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Abstract

In this seminar, we will introduce the Sine-Gordon equation, and solve it
using a Baecklund transfomation. Furthermore, we also give a numeric solution
using a split-step algorithm, and also present two physical applications of the
Sine-Gordon equation.
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1 Introduction

First of all, we want to mention why the Sine-Gordon equation (SGE) is important
to study. From the model building perspective, there are various interesting examples
making use of the SGE, such as the propagation of splay waves on a lipid membrane,
one dimensional models for elementary particles, self-induced transparency of short
optical pulses and domain walls in ferroelectric and ferromagnetic materials.

In this talk, we will look in more detail on the propagation of crystal defects, as
predicted by the Frenkel Kontorova model, and on the propagation of fluxons in
a long josephson junction. Both topics are outstanding examples of the success of
solid state physics throughout the last century, where the Frenkel-Kontorova model
was found in the fourties, and the huge success of devices using josephson junc-
tions has been a result of the discovery of high-temperature superconductors in the
eighties.

The second point worth noting in the introduction is the historical development
of the SGE. It seemingly first appeared in differential geometry, where it was used
to describe surfaces with a constant negative Gaussian curvature. In that context,
it was the first equation to be solved with a Baecklund transformation, which was
later used for a variety of equations. From a more physical perspective, at the birth
of quantum mechanics, the Klein-Gordon equation was found when trying to find
a relativistally invariant equation. Due to the Klein-Gordon equation’s enormous
popularity, the SGE was named so as a wordplay.

2 The Sine-Gordon equation

2.1 Deriving the SGE

We introduced solitons as the solutions to a nonlinear (wave) equation, where the
nonlinearity and the dispersion balance each other out, so that there exists a stable
but nontrivial solution. The way how one usually obtains such field equations in
physics is by using the principle of least action, which states that the path a physical
system takes, is the one that minimizes the action: ∆S = 0. The action for a field
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theory is usually defined by∫
Ldµx =

∫ ∫
Ldx︸ ︷︷ ︸
=L

dt = S (1)

Using the principle of least action, and (1), one can obtain the Euler-Lagrange equa-
tions

∂L
∂φ
− ∂µ

(
∂L

∂ (∂µφ)

)
= 0 (2)

Suppose we have a given Lagrangian density, then we can plug it into the Euler-
Lagrange equations to obtain the equations of motion. One of the classical La-
grangians where one does this, is

L = ∂µφ∂µφ− U(φ) (3)

It is easy to verify that this Lagrangian density’s corresponding equations of motion
are

∂µ∂
µφ +

(
∂U

∂φ

)
= 0 (4)

For the SGE, we now just take U = cos(φ) or U = 1− cos(φ), which yield identical
equations of motion, namely

∂µ∂
µφ + sin(φ) = 0 (5)

If we restrict ourselves to one space and one time dimension, it is

∂2

∂t2
φ− ∂2

∂x2
φ + sin (φ) = 0 (6)

As a side remark, we note both the Klein-Gordon equation’s potential and the φ4-
potential:

U(φ) = m2φ2 or U(φ) = (m2 − φ2)2 (7)

Obviously, the Klein Gordon potential has a minimum at φ = 0. The φ4-potential on
the other hand, has a minimum at φ = m which corresponds to a non-zero vacuum
expectation value. In the case where we have an interaction term in the Lagrangian,
i.e., we look at the interaction of φ with another (probably) nonscalar field, the shift
of our scalar field then invokes a ”mass” term inside the interaction term. This is
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commonly known as the Higgs mechanism.
Note however, that there are many choices possible for such a potential. Interestingly
enough, our mentioned U(φ) = (m2 − φ2)2 potential also has solitonic solutions.
The existence of such kinks has inspired some physicists to propose brane fixing
mechanisms in rather exotic extra dimension theories. That is, to provide an answer
to the ”why do we live only in a 4 dimensional subspace of the world”-question.

2.2 The General Idea of the Baecklund Transformation

The basic idea of the Baecklund transformation is that if we have a solution, even if
it is a trivial one, there exists a transformation which transforms this solution into a
new solution. To be more precise: Suppose we want to solve an equation P (u) = 0
where P is a (nonlinear) differential operator and u is a space and time dependent
function. Now we take another PDE Q(v) = 0 where the Q is again a (nonlinear)
differential operator for the new space and time dependent function v. Then we can
find two relations between the variables u and v

R1(u, v, ux, vx, ut, vt, ...; x, t) = 0 (8)

R2(u, v, ux, vx, ut, vt, ...; x, t) = 0 (9)

We now say that Ri = 0 is a Baecklund transformation if the relations

1. are integrable for v when P (u) = 0

2. then the resulting v must be a solution of Q(v) = 0

3. and vice versa, it must be true too.

