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1 Notation

We consider an autonomous problem

ẏ = f(y), y(t0) = y0 (1)

where f : Rn → Rn is sufficiently differentiable.
We denote its exact flow by ϕt. Φh will refer to a numerical one-step method with step-size

h.
The adjoint method Φ∗

h of a method Φh is the inverse map of the original method with
reversed time step −h, i.e.,

Φ∗
h := Φ−1

−h.

In other words, y1 = Φ∗
h(y0) is implicitly defined by Φ−h(y1) = y0. A method for which Φ∗h = Φh

is called symmetric.
Note that ϕ−1

−t = ϕt, but in general Φ∗
h = Φ−1

−h 6= Φh. The adjoint method satisfies (Φ∗
h)∗ = Φh

and (Φh ◦Ψh)∗ = Ψ∗
h ◦ Φ∗

h.
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Theorem 1 Let ϕt be the exact flow (1) and let Φh be a one-step method of order p satisfying

Φh(y0) = ϕh(y0) + C(y0)hp+1 +O(hp+1).

The adjoint method Φ∗
h then has the same order p and we have

Φ∗
h(y0) = ϕh(y0) + (−1)pC(y0)hp+1 +O(hp+1).

If the method is symmetric, its (maximal) order is even.

The proof can be found in [1], Section II.3.

2 Split-Step Methods

Once decomposes the vector field into integrable pieces and treats them separately.
We consider an arbitrary system ẏ = f(y) in Rn, and suppose that the vector field is “split”

as
ẏ = f [1](y) + f [2](y). (2)

It then, by chance, the exact flows φ
[1]
t and Φ[2]

t of the systems ẏ = f [1](y) and ẏ = f [2](y)
can be calculated explicitly, we can, from a given initial value y0, first solve the first system to
obtain a value y1/2, and from this value integrate the second system to obtain y1. In this way
we have introduced the numerical methods

Φ∗
h = ϕ

[2]
h ◦ ϕ

[1]
h

Φh = ϕ
[1]
h ◦ ϕ

[2]
h

(3)

where one is the adjoint of the other. These formulas are often called the Lie-Trotter splitting
(Trotter 1959). By Taylor expansion we find that (ϕ[1]

h ◦ ϕ
[2]
h )(y0) = ϕh(y0) + O(h2), so that

both methods give approximations of order 1 to the solution of (2). Another idea is to use a
symmetric version and put

Φ[S]
h = ϕ

[1]
h/2 ◦ ϕ

[2]
h ◦ ϕ

[1]
h/2, (4)

which is known as the Strang splitting (Strang 1968), and sometimes as the Marchuk splitting
(Marchuk 1968). By breaking up in (4) ϕ

[2]
h = ϕ

[2]
h/2 ◦ ϕ

[2]
h/2, we see that the Strang splitting

Φ[S]
h = Φh/2 ◦Φ∗

h/2 is the composition of the Lie-Trotter method and its adjoint with halved step
sizes. The Strang splitting formula is therefore symmetric and of order 2.

2.1 General Splitting Procedure

In a similar way to the general idea of composition methods, we can form with arbitrary coeffi-
cients a1, b1, a2, . . . , am, bm (where, eventually, a1 or bm, or both, are zero)

Ψh = ϕ
[2]
bmh ◦ ϕ

[1]
amh ◦ ϕ

[2]
bm−1h ◦ · · · ◦ ϕ

[1]
a2h ◦ ϕ

[2]
b1h ◦ ϕ

[1]
a1h (5)

and try to increase the order of the scheme by suitably determining the free coefficients. We will
show a method how to do that later.

There is a close connection between the theories of splitting methods and of composition
methods. If we put β1 = a1 and break up ϕ

[2]
b1h = ϕ

[2]
α1h ◦ϕ

[2]
β1h (group property of the exact flow)

and so on, we see that with

Φh = ϕ
[1]
h ◦ ϕ

[2]
h so that Φ∗

h = ϕ
[2]
h ◦ ϕ

[1]
h (6)
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Ψh is identical with the Ψh of a composition method. The αs and βs for m = 3 are given below.

a1 = β1

b1 = β1 + α1

a2 = α1 + β2

b2 = β2 + α2

a3 = α2 + β3

b3 = β3

(7)

A necessary and sufficient condition for the existence of αi and βi satisfying (7) is that
∑

ai =∑
bi, which is the consistency condition anyway for (5).

