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1 Notation

We consider an autonomous problem

v=f), ylto)=1yo (1)

where f : R™ — R” is sufficiently differentiable.
We denote its exact flow by ¢;. @, will refer to a numerical one-step method with step-size
h.
The adjoint method ®; of a method @) is the inverse map of the original method with
reversed time step —h, i.e.,
* (p—l
h - _h-

In other words, y1 = ®J (yo) is implicitly defined by ®_;(y1) = yo. A method for which ®x;, = @,
is called symmetric.

Note that ¢~} = ¢y, but in general ®} = &~} # ®;,. The adjoint method satisfies (®})* = @y,
and (‘I)h o \I/h)* = \I/;_: o ‘1);;



Theorem 1 Let ¢; be the exact flow (1) and let ®y be a one-step method of order p satisfying
®u(yo) = ¢nlyo) + Clyo) AP + O(RPHY).
The adjoint method ®} then has the same order p and we have
@}, (y0) = enyo) + (=1)PC(yo) A1 + O(hFH).
If the method is symmetric, its (mazimal) order is even.

The proof can be found in [1], Section II.3.

2 Split-Step Methods

Once decomposes the vector field into integrable pieces and treats them separately.
We consider an arbitrary system = f(y) in R, and suppose that the vector field is

<

‘split”
as

g =My + ). (2)

It then, by chance, the exact flows (;51[51] and <I>£2] of the systems 3 = fl1(y) and y = fPl(y)
can be calculated explicitly, we can, from a given initial value yq, first solve the first system to
obtain a value y, /5, and from this value integrate the second system to obtain y;. In this way
we have introduced the numerical methods

<1>;; =, °op, (3)

where one is the adjoint of the other. These formulas are often called the Lie-Trotter splitting
(Trotter 1959). By Taylor expansion we find that (apg] o wf])(yo) = ¢on(yo) + O(h?), so that
both methods give approximations of order 1 to the solution of (2). Another idea is to use a

symmetric version and put

B = oh)s 0 0l © Py, )
which is known as the Strang splitting (Strang 1968), and sometimes as the Marchuk splitting
(Marchuk 1968). By breaking up in (4) <p£l2] = @E/]2 o <pf}2, we see that the Strang splitting

@;S] = ®},5 0P} , is the composition of the Lie-Trotter method and its adjoint with halved step
sizes. The Strang splitting formula is therefore symmetric and of order 2.

2.1 General Splitting Procedure

In a similar way to the general idea of composition methods, we can form with arbitrary coeffi-

cients a1,by,as,. .., am, by, (where, eventually, a; or b, or both, are zero)
2 1 2 1 2 1
W = ‘Pz[)ih © QD[a,]nh °© Sol[a,l,lh -0 “Pz[zz]h °© ‘Pl[)l]h °© %[zl]h (5)

and try to increase the order of the scheme by suitably determining the free coefficients. We will
show a method how to do that later.

There is a close connection between the theories of splitting methods and of composition
methods. If we put §; = a; and break up <p,[)21]h = cpf} e 90[51] . (group property of the exact flow)
and so on, we see that with

by = 90;11] ° g@f] so that ®&f = @f] o @E] (©)



U}, is identical with the ¥, of a composition method. The as and Gs for m = 3 are given below.

01251
by =01+
az = aq + B2

7
by = B2 + a2 (™)
az = ag + 33
b3 = (33

A necessary and sufficient condition for the existence of «; and §; satisfying (7) is that Y a; =
> b;, which is the consistency condition anyway for (5).

2.2 Combining Exact and Numerical Flows

It may happen that the differential equation § = f(y) can be split according to (2), such that
only the flow of, say, ¥ = f[!l(y) can be computed exactly. If fI!!(y) constitutes the dominant
part of the vector field, it is natural to search for integrators that exploit this information. We
just consider
1 2 " 2] 1

as the basis of the composition method. Here @” is the exact flow of §y = fl(y), and @f} is
some first-order integrator applied to § = f[I(y). Since @, of (8) is consistent with (2), the
resulting method has the desired high order. It is given by

vy = Sﬁﬂh ° ‘I’flh ° (I’[BQS]:L © wggsms_l)zh ° q’[jifllh 0o @[521]2 © ‘P?;]L' ()

Notice that replacing 90?] with a low-order approximation <I>,[52] in (5) would not retain the
high order of the composition, because ‘I>,[52] does not satisfy the group property.

2.3 Splitting into More than Two Vector Fields

Consider a differential equation

=My + Py + -+ M), (10)
where we assume that the flows ga,[gj I of the individual problems § = fU! (y) can be computed

exactly. In this case there are many possibilities for extending (5) and for writing the method
ay el B

as a composition of Pashs P Lo+ - This makes it difficult to find optimal compositions of
high order. A simple and efficient way is to consider the first-order method
1 2 N
Bh =l opil oo (11)

together with its adjoint as the basis for a composition method. Without any additional effort
this yields splitting methods for (10) of arbitrary high order.