Additionally, we say that Ri are auto-Baecklund transformations, if P = Q such that
both u and v satisfy the same equation.

2.2.1 Example: Laplace equation

Let us solve the Laplace equation in two dimensions using a Baecklund transforma-
tion.

∆u = (∂2
x + ∂2

y)u = 0 (10)

We now look for an auto-Baecklund transformation, that is we take the following
initial Operators

P (u) = ∆u = (∂2
x + ∂2

y)u = 0 , and Q(v) = ∆v = (∂2
x + ∂2

y)v = 0 . (11)
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The transformations we look for are thus:

∂xu = ∂yv and ∂yu = −∂xv (12)

By taking the cross-derivatives

∂x(ux) = ∂x(vy) and ∂y(uy) = ∂y(−vx) (13)

we get the auto-Baecklund transformations:

∂xu = ∂yv and ∂yu = −∂xv

note that by taking the cross derivatives ∂x(ux) = ∂x(vy) and ∂y(uy) = ∂y(−vx) and
by adding the two equations, the original laplace equation comes out. Now we take
the trivial solution v(x, y) = xy and plug it into the Baecklund transformation, to
obtain ux = x and uy = −y. Thus we get u = 1

2
(x2 − y2).

2.3 the Baecklund Transformation for the SGE

SGE rewritten
First we need to rewrite the SGE by using other differential operators

∂ξ = (∂x + ∂t) and ∂ζ = (∂x − ∂t) (14)

For these operators, the rewritten SGE becomes

∂ξ∂ζu = sin u (15)

verifying the validity of our transform
Here we take the following pair of equations for the Ri.

1

2
(u + v)ξ = a sin

(
u− v

2

)
and

1

2
(u− v)ζ =

1

a
sin

(
u + v

2

)
(16)

Furthermore we show that this pair of equations is a valid Baecklund transform. For
simplicity, we will refer to the transformed variables ζ and ξ again as t and x. Take
the cross-derivatives and get

1

2
(u + v)xt =

a

2
(u− v)t cos

(
u− v

2

)
= sin

(
u + v

2

)
cos

(
u− v

2

)
(17)
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and
1

2
(u− v)tx =

1

2a
(u + v)x cos

(
u + v

2

)
= sin

(
u− v

2

)
cos

(
u + v

2

)
(18)

Thus the P and Q equations are

uxt = sin(u) and vxt = sin(v) (19)

obtaining the new solution

We begin by taking v = 0 as a trivial solution. Then the Baecklund transformation
(16) yields

ux = 2a sin

(
1

2
u

)
and ut =

(
2

a

)
sin

(
1

2
u

)
(20)

Integrating the two equations yields

2ax =

∫ u du

sin
(

1
2
u
) = 2 log

∣∣∣∣tan(1

4
u

)∣∣∣∣+ f(t) (21)

and

2

(
t

a

)
=

∫ u du

sin
(

1
2
u
) = 2 log

∣∣∣∣tan(1

4
u

)∣∣∣∣+ g(x) (22)

then taking the exponential on both sides

tan

(
1

4
u

)
= C exp(ax + t/a) (23)

which is the same as

u(x, t) = 4 arctan (C exp(ax + t/a)) (24)

2.4 Miscellaneous Remarks

2.4.1 Lorentz Invariance

A remarkable feature of the SGE, which makes it very useful for physics, is its
invariance under Lorentz transformations. Note that with γ = 1/(1− v2)1/2 (where
we set c = 1)
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x′ = γ(x− vt) and t′ = γ(t− vx) (25)

then a wave equation must be Lorentz invariant, respectively the d’Alembert operator
must be equal to its Lorentz transformed version, � = �′.

