbing the integration constant in A.
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In conclusion, we formally have

(Ig + 1)2

—A—
® S

02 A+e? 05 A+ 0(%), —l<mz<en

(Ig + 1)4
!
Next we use equations (2.1¢) and (2.1d) to provide an expansion for n and an equation for the currently
free function A.

From we get
2 1
A= S(L+en)?@2 oA+ 2 (0 A= S(L+em?dh A) + 3 (s(1+en)d?, 4)" + 5 = O(?)
and hence -
n=—0A+ 2 (2,04 = (0, 4)%) + O(2). (2.2)
Finally, (2.1d) produces
1 1
RA— 2 A=c [28§153A 20, A0, 04— L2k A - ailatA] L o). (2.3)

Remark 2.1. [t is interesting to note that the linear part of equation (2.3)) is up to O(g?) equivalent to

the Boussinesq equation 07 A — 8923114 = %692”18?14. This follows by applying the equation itself, i.e. 82114 =

02A+ O(e), to replace 03 A = 02 (02 A) by 02 0?A + O(e).

The last step of the asymptotic discussion is to provide an e-independent problem from ([2.3). At the
leading order equation (2.3)) is the wave equation. Hence, we expect that A depends on the characteristic
variables x; + ¢t and 1 — t. We make a multiscale asymptotic ansatz for A

Az, t) = Ao(§, v, T) + A1 (6,1, T) + O(?), (2.4)
where  := 1 —t,v :=x1 + t, and T := et. This transformation of variables leads to
Oy = 0¢ + 0, 02 = 82 + 02 + 20¢0,,
0y = 0, — O¢ +edr, 0f = 6? + 02 — 20¢0, + 2¢(0,0r — 0¢07) + €207,
0,0 = 02 — 62 + e(010¢ + 0710,).
Inserting ansatz in yields at O(1)
—40:0,A40 =0

such that
Aoy =F(ET)+ G, T)

for arbitrary functions F' and G. At O(eg) we obtain

1 1
7455(7,,/11 + 2 (&yaT — (}gaT) Ao =§(&§ + (7”)2(65 — (7,,)2140 — 6((75 + ay)4A0

— 2(0¢ + ) Ag(% — 02) Ag — (0 + 0,)* Ao (0, — 0¢) Ao.

Using 0¢0, Ao = 0 this reduces to

—40¢0, Ay =é(8§F +0,G) — 0cFOLG + 0,GOFF + 30 FO; F — 30,G0LG + 2(0:0rF — 0,01G).
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Due to the linearity of the problem we can write 4; = A§“> + Agb) + Aﬁ“), where
—40¢0, A\ = — 0. FO2G + 9,GO2F,
—40¢0, A" =20:07 F + %agF + 30 FOZF =: P,
—40¢0,A\) = — 20,00G + %a;ﬁa ~30,G0%G =: P,.

These equations can be easily integrated to give

1
A =2(F6,G — GOgF) + a(6.T) + 6w T), (25)
v _ _ 1 L 5
Al — 1 [QaTF + gag’F + 2(55F)2] v, (2.6)
4 = ona bae - oo @)

with arbitrary integration constants «(&,T) and B(v,T). Note that it is not necessary to include integration

constants in Agb) and Agc) since only the sum A(la) + Alb) + Agc) is relevant for us. In fact, since the initial
data for ¢ and 1 have not been prescribed, we are free to choose a(&,T') and (v, T). For a localized solution

with p(z1,t),n(x1,t) — 0 as |z1| — o we actually need o = 5 = 0 since otherwise A(la) does not decay as
‘(El‘ — O0.

Although the solutions ¢ and 1 are unknown, we look for bounded solutions which requires A to be
bounded in z;. Clearly, because F' is independent of v and G is independent of £, the above functions Agb)

and A' are unbounded (grow linearly) unless the expressions in the squared brackets in and
vanish. Polynomially growing terms in asymptotic expansions of bounded solutions of differential equations
are called secular terms. The occurrence of these secular terms is no surprise since the right hand sides P;
and P lie in the kernel of the adjoint of the operator d¢0, on the left hand side. In other words P; and P, are
in resonance with the homogeneous solution. While setting the squared brackets equal zero would provide
for a bounded expansion (up to O(g)), the same can be achieved by setting

P =P=0,

which is the more traditional approach. It is also formally a weaker assumption because it is an assumption
on derivatives of the squared brackets. Defining then

U:=0F and V :=0,G,

we get the Korteweg-de Vries (KdV) equations
1

%%U+§@U+3UQU=O, (2.8a)
1

2%v-§£v+3vavzo, (2.8b)

where the equation for U is that for right propagating waves and that for V is for left propagating ones.
A suitable scaling

u(&,T) := aU(BEAT), v(&T) = aV(BEAT)
for some «, 3,y > 0 transforms (2.8)) to the standard KdV equations
Oru + 6udeu + 0§’u =0, (2.9a)
Orv + 6vev — 62’1} =0. (2.9b)
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To obtain an approximation of 7, we can use to get
n(xy,t) = =0t Ao, v, T) + O(e) = —0: F(§,t) — 0:G(v,t) + O(e).
Due to 0; = 0, — 0¢ + €01 we have
N=0F—-0,G+0()=U-V+0(e). (2.10)

The above derivation of the KdV equations is, of course, formal and does not guarantee that the truncated
expansion of ¢ and 7, with U and V given by solutions of KdV,, is close (in a suitable norm) to a true solution
(n, ) of for ¢ small. For a rigorous justification of KdV for shallow water waves see e.g. the book
[13]. Below in Sec. we address this justification question in detail for a simpler case, namely for slowly
modulated wavepackets in the 1D nonlinear wave equation. In this case the envelope is shown to be effectively
described by the nonlinear Schrédinger equation.

2.1.1.1 KdV in Dimensional Form

Let us now look at the KdV in the dimensional variables. Restricting to the right propagating waves, we
have from (2.10) the approximation n = U + O(e). Going back to the dimensional variables (denoted once
again by the same letters), we get then from (2.8a) the dimensional KdV equation

1 hd 3

6
The linear part of (2.11) can be also obtained directly by expanding the one dimensional version (i.e.
k = ki) of the dispersion relation (1.65) (which becomes w? = gk tanh(kih)) in the small parameter
|k1ho| « 1. We leave this as a simple exercise.

2.1.1.2 KdV for Water Waves with Surface Tension

When surface tension is taken into account, the full form of the Bernoulli equation ([1.61c) needs to be used.
Considering, however, only one dimensional waves, we obtain

6tg0 + 1 ((511@)2 + (am380)2) +gn — Zai—lnw = 07 T3 = 77(551715)
2 P (14 (0e,m)?)

An analogous asymptotic calculation to that for the zero surface tension case produces the following dimen-
sional KdV for right propagating waves

L om0+ ——ndsn =0 I (2.12)
\/gTOtT] z1 7] YOz, 2]7,077 N =Y, 7= 6 2pg .

The qualitatively new effect compared to (2.11) is that the coeflicient v of the dispersive term becomes
negative for large enough values of the surface tension coefficient 7.
The dimensionless form of (2.12) is

Oru + 6sudsu + 8§u =0, s=sign(y). (2.13)

2.1.1.3 Solitary Waves of the KdV

The KdV is one of the equations which support solitary wave solutions.

Definition 2.1. A solitary wave is a localized wave of constant shape.
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Let us thus search for a solution w(¢,T) = f(y),y := £ — ¢T,c € R. For the localization we require

F(&), f (&), f"(&) — 0 for || — co. This ansatz produces in ([2.13))
—cf +6sff + f" =0.
After an integration (from —oo to &), multiplication by f’ and another integration we get

(f")? = f2(c—2sf). (2.14)

Note that the integration constants vanish due to the decay assumptions.
Since the left hand side in (2.14)) is non-negative and since f(§) — 0 for |{| — o0, we conclude that

c=0.

The integration of (2.14) yields
df
Y 4y —
Fle— sy T
with an arbitrary zo € R. With the substitution f = s$sech®d and using (c — 2sf)/2 = \/c| tanh(6)|, we get

2 tanh(0)
Ve Tann(@) ' )

such that
0] = £+/c(y — x0).

As a result, because sech? is even , we have f(y) = s%sechQ(\/E(y —xg)). In conclusion
u(&,T) = sgsechg(ﬁ(f —cT — 1)), ¢=0,29€R. (2.15)

Clearly, for s = 1 the solution is positive, a so called wave of elevation, cf., e.g., the “great wave of
translation” of J.S.Russell [20], which was first observed (and documented) in water in 1834. For s = —1 the
solution is negative and it is called a wave of depression. It was first observed only in 2002 in mercury, the
surface tension of which is large enough to produce v < 0, see [10].

While is the only solution of the KdV which fits the ansatz u(¢,T) = f(y),y =& —cT,ceR
with f localized, the KdV has infinitely many other solutions which consist of traveling localized components.
These are the famous N-solitons which consist of NV € N pulses, each of which propagates like a solitary wave
with a distinct velocity and when these pulses collide, they are not destroyed but rather continue propagating
with the same shape and velocity. The only footprint of the interaction is a spatial shift and a shift of the
phase of the pulses. Solution is the special and rather boring 1—soliton. The existence of solitons and
their properties can be obtained via the technique of the inverse scattering transformation [6, 2].

2.1.2 The Fermi-Pasta-Ulam Problem and the Korteweg-de Vries Equation
2.1.2.1 The Fermi-Pasta-Ulam Problem

The Fermi-Pasta-Ulam (FPU) Problem is of historical importance in the area of nonlinear dispersive problems
and soliton theory. In the years 1954-55 Enrico Fermi, John Pasta, and Stanislaw Ulam [11I] at the Los
Alamos Laboratories performed numerical experiments simulating a chain of particles coupled by strings
with a nonlinear restoring force. Their aim was to understand the dynamics of a crystalline atomic structure
towards a thermal equilibrium.

Consider a chain of N € N particles (along a line) with identical mass m coupled by springs. Denoting by
yn the displacement of the n—th particle (ordered from left to right), Newton’s second law says

d?yn
m
2

= Fr(n)— Fr(n), ne{l,...,N}
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where Fg 1,(n) is the force acting on the n—th particle from the right /left respectively.
Before we discuss the FPU problem, where Fp n are nonlinear functions of g, let us recall the linear
problem. A classical model of linear springs is Hooke’s law, which states

Fr(n) = —K(Yyn — Yn+1), Fr(n) = —K(yn—1 — yn) with some K > 0.