3 Example: Low order splitting methods for the 1D Non-
linear Schrédinger Equation (NLS)

For repetition: the 1D nonlinear Schrédinger equation

iUy + Uge + |[ul*u =0 (12)



It will be convenient to rewrite the NLS to
up = iLu + N (u)u, —00 < & < 00, (13)
where
LU= Uyy N(u) := |u|2 (14)

As a first step, we see, that the solution of (12) may be advanced from one time-level to the
next by means of the following formula

w(x,t+ 1) ~ e TENW) Ly (g1, (15)

where 7 denotes the timestep. In general (15) is first order accurate, but under scpecial circum-
stances |u|? is time-independent in which case (15) turns out to be exact.
The time-splitting procedure now consists of replacing the right-hand side of (15) by

eir(L‘+N(u))u(x7t) ~ €iT£€iTN(u)u(SC,t) (16)

This expression is exact whenever £ and N commute. Otherwise the splitting is first order
accurate. Accordingly, we use

Uz, t+7) = ™™ Ny (2, 1) (17)

where U(z,t) denotes the approximation of u(x,t).
Next, we introduce the quantity

Vo= N U gm (18)

where U™ denotes the approximation at the time m7. Then the split-step scheme (17) may be
written as
Um+1 — ei’rﬁvm' (19)

4 High order splitting methods for Hamiltonian PDE sys-
tems

Symplectic integrators are numerical integrations schemes for Hamiltonian systems, which con-
serve the symplectic two-form dp?q exactly, so that (¢(0),p(0)) — (q(7),p(7)) is a canonical
transformation. We will show here, how to construct explicit symplectic integrators for a Hamil-
tonian

H=T(p)+V(q) (20)

4.1 The Problem

Let A and B be non-commutative operators and 7 a small real number. For a given positive
integer n which will be called the order of integrator, find a set of real numbers (c1,ca, ..., k)
and (dy,ds,...,d;) such that the difference of the exponential function exp[r(A4 + B)] and the
product of exponential functions

exp(c17A) exp(di7B) exp(catA) exp(daTB) X - -+ X exp(cxTA) exp(dxTB) (21)



is of the order 77*!, i.e., the following equation holds,

k
exp[T(A + B)] = H exp(c;TA) exp(d;TB) + o(7" ). (22)

i=1
This is equivalent to
S(r) = Hle exp(¢;7A) exp(d;7B)
= exp([T(A + B) + o(r"*1)].

For example, as we saw before, when n = 1, a trivial solution is ¢; = d; =1 (k= 1), and we
have

(23)

exp[T(A + B)] = exp(TA) exp(7B) + 0(72) (24)
When n = 2, we find that ¢; = ca = 5,d; = 1,ds =0 (k = 2), thus

exp[T(A+ B)] = eXp(%TA) exp(TB) exp(%TB) + o(7%) (25)

4.2 Basic formulas

We could look closer at this method now, but because it is almost hopeless to obtain a much higher
integrator, we skip this and advance to a much better method using the Baker-Campbell-
Hausdorff (BCH) formula. For any non-commutative operators X and Y, the product of the
two exponential functions, exp(X)exp(Y'), can be expressed in the form of a single exponential
function as

exp(X) exp(Y) = exp(2)

where
Z =X+Y+1 [XY] ([X,X,Y] [YYX]) ﬁ[X,Y,Y,X]
7%0([YYYYX] [X,X,X,X,YD 360([Y,X,X,X,Y]+[X,Y,KKX]) (26)
120([X XYY, X]+[VY, X, X, Y]) +

Here we used the notation of the commutator [X,Y] := XY — Y X, and higher order com-
mutators like [X, X, Y] = [X,[X,Y]]. A remarkable feature of this BCH formula is that there
appear only commutators of X and Y exept for the linear terms in the series.

By repeated application of the BCH formula (26), we find

exp(X) exp(Y) exp(X) = exp(W),

where Z =2X+4Y+1 [YYX] X, X, Y] + 55X, X, X, X, Y]
360[YYYYX] [XYYYX] P[YXXXY] (27)
LIX, X, VY, X] + S[V,Y, X, X, Y] +

Thus the operator for the 2nd order symplectlc integrator (25) can be written in the form

Sond(T) —exp( TA)eXp(TB)exp( TA)

= exp(Tozl + 3oz + ooy + T ar ..., (28)
where
aq —A+B 3 = %[B B A} [A,A,B],
a5 = 5760[/1 A A A B] +

(@31



In the expression (28) there exist no terms of even powers of 7, i.e., as = g = ag = -+ =

0. This comes from the fact that the operator Ss,q(7) is symmetric and has the exact time
reversibility

S(r)S(—7) = S(—7)S(7) = identity (29)

Indeed this is an example of a more general statement as follows.

Lemma 1 Let S(7) be an operator of the form (23) which has the time reversibility (29). If we
expand S(t) in the from

S(1) = exp(ty + 279 + 1373 + 744 + .. ) (30)

then
Y2=Ya=7%=--=0

The proof can be found in [3].

Therefore if a symplectic integrator has a symmetric form so that (29) holds, it is automati-
cally of an even order. Keeping this fact in mind, we now construct symplectic integrators (4th,
6th, 8th, ...) by a symmetric product of symplectic integrators of lower order.

