DISPERSIVE PARTIELLE DIFFERENTIALGLEICHUNGEN

Blatt 4

wird besprochen am 31.5.2018

Problem 1: (Distributionelle Lösung der Schrödinger-Gleichung)

Zeigen Sie, dass für $f \in L^2(\mathbb{R}^n)$ die $L^1_{loc}(\mathbb{R}, L^2(\mathbb{R}^n))$ -Funktion $u(x,t) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{ik \cdot x} e^{-i|k|^2 t} \hat{f}(k) dk$ eine distributionelle Lösung der Schrödinger-Gleichung i $\partial_t u + \Delta u = 0$ ist und $\|u(\cdot,0) - f\|_{L^2(\mathbb{R}^n)} = 0$. Hinweis: Es definiert u eine temperierte Distribution $u \in S'(\mathbb{R}^{n+1})$. Es heißt $u \in S'(\mathbb{R}^{n+1})$ eine distributionelle Lösung, falls $-iu(\partial_t \phi) + u(\Delta \phi) = 0$ für alle $\phi \in S(\mathbb{R}^{n+1})$.

Problem 2: (Eigenschaften der Schrödinger-Gruppe)

Weisen Sie folgende Eigenschaften von $e^{it\Delta}: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ nach:

- (a) $||e^{it\Delta}f||_{L^2(\mathbb{R}^n)} = ||f||_{L^2(\mathbb{R}^n)} \quad \forall f \in L^2(\mathbb{R}^n)$
- (b) $e^{it\Delta}e^{is\Delta} = e^{i(t+s)\Delta} \quad \forall t, s \in \mathbb{R}$
- (c) $e^{i0\Delta} = Id$
- (d) Für ein festes $f \in L^2(\mathbb{R}^n)$ ist die Abbildung $\Phi_f : \mathbb{R} \to L^2(\mathbb{R}^n)$ mit $\Phi_f : t \mapsto \Phi_f(t) = e^{\mathrm{i}t\Delta}f$ stetig. Die Stetigkeit gilt also bezüglich der $L^2(\mathbb{R}^n)$ -Norm.

Bemerkung: Im Allgemeinen (für $f \in L^2(\mathbb{R}^n)$) ist hier $e^{it\Delta}f$ nur eine distributionelle Lösung.

Problem 3:

(a) Zeigen Sie, dass falls $f \in L^1(\mathbb{R}^n)$ und $\rho f \in L^2(\mathbb{R}^n)$, wobei $\rho(x) = 1 + |x|^2$, so ist

$$\lim_{t \to \pm \infty} \left\| e^{\mathrm{i}t\Delta} f - (2\mathrm{i}t)^{-n/2} e^{\mathrm{i}\frac{|\cdot|^2}{4t}} \hat{f}\left(\frac{\cdot}{2t}\right) \right\|_{L^2(\mathbb{R}^n)} = 0. \tag{0.1}$$

 $\mathit{Hinweis}\colon \text{Zeigen Sie}$ erst die Abschätzung $|e^{\mathrm{i}\frac{|x|^2}{4t}}-1|\leq c\frac{|x|^2}{|4t|}.$

(b) Zeigen Sie, dass (0.1) auch für $f \in L^2(\mathbb{R}^n)$ gilt.

Hinweis: Zeigen Sie, dass für alle $h \in S$ gilt $\|e^{-it\Delta}h - U^*h\|_{L^2} \to 0$ für $|t| \to \infty$, wobei U^* der adjungierte Operator zu $U: L^2 \to L^2$ mit $U: f \mapsto Uf = (2it)^{-n/2} e^{i\frac{|\cdot|^2}{4t}} \hat{f}\left(\frac{\cdot}{2t}\right)$ ist.

Benutzen Sie danach die Dichtheit von S in L^2

Problem 4: Spielen Sie mit dem *neuen* Matlab-Program für die lineare Schrödinger-Gleichung, cf. Stud-IP bzw. die Homepage. Modifizieren Sie dies um die dominanten Wellenzahlen der Lösung der linearen KdV-Gleichung $u_t + u_{xxx} = 0$ entlang des Strahles x = vt zu untersuchen.