2.2 Combining Exact and Numerical Flows

It may happen that the differential equation ẏ = f(y) can be split according to (2), such that
only the flow of, say, ẏ = f [1](y) can be computed exactly. If f [1](y) constitutes the dominant
part of the vector field, it is natural to search for integrators that exploit this information. We
just consider

Φh = ϕ
[1]
h ◦ Φ[2]

h , Φ∗
h = Φ[2]∗

h ◦ ϕ
[1]
h (8)

as the basis of the composition method. Here ϕ
[1]
t is the exact flow of ẏ = f [1](y), and Φ[2]

h is
some first-order integrator applied to ẏ = f [2](y). Since Φh of (8) is consistent with (2), the
resulting method has the desired high order. It is given by

Ψh = ϕ
[1]
αsh ◦ Φ[2]

αsh ◦ Φ[2]∗
βsh ◦ ϕ

[1]
(βs+αs−1)2h ◦ Φ[2]

αs−11h ◦ · · · ◦ Φ[2]∗
β1h ◦ ϕ

[1]
β
1 h

. (9)

Notice that replacing ϕ
[2]
t with a low-order approximation Φ[2]

t in (5) would not retain the
high order of the composition, because Φ[2]

t does not satisfy the group property.

2.3 Splitting into More than Two Vector Fields

Consider a differential equation

ẏ = f [1](y) + f [2](y) + · · ·+ f [N ](y), (10)

where we assume that the flows ϕ
[j]
t of the individual problems ẏ = f [j](y) can be computed

exactly. In this case there are many possibilities for extending (5) and for writing the method
as a composition of ϕ

[1]
ajh, ϕ

[2]
bjh, ϕ

[3]
cjh, . . . . This makes it difficult to find optimal compositions of

high order. A simple and efficient way is to consider the first-order method

Φh = ϕ
[1]
h ◦ ϕ

[2]
h ◦ · · · ◦ ϕ

[N ]
h (11)

together with its adjoint as the basis for a composition method. Without any additional effort
this yields splitting methods for (10) of arbitrary high order.

3 Example: Low order splitting methods for the 1D Non-
linear Schrödinger Equation (NLS)

For repetition: the 1D nonlinear Schrödinger equation

iut + uxx + |u|2u = 0 (12)
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It will be convenient to rewrite the NLS to

ut = iLu + iN (u)u, −∞ < x < ∞, (13)

where
Lu := uxx N (u) := |u|2 (14)

As a first step, we see, that the solution of (12) may be advanced from one time-level to the
next by means of the following formula

u(x, t + τ) ≈ eiτ(L+N (u)) · u(x, t), (15)

where τ denotes the timestep. In general (15) is first order accurate, but under scpecial circum-
stances |u|2 is time-independent in which case (15) turns out to be exact.

The time-splitting procedure now consists of replacing the right-hand side of (15) by

eiτ(L+N (u))u(x, t) ≈ eiτLeiτN (u)u(x, t) (16)

This expression is exact whenever L and N commute. Otherwise the splitting is first order
accurate. Accordingly, we use

U(x, t + τ) = eiτLeiτN (U)U(x, t) (17)

where U(x, t) denotes the approximation of u(x, t).
Next, we introduce the quantity

V m := eiτN (Um)Um (18)

where Um denotes the approximation at the time mτ . Then the split-step scheme (17) may be
written as

Um+1 = eiτLV m. (19)

4 High order splitting methods for Hamiltonian PDE sys-
tems

Symplectic integrators are numerical integrations schemes for Hamiltonian systems, which con-
serve the symplectic two-form dpdq exactly, so that (q(0), p(0)) → (q(τ), p(τ)) is a canonical
transformation. We will show here, how to construct explicit symplectic integrators for a Hamil-
tonian

H = T (p) + V (q). (20)

4.1 The Problem

Let A and B be non-commutative operators and τ a small real number. For a given positive
integer n which will be called the order of integrator, find a set of real numbers (c1, c2, . . . , ck)
and (d1, d2, . . . , dk) such that the difference of the exponential function exp[τ(A + B)] and the
product of exponential functions

exp(c1τA) exp(d1τB) exp(c2τA) exp(d2τB)× · · · × exp(ckτA) exp(dkτB) (21)
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is of the order τn+1, i.e., the following equation holds,

exp[τ(A + B)] =
k∏

i=1

exp(ciτA) exp(diτB) + o(τn+1). (22)

This is equivalent to
S(τ) :=

∏k
i=1 exp(ciτA) exp(diτB)

= exp([τ(A + B) + o(τn+1)].
(23)

For example, as we saw before, when n = 1, a trivial solution is c1 = d1 = 1 (k = 1), and we
have

exp[τ(A + B)] = exp(τA) exp(τB) + o(τ2) (24)