This leads to the system

d2
dtygn = K(yn+1 _2yn+yn—1), ne {1,...’N}’ (216)
i.e.
-2 1
d2—' K 1 -2 1
JzAg; A= A e RV*N
d? m 121
1 -2

where 7 = (y1,¥2,...,yn)". System (2.16) has 2N linearly independent solutions (modes) etiwit¢() j e
{1,..., N}, where (wj,f(j)) are eigenpairs of A

AEW) = (0,

) 1/2
In fact, the eigenvalues can be calculated explicitly: w; = 4/ % (1 — cos ( 1\?11)) .

An important feature of any linear dynamics is that there is no exchange of energy between modes. Let
us restrict to real solutions. When the initial data are composed of M < N complex conjugate pairs

7(0) o o
(M(0)> = E Cj (iw75(1)> + ¢ <7iw7~§<7)> ,
@ j€{j1,-impe{l,...,N} ; ;

then clearly

g(t) _ Z (Cjeiwjt + e—iwjt?j)g(j)’
J€{j1,rin}
such that only the modes j1,...,7) come into play.

In a nonlinear case this changes dramatically. When the system is nonlinear, no principle of superposition
holds, of course. There is no concept of solution modes either. When initial data are composed of certain
linear modes, then one expects that due to the nonlinearity all other linear modes will be excited in the time
evolution.

Fermi, Pasta and Ulam considered a quadratic nonlinearity as a correction of the linear Hooke’s law:

Fr(n) = K(Yn+1 — Yn) + K Ynt1 — Yn)?, Fr(n) = K(Yn — yn-1) + K (yn — Yn—1)> with a >0
leading to

Pyn
m
i

= K(ynJrl - 2yn + ynfl) + Ka [(ynJrl - yn)2 - (yn - ynfl)Q] , NE {17 e 7N} (2'17)

and they used periodic boundary conditions, i.e. yo = yn,yn+1 = y1- Arguing based on the ergodicity of
Brownian motion, i.e. that every state has the same probability, they even expected that after a long time
there will be an equipartition of energy between all the linear modes. What they observed in their numerical
experiments (with N = 32, = 1/4) was that practically only 5 linear modes got excited and the energy
oscillated among these in a nearly periodic fashion. The amount of energy in the remaining linear modes was
negligible.

This surprising result initiated a flurry of research on nonlinear PDEs and is sometimes considered the
birth of nonlinear physics. A mathematical explanation of this phenomenon in the case of the FPU-problem
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is based on an asymptotic approximation of the FPU system by the Korteweg-de Vries equation. This
continuum approximation is valid for waves that are long compared to the distance of the particles. Since all
initial data in the KdV lead to an m—soliton (m € N) plus a radiation wave of amplitude O(t~1/3)(t — o),
with periodic boundary conditions the form of a soliton repeats periodically on the finite spatial interval.
Hence a nearly periodic solution is observed in the simulation.

2.1.2.2 KdV Approximation of long waves in the FPU Problem

Here we formally derive the KdV equation as a continuum approximation of the FPU problem . Let us
first assume that the spacing between articles at rest is h « 1 and denote the locations at rest by z,, := nh. In
a continuum approximation one assumes the existence of a smooth function y(z,t) such that y(z,,t) = yn(t).
Taylor-expanding then y in x around z,,, we have

2 3 4 5
Yna1(t) = Y(@ns1,t) = y(@n, 1) + hopy(xn,t) + 5 02y(wn, t) + B3y (2n, t) + Losy(an, t) + L5y (2a, t) + O(RF),
Y1 () = y(@n-1,8) = Y(@n, 1) — hOsy(an, t) + 5 02y(2, 1) — B33y (@n,t) + B0ty (wn, t) — B Sy(zn, t) + O(RO),
such that .
Yn+1 — 2yn + Yn—1 = h2azy(mnvt) + %aiy(‘rnvt) + O(h6)7
(yn+1 - yn)Q - (yn - yn—1)2 = 2h38wy(l'm t)aiy(xmt) + O(h5)-
Equation (2.17) then implies

m

e 0%y — 0%y = h—284y + 2ahd,yd%y + O(h?).

2%
The KdV equation is obtained if one assumes that the nonlinearity coefficient « scales like h, i.e.

a=0(h),a#o0(h) (h—0).
1
Denoting then ¢ := 2ah and & := g—z, and rescaling time by defining 7 := /£ nt, §(z,7) == y(z, (£)"2n717)

and dropping the tilde, we arrive at
02y — 2y = e(0,y0%y + Kdty) + O(3?). (2.18)

It is now left as an exercise to formally derive the KdV using a perturbation expansion for right traveling
waves in (2.18)).

2.2 The Nonlinear Schrodinger Equation (NLS)

The KdV holds a very prominent place in the history of the science of nonlinear dispersive waves. Of course,
it remains to be physically highly relevant even today. Another fundamental equation describing nonlinear
dispersive waves is the nonlinear Schrodinger equation (NLS)

i0su + Au + ylu|®u = 0, z € R™ (2.19)

As we show in Section [2:2.T] the NLS is extremely universal being an effective approximative model for slowly
modulated wavepackets of small amplitude in a large class of nonlinear dispersive equations. As such, the
NLS is often used as a prototype model for studying nonlinear wave phenomena.

Let us mention two classical physical applications of the NLS.
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1. wavepackets on deep water

Consider the water/air interface problem (|1.61) without surface tension, i.e. T' = 0, in the deep water
limit hg = —oo and restrict to one dimensional waves. With the wavepacket ansatz

@ ~eA(e(xy —vgt),%t)elhmr—wmtI+lklzs 4 ¢ ¢

n ~eB(e(z1 — v,t),e2t)elker==®BD) 4 ¢ c.

for ¢ — 0, where w(k) is the dispersion relation for waves propagating in the x; direction, one obtains
after some calculation the following effective NLS equations for the envelopes A and B

: w” (k) 2k o
i0rd + =520 - ZoslAPA <0

"
i&l%+wém8@3—2ﬁw%ﬂBﬁB:0

with T':= &%, & 1= e(z1 — v,t), see Sec. 6.4, 6.5 in [1].

2. wavepacket-pulses in cubically nonlinear optical fibers

As optical pulses are electromagnetic phenomena, the starting model are typically the Maxwell’s equa-
tions. In the second order formulation for the electric field we have
1

U
E+ S0'FE =—
VXV +62t c2eq

7P, = (eopo)”"?,

where €g, o and ¢ are the electric permittivity, magnetic permeability and speed of light in vacuum
respectively while P is the polarisation which describes the response of the medium to the field. For
media with a so called inversion symmetry and with further isotropic symmetries on the atomic level
(valid, for instance, for glass used in photonic fibers) the polarisation can be written in the form

P(z,t) = € J x1(t — 8)E(z, s)ds + € f x3(t — s1,t — sa,t — s3)(E(x,51) - E(, $2))E(x, s3)ds1dsadss,
R R

where the scalars x; 3 are the linear and the cubic susceptibilities of the medium, see [I7]. In more
general media (without isotropy) the cubic susceptibility xs is a tensor. For a fiber with x3 being
its longitudinal direction we can assume the cylindrical symmetry such that x13 = x1,3(r,t),r :=

(aF +23)
For the wavepacket ansatz

—

E ~ U(r)A(e(t — vga), e2x5)el @zt e ey (k) = k' (w),

where k(w) is the (inverse of) the dispersion relation for the Maxwell’s equation, a lengthy calculation
produces the following NLS as an effective model for the envelope A

i@A—%Mﬁ@ﬁA+ymﬁA:Q

where Z = 223, 7 = £(t — vyx3). The full derivation can be found in [17].
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2.2.1 Universality of the NLS for Slowly Modulated Wavepackets of Small Am-
plitude

As we show below, the NLS is not limited to any set of specific physical situations. It describes the asymptotics
of wavepackets in a large class of nonlinear dispersive problems by being the effective equation for the
corresponding envelopes.

To keep the calculations reasonably simple, let us restrict to a scalar PDE

L(0y, V)u+ f(u) =0, zeR"” (2.20)
with a smooth function L : R"*! — R and with the following behavior of f(u) near u = 0
f(u) ~ au® as u — 0 with a € R\{0}.

Typically, L is a polynomial but the following calculation allows a general smooth L.
As the following analysis shows, the NLS is an effective asymptotic model for wavepacket envelopes when
the wavepacket has the following form

u(x,t) ~ eA(e(x — vy (ko)t), e2t)elFom=w0t) ¢, =1 euppp(x,t) + coC (2.21)
for some & > 0 small, where wy, ko, v4(ko) € R come from the dispersion relation of (2.20)), i.e. from
L(~iw,ik) = 0 (2.22)

with the solution w = w(k). We define wy := w(ko), vg(k) := Vw(k). Note that while may seem highly
special, it is in fact the only ansatz for a broad wavepacket with the carrier wave el(Fo'#=wot) guch that the
nonlinear and dispersive effects of are asymptotically balanced.

Let us now calculate the group velocity v, (k) as well as the Hessian matrix D?w(k), which will be needed
later. By differentiating in k we get

—i(01 L) (—iw(k), ik)vg (k) +1(VL)(—iw(k),ik) = 0. (2.23)
Differentiating twice leads to

i(01 L) (—iw(k), ik)(D*w) (k) = 2(Vo1 L) (—iw(k),ik)v, (k) — (D*L)(—iw(k),ik) — (07 L) (—iw(k), ik)vg(k)vs (k),

j (2.24)

where we are using the notation 0;L = 0,L,VL = VgL, D?L = VngL for L = L(s,§) with Ee R™.
In order for ([2.20) to be a dispersive equation, we assume

w(k) € R,v,(k) e R™, for all ke R™ and det(D?w)(kg) # 0.

Next we carry out a formal asymptotic analysis for the ansatz and seek an effective equation for the
envelope A.

Let us first work only on the linear part of (2.20). This can be done more easily in Fourier variables.
Hence, we apply the Fourier transform to L(0;, V)uapp, and get

(L(0r, V)tapp) (K, t) = L(0r, ik)Uapp (K, ).

Next, with the substitution y := e(x — v,4t)
Uapp (K, 1) = (QW)fn/zefiwotfnf Ay, £2t)eko=R)-(Etvat) gy

_ (27T)7n/267i(wo+(k7ko)-vg)tgfn Ay, Ezt)eiik;ﬁ'ydy _ €7n67i(w0+€mv9)t,21\(l{, T),
RTL
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where k := %, t':=t, and T := £2t. We see that the Fourier transform of a small wavepacket, broad in z,

is a tightly localized function in k of large amplitude and the localization is near the/@rrier wavevector k.

The scaling of the amplitude and the width can be best seen in the simple identity f(e-)(k) = e F (k).
Using the new variables ¢/, T, and &, we have

L(at,lk) = L(&t/ + 620T,i(k0 + e’:‘li)).

