Theory and numerics of solitary waves: Talk about split-step methods

Manuel Koller

November 21, 2006

Contents

1 Notation 1
2 Split-Step Methods 2
2.1 General Splitting Procedure 2
2.2 Combining Exact and Numerical Flows 3
2.3 Splitting into More than Two Vector Fields 3
3 Example: Low order splitting methods for the 1D Nonlinear Schrödinger Equation (NLS) 3
4 High order splitting methods for Hamiltonian PDE systems 4
4.1 The Problem 4
4.2 Basic formulas 5
4.3 Symmetric integrator with exact coefficients 6
A computational task split step method 7
A. 1 Setting 7

1 Notation

We consider an autonomous problem

$$
\begin{equation*}
\dot{y}=f(y), \quad y\left(t_{0}\right)=y_{0} \tag{1}
\end{equation*}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is sufficiently differentiable.
We denote its exact flow by $\varphi_{t} . \Phi_{h}$ will refer to a numerical one-step method with step-size h.

The adjoint method Φ_{h}^{*} of a method Φ_{h} is the inverse map of the original method with reversed time step $-h$, i.e.,

$$
\Phi_{h}^{*}:=\Phi_{-h}^{-1} .
$$

In other words, $y_{1}=\Phi_{h}^{*}\left(y_{0}\right)$ is implicitly defined by $\Phi_{-h}\left(y_{1}\right)=y_{0}$. A method for which $\Phi *_{h}=\Phi_{h}$ is called symmetric.

Note that $\varphi_{-t}^{-1}=\varphi_{t}$, but in general $\Phi_{h}^{*}=\Phi_{-h}^{-1} \neq \Phi_{h}$. The adjoint method satisfies $\left(\Phi_{h}^{*}\right)^{*}=\Phi_{h}$ and $\left(\Phi_{h} \circ \Psi_{h}\right)^{*}=\Psi_{h}^{*} \circ \Phi_{h}^{*}$.

Theorem 1 Let φ_{t} be the exact flow (1) and let Φ_{h} be a one-step method of order p satisfying

$$
\Phi_{h}\left(y_{0}\right)=\varphi_{h}\left(y_{0}\right)+C\left(y_{0}\right) h^{p+1}+\mathcal{O}\left(h^{p+1}\right)
$$

The adjoint method Φ_{h}^{*} then has the same order p and we have

$$
\Phi_{h}^{*}\left(y_{0}\right)=\varphi_{h}\left(y_{0}\right)+(-1)^{p} C\left(y_{0}\right) h^{p+1}+\mathcal{O}\left(h^{p+1}\right)
$$

If the method is symmetric, its (maximal) order is even.
The proof can be found in [1], Section II.3.

2 Split-Step Methods

Once decomposes the vector field into integrable pieces and treats them separately.
We consider an arbitrary system $\dot{y}=f(y)$ in \mathbb{R}^{n}, and suppose that the vector field is "split" as

$$
\begin{equation*}
\dot{y}=f^{[1]}(y)+f^{[2]}(y) \tag{2}
\end{equation*}
$$

It then, by chance, the exact flows $\phi_{t}^{[1]}$ and $\Phi_{t}^{[2]}$ of the systems $\dot{y}=f^{[1]}(y)$ and $\dot{y}=f^{[2]}(y)$ can be calculated explicitly, we can, from a given initial value y_{0}, first solve the first system to obtain a value $y_{1 / 2}$, and from this value integrate the second system to obtain y_{1}. In this way we have introduced the numerical methods

$$
\begin{align*}
& \Phi_{h}^{*}=\varphi_{h}^{[2]} \circ \varphi_{h}^{[1]} \tag{3}\\
& \Phi_{h}=\varphi_{h}^{[1]} \circ \varphi_{h}^{[2]}
\end{align*}
$$

where one is the adjoint of the other. These formulas are often called the Lie-Trotter splitting (Trotter 1959). By Taylor expansion we find that $\left(\varphi_{h}^{[1]} \circ \varphi_{h}^{[2]}\right)\left(y_{0}\right)=\varphi_{h}\left(y_{0}\right)+\mathcal{O}\left(h^{2}\right)$, so that both methods give approximations of order 1 to the solution of (2). Another idea is to use a symmetric version and put

$$
\begin{equation*}
\Phi_{h}^{[S]}=\varphi_{h / 2}^{[1]} \circ \varphi_{h}^{[2]} \circ \varphi_{h / 2}^{[1]}, \tag{4}
\end{equation*}
$$

which is known as the Strang splitting (Strang 1968), and sometimes as the Marchuk splitting (Marchuk 1968). By breaking up in (4) $\varphi_{h}^{[2]}=\varphi_{h / 2}^{[2]} \circ \varphi_{h / 2}^{[2]}$, we see that the Strang splitting $\Phi_{h}^{[S]}=\Phi_{h / 2} \circ \Phi_{h / 2}^{*}$ is the composition of the Lie-Trotter method and its adjoint with halved step sizes. The Strang splitting formula is therefore symmetric and of order 2.

