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Scalar, 1-D Wave Equation with Power Nonlinearity

ut − (L u)x + pup−1ux = 0 , (1.1)

• u : R× R+ −→ R, p > 1

• L: linear, self-adjoint (〈u,L v〉 = 〈L u, v〉), positive
(〈u,L u〉 ≥ 0) pseudodifferential operator in x of order m.

• 〈f , g〉 =
∫∞
−∞ f̄ (x)g(x)dx

• Fourier: u(x) = 1
2π

∫∞
−∞ û(k)e ikxdk, û(k) =

∫∞
−∞ u(x)e−ikxdx

Stationary bound state solution u(x , t) = Φ(x − ct) leads to
boundary value problem (

∫ [
−cΦx − (LΦ)x + pΦp−1Φx

]
dx)

(1.3)

cΦ + LΦ = Φp

lim
|x |→∞

Φ(x) = 0
or (1.5) [c + v(k)] Φ̂(k) = Φ̂p(k) ,

v(k) ≥ 0 an mth order polynomial in |k|
Peter Kauf Convergence of Petviashvili’s Iteration Method



Setting, Iteration, Spectrum Convergence Theorem, Proof Structure ‖A′(bΦ)‖ < 1 Spectral Lemmata Summary

Assumption, Solution Space, Iteration

Assumption 1.1
p > 1, v(k) ≥ 0, c > 0. ∃ real analytical solution to 1 in

X = L2(R) ∩ Lp+1(R) ∩ Hm/2(R)

Approximate Φ̂ through ûn+1(k) =
cup

n (k)
c+v(k) −→ usually divergent !

Petviashvili Iteration
Well defined with
assumption 1.1 !

ûn+1(k) = Mγ
n

ûp
n(k)

c + v(k)
(1.8)

Mn =

∫∞
−∞[c + v(k)][ûn(k)]2dk∫∞

−∞ ûn(k)ûp
n(k)dk

(1.9)

Lemma 1.2: Fix points for (1.8), (1.9) correspond to bound states
Φ̂(k) of (1.5) for γ 6= 1 + 2n, n ∈ Z.
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Spectrum, Assumption 2.1

Define Operator to (1.1): H = c + L−pΦp−1(x) (1.10)

• selfadj. in L2(R) −→ real eigenval., orth. spectr. decomp.
• Null space contains at least Φ′(x).
• cont. spectrum positive, bounded away from zero (ass. 1.1)
• negative spectrum not empty

HΦ = (1− p)Φp

〈HΦ,Φ〉 = −(p − 1)〈Φp,Φ〉 = −p − 1

2π
〈Φ̂, Φ̂p〉

= −p − 1

2π
〈[c + v(.)]Φ̂, Φ̂〉 < 0
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Spectrum, Assumption 2.1

Define Operator to (1.1): H = c + L−pΦp−1(x) (1.11)

• selfadj. in L2(R) −→ real eigenval., orth. spectr. decomp.
• Null space contains at least Φ′(x).
• cont. spectrum positive, bounded away from zero (ass. 1.1)
• negative spectrum not empty

Assumption 2.1 on Spectrum of H:

• σdiscr
L2 (H) for eigenvalues < c

• σcont
L2 (H) for eigenvalues ≥ c

• Nullspace is one-dimensional

• dim. neg. space n(H) ≥ 1
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Convergence Theorem

Theorem 2.8
Let Φ̂(k) solution to (1.5), assumptions 1.1 and 2.1. Petviashvili
Iteration (1.8), (1.9) converges to Φ̂(k) in (small) neighbourhood
of Φ̂(k) if:

1. 1 < γ < p+1
p−1

2. n(H) = 1

3. Either Φp−1(x) ≥ 0 or λmax((c + L)−1H) < 2 (ass. 2.7)

”If any of the conditions are not met, the Petviashvili iteration di-
verges from Φ̂(k)”.
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Fréchet Derivative, Contraction Principle