∂2
xu− ∂2

t u = ∂2
x′u− ∂2

t′u

This can be shown by transforming the derivatives (note that x′ is a function of two
variables, thus taking the derivative with respect to two variables :

∂

∂x
=

∂

∂x′
∂x′

∂x︸︷︷︸
=γ

+
∂

∂t′
∂t′

∂x︸︷︷︸
=−γv

(26)

∂

∂t
=

∂

∂x′
∂x′

∂t︸︷︷︸
=−γv

+
∂

∂t′
∂t′

∂t︸︷︷︸
=γ

(27)

then

∂2
x = γ2

(
∂2

x′ + v2∂2
t′ − 2v∂x′∂t′

)
(28)

∂2
x = γ2

(
∂2

t′ + v2∂2
x′ − 2v∂x′∂t′

)
(29)

then

∂2
x − ∂2

t = γ2

((
1− v2

)︸ ︷︷ ︸
=γ−2

∂2
x′ −

(
1− v2

)︸ ︷︷ ︸
=γ−2

∂2
t′ + 2v∂x′∂t′ − 2v∂x′∂t′

)
(30)

= ∂2
x′ − ∂2

t′ (31)

So we have shown the invariance of the d’Alembert operator under Lorentz transfor-
mations. As a Lorentz transformed sinus remains a sinus, the equation still remains
a Sine-Gordon equation, thus it is Lorentz invariant.

2.4.2 Other Analytic Solutions

We denote the soliton velocity by λ, as in [1]. For completeness, without proof, we
want to mention some other analytic solutions of the SGE. For an easy verification
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of these solutions, use the following hints: all analytic solutions shown here are of
the form u = 4 arctan ϕ From analysis, one has

arctan x = arcsin
x√

1 + x2
and 2 arcsin x = arcsin(2x

√
1− x2) (32)

after a few lines of calculations, one obtains :

sin(4 arctan x) = 4x
(1− x2)

(1 + x2)2
(33)

For the differential part, note that:

∂2
xu =

ϕ′′ − ϕ′2ϕϕ′ + ϕ′′ϕ2

(1 + ϕ2)2
(34)

The other solutions are then:

� Breather

u(x, t) = 4 arctan

(1− λ2)
1/2

λ

sin (λ (t− t0))

cosh
(
(1− λ2)1/2 (x− x0)

)


� Kink-Antikink solution

u(x, t) = 4 arctan

λ cosh
(
x/ (1− λ2)

1/2
)

sinh
(
λt/ (1− λ2)1/2

)


3 Applications

3.1 Frenkel-Kontorova Soliton

3.1.1 Inside Solid-State Physics

The Frenkel Kontorova model is one way to describe in solid state physics the
dynamic behaviour of defects. We briefly want to mention why the study of defects
is important to the understanding.
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The basic approach to solid state physics is that we have both perfect periodicity
and an infinite lattice. Together with the fact that (quantum mechanically) inter-
acting energy levels split, we can see how a band structure forms itself. Another
basic approach that is usually made is that all atoms interact within a harmonic
approximation. Within this approximation, one introduces usually phonons, that is
lattice vibrations, and other quantities. Although in some sense the phonons can be
seen as a three dimensional defect, because they deform the whole lattice, it appears
very much the same as the perfect lattice, due to the small deviations. Both of these
properties depend to some extent on the fact that a real solid is made of about 1023

particles. For such a high number, it is easy to see why a band becomes a ”continu-
ous” structure and why the interaction between two particles can be assumed to be
harmonic.

by contrast to these ideas we have the fact that there not only exists a variety
of defects, but they can change physical properties enormously, even in small num-
bers. Examples include point defects, which are both unavoidable for thermodynamic
reasons, as well as they are sometimes desired too, for example impurities in semicon-
ductors can lead to different electric properties, as it is used in chips, and impurities
are also responsible for the color of some crystals, such as ruby or sapphire. Technical
usage of these impurities has been known for a very long time. For example take
steel where these foreign atoms (carbon atoms) lead to the pinning of one dimen-
sional defects, which are responsible for many elastic properties, i.e. the movement
of dislocations becomes more difficult, which leads to a harder material.

Here we will look at another defect with solitonic properties: The Frenkel-Kontorova
soliton which describes a movement of displaced atoms. For that, we will start by
repeating some facts about pendula.