When n = 2, we find that c1 = c2 = 1
2 , d1 = 1, d2 = 0 (k = 2), thus

exp[τ(A + B)] = exp(
1
2
τA) exp(τB) exp(

1
2
τB) + o(τ3) (25)

4.2 Basic formulas

We could look closer at this method now, but because it is almost hopeless to obtain a much higher
integrator, we skip this and advance to a much better method using the Baker-Campbell-
Hausdorff (BCH) formula. For any non-commutative operators X and Y , the product of the
two exponential functions, exp(X) exp(Y ), can be expressed in the form of a single exponential
function as

exp(X) exp(Y ) = exp(Z)

where

Z = X + Y + 1
2 [X, Y ] + 1

12 ([X, X, Y ] + [Y, Y,X]) + 1
24 [X, Y, Y, X]

− 1
720 ([Y, Y, Y, Y,X] + [X, X, X,X, Y ]) + 1

360 ([Y, X,X,X, Y ] + [X, Y, Y, Y,X])
+ 1

120 ([X, X, Y, Y, X] + [Y, Y,X, X, Y ]) + . . . .
(26)

Here we used the notation of the commutator [X, Y ] := XY − Y X, and higher order com-
mutators like [X, X, Y ] = [X, [X, Y ]]. A remarkable feature of this BCH formula is that there
appear only commutators of X and Y exept for the linear terms in the series.

By repeated application of the BCH formula (26), we find

exp(X) exp(Y ) exp(X) = exp(W ),

where
Z = 2X + Y + 1

6 [Y, Y,X]− 1
6 [X, X, Y ] + 7

360 [X, X, X,X, Y ]
− 1

360 [Y, Y, Y, Y,X] + 1
90 [X, Y, Y, Y,X] + 1

45 [Y, X,X,X, Y ]
− 1

60 [X, X, Y, Y, X] + 1
30 [Y, Y,X, X, Y ] + . . . .

(27)

Thus the operator for the 2nd order symplectic integrator (25) can be written in the form

S2nd(τ) := exp( 1
2τA) exp(τB) exp( 1

2τA)
= exp(τα1 + τ3α3 + τ5α5 + τ7α7 + . . . ), (28)

where
α1 := A + B, α3 = 1

12 [B,B,A]− 1
24 [A,A, B],

α5 := 7
5760 [A,A, A,A, B] + . . . .
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In the expression (28) there exist no terms of even powers of τ , i.e., α2 = α4 = α6 = · · · =
0. This comes from the fact that the operator S2nd(τ) is symmetric and has the exact time
reversibility

S(τ)S(−τ) = S(−τ)S(τ) = identity (29)

Indeed this is an example of a more general statement as follows.

Lemma 1 Let S(τ) be an operator of the form (23) which has the time reversibility (29). If we
expand S(τ) in the from

S(τ) = exp(τγ1 + τ2γ2 + τ3γ3 + τ4γ4 + . . . ) (30)

then
γ2 = γ4 = γ6 = · · · = 0

The proof can be found in [3].
Therefore if a symplectic integrator has a symmetric form so that (29) holds, it is automati-

cally of an even order. Keeping this fact in mind, we now construct symplectic integrators (4th,
6th, 8th, . . . ) by a symmetric product of symplectic integrators of lower order.

4.3 Symmetric integrator with exact coefficients

A 4th order integrator is obtained by a symmetric repetition (product) of the 2nd order integrator
(28) in the form

S4th(τ) := S2nd(x1τ)S2nd(x0τ)S2nd(x1τ) (31)

where x0 and x1 are two real unknowns to be determined. If we apply formula (27) to 31, we
have

S4th(τ) = exp[τ(x0 + 2x1)α1 + τ3(x3
0 + 2x3

1)α3

+τ5(x5
0 + 2x5

1)α5 + . . . ]. (32)

In order that (32) gives a 4th order integrator, we need two conditions

x0 + 2x1 = 1, x3
0 + 2x3

1 = 0 (33)

so that S4th(τ) = exp[τ(A + B) + o(τ5)]. The real unique solution is obviously

x0 = − 21/3

2− 21/3
, x1 =

1
2− 21/3

. (34)

If we compare the operator (31 with (28), we find the relations between the two sets of
coefficients:

d1 = d3 = x1, d2 = x0, c1 = c4 =
1
2
x1, c2 = c3 =

1
2
(x0 + x1). (35)

Once a 4th order integrator is found, it is easy to obtain a 6th order integrator using the 4th
order one by the same process.