2.1 General Splitting Procedure

In a similar way to the general idea of composition methods, we can form with arbitrary coefficients $a_{1}, b_{1}, a_{2}, \ldots, a_{m}, b_{m}$ (where, eventually, a_{1} or b_{m}, or both, are zero)

$$
\begin{equation*}
\Psi_{h}=\varphi_{b_{m} h}^{[2]} \circ \varphi_{a_{m} h}^{[1]} \circ \varphi_{b_{m-1} h}^{[2]} \circ \cdots \circ \varphi_{a_{2} h}^{[1]} \circ \varphi_{b_{1} h}^{[2]} \circ \varphi_{a_{1} h}^{[1]} \tag{5}
\end{equation*}
$$

and try to increase the order of the scheme by suitably determining the free coefficients. We will show a method how to do that later.

There is a close connection between the theories of splitting methods and of composition methods. If we put $\beta_{1}=a_{1}$ and break up $\varphi_{b_{1} h}^{[2]}=\varphi_{\alpha_{1} h}^{[2]} \circ \varphi_{\beta_{1} h}^{[2]}$ (group property of the exact flow) and so on, we see that with

$$
\begin{equation*}
\Phi_{h}=\varphi_{h}^{[1]} \circ \varphi_{h}^{[2]} \quad \text { so that } \quad \Phi_{h}^{*}=\varphi_{h}^{[2]} \circ \varphi_{h}^{[1]} \tag{6}
\end{equation*}
$$

Ψ_{h} is identical with the Ψ_{h} of a composition method. The α s and β s for $m=3$ are given below.

$$
\begin{align*}
& a_{1}=\beta_{1} \\
& b_{1}=\beta_{1}+\alpha_{1} \\
& a_{2}=\alpha_{1}+\beta_{2} \\
& b_{2}=\beta_{2}+\alpha_{2} \tag{7}\\
& a_{3}=\alpha_{2}+\beta_{3} \\
& b_{3}=\beta_{3}
\end{align*}
$$

A necessary and sufficient condition for the existence of α_{i} and β_{i} satisfying (7) is that $\sum a_{i}=$ $\sum b_{i}$, which is the consistency condition anyway for (5).

2.2 Combining Exact and Numerical Flows

It may happen that the differential equation $\dot{y}=f(y)$ can be split according to (2), such that only the flow of, say, $\dot{y}=f^{[1]}(y)$ can be computed exactly. If $f^{[1]}(y)$ constitutes the dominant part of the vector field, it is natural to search for integrators that exploit this information. We just consider

$$
\begin{equation*}
\Phi_{h}=\varphi_{h}^{[1]} \circ \Phi_{h}^{[2]}, \quad \Phi_{h}^{*}=\Phi_{h}^{[2] *} \circ \varphi_{h}^{[1]} \tag{8}
\end{equation*}
$$

as the basis of the composition method. Here $\varphi_{t}^{[1]}$ is the exact flow of $\dot{y}=f^{[1]}(y)$, and $\Phi_{h}^{[2]}$ is some first-order integrator applied to $\dot{y}=f^{[2]}(y)$. Since Φ_{h} of (8) is consistent with (2), the resulting method has the desired high order. It is given by

$$
\begin{equation*}
\Psi_{h}=\varphi_{\alpha_{s} h}^{[1]} \circ \Phi_{\alpha_{s} h}^{[2]} \circ \Phi_{\beta_{s} h}^{[2] *} \circ \varphi_{\left(\beta_{s}+\alpha_{s-1}\right) 2 h}^{[1]} \circ \Phi_{\alpha_{s-1} 1 h}^{[2]} \circ \cdots \circ \Phi_{\beta_{1} h}^{[2] *} \circ \varphi_{1}^{[1]} . \tag{9}
\end{equation*}
$$

Notice that replacing $\varphi_{t}^{[2]}$ with a low-order approximation $\Phi_{t}^{[2]}$ in (5) would not retain the high order of the composition, because $\Phi_{t}^{[2]}$ does not satisfy the group property.