3.1.2 discrete example for SGE

As the harmonic oscillator has a potential energy of
ω2

0

2
x2, this gives the commonly

known equations of motion for a harmonic oscillator:

d2

dt2
x + ω2

0x = 0 (35)

which has the ”usual” sinusoid solutions. This is usually used to describe a pendulum
with a small amplitude. However, for large excitations of a pendulum (ω0 =

√
g
l
,
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instead the potential becomes proportional to (1− cos x) with the equations of mo-
tion:

d2x

dt2
+ ω2

0 sin x = 0 (36)

Which is obviously a nonlinear differential equation. We are now interested in what
happens when we couple such pendula and let them interact, and then we will take
the continuous limit. For that, consider first the following potential of the substrate
as externally given:

V (un) = V0

(
1− cos

(
2πun

a

))
(37)

Furthermore, we assume that the interaction energy term does not contain higher
order interactions, i.e. it is harmonic.

W (un−1, un) = C/2(un − un−1)
2 (38)

Then the total Hamiltonian is

H =
∑

n

pn

2m
+ W (un−1, un) + V (un) (39)

3.1.3 continuous limit

The equations of motion belonging to the total Hamiltonian (39) are then:

m
d2un

dt2
= C(un+1 + un−1 − 2un)− 2πV0

a
sin

2πun

a

We can see the analogy between these equations of motion and the SGE by approx-
imating

C(un+1 + un−1 − 2un) = Ca2 (un+1 − un)/a− (un − un−1)/a

a
≈ Ca2 d2u

dx2

Then obviously, the SGE holds.

As for the meaning of the SGE in solid systems, we can think of the following: as-
sume a perfect lattice which generates a periodic potential, i.e. the periodic potential
is made up from the potentials of the single atoms. For simplicity, we can assume
the periodic potential to be a sine, which turns out to be a good approximation for
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most cases. Then we assume that a misplaced atom still feels an undisturbed peri-
odic potential, which we justify by the far-range influence of an infinite amount of
perfectly ordered atoms. If we now reduce our solid state system to one dimension,
then we know that there are solitons existing. That also means that not all atoms
are in the minimum of the potential for all times. Since we know that these solitonic
solutions move, we also have a mechanism for the movement of displacements, which
permits the understanding of plastic deformation of bodies.

However, note that because the atomic lattice is not really a continuous system,
these solitons are just an approximation, which is a very good one again due to the
fact that we have 1023 particles in the lattice, which is by far a bigger system than the
257 ”particles” used in our computer simulation. Of course, even such a small system
already gives a good validity of the Sine-Gordon kink. This comparison perhaps also
shows one of the difficulties of computational solid-state physics: in some sense we
are limited to effects of small systems, as we do not have the computing power to
”really” simulate a system with 1023 particles.
Note also that often dislocations are introduced with elasticity theory, where the
beginning assumption is a continuous system, whereas we started the other way
around, namely by a discrete system, which then is grown to an (almost) continuous
one. Interesting however is also the following comparison: when ”classical” (one-
dimensional) dislocations and other similar defects move inside the body, they usually
radiate phonons, however our solitonic solutions do not radiate phonons.

3.2 Josephson Junction

3.2.1 Purpose

The SGE does also appear in a totally different context within modern solid state
physics. Namely, within elongated Josephson junctions. Before treating elongated
Josephson junctions, we will say somewhat more about their purpose and about ”
ideal” Josephson junctions.

First, some words about the Josephson effect: In a setup that looks like a ”sandwich”
of superconductors with a thin oxide layer or a bottleneck in between, such that only
single electrons and cooper pairs, i.e. paired electrons, can tunnel through that layer,
there is an amazing effect: even without applying an outer electric field, there will be
a measurable direct current through the junction. When we apply a voltage between
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the two superconductors, we will get an alternating current through the junction,
which is what we will prove in the first part of this chapter.

In a so called superconducting quantum interferometry device, two such josephson
junctions are then used to measure interferences between two paths, thus very small
magnetic fields can be detected. These devices are used then for example in brain
science and in many other areas.

Figure 1: Note that in a real squid, the branching points might be made of super-
conductors too

3.2.2 AC Josephson effect

Here will mainly follow the derivation in [3], which is similar to the one presented
in [2]. The AC Josephson effect which we will look at here, provides then the non-
linear element, i.e. the sine part in the (almost) SGE of the elongated Josephson
junction.