This operator can be expanded in a Taylor series in € assuming that the function to which the operator is
applied is smooth enough:

2

L(04,ik) = L(0y,iko) + (01 L) (0, iko)dr + iek - (VL) (0p,iko) — %HT(DQL)(at/, iko)k +0O(%).  (2.25)

Because the derivative d, acts only on the exponential factor e~ /(wotem o)t in 7. we get

52

L(0y, ko )tiapp =" [L(—iwo, iko) A — iek - vy (01 L) (—iwo, iko) A — — (5 09) (37 L) (~itwo, iko)A + 0(53)] e i(wotenug)t!

R 2 ~ . ’
=" [—ism -vg(01L)(—iwo, ik‘o)A—%m . (vgvg)fi(@%L)(—iwo, ikg)A + 0(53)} e~ i (wotervg)t’,

Remark 2.2. Note that if L is a polynomial, one can, of course, use the Leibniz rule. For some q € N we

have then
q

q J N
L(0y,iko)(fg) = Y. a;(iko)d) (fg) = Z (iko) ) (?)ag,l folg
7=0 1=0

Because we apply this formula to f = e~ iwot! ,g = e iem vt and because O(e?) terms will be neglected, we are
interested in at most second derivatives of g. Terms with the first derivative are

q
Z (ik0) ) forg = 0wg(01L) (0w, ko) f
and terms with the second derivative are
q
> a;(iko)35(j — 1)) fofg = $079(0TL) (0w, ko) f.
=0
We continue with a calculation of the terms in ([2.25):

ez(alL)(at/a i]C())(}Taapp =" [62(01L)(—iw0, lko)(}TA\ + 0(53)] eii(WOJﬁE’i""g)t/’

ek - (VL) (O, iko)lapp =" [m A(VL)(~iwo, iko) A + £2(k - vg)k - (VOLL)(—iwp, iko) A + 0(63)] ¢ i(wotervg)t’

and
e 1o N g2
——r" (D*L)(0p,iko)Kllapp = — " [/{

2 (DzL)(ilw()a lkO)K/A\ + 0(63):| efi(‘*)0+6lv'ug)t’.
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The sum of the terms underlined by the dashed line vanishes due to (2.23) and the ones underlined by the

full line add up to
2

i (01L) (—iwo, iko) (k7 (D%w) (ko)) A
due to (2.24). As a result
~ D? k ~ : '
L(0,ik)Uapp = € " [52(81L)(—iw0, iko) (5TA + iﬁT(L;)((ﬂmA) + 0(63)] e~ H(wotervg)t
With the inverse Fourier transform we get

L(04, V)etapp = 3(01L)(—iwo, iko) [aTA —iv. <(D2“’2)(k°)

VA)] elhoz=wot) L ().
The nonlinear term f(u) in (2.20) is simpler. We get
J(w) = £ a(ttapp + Tapp)* + O(¥) = ¥[8 A2 AcHErame0t) 4 g3eihoa=eot) 4 oc.| 4+ O(eY).

The aim is to make the residual L(0;, V) (Uapp + Uapp) + f (tapp + Uapp) of O(e*). The O(e?) terms proportional
to eTilkoz—wot) yanish if we require

iorA + %V - ((D*w)(ko)VA) +~|A]?A = 0, (2.26)

where v = (0112)(3—17?;0%0) Typically, it is v € R. '
To eliminate also O(g?) terms proportional to eFdilkoz—wot) " we modify the ansatz Uapp Dy adding an

O(g3) correction. Namely, assuming the non-resonance condition
L(—3iwy, 3ikg) # 0, (2.27)

we set

[e%

t) = cA _ ko)t 2t i(ko-x—wot) _ 3
Clapy (8:1) = A (e (o (B}, 20 s

A3(e(x—w, (ko)t), e2t)ediko-e=wot) (9 9g)
Equation (2.26) is a slight generalization of the nonlinear Schrédinger equation (2.19). In the isotropic
case when D?w(ko) = al,a € R we get V- ((D?w)(ko)V) = @A and recover (2.19).

2.2.2 Justification of the NLS for the Nonlinear Wave Equation

In contrast to Section 2:2.1] where the NLS was only formally derived and no proof was given, we want to
be rigorous in this section. The question we want to address is whether the above cuapp, with A a solution
of the NLS, provides an approximation of a solution u of - and in which norm. Note that we need the
approximation to be valid on a time interval of length O(¢=2) because changes in the envelope A occur on
the time scale O(g?).

To keep the analysis and the notation reasonably simple, we restrict to one specific example of ,
namely the following nonlinear wave equation

Ofu—Au+u—u®=0, zeR" (2.29)
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2.2.2.1 Justification in One Spatial Dimension in H!(R)
In one spatial dimension the problem becomes
Zu—0lutu—ud=0, zekR. (2.30)

Hence, with the notation of (2.20) we have L(0;, 0,)u = 07u — 02u + u, f(u) = —u®. The dispersion relation
is

W=k +1
such that ) Bkl (B) 1 (W(R))?
ey = B iy = wk) — kw I e .
W' (k) w(k)’ W' (k) w2 (k) w(k)
Choosing a wavenumber ky € R, we define the corresponding frequency and group velocity
k
wo = w(ko), vy 1= w' (ko) = U
Wo
The wavepacket ansatz corresponding to (2.28) is
A3(X,T)

Ugs (2, 1) = e A(X, T)e!(Ror=wot) | 3 Bilthoz=wot) 4 ¢ ¢ (2.31)

9k% — 9uwi +1
where X = e(x —vyt),T = €%t and the effective NLS as given by (2.26) is

3
2 A+ |APA = 2.32

11—2
i&TA+§ g

where we have used the fact that (01L)(—iwp,iko) = —2iwg. The non-resonance condition now reads
9w3 # 9k2 + 1, which holds because 9w?(k) = 9k* + 9.

Our aim is to show that if u(x,0) = uss(z,0), dsu(r,0) = Gsuas(r,0) and A solves on an interval
[0, To], then [u(-,t) — tas(-, )|l a1 (r) < ce® with some o > 0 for all ¢ € [0, Toe 2] and ¢ > 0 small enough. It
turns out that the optimal value of « is 3/2. Therefore, we define the error as

e32R(x,t) := u(w, t) — tas(, 1)
and aim to show |R(-,t)| g1 (r) < ¢ for all ¢ € [0, Toe?]. The residual is
Res(z,t) 1= 0P tas (2,1) — 02 Uag (2, 1) + Uas(x, 1) — ul (2, 1).
The equation for R is easily derived: we arrive at the Cauchy problem

#ZR=0PR—-R+ f(R), zeR,t>0 where f(R):=3u2R + 3c%%u R? + e3R® — ¢ 73/Res

(2.33)
R(x,0) = 0;R(x,0) = 0,

where the trivial initial data follow from the assumption u(x,0) = uag(z,0), diu(z, 0) = Ouas(x,0).

We proceed in two steps. First we use a fixed point argument to show the existence and uniqueness of the
solution to on a time interval of length O(1) (¢ — 0) such that on this time interval it is bounded by a
(e-independent) constant in the H! norm. Afterwards a Gronwall argument shows that, in fact, the interval
can be extended to [0, The 2] by redefining the constant and by making e small enough.

For the Banach fixed point argument let us first consider the following inhomogeneous linear equation
(posed in R™ n € N because there is no additional difficulty compared to R).

Zu—Au+u=F(x,t), zeR"t>0

u(z,0) = g(z), dru(z,0) = h(z). (2.34)
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In Fourier variables problem ([2.34) becomes
a+ (|k? + )i = F(k,t), keR"t>0
(k, 0) = g(k), &,ii(k, 0) = h(k),

which has the solution

mhw—mea|MLH0+“ﬁmﬁtfwmm+Lﬁwnfmwjggf?””w. (2.35)

This representation makes it easy to prove the following energy estimate.

Lemma 2.2. IfF € L?(0, Ty, H**(R"))nC([0,T], L3(R™)), s = 2, then (2.35)) gives the unique C ([0, Ty ], H*(R™))n
CH([0,Ty], H*~Y(R™)) solution of (2.34), i.e. 0?u— Au+u = F(-,t) in L*(R") for all t € (0,Ty]). Moreover

1/2
lu, Ol s wny + [Oeu(; 0) [ o1 @n) llng Ry + ] gre- 1(Rn)+\[<f | ECo ) = ]R")d'r) 1

for all t € [0, Ty].

Proof. The solution property is equivalent to 2+ (|k|?+1)a = F(-,t) in L*(R) for all t € (0, Ty). This follows
by differentiating (2.35). The derivative with respect to t inside the integral is treated using the Lebesgue

dominated convergence theorem. For instance, 7 — ﬁ(/ﬂ, T)Sin(— VIPEIUZT) 56 measurable for all ¢ € [0, T ]

A/ |k[2+1
and almost all k € R", t — F(k, T)Sin(— ”\l/klllj%l(lt_w and t — F(k,7)cos(y/|k[2 + 1(t — 7)) is continuous on

[0, T;] for almost all 7 € (0,7T}) and k € R™ and F(k,-) € L'(0,T}) for almost all k by the Cauchy-Schwarz
inequality since F(k ) e L*(0,Ty) and (0,T}) is bounded.
Next, we show the estimate. By the definition of the H® norm

mmw%mﬂzk|mmm%LHWFﬁ

5 : hm LR ‘B CEaLS
<3 U" [g(k) (1 + || )Qdk+JRn |h(k:)|21+|k|2dk+fn (JO |F(k:,7)|d7> dek] ,

where the estimate follows from 2ab < a? + b? for any a,b € R. Because there are constants c;,c, > 0 such
that c1(1 4+ a?)® < (1 +a®)? < c2(1 + a?)® for all a € R, we have

luC O [|9|H gy + Bl Frems @y +tf |FC )1 ey ]

where we have also used the Cauchy-Schwarz inequality So |F(k,7)|dT)? tSO |F(k,7)|?dr. Similarly, be-
cause

¢
oru(k,t) = —/|k|> + 1g(k) sin(+/|k|? + 1t) + h(k) cos(v/|k|? + 1t) + f F(k,7)cos(\/|k|? + 1(t — 7))dT,
0
we get also
l0su(, ) Fe—1 @y < € [ I90Fe @ny + IRl Frer o) +ff IEC ) R”)dT]

Hence the result follows. O
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For our fixed point argument for (2.33) we choose the solution space

X (ty) := C([0,t4], H*(R))nC* ([0, 4], H*(R)) with the norm |jufx := sup (Hu<’7t)HH2(R) + \|8tu(~,t)HH1(R)) .

te[0,t4]

For a given p € X (t4) we denote by ®(p) the solution of (2.34) with F':= f(p) and the initial data u(x,0) =
dvu(z,0) = 0. Fixed points of ® are then solutions R of (2.33). By Banach fixed point theorem a fixed point
will exist if there are constants r,t, > 0 and L € (0,1) such that

(i) ®(B,) < B, where B, := {u e X(t.) : |ullx <7},
(i) 18(01) — ®(p2)|x < Llor — pallx for all pu,pa € X (t).