Fréchet Derivative
B, C Banach spaces, D ⊂ B open, mapping A : B −→ C. A is
Fréchet differentiable in g ∈ D if ∃ linear operator L : B −→ C,
such that

lim
‖h‖→0

‖A(g + h)− Ag − Lh‖
‖h‖

= 0

Fixed Point Theorem ([HP], Lemma 4.4.8)
Let B a Banach space, D ⊂ B open, assume that A : D −→ B has
fixed point f̄ ∈ D, and let A Fréchet diff. in f̄ (A′(f̄ )).
∀ 0 < ε < 1− ‖A′(f̄ )‖ ∃S(f̄ , δ) open such that if f0 ∈ S(f̄ , δ):

• The iterates fn := Afn−1 ∈ S(f̄ , δ)

• lim fn = f

• ‖fn − f̄ ‖ ≤ (‖A′(f )‖+ ε)n ‖f0 − f ‖
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Proof of Convergence

Let A the iteration operator (1.8), (1.9): ûn+1 = A(ûn) in X (R).

1. A′(ûn) continuous in S(Φ̂, δc) (proof: [PS], Proposition 3.4
and additional calculation)

2. ‖A′(Φ̂)‖ < 1, i.e. spectral radius of A′(Φ̂) is < 1.

By Continuity of A′(Φ̂), we have ∀ 0 < ε < 1− ‖A′(Φ̂)‖
∃S(Φ̂, δ(ε)) ⊂ X (R) such that q = sup

ûn∈S
‖A′(ûn)‖ < 1.

By [HP], Lemma 4.4.7: ∀ f̂ , ĝ ∈ S : ‖A(f̂ )− A(ĝ)‖ ≤ q‖f̂ − ĝ‖.
The contraction mapping theorem ([HP] theorem 4.3.4) assures
that A(ûn) has unique, asymptotically stable fixed point in
S(Φ̂, δ). By the fixed Point theorem we get that

‖ûn − Φ̂‖ ≤
(
‖A′(Φ̂)‖+ ε

)n
‖û0 − Φ̂‖.

q.e.d. theorem 2.8
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Proposition 3.1

Proposition 3.1 A′(Φ̂) (i.e. Operator (1.8), (1.9) linearized at
Φ̂(k)) has spectral radius smaller than one (‖A′(Φ̂)‖ < 1), if
• 1 < γ < p+1

p−1
• n(H) = 1
• assumptions 2.1 and 2.7 are met.

Proof: Define û0(k) := Φ̂(k) + ŵ0(k), ŵ0(k) small and
〈Φ′,w0〉 = 0. Generate ŵn(k) = ûn(k)− Φ̂(k) by linearized
operators:

ŵn+1(k) = γmnΦ̂(k) + p
Φ̂p−1 ? ŵn(k)

c + v(k)
(3.1)

mn = (1− p)

∫∞
−∞ Φ̂p(k)ŵn(k)dk∫∞
−∞ Φ̂p(k)Φ̂(k)dk

= Mn − 1 (3.2)

proof: calculation, done in handout.
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I Proof of Proposition 3.1

Define space Xp := {U ∈ L2 : 〈Φp,U〉 = 0}.
We decompose ŵn(k) = ûn(k)− Φ̂(k) into

wn = anΦ(x) + qn(x) , qn(x) ∈ Xp (3.3)

Immediately (3.2, 3.3): mn = (1− p)an and by short calculations
(see handout):

mn+1 = [p − γ(p − 1)]mn (3.4)

qn+1(x) = qn(x)− (c + L)−1H qn(x) (3.5)

Want to prove that wn
n→∞−→ 0 to conclude that spectral radius of

(3.1), (3.2) less than 1.

(1) mn −→ 0 if 1 < γ < p+1
p−1 . Superlinear: γ = p

p−1 .
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II Proof of Proposition 3.1

(2) qn −→ 0:
Decompose qn into EF of (c + L)−1H (see later) in Xp. We need
two Lemmata (proven later):

Lemma 2.4
σ

(
(c + L)−1H

)
in Xp(R) has n(H)− 1 negative EV.

