DISPERSIVE PARTIELLE DIFFERENTIALGLEICHUNGEN

Blatt 2 Abgabe: 16.11.2015

Problem 1: Was sind die Dispersionsrelationen (der linearen Teile) folgender Gleichungen?

- (i) Balkengleichung: $\partial_t^2 u + a \partial_x^4 u = 0$, $a > 0, t > 0, x \in \mathbb{R}$
- (ii) Kadomtsev-Petviashvili-Gl.: $\partial_{x_1}(\partial_t u + \partial_{x_1}^3 u + u \partial_{x_1} u) + \partial_{x_2}^2 u = 0, \quad t > 0, x \in \mathbb{R}^2$
- (iii) Wärmeleitungsgleichung: $\partial_t u = \Delta u, \quad t > 0, x \in \mathbb{R}^n$
- (iv) Coupled-Mode-Gleichungen:

$$i(\partial_t u + \partial_x u) + \kappa v + (|u|^2 + 2|v|^2)u = 0$$

 $i(\partial_t v - \partial_x v) + \kappa u + (|v|^2 + 2|u|^2)v = 0$

mit $\kappa > 0, t > 0, x \in \mathbb{R}$

- (v) Camassa-Holm-Gleichung: $\partial_t u + 2\kappa \partial_x u \partial_t \partial_x^2 u + 3u \partial_x u = 2\partial_x u \partial_x^2 u + u \partial_x^3 u,$ $\kappa > 0, t > 0, x \in \mathbb{R}$
- Zeichne für (i),(iv) und (v) qualitativ die Lösung nach einer langen Zeit, falls die Anfgansdaten ein lokaliserter Impuls sind (analog zur Vorlesung).
- Welche Wellenzahlen wandern für (ii) in Richtung $(1,0)^T$ (Osten), $(-1,0)^T$ (Westen) und welche in Richtung $(-1,1)^T$ (Nord-Westen)?

Problem 2: Unter welchen Vorraussetzungen an $u_0(x)$ und $\hat{u}_0(k)$ ist die Fourier-Repräsentation der Lösung des Anfangswertproblems für die lineare Kadomtsev-Petviashvili-Gleichung aus Aufgabe 1 (ii) mit $u(x,0) = u_0(x)$ eine klassische Lösung? Schreibe die Lösung mit Hilfe der Fouriertransformation explizit auf.

Problem 3: Berechne für das Problem

$$\partial_t u = Q(\partial_x)u, \qquad u(x,t) \in \mathbb{C}, x \in \mathbb{R}, t > 0$$

 $u(\cdot,0) = u_0 \in L^1(\mathbb{R})$

mit einem Polynom $Q: \mathbb{R} \to \mathbb{C}$ die Asymptotik niedrigster Ordnung für $t \to \infty, \frac{x}{t} = c \in \mathbb{R}$ unter der Voraussetzung, dass die Dispersionsrelation

$$W''(k) = 0, W'''(k) \neq 0$$
 für alle k mit $W'(k) = c$

erfüllt.

Hinweis: Verstehe den Beweis für die Methode der stationären Phase (Anhang Skript) und führe ihn

für dieses spezielle Problem. Rechtfertige jede Anwendung des Lemmas B.5. Berechne das entstehende Integral der Form $\int_{\mathbb{R}} e^{i\alpha k^3} dk$ mit $\alpha \in \mathbb{R}$ mit Hilfe des Cauchy-Integralsatzes. Eine Möglichkeit für das Integral über $[0, \infty)$ ist den Pfad in der komplexen Ebene zu wählen, der aus [0, R) + i0, aus $[0, R)e^{i\pi/6}$ und aus einem Kreissegment, der diese Teile verbindet, besteht. Dann läst man $R \to \infty$.

Problem 4: Betrachte die lineare Korteweg-de-Vries Gleichung

$$\partial_t u + c \partial_x u + \mu \partial_x^3 u = 0, \qquad c, \mu > 0, x \in \mathbb{R}, t > 0$$

mit Anfangsdaten $u(\cdot,0) = u_0 \in L^1(\mathbb{R})$.

Was ist die Asymptotik niedrigster Ordnung von u(x,t) für $t\to\infty, \frac{x}{t}=v$ mit

- (a) v = c
- (b) v < c?

Wie schnell fällt die Amplitude der Lösung ab?

Hinweis: Methode der stationären Phase.