2.3 Splitting into More than Two Vector Fields

Consider a differential equation

$$
\begin{equation*}
\dot{y}=f^{[1]}(y)+f^{[2]}(y)+\cdots+f^{[N]}(y) \tag{10}
\end{equation*}
$$

where we assume that the flows $\varphi_{t}^{[j]}$ of the individual problems $\dot{y}=f^{[j]}(y)$ can be computed exactly. In this case there are many possibilities for extending (5) and for writing the method as a composition of $\varphi_{a_{j} h}^{[1]}, \varphi_{b_{j} h}^{[2]}, \varphi_{c_{j} h}^{[3]}, \ldots$ This makes it difficult to find optimal compositions of high order. A simple and efficient way is to consider the first-order method

$$
\begin{equation*}
\Phi_{h}=\varphi_{h}^{[1]} \circ \varphi_{h}^{[2]} \circ \cdots \circ \varphi_{h}^{[N]} \tag{11}
\end{equation*}
$$

together with its adjoint as the basis for a composition method. Without any additional effort this yields splitting methods for (10) of arbitrary high order.

3 Example: Low order splitting methods for the 1D Nonlinear Schrödinger Equation (NLS)

For repetition: the 1D nonlinear Schrödinger equation

$$
\begin{equation*}
i u_{t}+u_{x x}+|u|^{2} u=0 \tag{12}
\end{equation*}
$$

It will be convenient to rewrite the NLS to

$$
\begin{equation*}
u_{t}=i \mathcal{L} u+i \mathcal{N}(u) u, \quad-\infty<x<\infty, \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{L} u:=u_{x x} \quad \mathcal{N}(u):=|u|^{2} \tag{14}
\end{equation*}
$$

As a first step, we see, that the solution of (12) may be advanced from one time-level to the next by means of the following formula

$$
\begin{equation*}
u(x, t+\tau) \approx e^{i \tau(\mathcal{L}+\mathcal{N}(u))} \cdot u(x, t) \tag{15}
\end{equation*}
$$

where τ denotes the timestep. In general (15) is first order accurate, but under scpecial circumstances $|u|^{2}$ is time-independent in which case (15) turns out to be exact.

The time-splitting procedure now consists of replacing the right-hand side of (15) by

$$
\begin{equation*}
\left.e^{i \tau(\mathcal{L}+\mathcal{N}(u)}\right) u(x, t) \approx e^{i \tau \mathcal{L}} e^{i \tau \mathcal{N}(u)} u(x, t) \tag{16}
\end{equation*}
$$

This expression is exact whenever \mathcal{L} and \mathcal{N} commute. Otherwise the splitting is first order accurate. Accordingly, we use

$$
\begin{equation*}
U(x, t+\tau)=e^{i \tau \mathcal{L}} e^{i \tau \mathcal{N}(U)} U(x, t) \tag{17}
\end{equation*}
$$

where $U(x, t)$ denotes the approximation of $u(x, t)$.
Next, we introduce the quantity

$$
\begin{equation*}
V^{m}:=e^{i \tau \mathcal{N}\left(U^{m}\right)} U^{m} \tag{18}
\end{equation*}
$$

where U^{m} denotes the approximation at the time $m \tau$. Then the split-step scheme (17) may be written as

$$
\begin{equation*}
U^{m+1}=e^{i \tau \mathcal{L}} V^{m} \tag{19}
\end{equation*}
$$

4 High order splitting methods for Hamiltonian PDE systems

Symplectic integrators are numerical integrations schemes for Hamiltonian systems, which conserve the symplectic two-form $d p^{d} q$ exactly, so that $(q(0), p(0)) \rightarrow(q(\tau), p(\tau))$ is a canonical transformation. We will show here, how to construct explicit symplectic integrators for a Hamiltonian

$$
\begin{equation*}
H=T(p)+V(q) \tag{20}
\end{equation*}
$$

4.1 The Problem

Let A and B be non-commutative operators and τ a small real number. For a given positive integer n which will be called the order of integrator, find a set of real numbers $\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ and $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$ such that the difference of the exponential function $\exp [\tau(A+B)]$ and the product of exponential functions