Lemma 2.5
Positive spectrum of (c + L)−1H in Xp(R):

1. Infinitely many discrete EV. 0 < λ < 1 (accumulating to 1−).

2. If ∀x ∈ R: Φp−1(x) ≥ 0: no EV. > 1.

3. If ∃x0 ∈ R : Φp−1(x0) < 0, we also have infinitely many
discrete EV. in 1 < λ < λmax (accumulating to 1+), and
λmax < 1 + p

c | min
x∈R

Φp−1(x) |<∞.
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III Proof of Proposition 3.1

We had qn+1(x) = qn(x)− (c + L)−1H qn(x) (3.5)

Φ′ is EF of (c + L)−1H to EV 0, but 〈Φ′, q0〉 = 0 ( 〈w0,Φ
′〉 = 0,

use 〈Φ,Φ′〉 = 0) implies 〈Φ′, qn〉 = 0 by induction (use 3.5).

qn(x) =

n(H)−1∑
k=1

α
(n)
k Uk(x)+

∑
0<λk<1

β
(n)
k Uk(x)+

∑
1<λk≤λmax

γ
(n)
k Uk(x) (3.6)

α
(n+1)
k = (1 + |λk |)α

(n)
k λk < 0 (3.7)

β
(n+1)
k = (1− λk)β

(n)
k 0 < λk < 1 (3.8)

γ
(n+1)
k = (1− λk)γ

(n)
k 1 < λk ≤ λmax (3.9)

For (max. linear !) convergence to 0 we need n(H) = 1 and
assumption 2.7.
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IV Proof of Proposition 3.1

Remark: Add
∑

λj=0 δ
(n)
j U j

0(x) to qn:

• If w0 not orthogonal to Φ′ −→ Iteration of wn converges to
c0Φ

′. translation in x of Φ(x) to Φ(x + c0), since we have
linearized operator (first order correction !).

• Ker(H) > 1, non-orthogonal w0: Not necessarily convergence
to Φ′, bifurcation. We need assumption 2.1.

q.e.d Proposition 3.1
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Preliminaries

Orthogonal Basis
(c + L)−1H in L2: H selfadjoint, (c + L) positive −→ EF of
generalized EVP (2.4) HU = λ(c + L)U form an orthogonal basis
of L2.

Lagrange Multipliers
Analysis II: Extremum of function f (x , y) under constraint
φ(x , y) = 0 computed through 3 equations:

φ(x , y) = 0 ∇ [f (x , y) + λφ(x , y)] = 0

Generalize to infinite dimensions: looking for extremum of F [ψ]
under constraint C [ψ] = 0:

C [ψ] = 0
δ

δψ
(F [ψ] + νC [ψ]) = 0

Peter Kauf Convergence of Petviashvili’s Iteration Method



Setting, Iteration, Spectrum Convergence Theorem, Proof Structure ‖A′(bΦ)‖ < 1 Spectral Lemmata Summary

Lemma 2.3

Lemma 2.3
The negative space of H in Xp(R) has dimension n(H)− 1.

Proof:
Need to find solutions (µ, ψ) to (H−µ)ψ = 0 under constraint
that 〈Φp, ψ〉 = 0. Use Lagrange Multiplier ν to get

〈Φp, ψ〉 = 0
δ

δψ

(
1

2
〈(H−µ)ψ,ψ〉+ ν〈Φp, ψ〉

)
= 0

in other words: 〈Φp, ψ〉 = 0 Hψ = µψ − νΦp(x) (2.7)

Decompose ψ with L2 EV-EF pairs (µk , uk), µ 6∈ σXp(H):

ψ(x) = ν

 ∑
µk<0

〈uk ,Φ
p〉

µ− µk
uk(x) +

∑
µk>0

〈uk ,Φ
p〉

µ− µk
uk(x)

 (2.8)
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ψ(x) = ν
[∑

µk<0
〈uk ,Φ

p〉
µ−µk

uk(x) +
∑

µk>0
〈uk ,Φ

p〉
µ−µk

uk(x)
]

1. uk ∈ Xp: µk is eigenvalue of H over Xp.