For the system made of these two weakly coupled superconductors, the follow-
ing version of Schroedingers equation is valid, where Φ = is the ”many-particle-
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wavefunction”,Hi the total Hamilton operator for Si and T is the tunnel-coupling

i~∂tΦ1 = H1Φ1 + TΦ2 (40)

i~∂tΦ2 = H2Φ2 + TΦ1 (41)

If we now apply a voltage, and choose the origin symmetric, and also take Φ1 as
an almost eigensolution with the energy eigenvalue qU , our equations can be rewrit-
ten.

i~∂tΦ1 =
qU

2
Φ1 + TΦ2 (42)

i~∂tΦ2 =
qU

2
Φ2 + TΦ1 (43)

With |Φ|2 = ns/2 = nc as the density of cooper pairs, we rewrite our many particle
wavefunction

Φ1 =
√

nc1e
iφ1 and Φ2 =

√
nc2e

iφ2

then plugging in Φi in the equation (42) gives with separation of real and imaginary
parts

~/2∂tnc1 sin φ1 − (~∂tφ1 + qU/2) nc1 cos φ1 = T
√

nc1nc2 cos φ2

~/2∂tnc1 cos φ1 − (~∂tφ1 + qU/2) nc1 sin φ1 = T
√

nc1nc2 sin φ2

of course, there are analogous equations for the other equation (43)

Now we can multiply both equations with cos φ1 sin φ1 and the other way around and
then subtract from each equation the other equation to obtain a new set, together
with the same derivation for (43).

jT α ∂tnc1 =
2

~
T
√

nc1nc2 sin(φ2 − φ1) (44)

jT α ∂tnc2 =
−2

~
T
√

nc1nc2 sin(φ2 − φ1) (45)

∂tφ1 =
1

~
T

√
nc2

nc1

cos(φ2 − φ1)−
qU

2~
(46)

∂tφ2 =
1

~
T

√
nc1

nc2

cos(φ2 − φ1) +
qU

2~
(47)
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What we get out is a proportionality for the tunneling current. This set can now be
simplified for identical supraconductors (nc1 = nc2 = nc) to give the amazing result
that there is an alternating current through the josephson junction, even though we
applied a constant voltage between the two superconductors. For the following we
will use the phase difference θ

∂tnc1 = (2T/~)nc sin(φ2 − φ1︸ ︷︷ ︸
:=θ

) = −∂tnc2 = jT (48)

~(∂tφ2 − ∂tφ1) = −qU (49)

3.2.3 Elongated Josephson Junction

First note the homogeneous Maxwells equations and that E = ∂U
∂x

= qU
d

in one
dimension

∇× E = −∂tB (50)

∇×B = µ0j + µ0ε∂tE (51)

without further explanation, note that there following ODE is valid for an ideal
”resistively and capacitively shunted junction” for the external current

jB = jt +
U

RS
+

C

S

dU

dt
(52)

where C is the capacity of the junction, R the resistivity, U the voltage, and S an
area. in this limit, for the josephson junction this equation becomes

d2

dt2
θ +

1

RC

dθ

dt
+ ω2

0 sin θ =
2eS

C~
jB (53)

which behaves like the equation for a disturbed excited pendulum

if we now insert (49 ) into the first of Maxwells equations, we get

−∂xEz = −∂x(U(x, t)/d) = −∂tBy (54)

⇔ ∂x(
~

2ed
∂tθ) = ∂tBy (55)
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by integrating over time, we see

By =
~

2ed
∂xθ + B0y (56)

We can now insert this expression for the magnetic field in y-direction into the other
Maxwell equation.

uz∇×B = µ0j + µ0ε∂tE =
~

2ed
∂2

xθ + µ0jB (57)

inserting this last term into the junction equation instead of only µ0jB gives

θtt − c2
0θxx +

1

RC
θt︸ ︷︷ ︸

A

+ω2
0 sin θ =

2eS

C~
jB︸ ︷︷ ︸

B

which in some limit behaves like a SGE, provided the two terms A and B are small,
which can experimentally be provided by designing the junction in the right way.
One can through another calculation conclude that the solitons of the SGE provide
fluxons, that is a quantized magnetic flux.