$$
\begin{equation*}
\exp \left(c_{1} \tau A\right) \exp \left(d_{1} \tau B\right) \exp \left(c_{2} \tau A\right) \exp \left(d_{2} \tau B\right) \times \cdots \times \exp \left(c_{k} \tau A\right) \exp \left(d_{k} \tau B\right) \tag{21}
\end{equation*}
$$

is of the order τ^{n+1}, i.e., the following equation holds,

$$
\begin{equation*}
\exp [\tau(A+B)]=\prod_{i=1}^{k} \exp \left(c_{i} \tau A\right) \exp \left(d_{i} \tau B\right)+o\left(\tau^{n+1}\right) \tag{22}
\end{equation*}
$$

This is equivalent to

$$
\begin{align*}
S(\tau) & :=\prod_{i=1}^{k} \exp \left(c_{i} \tau A\right) \exp \left(d_{i} \tau B\right) \tag{23}\\
& =\exp \left(\left[\tau(A+B)+o\left(\tau^{n+1}\right)\right] .\right.
\end{align*}
$$

For example, as we saw before, when $n=1$, a trivial solution is $c_{1}=d_{1}=1(k=1)$, and we have

$$
\begin{equation*}
\exp [\tau(A+B)]=\exp (\tau A) \exp (\tau B)+o\left(\tau^{2}\right) \tag{24}
\end{equation*}
$$

When $n=2$, we find that $c_{1}=c_{2}=\frac{1}{2}, d_{1}=1, d_{2}=0(k=2)$, thus

$$
\begin{equation*}
\exp [\tau(A+B)]=\exp \left(\frac{1}{2} \tau A\right) \exp (\tau B) \exp \left(\frac{1}{2} \tau B\right)+o\left(\tau^{3}\right) \tag{25}
\end{equation*}
$$

4.2 Basic formulas

We could look closer at this method now, but because it is almost hopeless to obtain a much higher integrator, we skip this and advance to a much better method using the Baker-CampbellHausdorff (BCH) formula. For any non-commutative operators X and Y, the product of the two exponential functions, $\exp (X) \exp (Y)$, can be expressed in the form of a single exponential function as

$$
\exp (X) \exp (Y)=\exp (Z)
$$

where

$$
\begin{align*}
Z & =X+Y+\frac{1}{2}[X, Y]+\frac{1}{12}([X, X, Y]+[Y, Y, X])+\frac{1}{24}[X, Y, Y, X] \\
& -\frac{1}{720}([Y, Y, Y, Y, X]+[X, X, X, X, Y])+\frac{1}{360}([Y, X, X, X, Y]+[X, Y, Y, Y, X]) \tag{26}\\
& +\frac{1}{120}([X, X, Y, Y, X]+[Y, Y, X, X, Y])+\ldots .
\end{align*}
$$

Here we used the notation of the commutator $[X, Y]:=X Y-Y X$, and higher order commutators like $[X, X, Y]=[X,[X, Y]]$. A remarkable feature of this BCH formula is that there appear only commutators of X and Y exept for the linear terms in the series.

By repeated application of the $B C H$ formula (26), we find

$$
\exp (X) \exp (Y) \exp (X)=\exp (W)
$$

where

$$
\begin{align*}
Z & =2 X+Y+\frac{1}{6}[Y, Y, X]-\frac{1}{6}[X, X, Y]+\frac{7}{360}[X, X, X, X, Y] \\
& -\frac{1}{360}[Y, Y, Y, Y, X]+\frac{1}{90}[X, Y, Y, Y, X]+\frac{1}{45}[Y, X, X, X, Y] \tag{27}\\
& -\frac{1}{60}[X, X, Y, Y, X]+\frac{1}{30}[Y, Y, X, X, Y]+\ldots .
\end{align*}
$$

Thus the operator for the 2 nd order symplectic integrator (25) can be written in the form

$$
\begin{align*}
S_{2 n d}(\tau) & :=\exp \left(\frac{1}{2} \tau A\right) \exp (\tau B) \exp \left(\frac{1}{2} \tau A\right) \\
& =\exp \left(\tau \alpha_{1}+\tau^{3} \alpha_{3}+\tau^{5} \alpha_{5}+\tau^{7} \alpha_{7}+\ldots\right) \tag{28}
\end{align*}
$$

where

$$
\begin{aligned}
& \alpha_{1}:=A+B, \quad \alpha_{3}=\frac{1}{12}[B, B, A]-\frac{1}{24}[A, A, B], \\
& \alpha_{5}:=\frac{7}{5760}[A, A, A, A, B]+\ldots .
\end{aligned}
$$