Moreover, if (i) and (ii) hold, the fixed point in B, is unique. The basic assumption we will need in order to
prove (i) and (ii) is the existence of a T > 0 such that

Ae C*([0,Ty], H(R,C)) n C([0,Tp], H*(R, C)).
Lemma [2.2] provides the estimate

12(p)|x < cts sup [ f(p)(-, )] (2.36)

te O,t*

Hence, we need to control | f(p)(-,t)| g1 (r)- Let us start with the residual, which is explicitly

Giko . , 1
Res — — gt OW0 5 (43310 £ B (024610 — = (52.(A3) + Giwn (A3
es €9k3—9wg+1X( e 4 ¢e° | o7 Ae 9/€§—9w8+1(X( ) + 6iwoor (A°)) .
2.37
1 . . _
7 2 3\ 310
te' or—aa 7or(A%)e”™ + Z e/N;(A,A) +cc.,
o = 9w +1 je{5,7.9)

where 6 := koz —wot and N; is a polynomial in A and A of total degree j. The polynomials e/ N; come from
the nonlinear term (cAel® + e3A43e3% + c.c.). Therefore all the functions Gy := 0x(A43%), Gy := 02A4,G3 :=
0% (A3),Gy := 07(A3),G5 := 02(A3) and G := N5, G7 := N7,Gs := Ny consist of functions of A (and its
derivatives) which depend only on the variables e(z — vyt) and £2¢. These terms are possibly multiplied by
e™? with m e N. Hence, we have

IRes(-, ) a1 () < e Y, |Gon(er,€28) e

= 057/22 HGm('a52t) HHl < 057/2

because A € C?([0,Ty], H (R, C)) n C*([0, To], H3(R, C)). For instance, for the term with 0% (A%) we have

105 (A%) (D)l < e(lAC DI 10X AC O + TAC ) o (0x A)* (5 8) )
< c(JACDIGIAC )ms + AC, D22 [AC, 1) 12)
< AC )

because of the embedding H*(R") < CF(R") for s > n/2 + k.
The above loss of an £!/2 in the estimate of G,, is caused by the L2-part of the norm and follows from

(§g |G (e, £28) | 2dx) '/ =
follows.

g~1/2 (§g |Gm(y,€%t)|?dy) 2 The remaining terms in f(p) can be estimated as

luzspller < luaslZy ol < el forall € [0, Toe™],
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lwaso® i < Juaslcp ol ol < luaslog lolazlolm < cellplmzlpla  for all t € [0, Toe™?]

using again the embedding H*(R) — CF(R) for s > 1/2 + k. Similarly,
10% e < clplgg ol < cllplZelplm for all ¢ € [0, Tos—2].

In summary, there is a ¢ > 0 such that
o) Dllzeey < ¢ (Pl + e 2lplzllpli + ol ol +22)  for all t & [0, Toe 2],

Note that alternatively one can use the algebra property of H'(R), more generally H*(R") is an algebra
for s > n/2, i.e.
Il @y < clol s @) ¥ =@y if s >n/2,

see Theorem 4.39 in [3]. This leads to
I£)CDmrcey < ¢ (ol + 2ol + ol +<2)  for all ¢ & [0, Ty

Hence

[P()lx <t sup [F(P) D2 < et (2ol + 2ol + ol +2)

te[0,t,%]
Scte(E®r + % + 3% 1 £%) ifpe B,
<r for € > 0 small enough and r,t, = O(1)(e — 0).

In other words (i) holds for fixed t4,r > 0 if € > 0 is chosen small enough.
For the contraction property (ii) we estimate

[B(p1) — B(pa)|x < evEs f 1£(p1)(a7) = F(p2) (o) |

tx

<oVt | 2l = o))l + 16t = )+ )T mdr
0

< cti (2 +2pr + palx + 25 (Ipal + Io2l%)) lor = palx,

where the algebra property of H'(R) and H?(R) and the identity p7* — p3* = (p1 — p2) ZZ:Ol Pk p 1 F for
m = 3 have been used. For p;, ps € B, we have

1®(p1) — P(p2)|x < cts (62 + 2852 4 453r2> lp1 = p2lx-

Clearly, for e > 0 small enough and t,,r = O(1) is ct, (82 + 2652 + 463r2) < 1.
We conclude that for each t,,r > 0 there exists g > 0 such that (2.33) with £ € (0,20) has a unique
solution R € B, < X (t4), i.e.

sup (R 8) |2 + [0 R D)) <7
te[O,t*]

Next, the aim is to show that the estimate can be extended onto [0, Tpe~2]. We will, however, restrict
only to the H! norm of R(t) and the L? norm of d;R(t). We show that there exist K > 0 and 9 > 0 such
that

E(t) := |RC,t)|Zmy + [0:R( 1)o@ < K forall t € [0,Toe~?] and € € (0,£0).

The idea is to formulate an integral inequality for E(¢) and apply a Gronwall’s inequality argument.



CHAPTER 2. NONLINEAR WAVES 60

As E(t) = (L (0:R)?*(x,t) + (0. R)*(, t) + R*(x, t)dx, we get

%%E(t) = J 0tRO?R + 0,R0;0, R + RO;Rdx = J O:R(02R — R+ f(R)) + 0,R0;0, R + Ro;Rdx
R R

R R

where the differential equation in (2.33) and partial integration have been used. This leads to

d
SB() < 20/ (R) | |0 Rl 2y < 2€l0iR]zz (2|R] ez + 2[RI + 8| RIS + )

< 20(e? + 2EY? + SE)E + 2ce* B2
because |R[2., |R|%:, |0:R|%. < E. Estimating now E%/2 <1+ F in the last term, we arrive at

%E(t) < 2¢(26% + 92EY? 4 2 E)E + 2ce?

and after integration (due to E(0) = 0)
¢
B(t) < 2cte? + 2cf (262 4+ 52 EY2(1) + 3 E(7))E(7)dr.
0

Based on the above fixed point argument we know that if we select ., K > 0, then there is £y > 0 such
that E(t) < K for all € € (0,g9) and t € [0,t4]. Then also

t

E(t) < 2cte® + QCJ (252 +2(ePKV? + sK)) E(r)dr.

0

If we now choose ¢y so small that 6(1)/ K12 4 g9 K < 1, then Gronwall’s inequality produces

E(t) < 2cte?ebeet
It remains to make sure that E(t) < K for all t € [0,672Tp]. This can be easily done by the choice of K.
The sequence of steps is

1. define K := 2cTpeb7o,

2. choose g > 0 so small that 5(1)/2[(1/2 +eoK < 1.
Then for all € € (0, )
E(t) < K forall te[0,The ?],
which translates into an estimate for R because |R(-,t| g < +/E(t).

We have thus proved

Theorem 2.3. Let A € C*([0,Tp], H(R,C)) n C([0,To], H3(R, C)) with some Ty > 0 be a solution of the
NLS (2.32) and u be a solution of (2.30) with u(z,0) = uys(x,0), dru(x,0) = Orugss(x,0) with uys given by
(2.31). There exist K,eq > 0 such that for all € € (0,e0)

lu(-t) = was( )| a1 ) < Ke¥? for all t € [0, Toe2].

The existence of smooth NLS solutions A can be found, for instance in Prop. 3.8 of [23].
In fact, as we can see by the triangle inequality even the first term in the asymptotic ansatz (2.31)) produces
an approximation with an error of the same order.
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Corollary 2.4. With the same assumption as in Theorem [2.3 it is also
Ju-t) = ulQ (8| ey < (K +1)e*? for all t € [0, Toe 2],

where ufg)(z, t) = eA(e(x — vyt), e2t)elFor—wot) ¢ ¢,

Proof. Clearly, by the triangle inequality it suffices to estimate |uas(-,t) — ne (5 8) | b m)-

e3

0
Jttas (-, 1) = ulQ (-, )| i1 = O 0t 1

< ce®| AP (e, ) < ™| AP(, )i < CEPJAC, ),

A3 (e(- — wvgt), e2t)e®i ko =wot) 4 ¢ |

where the last step follows by the algebra property and the one but last by the scaling property of the L2
— 1/2 —
norm: |B(e)|2 = (5 1S]R|B(y)|2dy) 2 _ ¢ 2B . O

As we have shown, the approximation error is 0(53/ 2) in the H'-norm. This can be considered as

satisfactory because the approximation wu,s (and ugg)) is one order larger, namely O(¢'/?) in the H'-norm.
This is again due to the scaling property of the L? norm: [eA(e-,%t)| 2r) = £/2| A+, €%t) | r2(r)-

Note that Theorem [2.3| assumes u(z,0) = uas(2,0), dyu(z,0) = dytias(z,0). This can be easily generalized
to u(,0) = uas(z,0) + (), dru(z,0) = dpuas(2,0) + 1 (z), where || g2(r), |¥]| 1 (r) < ce®?. This generates
no difficulties as the estimate in is simply extended by O(¢%?) terms independent of p.