More generally, if a symmetric integrator of order 2n, S2n(τ), is already known, a (2n + 2)th
order integrator is obtained by the product

S2n+n(τ) := S2n(z1τ)S2n(z0τ)S2n(z1τ), (36)

where z0 and z1 must satisfy

z0 + 2z1 = 1, z2n+1
0 + 2z2n+1

1 = 0 (37)
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or

z0 = − 21/(2n+1)

2− 21/2(2n+1)
, z1 =

1
2− 21/2(2n+1)

. (38)

In this way we can construct symplectic integrators of an arbitrary even order with exact
coefficients. However, with this construction, the (2n)th order integrator requires the operator
S2nd, 3n−1 times. This means that the number of steps k is k = 3n−1 + 1, which grows rapidly
as n increases. In [3] an alternative method is shown to obtain more economically integrators,
though the coefficients cannot be given analytically.

A computational task split step method

A.1 Setting

We want to find a stationary 1-soliton solution of (12) by numerical propagation of an initially
Gaussian profile

u(x, 0) = 1.5e−x2
(39)

and discarding radiation. We use PML to treat the outgoing radiation, i.e., change the problem
to

iut +
1

1 + σeiγ
∂x

(
1

1 + σeiγ
ux

)
+ |u|2u = 0 (40)

in an additional layer on the boundary as shown in [4]. After enough damping to avoid interfering
reflection, we apply Dirichlet BC to cut off the remaining radiation.

The L will be replaced by

Lu :=
1

1 + σeiγ
∂x

(
1

1 + σeiγ
ux

)
(41)

in the damping layer.
Although the NLS equation is defined of the real line we need to impose conditions at a

finite boundary when it is solved numerically. We will simulate on the interval [− 1
2L, 1

2L]. This
interval is divided in N − 50 equal subintervals with grid spacing h, i.e.,

h :=
L

N − 50
(42)

At both ends of the interval, we will add a layer of 25 intervals of the length h, where we will
apply PML. The grid points are denoted by

xj = jh, j = −N

2
, . . . ,

N

2
. (43)

The approximation of u(xj ,mτ) is denoted by Um
j .

In order to implement the split-step scheme (18) - (19) in practice, we use the following
rational approximation

eiτL = (Id− θiτL)−1(Id + (1− θ)iτL) (44)

where θ is a free parameter with 0 ≤ θ ≤ 1.
Equation (19) now becomes

(Id− θiτL)Um+1 = (Id + (1− θ)iτL)V m. (45)
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The space variable may be discretized by replacing L by Lh where

LhUj := (Uj+1 − 2Uj + Uj−1)/h2 (46)

for j = −N
2 + 25, . . . , N

2 − 25 and

LhUj :=
1

(1 + σjeiγ)2

(
(Uj+1 − 2Uj + Uj−1)/h2 −

σ′je
iγ

1 + σjeiγ
(Uj+1 − Uj)/h

)
(47)

for j = −N
2 , . . . ,−N

2 + 24 or j = N
2 − 24, . . . , N

2 .
Hence the scheme (45) may be written in matrix notation as

(I − irθS)Um+1 = (I + ir(1− θ)S)Vm (48)

where I is the identity matrix, and

r :=
τ

h2
, U := (U−N

2
, . . . , UN

2
), (49)

V m
j := eiτ |Um

j |2Um
j (50)

and

S :=

0BBBBBBBBBBBBBBBBBBB@

b−N
2

c−N
2

a−N
2 +1

b−N
2 +1

c−N
2 +1

. . . . . . . .
a−N

2 +24
b−N

2 +24
c−N

2 +24

1 −2 1
. . . . . . . .

1 −2 1
a N

2 −24
b N

2 −24
c N

2 −24

. . . . . . . .
a N

2 −1
b N

2 −1
c N

2 −1

a N
2

b N
2

1CCCCCCCCCCCCCCCCCCCA

(51)

with

aj :=
1

(1 + σjeiγ)2
(52)

bj :=
1

(1 + σjeiγ)2

(
−2 +

hσ′je
iγ

1 + σjeiγ

)
(53)

cj :=
1

(1 + σjeiγ)2

(
1−

hσ′je
iγ

1 + σjeiγ

)
(54)

The absorbtion parameter decreases in quadratic power to an angle of π
4 and with a maximum

absorption parameter of 100.

γ :=
π

4
(55)

σj := 100


(

j+( N
2 −24)

25

)2

if j < 0(
j−( N

2 −24)

25

)2

if j > 0
,j∈{−N

2 ,...,−N
2 +24, N

2 −24,..., N
2 } (56)

σ′j := 200


(

j+( N
2 −24)

25

)
if j < 0(

j−( N
2 −24)

25

)
if j > 0

,j∈{−N
2 ,...,−N

2 +24, N
2 −24,..., N

2 } (57)
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