In the expression (28) there exist no terms of even powers of τ, i.e., $\alpha_{2}=\alpha_{4}=\alpha_{6}=\cdots=$ 0 . This comes from the fact that the operator $S_{2 n d}(\tau)$ is symmetric and has the exact time reversibility

$$
\begin{equation*}
S(\tau) S(-\tau)=S(-\tau) S(\tau)=\text { identity } \tag{29}
\end{equation*}
$$

Indeed this is an example of a more general statement as follows.
Lemma 1 Let $S(\tau)$ be an operator of the form (23) which has the time reversibility (29). If we expand $S(\tau)$ in the from

$$
\begin{equation*}
S(\tau)=\exp \left(\tau \gamma_{1}+\tau^{2} \gamma_{2}+\tau^{3} \gamma_{3}+\tau^{4} \gamma_{4}+\ldots\right) \tag{30}
\end{equation*}
$$

then

$$
\gamma_{2}=\gamma_{4}=\gamma_{6}=\cdots=0
$$

The proof can be found in [3].
Therefore if a symplectic integrator has a symmetric form so that (29) holds, it is automatically of an even order. Keeping this fact in mind, we now construct symplectic integrators (4th, 6 th, 8 th, ...) by a symmetric product of symplectic integrators of lower order.

4.3 Symmetric integrator with exact coefficients

A 4th order integrator is obtained by a symmetric repetition (product) of the 2 nd order integrator (28) in the form

$$
\begin{equation*}
S_{4 t h}(\tau):=S_{2 n d}\left(x_{1} \tau\right) S_{2 n d}\left(x_{0} \tau\right) S_{2 n d}\left(x_{1} \tau\right) \tag{31}
\end{equation*}
$$

where x_{0} and x_{1} are two real unknowns to be determined. If we apply formula (27) to 31 , we have

$$
\begin{align*}
S_{4 t h}(\tau) & =\exp \left[\tau\left(x_{0}+2 x_{1}\right) \alpha_{1}+\tau^{3}\left(x_{0}^{3}+2 x_{1}^{3}\right) \alpha_{3}\right. \tag{32}\\
& \left.+\tau^{5}\left(x_{0}^{5}+2 x_{1}^{5}\right) \alpha_{5}+\ldots\right] .
\end{align*}
$$

In order that (32) gives a 4th order integrator, we need two conditions

$$
\begin{equation*}
x_{0}+2 x_{1}=1, \quad x_{0}^{3}+2 x_{1}^{3}=0 \tag{33}
\end{equation*}
$$

so that $S_{4 t h}(\tau)=\exp \left[\tau(A+B)+o\left(\tau^{5}\right)\right]$. The real unique solution is obviously

$$
\begin{equation*}
x_{0}=-\frac{2^{1 / 3}}{2-2^{1 / 3}}, \quad x_{1}=\frac{1}{2-2^{1 / 3}} \tag{34}
\end{equation*}
$$

If we compare the operator (31 with (28), we find the relations between the two sets of coefficients:

$$
\begin{equation*}
d_{1}=d_{3}=x_{1}, \quad d_{2}=x_{0}, \quad c_{1}=c_{4}=\frac{1}{2} x_{1}, \quad c_{2}=c_{3}=\frac{1}{2}\left(x_{0}+x_{1}\right) . \tag{35}
\end{equation*}
$$

Once a 4th order integrator is found, it is easy to obtain a 6 th order integrator using the 4 th order one by the same process.

More generally, if a symmetric integrator of order $2 n, S_{2 n}(\tau)$, is already known, a $(2 n+2)$ th order integrator is obtained by the product

$$
\begin{equation*}
S_{2 n+n}(\tau):=S_{2 n}\left(z_{1} \tau\right) S_{2 n}\left(z_{0} \tau\right) S_{2 n}\left(z_{1} \tau\right) \tag{36}
\end{equation*}
$$

where z_{0} and z_{1} must satisfy

$$
\begin{equation*}
z_{0}+2 z_{1}=1, \quad z_{0}^{2 n+1}+2 z_{1}^{2 n+1}=0 \tag{37}
\end{equation*}
$$

or

$$
\begin{equation*}
z_{0}=-\frac{2^{1 /(2 n+1)}}{2-2^{1 / 2(2 n+1)}}, z_{1}=\frac{1}{2-2^{1 / 2(2 n+1)}} \tag{38}
\end{equation*}
$$

In this way we can construct symplectic integrators of an arbitrary even order with exact coefficients. However, with this construction, the $(2 n)$ th order integrator requires the operator $S_{2 n d}, 3^{n-1}$ times. This means that the number of steps k is $k=3^{n-1}+1$, which grows rapidly as n increases. In [3] an alternative method is shown to obtain more economically integrators, though the coefficients cannot be given analytically.