2.2.2.2 Justification in Higher Spatial Dimension in H*(R")

Let us now consider the n—dimensional problem (2.29). As we will see, the difficulty of a justification in
H*(R") is the scaling property of the L?-norm

[f )o@y = € 2 f L2 my,

due to which & powers of ¢ are lost in the estimate of the residual (and hence also the error).
In R" the dispersion relation w? = |k|? + 1 leads to

L (I = V() (Ve (k)T).

w

1
Vw(k) = ;k, D%w(k)
We select again ko € R and set wg := w(ko),vq := Vw(ko). Ansatz (2.31) generalizes to
A3 (X, T) 3i(ko-z—wot)

i(ko-z—w 3
Uas (IZ?, t) = €A(X, T)e (ko ot) + € We + c.c. (238)
and the effective NLS is ) 5
. T 2
The error is now denoted by
E'R = U — Uy,
where the optimal « € R is to be determined. The ansatz is now O(slfg) in|-|zz (and any || - |gs,s = 0,)

because [eA(e:,e%t)| p2mny = €' 72| A(, €%t)|| 2 (rn). Hence, we would like to show that for some o > 1—n,/2
it is |R(-,t)|g=®n)y = O(1) for ¢ € [0,Tpe~?] and e small enough assuming that A is a smooth solution of
(2.39) on the time interval [0,Tp]. The equation for R is analogously to ([2.33))

PZR=AR—-R+ f(R), zeR",t >0 where f(R):=3uR+3c*  usR?* +**R* — ¢ “Res

R(z,0) = 0,R(x,0) = 0. (2.40)
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Once again, the first step is to apply a fixed point argument in order to show the existence of a solution
of (2.40) on an interval [0, t,] with ¢, > 0. However, the H! solution space, which we used in the case n = 1,
is not sufficient since it is not an algebra in R™ n > 2. Hence, we choose

X(ty) := C([0,t4], H*(R™)) A C([0, t4], H*"H(R™)), 5>n/2

as the solution space. For the estimates below we need an assumption on the solution A of (2.39). We require

n

2 s+1+5 mn
» £01s . .
AeC*([0,Tp], H 2(R™)) for some Ty > 0 (2.41)

For the estimate of | f(p)(-,?)| zs—1(rn) we start again with the residual. It has the same form as in (2.37)
except for the spatial derivatives replaced by their higher dimensional counterparts. For the L? norm we get

Res(, 1) |pany < <4 Y ( |

where G,, are the analogues to G, in Sec. [2.2.2.1| and ¢(A) is a constant dependent only of the L2 norm of
A and its derivatives. The same ¢ scaling as for the L? norm applies also for H® and hence

. 1/2
|Gm(y,52t)|2dy> = (A2 for all t € [0, The 2],

n

IRes (-, )| e mny < E(A)e?™™?2  for all t € [0, Toe 2],
where

5(A):5 max sup Ha%A('aT)HH”‘?(R")

0<p<2
0<Z<2 Te[0,To]

For the other terms in f(p) we have

lugspllzer < cluglgro-nlpl e < ce|lpl e
[ttasp® | o1 < elutas | oo [0 112 < czlpls
10%re=r < 10 [re < cellpllye,

where in the first and second line assumption (2.41)) has been used and [s] is the smallest integer larger or
equal to s. In summary

n_
1) )ty < ¢ (2 ollems + e+ plBye + 2ol + €3 72) (2.42)

and the fixed point argument follows in complete analogy to the case n = 1. Once again, we can conclude that
for each t,,r > 0 there exists g9 > 0 such that (2.40) with € € (0,&0) has a unique solution R € B, c X (t4),
ie.

sup (|RC, )] sy + |10:R( )| ra—1(mny) <7
tE[O,t*]

It remains to extend the interval on which we can control the H® norm of R onto an interval of length
O(£72). We attempt this again using a Gronwall argument. Let us define the energy

B(O) = [ ROGOP+ 62)° +0R (8 0(1+ k)

Note that although the integrals in E do not exactly match the H* and H*~! norms of R(-,t) and J,R(-,t)
as defined in Definition |[A.13] we have the equivalence (with some ¢y, ¢y > 0)

c(|RC )| e @ny + [0:RC, D) o1 (mny) < E(t) < c2(|R(8) [ mny + [0:R( )| o1 mm))-
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To obtain an inequality for E, we first differentiate

E'(t) = 2Re | R(k,t)0.R(k,t)(1 + |k|2)* + 0, R(k, )02 R(k,t) (1 + |k[2)*~'dk
Rn

—9Re | O R(k,t)F(R)(k, t)(1 + |k[2)*'dk
]Rn

~ s=1 — s—=1
<200 R A+ 1) 2 lrz@n [F(R) @+ 12) 2 | r2@n) < clOeR] o1 @) | f(R) | o1 ().
With ([2.42)) this leads to
E'(1) < 0Bl e ey (21 Blems + & [RIGe + 2| RIS +45 )

< cE'Y? (52E1/2 + TR 4 2032 4 847%70‘) )

n
After integration and using E'/? < 1 + E for the term cEY2c*"2 7% we arrive at

n t n
E(t) <cte® 27 4 cf (52 +etT2T L TR 2(5) 4 52O‘E(s)> E(s)ds. (2.43)
0
Next, we choose t, > 0 and K > 0 and exploiting the existence result obtained by the fixed point
argument, we know that there is €9 > 0 such that E(¢) < K for all € € (0,9) ad ¢ € [0, ¢,]. Hence
" ¢
E(t) <cte* 27 4 cf

(52 et ot K12 520‘K) E(s)ds for all t € [0,t4], e € (0,20).
0

In order to be able to extend the estimate E(t) < K for some suitable e-independent K to an interval of
length O(e72), we certainly need e~ 2e*"27% = O(1), i.e. 2—n/2 —a = 0. Let us set

a:=2-n/2—~ with~y=>0.

Then
t

B(t) < cte®*7 + cf

(52 +e2tT 4 52(517%77.?{1/2 + 52*”*27K)> E(s)ds for all t € [0,t4],c € (0,¢0).
0

(2.44)
In order to be able to redefine K such that F(t) < K on [0, Tpe 2] for ¢ small enough, we need VRV
£27"=27K to be bounded by a K —independent O(1) constant. This can be achieved by choosing ¢ small but
onlyif 1 =5 —y>0and 2 —n—2y >0, ie. if y <1— 3. This is impossible for n > 2 because v > 0.
Apparently, for n > 2 an estimate on [0, Toe 2] cannot be obtained. The problem lies in the residual
- if the residual was of higher order in ¢, the argument would work on [0,Toe 2]. A smaller residual can
be achieved only by improving the ansatz (2.38]). In other words, in the formal derivation in Sec. [2.2.1
the expansions have to carried out to a higher order in € such that the residual at the higher order can be
calculated and set to zero by a suitable extension of the ansatz. We refrain from this tedious calculation here.
Nevertheless, for n = 2 we can obtain an estimate on [0, Tye~2] with some Ty < Ty, which is independent
of e. If weset v =0, i.e. « =2—n/2 =1, then becomes

¢
E(t) < cte® + CJ g? (2 + KY? 4 K) E(s)ds for all t € [0,t4], € € (0,20).

0

L2 1/2
cte”(2+K "+ K) Because

By Gronwall’s inequality F(t) < cte?e
cheCTl(%KW”() < K for some K > 0 if 77 > 0 is small enough,

we have an estimate on [0, Ti¢~2]. In detail, one first finds 73 > 0 such that ¢T}eT 2+K2+K) < K for one
K > 0. An arbitrary such K is then selected. This leads to
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Theorem 2.5. Let s > 1, let A € C?([0,Tp], H*?(R?)) with some Ty > 0 be a solution of the NLS (2.39)
with n = 2 and u be a solution of (2.29) with n = 2, u(x,0) = ues(2,0), ru(x,0) = Orugs(z,0) with uy,
given by (2.38). There exist Ty € (0, 1], K = K(T1) > 0, and g9 > 0 such that for all £ € (0,2¢)

lu(,t) — was(- )] rer2y < Ke  for all t € [0,T1e7%].

Remark 2.3. Note that the estimate E'/? < 1+ E, which we have used above, is relatively crude. Unfortu-
nately, improving on this step does not lead to a better final error estimate. Without this step we get instead

of (2.43)) the inequality
¢
E(t) < CJ

e (62*%“ + EV2(s) + e L E(s) + 52(0‘_1)E3/2(s)) EY2(s)ds.
0

Ifa>1and2—2 —a =1 (which can be satisfied only for n < 2 and for n = 2 it requires a« = 1), then

(1 + K2+ K + K3/2) EY2(s)ds  for all t € [0, 1], € (0, 0).

E(t) < cft £?

0

We can now use a nonlinear version of Gronwall’s inequality in Lemma[2.6] and get
2
E(t) < (%tEQ (1 + KV 4 K+ K3/2)) for all t € [0, 4], € (0, £0).

Again, by a choice of small enough Ty < Ty we can achieve E(t) < K for all t € [0,T1e2] and ¢ € (0,2¢). In
summary, we arrive again at Theorem [2.5

Since for n > 2 the conditions a = 1 and 2 — Z — « = 1 cannot be satisfied, this approach works only for
n<2.

Lemma 2.6 (Nonlinear Gronwall’s inequality). If u(t) < Sé a(s)r/u(s)ds for some a € C((0,00),[0,0)), then
t) < i(gf)a(s)ds)‘z

Proof. Letting v(t) := § a(s)\/u(s)ds, we get v/(t) = a(t)/u(t) < a(t)y/v(t) and hence

;i = (2v50) o) < a0

such that after integration

The statement follows because u(t) < v(¢). O

Remark 2.4. Forn > 2 ansatz ([2.38) produces an estimate only on a time scale O(E‘ﬂ),ﬁ < 2. For this
time scale we need in (2.43) 4 — 2 —a — > 0. Setting o :=4 — 2 — 3, we have

t

E(t) < cte’ + CJ (52 +ef + 66(55*%72'8[(1/2 + 58_"_36K) E(s)ds for allt€[0,t4],e € (0,e0).

0
If 8 < mln{f —n 8 _ 5}, then we can

(1) set K := cTpe>To,

5—2 2 o
(2) choose eg > 0 such that e, 2 ’BKl/Q +€g =38 _q
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and with Gronwall’s inequality obtain
E(t) < ctePedets” < cTped T = K for all t € [0, Toe "], e € (0, ¢0).

This leads to

Theorem 2.7. Let s > n/2, <min{2,2 — 2 3 — 2} et A e C*([0,Tp], H”“g(Rn)) with some Ty > 0 be

a solution of the NLS (2.39) and u be a solution of (2.29), u(x,0) = ugs(z,0), dpu(z,0) = Orugss(x,0) with
Ugs given by (2.38)). There exist K > 0 and €9 > 0 such that for all € € (0,&0)

[ ) = tas(s ) ey < K277 for all t e [0, Toe™?].

Of course, the time scale O(c™?), 8 < 2 is not satisfactory as the time scale of the modulation in ., is

O(e72).

2.2.2.3 Justification in L!(R") in the Fourier Variables

An alternative approach to Sec. [2.2.2.1] and [2.2.2.2] is to consider the problem in Fourier variables and
estimate the error in the L'(R™) norm. Via the Riemann-Lebesgue lemma (Theorem this then implies
an estimate of the supremum norm of the error. A major advantage of this approach is the fact that in L'
no powers of ¢ are lost when estimating terms of the form g(z) := f(ex). Indeed,

~

glk) =" f(2)

such that R R
19l @y = le™" fF(D) 1@y = [ flLr@ny-

Of course, this approach gives no estimate on derivatives of the error.
This approach is carried out, for example, in Section 2 of [12].