2. uk 6∈ Xp: Still need to fullfill constraint equation:

F (µ) =
1

ν
〈Φp, ψ〉 =

∑
µk<0

|〈Φp, uk〉|2

µ− µk
+

∑
µk>0

|〈Φp, uk〉|2

µ− µk

!
= 0 (2.9)

nXp(H) = #(1) + #(2).
Discussion of (2.9):

• Mon. decr. for µ ≤ 0 and µ 6= µk , cont. in (µk−1, µk).

• Eigenvalues µk of (1): F continuous at µ = µk .

• F
µ→−∞−→ 0−

• F (0) = −〈Φp,H−1 Φp〉 = 1
p−1〈Φ

p,Φ〉 > 0

• ±∞ at µ = µk for uk 6∈ Xp.

Have #(2) = #poles− 1. Get n(H)− 1 negative EV over Xp.

q.e.d. Lemma 2.3
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Lemma 2.4

Lemma 2.4
The spectrum of (c + L)−1H in Xp(R) has n(H)− 1 negative
eigenvalues λ.

Proof:
n(H) = dimension of negative space of quadratic form 〈U,HU〉
≡ n (〈U,HU〉), U ∈ Xp(R).
By generalized inertial theorem n (〈U,HU〉) is the same in any
orth. basis of Xp diagonalizing 〈U,HU〉 wrt. positively weighted
inner product:

• Orth. (wrt. 〈., .〉) basis through ψ(x) as defined in (2.8).

• Orth. (wrt. 〈(c + L)., .〉) basis out of generalized EVP (2.4).

q.e.d. Lemma 2.4
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Lemma 2.5

Lemma 2.5
Positive spectrum of (c + L)−1H in Xp(R):

1. Infinitely many discrete EV. 0 < λ < 1 (accumulating to 1−).

2. If ∀x ∈ R: Φp−1(x) ≥ 0: no EV. > 1.

3. If ∃x0 ∈ R : Φp−1(x0) < 0, we also have infinitely many
discrete EV. in 1 < λ < λmax (accumulating to 1+), and
λmax < 1 + p

c | minx∈R Φp−1(x) |<∞.

Proof (bounds only):
Continuity / Discreteness of spectrum out of spectral theory.
Rewrite (2.4) as

(c + L)U − p

1− λ
Φp−1(x)U = 0 (2.12)
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(c + L)U − p
1−λΦ

p−1(x)U = 0 (2.12)

Multiply (2.12) by U and integrate:

λ = 1− p
〈U,Φp−1U〉
〈U, (c + L)U〉

(2.13)

1. ∀xΦp−1(x) ≥ 0 −→ λ < 1.

2. ∃x0 : Φp−1(x0) < 0:

λ = 1− p
〈U,Φp−1U〉
〈U, (c + L)U〉

< 1 + p

∣∣∣∣min
x∈R

Φp−1(x)

∣∣∣∣ 〈U,U〉
〈U, (c + L)U〉

< 1 + p

∣∣∣∣min
x∈R

Φp−1(x)

∣∣∣∣ 〈U,U〉
c〈U,U〉

= 1 +
p

c

∣∣∣∣min
x∈R

Φp−1(x)

∣∣∣∣
q.e.d. Lemma 2.5
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Overview

Main Theorem 2.8
Let Φ̂(k) solution to (1.5), assumptions 1.1 (solution space) and
2.1 (Nullspace, bifurcation).
Petviashvili Iteration (1.8), (1.9) converges to Φ̂(k) in (small)
neighbourhood (Continuity of linearized operator, Fixed Point
Theorem) of Φ̂(k) if:

1. 1 < γ < p+1
p−1 (Proposition 3.1, convergence of mn)

2. n(H) = 1 (Proposition 3.1, convergence of qn)

3. assumption 2.7 is met. (Proposition 3.1, convergence of qn)

”If any of the conditions are not met, the Petviashvili iteration
diverges from Φ̂(k)”. (Bifurcation)

Remark: Generalization to more dimensions possible !
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