4 Numerical Simulation

4.1 Another Notion For The SGE

The numerical examples were calculated using a Matlab program with a split step
Fourier algorithm. Here we explain how it was programmed. Because this is a second
order in time differential equation, we need first to get rid of one time differential.
More precisely, note how we split the Sine Gordon equation: First, define

v =
d

dt
u (58)

Second, rewrite the sine Gordon equation as

−
(

u
v

)
t

+

(
0 1
∂2

∂x2 0

)
︸ ︷︷ ︸

:=L

(
u
v

)
+

(
0

sin(u)

)
︸ ︷︷ ︸

:=S

= 0 , (59)
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where the small t signifies taking the derivative with respect to time. For the simu-
lations, we will start with given initial conditions and look at the time evolution of
the problem. The split-step time evolution we then use is the following:

(
u
v

)
(t + dt) = exp

(
L

dt

2

)
exp (Sdt) exp

(
L

dt

2

)(
u
v

)
(t) +O(dt3) (60)

where eSdt is a formal notation for the solution operator of the part(
u
v

)
t

= S(u, v) (61)

The linear step exp
(
Ldt

2

)
then can be solved using a fourier transform, as(

0 1
∂2

∂x2 0

)̂
=

(
0 1
−k2 0

)
(62)

4.2 Pseudo-Code

The program thus works conceptually in the following way:

1. get initial conditions, that is a U0 :=
(

u0

v0

)
- vector.

⇒ Start the main loop

2. do a Fourier transform of U0

3. get Û1 = L̂Û0

4. inverse fourier transform of Û1

5. perform nonlinear step using
(

u2

v2

)
=
(

u1

dt sin(u1)

)

6. do a Fourier transform of U2

7. get Û3 = L̂Û2
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8. inverse fourier transform of Û3

⇒ get U(t + dt)

9. return to step 2

In principle, step 2 can be performed before starting the loop and then step 8 can
be omitted for efficiency reasons.

4.3 Programmed Examples

For the coded examples which you can find in the appendix, note that you need
to change both the windows and the Length parameter of the simulation suitable
to your problem, as you switch from one example to another. The code will store
your data in a .avi-movieclip. The pictures have been made with the same code,
but instead of getframe, use a matrix to which you store the according element
meshmatrix(f,:)=uu(:); , and after the loop do mesh(meshmatrix)

As you can see in the appendix, there are many programmed examples, including
a test with an analytic and a numeric solution, to see deviations from the analytic
solution. An idea to improve the code would be to use twice as large vectors that
include both position and speed, and for the equation take a sparse matrix.

5 Appendix: Original Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Starting area
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%axis parameters for the plot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
xmin = 0 ;
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Figure 2: This image shows an imperfect moving breather
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xmax = 2000 ;
ymin = -7 ;
ymax = 7 ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%various starting parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

t=0.01; %starting time for the propagating exact solution
lambda=0.992; %velocity
const=1; %other constant of integration for the solution

f=1; %frameparameter for the movie
versetz=0; %distance between analytic and numeric solution

xo=1 %spatial breather parameter
to=1 %time parameter for the breather

%%%%%%%%%%%%%%%
%Of Space
%%%%%%%%%%%%%%%

Nx = 257; %amount of discrete points in the x-space;
L = 2000; %total length of the interval
dx = L/(Nx-1); %distance between two neighboring points
x = linspace(0,L,Nx); %position space

%note: due to better efficiency of fft algorithm, Nx should be chosen as
%2^n+1 , where the one additional point is needed for the doubling for the
%interval

%%%%%%%%%%%%%%%%%%
%And Time
%%%%%%%%%%%%%%%%%%

Tfin = 1;
dt = 0.01;
Nt = floor(Tfin/dt);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%other parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
qu=(1-lambda^2)^0.5;

phii=const*exp((x-lambda*t)/qu);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% defining various vectors and matrices
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

F = zeros(2,Nx);
FF = zeros(2,Nx);

uu = zeros(1,Nx);
uv = zeros(1,Nx);

xx = zeros(1,Nx);
yy = zeros(1,Nx);

% the transforming vectors

uuu = zeros(1,2);
uuv = zeros(1,2);
uvv = zeros(1,2);

% the transforming matrices

%transmat = [1 1; i*k -i*k];
%eigvalmat = [ i*k 0 ; 0 -i*k];
%invmat = [1/2 1/(2*i*k); 1/2 -1/(2*i*k)];
%endmat=invmat*eigvalmat*transmat