2.3 Hamiltonian Structure of KdV and NLS

The KdV and NLS are examples of Hamiltonian partial differential equations as we show below. Let us first
recall the definition of Hamiltonian ODEs.

Definition 2.8. An ODE system % = f(y) with f : R™ — RM for some M € N is called Hamiltonian if

there exists a function H : RM — R and a skew-symmetric matriz w € RM*M sych that
f=wVH.

H is called the Hamiltonian function.

Darboux’s theorem on symplectic manifolds [7] implies that there is always a transformation to the
canonical variables, i.e. ¢ :y — (¢,p,c1,...,¢.) with ¢,p € RV 2N + 7 = M such that

d q 0 IN s de .
— = H 2 —0,j=1,...
e (p> <—IN 0 ) VH(q,p), o = 0i=1.n

where f[(q,p, cly.ycr) = H(o g, p,c1y. .., c0)).
The Hamiltonian function is a conserved quantity of the ODE % = f(y) = wVH because

T
SHO) = HGY = VHG)TeH ) = ~@VHO)TVHG) - - () vHW
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and hence % H(y) = 0.

Hamiltonian PDEs are defined analogously as problems of the form
O0yu = BV H (u),

where u(-,t) € X™ M e N, X is areal Hilbert space, u(-,t) : R® — RM for some n, M € N, B is a skew-adjoint
operator, H : XM — R is a functional and

VH(u) = 0y, H(w),...,0u, Hu)T,

where 0,, H(u),j = 1,..., M is the so called variational derivative of H with respect to wu;, i.e. 0., H(u)

satisfies
(OuyH(u), wyr2mny = Dy, H(u){w) forall we X

and D, ; H is the Fréchet derivative of H with respect to u;.
Let us briefly recall the concept of the Fréchet derivative. It can be defined using the more general
Gateaux derivative.

Definition 2.9. Let ¢; be the j—th Euclidean unit vector in RM. If dy, H(u){w) := lim._q Hlutewe;)—H(w)

1>
exists for every w € X, then we call dy,H(u) : X — R,w — dy, H(u){w) the Giteauz derivative of H with
respect to u and d,, H(u){w) the Giteauz derivative of H with respect to u in the direction w.

Definition 2.10. When u — d,,H(u) is continuous, then d,, H is called the Freéchet derivative of H with
respect to u;.

Remark 2.5. Note that VH(u) is not the variational gradient of H. The variational gradient is defined
as the Riesz representation of D, H(u), i.e. as the element v of XM such that (v,w)xu = Dy, H(u){w) :=
ijvil Dy, H(u){w;) for all we XM.

As we see next, it is easy to show that H is a conserved quantity also for Hamiltonian PDEs:

dffi W) _ poH@)@wy = [ VH@) - dude = [ VH(@) - (BVH@)ds
t Rn R»

=(VH(u), BVH(u))p2@ny = —(BVH(u), VH(u))r2®r) = — . Oru - VH(u)dx = 7dI1CTliu).

As we show next, the KdV
ou = —aiu — 6ud,u, rzeR

is Hamiltonian with 1
H = J —(0,u)* —uldx.
R 2

In the general definition of Hamiltonian PDEs we thus have M = 1 and, for example X = H'(R). To check
that H is really the corresponding Hamiltonian functional, we have per definition of the Fréchet derivative

Dy H(u){w) = lim ¢~ * J % (0n(u + cw))? = (u + ew)® — % (0pu)” + ulda
R

e—0

= lime™! J £0,u0,w — 3utw + O(e?)dx = f (—02u — 3u®) wd,
R R

e—0



CHAPTER 2. NONLINEAR WAVES 67

such that 0,H = —d%u — 3u?. Clearly, KdV is equivalent to

Oru = BOyH(u) with B = 0.

For the cubic NLS
00 = —A% + Y%, yeR,zeR"

we first pose the equation in the real variables u := Re(¢), v := Im(v)
dru = —Av + y(u? + v
o = Au — y(u? + v?)u.

Here the corresponding Hamiltonian is
1
H(u,v) := f 3 (IVul® + [Vu?) + %(u2 +v?)2dx
R?L

because
Dy H(u,v){w)y = liH(l) et J eVu - Vw + ve(uwv? + v?ow) + O(e?)dx
£—

- J- (—Au + yu(v? + v?)) wdz,
such that 0, H (u,v) = —Au + v(v? + u?)u. Similarly, 0, H (u,v) = —Av + v(v? + u?)v. This leads to

0 (%) = BVH(u,v), where B:= (°{).

2.4 Orbital Stability of the KdV 1-Soliton

Before discussing the stability of PDE solutions, let us recall Lyapunov’s result on stability of critical points
ye € R™ of autonomous ODE systems

d
= =1, feC® R,

where f(y.) = 0.
The critical point y. is called stable if for every € > 0 one can find § > 0 such that if |y(0) — y.| < ¢, then
ly(t) — y.| < e for all ¢ > 0. Lyapunov proved [25]

Theorem 2.11. If there is a function V € C*(R"™) such that V(y.) = 0 and a neighborhood U(y.) = R", for
which

(i) V(y) > 0 for every y € U(ye)\{yc},
(ii) VV (y) - f(y) <O for every y € U(y.),
then y. is stable.

A function satisfying the assumption of the theorem is called a Lyapunov function (on the neighborhood
U).
Critical points of Hamiltonian ODE systems are given by extrema of the Hamiltonian function H. For
minima and maxima of H a simple shift of H then produces a Laypunov function.

Theorem 2.12. Let % = wVH(y) be a Hamiltonian ODE-system. Local mazima and minima of H are
stable critical points.
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Proof. Let us first consider the case that y. is a local minimum of H. Then V (y) := H(y)—H (y.) is a Lyapunov
function on a neighborhood of y. because clearly V(y.) = 0,V (y) > 0 on a punctured neighborhood of y.
and

VV(y)- f(y) = VH(y) - (wVH(y)) = 0

since w = —w7.

For a local maximum one defines V(y) := H(y.) — H(y). O
Let us now turn to PDEs. We consider the KdV
Oru + aiu +6ud;u=0, zelR
and study the satbility of localized traveling waves of the form

w(x,t) = ue(z,t) := ge(x —ct) with ce R, g™ (x) >0 forn=0,1,2 as|z| — .

C

As shown in Section [2.1.1.3] the only nontrivial solution is
(€)= gsechQ(\/Ef), c>0, (2.45)

modulo an arbitrary constant shift in the argument, see (2.15).
(n)

The profile g, satisfies (97 — cg. + 3g%)" = 0 and because of the decay of gc"’, n = 0,1,2 we have after
integration

g’ —cg. + 392 =0. (2.46)

As we have shown above, KdV is Hamiltonian with
H(u) = J 1(0,u)? — v’da.
R

One can easily check that another conserved quantity is

The profile g. is a critical point of H under the constraint of fixed L?-norm, i.e. restricted to {w € H(R) :
N(w) = N(g.)}. This follows from the Lagrange multiplier rule because for E(w, ) := H(w) + A(N(w) —
N(ge)) we get

OwE(ge,c) = —gg - 393 +cg. =0 due to (2.46),

aCE’(ng C) = N(w) - N(gc) = 0.

In analogy to ODEs one could expect that minima and maxima of H restricted to {w € H'(R) : N(w) =
N(g.)} are stable. One can hope hat because H is a conserved quantity, if |H (u(-,0)) — H(g.)| is small,
then u(-,t) stays close to wu.(-,¢). The problem is that in infinite dimensional problems the smallness of
|H (u(-,t)) — H(uc(-,t))| does not imply the smallness of |u(-,t) — uc(-,¢)| g1 (or in any other generic norm).
In particular, any perturbation of the initial data which leads to a change in the velocity of the solution means
that u propagates at a different velocity than u,. and even if the shape of u remains close to that of the shape
of ., the difference |u(-,t) —uc(-, t)| g2 does not remain small. In fact it converges to |u(-, ¢)| g1 + |we(-, t) | g2
as t — o0.
This motivates a generalized definition of stability, which describes stability of the shape of .

Definition 2.13. wu. is orbitally stable if for each ¢ > 0 one can find § > 0 such that if |u(-,0) —gc| g1 (r) < 0,
then
d(u(-t),uc(-,t)) := inf |u(- +x0,t) — uc(-t)| g1y <€ for all t > 0. (2.47)

roER
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Orbital stability of u. was proved by Benjamin in 1972, cf. [4]. The main result is the following statement.
Let A > 0. Then there are constants «, 8 > 0 such that

0 < ad(g,9c)* < H(9)—H(9c) < Blg—gelfrimy forall ge{we H'(R): N(w) = N(ge), |w—gel|mm) < A}.
(2.48)
We prove only the second inequality in (2.48). We write g = g. + ¢ and because N(g) = N(g.), we have

1 c
H(g) — H(gc) = JR 029c0zp + 5(&#)2 —3g2¢ + 3g.9° — ¢ dz + 3 fR(gc +¢)* — glda

= f (—02uc — 392 + cge) dx + f 5(020)* — ¢° + (§ — 3g.)p°da
R ~~ -~ R
=0

510:0172m) + (5 + 3lgelco@) el Zam) + eloom)l@lZz@) < cileling + caleldn e
< (1 + 2A) el F gy because o] g1 gy < A

N

In the one but last step we have used the Sobolev embedding in Theorem [A.T4]
The proof of the inequality d(g, g.)> < H(g) — H(g.) is substantially lengthier, see [4].

1) Orbital stability within initial data {w € H!(R) : N(w) = N(g.)} Orbital stability within initial
data that have the same L? norm as u.(-,t) (i.e. as g.) follows directly from (2.48) and the conservation of
H:

ad(u(-, 1), uc(1))* < H(u(-,t) — H(ue(t)) = H(u(-,0)) — H(uc(-,0)) < Blu(-,0) — uc(-, 0)[ 1 (z)-

2) Orbital stability within H'(R) Here we use the property that for any ¢ > 0 and any § > 0 small
enough and initial data u(-,0) such that |fu(-,0) — gc[ 1 (r) < 9 there exists ¢, > 0 with N(gc, ) = N(u(-,0))
and [ gc — gey | 51 (r) — 0 as § — 0. This can be checked directly from the explicit form g.(§) = %SeChQ(\/EE),
for which N(g.) = 5¢%2. Clearly, N is continuous and surjective onto (0,%0) and g. is smooth in c.

In other words, for any initial data —close (in |- |z1) to g. there is a soliton g., with the same L? norm
as u(-,0) and o(1) close to g, as § — 0.

Using step 1, we have

d(u(-,t), e, (-, 1)) > 0as d — 0.