4.3 Symmetric integrator with exact coefficients

A 4th order integrator is obtained by a symmetric repetition (product) of the 2nd order integrator
(28) in the form

Satn (1) 1= S2nd(217)S20d(20T) S2na(217) (31)
where xg and 7 are two real unknowns to be determined. If we apply formula (27) to 31, we
have

Sun(t) = exp[r(zo + 271)aq + 73(2 + 223) s (32)
+75(z5 + 22%)as + ... ].
In order that (32) gives a 4th order integrator, we need two conditions
o +22 =1, xp+223=0 (33)
so that Sy (7) = exp[T(A + B) + o(7°)]. The real unique solution is obviously
21/3 1
o = (34)

TooE T 9o
If we compare the operator (31 with (28), we find the relations between the two sets of

coefficients:

1

1
dl = d3 =X, d2 = Xy, Cl =C4 = 51‘17 Cy = C3 = 5(%0 + 1'1). (35)

Once a 4th order integrator is found, it is easy to obtain a 6th order integrator using the 4th
order one by the same process.

More generally, if a symmetric integrator of order 2n, So,(7), is already known, a (2n + 2)th
order integrator is obtained by the product

Son4n(T) 1= S2n,(217)S2n (207) S2n (217), (36)
where zy and z; must satisfy

20+25 =1, 2423 =0 (37)



or
21/(2n+1) 1

T 21/2@nt) AL T 5 T 91/20nt1)

In this way we can construct symplectic integrators of an arbitrary even order with exact
coefficients. However, with this construction, the (2n)th order integrator requires the operator
Sond, 371 times. This means that the number of steps k is k = 3"~ + 1, which grows rapidly
as n increases. In [3] an alternative method is shown to obtain more economically integrators,
though the coefficients cannot be given analytically.

A computational task split step method
A.1 Setting

We want to find a stationary 1-soliton solution of (12) by numerical propagation of an initially
Gaussian profile

u(z,0) = 1.5¢" (39)

and discarding radiation. We use PML to treat the outgoing radiation, i.e., change the problem

to
1

U L 15)
u — 0 y
T + oe¥Y 1+ oerr

uI> + |ulPu =0 (40)

in an additional layer on the boundary as shown in [4]. After enough damping to avoid interfering
reflection, we apply Dirichlet BC to cut off the remaining radiation.
The £ will be replaced by

1 1
Lu = — Oy — Uy, 41
“ 14 oe” (1—&—0627“ ) (41)

in the damping layer.

Although the NLS equation is defined of the real line we need to impose conditions at a
finite boundary when it is solved numerically. We will simulate on the interval [—3L, £ L]. This
interval is divided in N — 50 equal subintervals with grid spacing h, i.e.,

L
h:=
N —50

(42)

At both ends of the interval, we will add a layer of 25 intervals of the length h, where we will
apply PML. The grid points are denoted by
. . N N
zj = jh, J==5 g (43)
The approximation of u(x;, m7) is denoted by U;".
In order to implement the split-step scheme (18) - (19) in practice, we use the following
rational approximation

e = (1d — 0itL) " (1d 4 (1 — 0)iTL) (44)

where 0 is a free parameter with 0 < 6 < 1.
Equation (19) now becomes

(Id — Qi L)U™ ! = (Id + (1 — 0)itL)V™. (45)



The space variable may be discretized by replacing £ by L, where
LU = (Uj+1 — 2Uj + Uj_l)/hz
for j=—% 425,...,5 — 25 and

1 oet
LU= ———— | Uiy —2U; + U;_) /W — —L—— (U1 —
hYj (1—|—Uje”)2 (( Jj+1 i+t U 1)/ 1_’_%_617( J+1
forj=-&,... - J+24o0rj=5-24,... 5.

Hence the scheme (45) may be written in matrix notation as
(I —irgS)U™ ! = (I +ir(1 —0)S)V™

where [ is the identity matrix, and

-
ri= ﬁ7 U:= (U N, 7U%)7
V=Tl Py
and
b ~ cC_ N
2 2
ey by oexgy
G_N o4 b—%+24 € N0
1 —2 1
S := . .
1 —2 1
aN 9y DN gy €N 4y
‘1%,1 b%,l
an
2
with
1
a; = —
J (1 + Uje’7)2
b B 1 o4 ho}e”
/ (14 0jei)? 1+ 0;e
1 haé-e”
Cj = N2 1-— -
(14 ojei) 1+ 0;et

Uj)/h>

(51)

(52)

(53)

(54)

The absorbtion parameter decreases in quadratic power to an angle of 7 and with a maximum

absorption parameter of 100.

T
V= 1 (55)
(]+(%_24))2 lfj <0
oj:=1008 \ ¥/, ge{ N, Nioa ¥ o4 N} (56)
(J_( 2 _24)> lf - > 0
25 J
(j+(%_24)) lfj <0
o’ =200 B gel-N Ny N 94 N (57)
J (17(%5 24)) ifj>0 {-3 2 2 >}
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