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Problem Setup
Problem Setup

Consider
yi + N(y) =00n Q c R plus BCon 90

N ... nonlinear differential (in space) operator,y € C",t > 0.
Examples:

Yt +YYx + Yaxx = 0, ‘Y| —0as |X| — 00 (KdV) 1)

iy + Ay +|yPty =0, |y|—0as|x| —»oc0  (NLS) )

(I) Assume stationary (or travelling wave) ansatz

(@) y(x,t) =u(x —vt;v) =u(¢ V), ¢(:=x—vt,v e RY e.g. for (1)
(b) y(x,t) = e “lu(x;w), we R (ory = e “Mty(¢;w,v)) e.g. for (2)
(c) ...

so that the problem for u becomes t—independent. For d = 1 the u—equation
can be sometimes integrated exactly or shooting methods can be applicable.
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Problem Setup
Problem Setup

To avoid writing gradients and dot products let’s restricttod = 1,i.e. x € R
Vi +N(y)=00nQCR plus BCon 09
(a) gives
—vuc + N (u) =0 plus BC.
It A (y) = A(lyl)y. then (b) gives
—iwu + N(Ju)u=0 plus BC.

(I) spatial discretization : m spatial grid points. Discretization of u denoted
asu

vU; + N(u) =0for (@ N discretization of — N (plus BC) (3)
wi + N((|ug], . .. Jum|)T)d = 0 for (b) N discretization of iA/ (plus BC) (4)

systems of nonlin. algebraic equations if w or v fixed
nonlin. eigenvalue problems if w or v not known

(3), (4) are {
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Problem Setup

Problem Setup

Note: Solitary waves with exponentially decaying tails must have w outside the continuous spectrum of the linear differential operator, i.e.
w € R\oc(iL), L . . . linearization of A" aboutu = 0

This is because if w € o¢(iL), then wy + iLy = 0 has nondecaying solutions y. These linear solutions would be excited in the tails of the assumed
solitary wave where it is small and behaves linearly. Thus the exponential decay is contradicted.

Example: stationary solitary waves to the 1-D NLS
iyt + Y + Y[’y =0, |y| —0as [x| — oo
Ansatz: y = e "“!u(x;w)
WU + Uxx + [ulPu=0

After discretization on a sufficiently large interval impose zero Dirichlet BC's
(other BC’s possible)

(wl + D)G + diag ((|u1\2, w2, |um|2)T) =0

-2 1
For a second order finite difference discretization D = %, ( 21 )
1-2
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Iterative methods Newton’s iteration

Newton’s iteration

Assume w or v fixed. Let F (i) : +N
and F () := wi + N

—~~
<y

) for (a)
Uz, ... |um|)T)d for (b).

—~
—~~

Need to solve |F (i) =0|.

i© given, n=0
Newton's itera- while ||r]|| > tol.
tion

—1 =

GO = G — g (Gm),
= F(@I™Y), n=n+1

=l

end

Theorem (see C.T. Kelly, Iterative Methods for Lin. and Nonlin. Egs., 1995)

G+ — @) < cf|d™ — G|, ¢ = c(T; F)

if F is Lipschitz, F'({) nonsingular and G(® sufficiently close to .
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Iterative methods Newton’s iteration

Newton’s iteration

@ fast (quadratic) convergence but only locally = need for a good initial
guess (©

e if J(M is sparse, use a sparse solver for J(M"F (G(M)

e instead of testing ||| we can test ||s||, s := GM+Y — u( = —JMF(Gm)
because
&™) — @l = |Is]| + o(|a™ — )
This is proved as follows
el — a2 > @™ — gy = e — g — 9™ E@) > e —ay — s
1a™ — @y < psi + epa® — @2

And also

13 —a = @™ — o™ L dD gy > sy - @™ — @ > gs) - o™ - @2

Hence
st — e — a2 < g™ — @y < gsj + cfal®™ — a2
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Iterative methods Self consistency iteration

Self consistency iteration

Let's restrict to iy; + Ly +N(ly))y =0, £ self adjoint and N a function with
solutions y = e~'“!u(x) (e.g. cubic NLS £ = A, N(ly]) = |y|?)
Self consistency iteration tries to find both w and u.