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% initial vectors
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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F(1,:) = 4*atan(const*exp((x-L/2-lambda*t)/qu));
F(2,:) = -4*lambda*const*exp((x-L/2-lambda*t)/qu)./(qu*(1+const^2*exp(2*(x-L/2-lambda*t)/qu)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% self generation of a soliton
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%F(1,:) = 4*(atan((x-L/2-lambda*t)/qu)+pi/2)/2;
%F(2,:) = -abs(lambda*const*(1/qu)./(qu*(1+const^2*(x-L/2-lambda*t).^2/qu)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Soliton interactions
%%%%%%%%%%%%%%%%%%%%%%%%%%%

%a = linspace(0,L/2,Nx/2);
%b = linspace(L/2,L,Nx/2);

%AA = 4*atan(const*exp((-a+L/4-lambda*t)/qu));
%aaa = 4*lambda*const*exp((a-L/4-lambda*t)/qu)./(qu*(1+const^2*exp(2*(a-L/4-lambda*t)/qu)));

%BB = -4*atan(const*exp((b-L*3/4-lambda*t)/qu));
%bbb = -4*lambda*const*exp((b-L*3/4-lambda*t)/qu)./(qu*(1+const^2*exp(2*(b-L*3/4-lambda*t)/qu)));

%F(1,:)=[AA 0 BB];
%F(2,:)=[aaa 0 bbb];

%axis([xmin xmax ymin ymax])
%plot(x,F’)
%pause(0.5)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% more complicated interactions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%a = linspace(0, L/4, Nx/4);
%b = linspace(L/4, L/2, Nx/4);
%c = linspace(L/2, L*3/4, Nx/4);
%d = linspace(L*3/4, L, Nx/4);

%AA = 4*atan(const*exp((a-L/8-lambda*t)/qu));
%aaa = -4*lambda*const*exp((a-L/8-lambda*t)/qu)./(qu*(1+const^2*exp(2*(a-L/8-lambda*t)/qu)));

%BB = 4*atan(const*exp((-b+L*3/8-lambda*t)/qu));
%bbb = 4*lambda*const*exp((b-L*3/8-lambda*t)/qu)./(qu*(1+const^2*exp(2*(b-L*3/8-lambda*t)/qu)));
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%CC = -4*atan(const*exp((c-5*L/8-lambda*t)/qu));
%ccc = 4*lambda*const*exp((c-5*L/8-lambda*t)/qu)./(qu*(1+const^2*exp(2*(c-5*L/8-lambda*t)/qu)));

%DD = -4*atan(const*exp((-d+L*7/8-lambda*t)/qu));
%ddd = -4*lambda*const*exp((d-L*7/8-lambda*t)/qu)./(qu*(1+const^2*exp(2*(d-L*7/8-lambda*t)/qu)));

%fff=[AA BB CC 0 DD ];
%ffff=[aaa bbb 0 ccc ddd];
%F(1,:)=[AA BB 0 CC DD];
%F(2,:)=[aaa bbb 0 ccc ddd];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%completely non-solitonic initial conditions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%a = linspace(0, L/4, Nx/4);
%b = linspace(L/4, L*3/4, Nx/2);
%c = linspace(L*3/4, L, Nx/4);

%F(1,:) = [a*0 0 4*sin(b) c*0];
%F(2,:) = [a*0 0 4*cos(b) c*0];

%or other variant
%a = linspace(0, L*9/40, Nx/4);
%b = linspace(L*9/40, L*31/40, Nx/2);
%c = linspace(L*31/40, L, Nx/4);

%F(1,:) = [a*0 0 6*exp(-(4*cos(b)).^2) c*0];
%F(2,:) = [a*0 0 6*sin(b).*cos(b).*exp(-(4*cos(b)).^2) c*0];

%instead: how a point excitation at the middle of the interval behaves
% like a chain of pendula

%F(1,int16(Nx/2))=4
%F(2,int16(Nx/2))=0

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% breather
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% note for the breather stuff: here the derivative can be taken numerically,
% by the diff function. thus the derivative is one element shorter than a "typical" derivative,
%thus the derivative gets shifted by 1/2, this might lead to rather big errors

%aa=2*4*atan(qu/lambda*sin(lambda*(t-to))./cosh(qu*(x-L/2-xo)))
%bb=diff([0 aa])/dx
%bb=-8*qu^2/lambda*sin(lambda*(t-1))./cosh(qu*(x-L/2-1)).^2.*sinh(qu*(x-L/2-1))./(1+qu^2/
%lambda^2*sin(lambda*(t-1))^2./cosh(qu*(x-L/2-1)).^2)