A computational task split step method

A. 1 Setting

We want to find a stationary 1-soliton solution of (12) by numerical propagation of an initially Gaussian profile

$$
\begin{equation*}
u(x, 0)=1.5 e^{-x^{2}} \tag{39}
\end{equation*}
$$

and discarding radiation. We use PML to treat the outgoing radiation, i.e., change the problem to

$$
\begin{equation*}
i u_{t}+\frac{1}{1+\sigma e^{i \gamma}} \partial_{x}\left(\frac{1}{1+\sigma e^{i \gamma}} u_{x}\right)+|u|^{2} u=0 \tag{40}
\end{equation*}
$$

in an additional layer on the boundary as shown in [4]. After enough damping to avoid interfering reflection, we apply Dirichlet BC to cut off the remaining radiation.

The \mathcal{L} will be replaced by

$$
\begin{equation*}
\mathcal{L} u:=\frac{1}{1+\sigma e^{i \gamma}} \partial_{x}\left(\frac{1}{1+\sigma e^{i \gamma}} u_{x}\right) \tag{41}
\end{equation*}
$$

in the damping layer.
Although the NLS equation is defined of the real line we need to impose conditions at a finite boundary when it is solved numerically. We will simulate on the interval $\left[-\frac{1}{2} L, \frac{1}{2} L\right]$. This interval is divided in $N-50$ equal subintervals with grid spacing h, i.e.,

$$
\begin{equation*}
h:=\frac{L}{N-50} \tag{42}
\end{equation*}
$$

At both ends of the interval, we will add a layer of 25 intervals of the length h, where we will apply PML. The grid points are denoted by

$$
\begin{equation*}
x_{j}=j h, \quad j=-\frac{N}{2}, \ldots, \frac{N}{2} \tag{43}
\end{equation*}
$$

The approximation of $u\left(x_{j}, m \tau\right)$ is denoted by U_{j}^{m}.
In order to implement the split-step scheme (18) - (19) in practice, we use the following rational approximation

$$
\begin{equation*}
e^{i \tau \mathcal{L}}=(\operatorname{Id}-\theta i \tau \mathcal{L})^{-1}(\operatorname{Id}+(1-\theta) i \tau \mathcal{L}) \tag{44}
\end{equation*}
$$

where θ is a free parameter with $0 \leq \theta \leq 1$.
Equation (19) now becomes

$$
\begin{equation*}
(\operatorname{Id}-\theta i \tau \mathcal{L}) U^{m+1}=(\operatorname{Id}+(1-\theta) i \tau \mathcal{L}) V^{m} \tag{45}
\end{equation*}
$$

The space variable may be discretized by replacing \mathcal{L} by \mathcal{L}_{h} where

$$
\begin{equation*}
\mathcal{L}_{h} U_{j}:=\left(U_{j+1}-2 U_{j}+U_{j-1}\right) / h^{2} \tag{46}
\end{equation*}
$$

for $j=-\frac{N}{2}+25, \ldots, \frac{N}{2}-25$ and

$$
\begin{equation*}
\mathcal{L}_{h} U_{j}:=\frac{1}{\left(1+\sigma_{j} e^{i \gamma}\right)^{2}}\left(\left(U_{j+1}-2 U_{j}+U_{j-1}\right) / h^{2}-\frac{\sigma_{j}^{\prime} e^{i \gamma}}{1+\sigma_{j} e^{i \gamma}}\left(U_{j+1}-U_{j}\right) / h\right) \tag{47}
\end{equation*}
$$

for $j=-\frac{N}{2}, \ldots,-\frac{N}{2}+24$ or $j=\frac{N}{2}-24, \ldots, \frac{N}{2}$.
Hence the scheme (45) may be written in matrix notation as

$$
\begin{equation*}
(I-i r \theta \mathbf{S}) \mathbf{U}^{m+1}=(I+i r(1-\theta) \mathbf{S}) \mathbf{V}^{m} \tag{48}
\end{equation*}
$$