By the triangle inequality of Lemma [2.14] we get
d(u(,t),uc(-, 1)) < d(u(-,t), tey (- ) + d(ucy (1), uc(-,t)) — dg as § — 0.

N

~~
=Zd2

Finally, for do we have
do = 0l 1ge( = 1) = guy (- + 20 = cat)li ) = InE [9e() = g -+ 20) 1 sy — 0 25 5 =0

because [ge — gey | m1(r) — 0 as & — 0. This concludes the proof of the orbital stability of u. for any ¢ > 0.
Lemma 2.14. The distance function d in satisfies the triangle inequality.
Proof. For any u,v,w € H*(R)
d(u,v) < |u(- +a) —v(- +b)| 1wy foral a,beR
< Jul- + @) = w() | ) + () = v+ b)) for all a,be R.
Taking the infimum over a,b € R yields the result. O



Appendix A

Fourier Transform and Sobolev Spaces

Let us first recall the standard definitions of the weak derivative and the Sobolev space H*.

Definition A.1. Forue L}

1oc(R™) and o multiindezr a € N a function v is a weak o-derivative if

J uDpdx = (—1)le J vpdz  for all p € CP(R™).

We denote a weak derivative by v = D%u. We are using the standard notation D%u = 031032 ... 0x"u.
Weak derivatives are unique up to sets of measure zero.

Definition A.2. The Sobolev space H*(R™) is
H*(R") = {u:R" - C such that D*u e L*(R") for all a« € Ni} with |a| < s.}

The corresponding norm is

N|—=

lul ey = | D) ID*u]z2(@ny

la|<s

A.1 Fourier Transform

One of the major tools in the mathematics of waves is the Fourier transformation.

Definition A.3. For u e L'(R") we define the forward and backward Fourier transforms

a(k) = (2m) "2 ‘[ e *2y(x)dz  for ke R,

n

U(x) = (2m) "2 J ek Cu(k)dk  for x e R"

respectively.

The Fourier transformation can be also applied to L? functions by choosing an approximating sequence
(u;)jen © L*(R™) n L*(R™) such that u; — u in L? as j — o0 and defining @ := lim;_,, ;, see Sec. 4.3.1 in
[9]. In other words there exists a unique bounded linear extension of ~ to L*(R™). The same holds for ~.

70
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The following properties of the Fourier transform for arbitrary functions u,v € L?(R™) will be fundamental
for our analysis.

lulL2@ny = Ul L2@ny = ]2 @ny, (A.1)
(u,v) = (,) where (-,-) is the standard inner product in L*(R"), (A.2)
EO‘\u(k) = (ik)%u(k) for all multi-indices o € N§j with |a| < s if u e H*(R"), (A.3)
(w+0) = (20)"200, (uv) = (27) 20«0 if u,v € L'(R") n L2(R™), (A.4)

(A.5)

<

u = .

The identity (A.l) is called the Plancherel identity. For the proofs see Sec. 4.3.1 in [9]. Here we show the
proofs of , and (AL5).

First, using the Plancherel identity and the polarization identity we prove (A-2). Proof. (of (A:2)) The
polarization identity is

(u,0) = 5 (Ju+ vl —ilu+iv[Z. — (L= DulZ> — (@ - Dv]L:)-
Using the Plancherel identity, we thus get
(u,v) = 5 (la + 0| —ila+ 07 — (1 - Dali: — 1 -1]7]7:) = @79).
d

The identity (A.3)) shows that the Fourier transform acts on weak derivatives the same way as it does on
classical derivatives. We prove this next.

Proof. (of (A.3)) First we note that for ¢ € CP(R™) it is clear by integration by parts that ﬁp(k) =
(ik)*@(k) We calculate next for all ¢ € CP(R™)

(Du, ) = (D*u,p) = (~1)l(u, D*¢) = (~1)1° (@, Do) = (~1)lilel(@, k@) = i (k7, §),

where the first and the third equation hold by the Hence with f := Doy — il@lgeq

o~

0= (h,p) = (h,¢) forall p € CP(R").

Because C*(Bpg) is dense in L*(Bg) for all R > 0, we get h = 0 almost everywhere in Bg for all R > 0
and hence h = 0 almost everywhere in R".
For (A.5) we first note that for u,v € L'(R") n L?(R") it is

(27T)7n/2J J u(z)v(y)e™? de dy = f tvdx = f ud dx

thanks to the theorems of Tonelli and Fubini (use Tonelli to show §g., [u((z)|[v(y)|d(z,y) < o0. Then
Spen u((@)v(W)e v d(z,y) = (g, u(@) §z. v(y)e™ v dyde = §, v(y) (g, u(z)e™? dzdy by Fubini). Let now
u,v € L?(R™). The identity

‘[ dex:f ud dx (A.6)

holds also in that case as can be shown by approximation in L' n L2.
Besides, the definition of the <transform implies

<D

D=

. (A7)
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Finally
< (A.6) v (A.7) = (A.2) —
uvdzx uvdz uwvdx wvdz = uv de.
n RTL R’Vl Rn n
Since v € L? is arbitrary, we are done. ]

The Fourier transform can be defined also for tempered distributions. Let us first define the Schwartz
space and the space of tempered distributions.

Definition A.4. The Schwartz space in R™ is S(R™) = {¢ € C*(R"™) : sup,egn |2*DPp(x)| < 00 for all o, B €
Ny 1.

The space S(R™) is a complete metric space with the metric d(p, ) := Z\O; lal=0 2~ Ipl-lal %, where
) P

7] p,q := Supgern &P | D () ()|, see Sec. 7.3 in [19].

Definition A.5. The space of tempered distributions S'(R™) is the dual space of S(R™), i.e. the space of all
linear continuous mappings from S(R™) to C.

1
loc

Note that any locally integrable function f € L], .(R™) defines a tempered distribution 7 via

Tr(p) = N f(z)p(z)dx for all ¢ € S(R™).

The Fourier transform is a bijection from S(R™) to S(R™), see Theorem IX.1 in [I8]. Hence, the following
definition of the Fourier transform for tempered distributions makes sense.

Definition A.6. For any T € S'(R™) we define the Fourier transform T via

~

T(W) =T()  for all p € S(R™).

The Fourier transform is also a bijection from S’(R™) to S’(R™), see Theorem IX.2 in [I§].
As the following lemma shows, the product rule (A.4) for the Fourier transform generalizes also to distri-
butions.

Lemma A.7. Let ¢ € S(R") and T € S'(R™) and define
(T o) () := T(p(x = -)).

Then T = p € C*(R") n S'(R™) and
T« o =T3¢, where T e S'(R™), (T@) () := T(FW) for all ¥ € S(R™).

The proof is left as an exercise.
A fundamental result relating decay in the physical space with smoothness in the Fourier space is the
Riemann-Lebesgue lemma, cf. Theorem IX.7 in [I8].

Theorem A.8. (Riemann-Lebesque lemma) The Fourier transform is a bounded map from L'(R"™) to
Cw(R™), i.e. the space of continuous functions k — f(k) decaying to 0 as |k| — o0.

An easy important corollary of the Riemann-Lebesgue lemma is

Corollary A.9. If f € C(Q) for some compact Q = R™, then

J e ke f(r)dr -0 as |k| — oo.
Q
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Finally, we state an important result relating the support of a function (or generally a tempered distri-
bution) in the physical z—space and the smoothness of its Fourier transform. This is one of the famous
Paley-Wiener theorems. First, let us, however, define the support of a tempered distribution

Definition A.10. The support of T € S'(R"™) is
supp(T) = R"\U{V c R":T(p) =0 for all p € S(R™) with supp(p) < V}.

It is an easy exercise to check that for a function T this definition coincides with the definition of the
support for functions.

Theorem A.11. (Paley-Wiener Theorem) The following two statements are equivalent
1. v e S'(R"),supp(v)) € Br = {xr e R" : |z| < R} for some R > 0,
2. 1]1 : C" — C is an entire function on C™ and there are C > 0, N € N such that

V()| < O+ |k)NeBIM™m®I for all ke C™.
|

For the proof see Theorem IX.12 in [I8] and Theorem 7.23 in [19].

A.2 Sobolev Spaces and their Definition in the Fourier Variables

As the following theorem shows, Sobolev spaces can be characterized via the decay rate in Fourier variables.
Theorem A.12. (Characterization of Sobolev spaces in Fourier Variables) Let u € L*(R™) and s € Ny.

1.
ue H*(R™) if and only if (1 + |k|*)u € L*(R™).

2. There are constants c1,co > 0 such that
crull g mny < (1 + &)@ 2@y < c2fu] s @n
for all w e H*(R™).
Proof. First let u e H*(R"). Identity (A.3) implies k%% € L?(R") for all o € NZ such that |a| < s. Choosing
a = ge; with Ng 3¢ < s,j € {1,...,n}, we have by the Plancherel identity

f kf.q\dek:J D)2 da.
R™ R

D%y|2dz because |k[2 = (k3 + ..., k2)7 < c(k39 + - - + k29).

r'n

From this we get (g,
We thus have

RTINS Y

| Pk < el o,

This proves the implication = in 1. and one part of the norm equivalence in 2.
Now assume (1 + |k|*)u € L*(R™). For |a| < s

R ey < [ 0 < e+ Yl (A8)
where the first inequality follows from |(ik)*|? = k21 k32 .. k20 < (K3 4 -« + k2)atHon — |g2lel We

set next
ug = ((ik)*a
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Note that u, € L?(R™). For all ¢ € C*(R™) we obtain

(D%p.u) = (D, a) = ((ik)°@,8) = (~1)1*I(@, (ik)*T) = (~1)!*(p, ua),

i.e. u, is the weak derivative D%u. From (A.8) we conclude that |u|gs@ny < ¢[(1 + |k[*)u] L2(rn), which
proves the implication < in 1. as well as the other inequality in 2. (]

Theorem lets us define Sobolev spaces for real (positive) indices s.
Definition A.13. For s € (0,0) we define

R = e TR sl oy o= [ (0 PPk < o).

The Fourier representation and the theorem of Riemann-Lebesgue allow a simple proof of the following
Sobolev embedding result.
Theorem A.14. Let s > n/2. Then there is a constant ¢ > 0 such that for each f € H*(R™) we have
feCRY), |fleo@ny < clflas@n), flx) >0 as|z]— 0.

Proof. By the Cauchy-Schwarz inequality

—~ —~ N 1/2 1/2
[ iFwia= | (1+Ikl2)s/2f(k)l(1+|kl2)S/2dk<(f (1+Ik2)sf(k)l2dk'> (j <1+|k|2>5dk)
" R™ R™ n
< K| f]l s @my

for some K € (0,0), where in the last step we used the fact that §g, (1 + [k[*)"*dk < o for s > n/2.