Remark: (w, u) is an eigenpair of the linear eigenvalue problem
A+ (L + N (Ju]))é = 0.
Denote: L, N discretizations of £, A/ (with the BC)

choose: G, L2 norm p (or maximum amplitude) for u
while ||F]| > tol.

Ao+ (L+NMyp =0 (get m eigenpairs (), ¢)))

self con-
sistency (W™D G+Y .= (X, ¢;) forachosenie {1,...,m}
iteration (41) G(n+1)
Ln41) .
u 7” D] (scale the eigenvector)
F=(w+L+NOEYGOH) n=—n41
end
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Iterative methods Self consistency iteration

Self consistency iteration

Problem: choice of i
Which linear eigenpair do we choose as the update?

Easy case:

when A¢ + (L + N(™)¢ = 0 is a Sturm- Liouville problem and we are looking
for u with no zeros.
=- choose i corresponding to the smallest eigenvalue

General case:
- choose i s.t. |[5p — UM = Minieqs, . my
- may break down in case of multiple eigenvalues (proper BC often avoid it)
- useful information: range of w for solitary wave existence

Analogy: travelling waves 'y = u(x — vt;v) =: u(¢; v) for KdV satisfy
—VU¢ + UU¢ + Ueee = 0,u,uc — 0as x| — 0

After one integration ffoo obtain an eigenvalue problem

1
—vu+§u2+u<<:0,u—>0as\x|—>0

Apply self consistency iteration to (v, u).
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Iterative methods Petviashvili iteration

Petviashvili iteration (spectral renormalization method)

Let’s restrict to iy; + Ly + |y|P~'y =0, p > 1,y € C, £ linear, with solutions
y =e “ly(x),w € R.
u satisfies

wu+Lu+JuPtu=0

After Fourier transform F(u)(k) = G(k) = [; u(x)e*dx (for const. coeff. £)
wl + L0+ F(luP~tu)=0
Iteration scheme idea
—F(Ju™P-tu™)(k)
w+ L(k)

A" (k) = (5)
(5) usually diverges!
Explanation: if at some n we have u(™ = Cu, C € C, then

ﬁ(n+1)(k) :|C|p—1c _F(|u|p_1u)(k)
+ L(k)

= |C[P~*ci(k)
IC|>1= [uM|. —ocasn — oo
ICl<1l= |uM|.—0asn— co
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Iterative methods Petviashvili iteration

Petviashvili iteration

We need to prevent ||((|.. from going to 0 or co!

ol - [ T
w+ L(k)

Note that u satisfies

but u(™ does not.
Define u("+1/2) .= Cu(M s.t. u("+1/2) satisfies (6).

o | H (")||2 /]—“ \Cnu(n P-ic u(n))c* am —Cyl p+l/‘7: \u |p 1 n)) a(m
—(w+£)

=:!Qp =: fn
Cn = (an/n)"/ 7Y

Now apply the iteration step (5) to u("+1/2)

L
Cl("+1)(k) _ —.7-'(|u(n+1/2)|pj1u(n+1/2))(k) _ <an> -1 (|u(n p-1 n))(k)
w+ L(k) w+ L(K)
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Iterative methods Petviashvili iteration

Petviashvili iteration

Generalization: iy, + Ly + N(ly|)y =
Now C, satisfies

(n) Mcrum
\cn|2/ ™ Pdk —/ —FN(CUDNCUTCIU®
w+ L(Kk)
(n) am
/‘U de *7:('/\[ ‘Cnu |) )U dk
w+ L(k)
which may have to be solved numerically (e.g. Newton) for C,.

Analogy: KdV y; + Yyx + Yxxx = 0,y = u(x — vt;v) =: u(¢; v) with zero
asymptotic BC at +oc0

—VU¢ 4+ UU¢ + Ugee = 0

After one integration
—VU+UCC+U2=O

Apply Petviashvili iteration replacing
w~ =V, N(jul)u ~ u?, L =92
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