%F(1,:)=aa
%F(2,:)=bb

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% a kink-antikink pair en detail
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%aa=4*atan(lambda*cosh((x-L/2)/qu)/sinh(lambda*t/qu))
%bb=4*lambda*sinh((x-L/2)/qu)/qu/sinh(lambda*t/qu)./(1+lambda^2*cosh((x-L/2)/qu).^2/
%sinh(lambda*t/qu)^2)

%F(1,:)=aa
%F(2,:)=bb

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%looking at our initial conditions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

axis([xmin xmax ymin ymax])
plot(x,F’)
pause(0.5)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%here comes the fun ...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% 0. getting vectors and their fourier transforms

for i=1:Nx
uu(1,i)=F(1,i);
uv(1,i)=F(2,i);

end

% Looking at the initial values and including in the movie
plot(x, F’)
M(1)=getframe;
%M(2)=getframe;

xx = fft([uu uu(end-1:-1:2)],2*Nx-2);
yy = fft([uv uv(end-1:-1:2)],2*Nx-2);
qq = fftshift(xx);
qz = fftshift(yy);

% 1. Begin main loop

for r=2:Nt

% 2. Piecewise construction of the first t/2 part

for p=1:2*Nx-2
uuu(1,1) = qq(1,p);
uuu(1,2) = qz(1,p);

k = (pi/L)*(-Nx+p);
Mmat =[0 1; -k^2 0];

uuu = expm(Mmat*dt/2)*transpose(uuu);

qq(1,p) = uuu(1,1);
qz(1,p) = uuu(2,1);

end
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% 3. Nonlinear part of the SGE :

% backtransforming into real space
xx = ifftshift(qq);
yy = ifftshift(qz);
xx = ifft(xx, 2*Nx-2);
yy = ifft(yy, 2*Nx-2);
uu = xx(1:Nx);
uv = yy(1:Nx);
for q=1:Nx

%su(1,q) = uu(1,q)
%sv(1,q) = dt*sin(uv(1,q))+uu(1,q)
%uu(1,q) = uu(1,q)
uv(1,q) = -dt*sin(uu(1,q)) + uv(1,q) ;

%For the Plot
FF(1,q)=abs(uu(1,q));
FF(2,q)=abs(uv(1,q));
%%%%%%%%%%%%%%%

end
xx = fft([uu uu(end-1:-1:2)],2*Nx-2);
yy = fft([uv uv(end-1:-1:2)],2*Nx-2);
qq = fftshift(xx);
qz = fftshift(yy);

%5. second t/2 part

for p=1:2*Nx-2
uuu(1,1) = qq(1,p);
uuu(1,2) = qz(1,p);

k = (pi/L)*(-Nx+p);
Mmat =[0 1; -k^2 0];

uuu = expm(Mmat*dt/2)*transpose(uuu);

qq(1,p) = uuu(1,1);
qz(1,p) = uuu(2,1);

end

%print out curr. time
r
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if(mod(r,5)==0)

% backtransforming into real space
xx = ifftshift(qq);
yy = ifftshift(qz);
xx = ifft(xx, 2*Nx-2);
yy = ifft(yy, 2*Nx-2);
uu = xx(1:Nx);
uv = yy(1:Nx);

figure(1)
axis([xmin xmax ymin ymax])
plot(x,uu)
hold on
axis([xmin xmax ymin ymax])
plot(x,uv, ’r’)

%plot exact sol.
% t=(r+2)*dt;
% F(1,:) = 4*atan(const*exp((x-L/2-lambda*t-lambda*versetz)/qu));
% F(2,:) = -4*lambda*const*exp((x-L/2-lambda*t-lambda*versetz)/qu)./(qu*(1+const^2*exp(2*(x-L/2-lambda*t-lambda*versetz)/qu)));
% axis([xmin xmax ymin ymax])
% plot(x,F(1,:), ’--’)
% axis([xmin xmax ymin ymax])
% plot(x,F(2,:), ’r--’)
% axis([xmin xmax ymin ymax])
hold off
title(sprintf(’t=%g’,t))
pause(0.01)
M(f)=getframe;
f=f+1;

end

end

%showing & saving the movie
movie(M ,1)
movie2avi(M, ’kinkantikinkpairgeneration.avi’)
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