where I is the identity matrix, and

$$
\begin{gather*}
r:=\frac{\tau}{h^{2}}, \quad \mathbf{U}:=\left(U_{-\frac{N}{2}}, \ldots, U_{\frac{N}{2}}\right), \tag{49}\\
V_{j}^{m}:=e^{i \tau\left|U_{j}^{m}\right|^{2}} U_{j}^{m} \tag{50}
\end{gather*}
$$

and

$$
\mathbf{S}:=\left(\begin{array}{cccccccc}
b_{-\frac{N}{2}} & c_{-\frac{N}{2}} & & & & & & \tag{51}\\
a_{-\frac{N}{2}+1} & b_{-\frac{N}{2}+1} & c_{-\frac{N}{2}+1} & & & & & \\
\cdot & \cdot \\
& a_{-\frac{N}{2}+24} & b_{-\frac{N}{2}+24} & c_{-\frac{N}{2}+24} & & & & \\
& \cdot & 1 & -2 & 1 & & & \\
\cdot & \cdot \\
& & & 1 & a^{2} & 1 & \cdot & \\
\cdot & \cdot & \cdot & \cdot & & a_{\frac{N}{2}-24} & b_{\frac{N}{2}-24} & c_{\frac{N}{2}-24} \\
& & & & & a_{\frac{N}{2}-1} & b_{\frac{N}{2}-1} & c_{\frac{N}{2}-1} \\
& & & & & & a_{\frac{N}{2}} & b_{\frac{N}{2}}
\end{array}\right)
$$

with

$$
\begin{align*}
a_{j} & :=\frac{1}{\left(1+\sigma_{j} e^{i \gamma}\right)^{2}} \tag{52}\\
b_{j} & :=\frac{1}{\left(1+\sigma_{j} e^{i \gamma}\right)^{2}}\left(-2+\frac{h \sigma_{j}^{\prime} e^{i \gamma}}{1+\sigma_{j} e^{i \gamma}}\right) \tag{53}\\
c_{j} & :=\frac{1}{\left(1+\sigma_{j} e^{i \gamma}\right)^{2}}\left(1-\frac{h \sigma_{j}^{\prime} e^{i \gamma}}{1+\sigma_{j} e^{i \gamma}}\right) \tag{54}
\end{align*}
$$

The absorbtion parameter decreases in quadratic power to an angle of $\frac{\pi}{4}$ and with a maximum absorption parameter of 100 .

$$
\begin{gather*}
\gamma:=\frac{\pi}{4} \tag{55}\\
\sigma_{j}:=100\left\{\begin{array}{ll}
\left(\frac{j+\left(\frac{N}{2}-24\right)}{25}\right)^{2} & \text { if } j<0 \\
\left(\frac{j-\left(\frac{N}{2}-24\right)}{25}\right)^{2} & \text { if } j>0
\end{array}, j \in\left\{-\frac{N}{2}, \ldots,-\frac{N}{2}+24, \frac{N}{2}-24, \ldots, \frac{N}{2}\right\}\right. \tag{56}\\
\sigma_{j}^{\prime}:=200\left\{\begin{array}{ll}
\left(\frac{j+\left(\frac{N}{2}-24\right)}{25}\right) & \text { if } j<0 \\
\left(\frac{j-\left(\frac{N}{2}-24\right)}{25}\right) & \text { if } j>0
\end{array}, j \in\left\{-\frac{N}{2}, \ldots,-\frac{N}{2}+24, \frac{N}{2}-24, \ldots, \frac{N}{2}\right\}\right. \tag{57}
\end{gather*}
$$

References

[1] E.Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration", Springer-Verlag, 2000, Sec. II. 3 and II. 5.
[2] J.A.C. Weideman and B.M. Herbst, "Split-Step Methods for the Solution of the Nonlinear Schrödinger Equation", SIAM Jour. Num. Ana. 23 484-507 (1986).
[3] H. Yoshida, "Construciton of higher order symplectic integrators", Phys. Lett. A 150 262-268 (1990).
[4] T. Hagstrom, "New results on absorbing layers and radiation boundary condidtions", in Topics in Computational Wave Propagation, M. Ainsworth, P. Davies, D. Duncan, P. Martin and B.Rynne, eds. (Springer-Verlag, Berlin, 2003), pp. 1-42.