Hence f e L'(R") and by Theorem we have the continuity and decay of f. The estimate of the
supremum norm follows from the above calculation and the definition of the inverse Fourier transform f(z) =

(2m) "2 S, flk)e*dk:

[flcpmny < (27T)_”/2f [FR)Idk < K(2m) ™| f e an)-

n



Appendix B

Asymptotics

B.1 Asymptotic Notation
Let f,g: X — Y, where X|Y € {R,C}.
Definition B.1. f is big-O of g as x — xq if

i) 3 neighborhood U of z¢ in X
i) AIM>0:2eU = |f(x)] < M- |g(z)|
Notation: f(z) = O(g(x)) as  — xo.

Remark B.1. When g(x) # 0 in a punctured neighborhood U(xo)\{zo}, then f(x) = O(g(z)) as x — ¢ if

and only if lim sup \gggll < 0.

r—x(

Definition B.2. (little o) f is little-o of g as x > xg if Ve > 0 U (xp) € X : x e U. = |f(z)]| <
e lg(x)l.

Notation:  f(z) = o(g(x)) as x — xo.

Remark B.2.  When g(x) # 0 in a punctured neighborhood U(xo)\{xo}, then f(x) = o(g(z)) as x — xq if
and only if lim K@l — 0,

S Tg(@)]

The meaning of f(z) = o(g(x)) is that (in the given limit) f is asymptotically negligible with respect to g.

Definition B.3. f is asymptotically equivalent to g as x — x if f — g = o(g) as x — x¢.

Notation: f ~ g as z — xg.

Remark B.3. If g(x) # 0 on a punctured neighborhood U(xo)\{xo},

- i f@)
then f ~ g as x —> 19 < zlggo o) =

Remark B.4. ~ is an equivalence relation since
o f~F
e f~9g =9~ [

e f~g9, g~h = f~h.

75
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B.2 Gamma Function

The Gamma function is defined via

Definition B.4. For z € C with —Re(z) ¢ N:={0,1,2,...} we define

[e¢]
Fi(z) = e *71dt, Re(z) >0
0

I'i(z4n)
z(z+1)-...-(z+n—1)>

I'(z) :=

—n<Re(z)<-n+1, 2#-n+1, neN
Some basic properties of the Gamma function are

I'(n) = (n—1)! for all n € N,
I'(z+1) = 2I'(2) for all z € C with — Re(z) ¢ N,

[(z) =/
Example B.1. Let o € (0,1), = > 0. Then
@ .
Jeizttafl dt = lar(a)
x>

0

Proof. Define f : C — C via f(z) := %2971, f is discontinuous across the branch cut on the negative
real axis. We choose a contour as in Fig. Inside the contour f is holomorphic, so that Cauchy Integral

Figure B.1: from [24]

Theorem yields

0= ff(z)dz—l— ‘[f(z)dz+iff(z)dz+ ff(z)dz
Cr iR Cy

r

We have
/2 /2 /2
f f(Z) dz < J |eszsin9+iRcosﬁRa71R| do = R® f efastinﬁ de < R J 671’12% de
Cr 0 0 0

= Ra_lg(l —e Y22 0 since a < 1.
T

For the curve C, we argue similarly and get

2 r

1—e %"\ ;50 )
Jf(z)dz <ol (e>—0>00 since a > 0.
c,
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Hence for r - 0 and R — o

:L-Ot

ir 0 0

. . . —wt.o— i*T'(«)

f(2)dz = — | f(z)dz = —i | f(it)dt =i | e "> dt = ——=.
i£ o! 0J

B.3 Method of Stationary Phase

Consider
b

@) = [0 5oy at
a
where a,be R, z € R, and h: R - R.
The aim is to determine the asymptotics of I(z) as x — c0. The main idea is that for large values of x the
function e*"(*) is highly oscillatory in ¢ so that cancellation occurs in the integral. The main contribution to
the integral thus comes from the neighborhood of points ¢, where h'(¢) = 0, i.e. where the phase is stationary.

Example B.2. A common example is the Fourier transform integral {e'**g(k)dt = g(z) for large values of

R
xZ.

Lemma B.5. Let a,b € R,a < b and f € C([a,b]),h € C([a,b]), L € C ([a,b]) with W' (t) # O on [a,b].

» h!
Then
b

. i 6iath(a) a eizh(b)
fewh(t)f(t) dt ~ ; [ h,(af)( ) _ h,(b,];(b)] (.13 - OO)

a

/
Letac R. If f € C([a,®)),h € C'([a,0)) with B'(t) # 0 on [a,), (hi) e L'(a,0) and LY — 0 as

t — o0, then
<« : iwh(a)f(a>
- ie
O Fydt ~ ——— 0 (2 — o0).
Jemoswar~ T @ - oo)
a
Proof. For the statement on the compact interval use the substitution + = h=!(s) and partial integration to

get

b h(b) 1
eiach(t) _ eixs f(h (8>) s
|| s ar L@ W(h1(s))

S N L I 0))
:|h(a) i x Jh(a) © ds (h’(h—l(s))> ds

Since % € C'([a, b]), the integral on the right hand side converges to zero for z — o0 by the Riemann-Lebesgue
lemma [A.8 Hence the result follows.
f

/
For the unbounded interval the same calculation applies. We note that (F) € L'(a,0) is equivalent to

4 (}]:,((};;711((‘;))))) € L'(h(a),limy o h(b)). Thus the last integral converges to zero due the Riemann-Lebesgue

lemma again. With }{,((?) — 0 as t — o0 we get the result. O

a
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Lemma B.6. If f ~ g and g is bounded as x — xq, then
ef ~e9 as z— xp.

Proof. Let € > 0. Then 36 > 0 so that
€
o =20 <0 = [f(2) —g(2)] < 37l9(2)] <,

where M := max _|g(z)|. This implies lim (f(z) — g(z)) = 0. The continuity of exp(-) then yields

z€[zo—F8,20+5] T—To

f=@)
1=¢"= lim (e/®~9®)) = lim i
T—x0 T—x0 eg(a:)

g

Note that it is not generally true that if f(z) ~ g(z) as * — x¢ and if H is a continuous function, then
H(f(z)) ~ H(g(x)) as * — xp. A counterexample is f(x) = z,g(x) = 7, H(y) = sin(y) and 2o = 7 because,
clearly, | sin(z) — sin(m)| > esin(m) = 0 for all  in a punctured neighborhood of 7 and all € > 0.

Theorem B.7. Let ae R,be R U {0}, let suppf = S = R be compact and f € C*(S), he CN(S). If
. f(a) #0,
o I'(t) £0 Vte S\{a},
o W(a)=--=h""V(a) =0, hN)(a) # 0 for some N > 2,

then

b

I(z) i Jeiwh@)f(t) dt :%r (le) F(a)ei=h@ (m) i oz=NY (z - »)

a
1

_ 1 1 iwh(a) Jisae sign(h™ (a)) N! N _1UN
_Nr (N) f(a)e e 2N m + 0(.77 ) (SL’ d OO)

Proof. Using Lemma [B.6] we have

iﬂ?(h(t)—h(a))ﬂ ifﬁh(N)(a)i(t ]\?l) - F +
e ~e€ T =: F(z,t t—a").

That means
e M=h(a) £(1) = f(a) (F(z,t) + R(z,t)) with R(z,t) = o(F(x,t)) (t — a™).

Choosing = > 0, there exists § > 0 small enough so that if a <t < a + 4, then

1
Bz, ) < _|F(z,1)]. (B.1)
We split I(z) into
a+6 b
I(z) = f e £ (1) dt + f = (1) dt .
a a+d
~ ~~ - ~~ ~

I () Ix(x)
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For I we use Lemma to conclude I>(z) = O (1) since [P/ (t)| > a® >0 Vte[a+d,b)nS. For I; we get

a+d a+6

I (x) = "M f(a) J F(z,t) + R(x,t)dt e*ha) £(q) f F(z,t)dt+ O <;) .

a+d 0
We write next § F(z,t)dt = { F(z,¢)dt — S F(z,t)dt. By another application of Lemma the latter
a a+d

integral satisfies

i 1

J F(z,t)dt = O ()

x
a+9d

as (t — a)" has no extrema in [a + 6,00). It can be checked that all assumptions of Lemma (mainly the

0
L' condition) are satisfied in the application to { F(z,t)dt.
a+d

Note that the existence of S F(z,t) dt follows from the existence of S F(z,t) dt shown next.
a+d

For the former integral, with the substitution u = |h(") (a)\w we have

0

) BN
_ izu sign(h™Y) (a)) (ifl) i L "

JF(:EJ)dt je U\~ du N \ @ (a)]

a

0

_ i N! ~ (isign(h(N)(a)))%F(%)
- <h<N><a>>

1 9
TN

0]
where the identity { e*'t*~1dt = i* F(a) has been used. O
0

Remark B.5. Similarly for an extremum of order N in the right end point t = b € R with analogous
assumptions as above we get

1
_ 1 1 iwh(b) (~1)Ni5% sign(h™) (b)) N! R _1UN
I(z) = NP <N) f(b)e € 2N W + o(z ) (x> o).

For an internal extremum in ¢ € (a,b) one needs to add the contributions from (a,c| and [¢,b). The resulting
asymptotics for x — o0 are

u@~§r<;)f@am@am( )(m'ﬁ3|>& for N odd,

1
2 1 izh(c sign(hM) (¢ N' N
NNF<N)f@e () i sign( (»<MWNQW for N even.

Remark B.6. Also note that the condition of compact support of f is not necessary. The pmof of Theorem
can be easily adapted for the case f € C1([a,0)) n L*((a,0)),h € CN([a,0)) with ( ,) € L*(a + 6,0)

for each 6 > 0 and f((t)) — 0 as t — . These conditions are satisfied, e.g., if f € S(R), h grows at most
exponentially and if for each § > 0 there is a > 0 s.t. [W/(t)] > a > 0 for all t € [a + §, ).

There is also a multidimensional version of the stationary phase method. A classical result [15] is
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Theorem B.8. Let f € C1(R",R) have a compact support S = R"™ and yo € S. Let also h € C*(S,R). If
e f(yo) #0,
o Vh(yo) =0, Vh(z) # 0 Vo e S\{yo},
o det(D*h(yo)) # O,

then

n/2
f eiuh(x)f(x) dr = <277) %ei(uh(yo)ww/ﬁl) + O(M_n/Q) (M _ 00)7
a | det(D?h(yo))|2

where D?h is the Hessian matriz of h and where o is the signature of D?h(yo), i.e. the number of positive
eigenvalues minus the number of negative eigenvalues.

R
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