Convergence Theorem, Proof Structure

 $\|A'(\widehat{\Phi})\| < 1$

Spectral Lemmata

Summary

Convergence of Petviashvili's Iteration Method

Peter Kauf

January 23, 2007

Peter Kauf Convergence of Petviashvili's Iteration Method

Convergence Theorem, Proof Structure

 $\|A'(\Phi)\| < 1$

Spectral Lemmata

Summary 00

Table of Contents

Setting, Iteration, Spectrum

Equation, Discussion of Iteration Method

Convergence Theorem, Proof Structure

Statement, Contraction theorem, necessary auxiliary results

$\|A'(\widehat{\Phi})\| < 1$

Convergence of linearized Iteration Operator

Spectral Lemmata

Final Ingredients for Proof of Convergence

Summary

Overview, References

Numbering consistent with [PS] !

Peter Kauf

Convergence Theorem, Proof Structure

 $||A'(\widehat{\Phi})|| < 1$ Spe

Spectral Lemmata

Summary

Outline

Setting, Iteration, Spectrum Equation, Discussion of Iteration Method

Convergence Theorem, Proof Structure

Statement, Contraction theorem, necessary auxiliary results

 $\| {\cal A}'(\widehat{\Phi}) \| < 1$ Convergence of linearized Iteration Operator

Spectral Lemmata

Final Ingredients for Proof of Convergence

Summary Overview, References

Scalar, 1-D Wave Equation with Power Nonlinearity

$$u_t - (\mathcal{L} u)_x + \rho u^{\rho-1} u_x = 0$$
, (1.1)

• $u: \mathbb{R} \times \mathbb{R}_+ \longrightarrow \mathbb{R}, \ p > 1$

• \mathcal{L} : linear, self-adjoint ($\langle u, \mathcal{L} v \rangle = \langle \mathcal{L} u, v \rangle$), positive ($\langle u, \mathcal{L} u \rangle \ge 0$) pseudodifferential operator in x of order m.

•
$$\langle f,g\rangle = \int_{-\infty}^{\infty} \overline{f}(x)g(x)dx$$

• Fourier:
$$u(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{u}(k) e^{ikx} dk$$
, $\hat{u}(k) = \int_{-\infty}^{\infty} u(x) e^{-ikx} dx$

Stationary bound state solution $u(x, t) = \Phi(x - ct)$ leads to boundary value problem $\left(\int \left[-c\Phi_x - (\mathcal{L} \Phi)_x + p\Phi^{p-1}\Phi_x\right] dx\right)$

(1.3)
$$\begin{cases} c\Phi + \mathcal{L} \Phi = \Phi^p \\ \lim_{|x| \to \infty} \Phi(x) = 0 \end{cases} \quad \text{or (1.5)} \ [c + v(k)] \widehat{\Phi}(k) = \widehat{\Phi^p}(k) ,$$

 $v(k) \geq 0$ an $m^{ ext{th}}$ order polynomial in |k|

Peter Kauf

Convergence Theorem, Proof Structure

 $\|A'(\widehat{\Phi})\| < 1$

Spectral Lemmata

Summary 00

Assumption, Solution Space, Iteration

Assumption 1.1

p>1, $v(k) \ge 0$, c>0. \exists real analytical solution to 1 in $X = L^2(\mathbb{R}) \cap L^{p+1}(\mathbb{R}) \cap H^{m/2}(\mathbb{R})$

Approximate $\widehat{\Phi}$ through $\widehat{u}_{n+1}(k) = \frac{\widehat{u}_n^{\widehat{p}}(k)}{c+v(k)} \longrightarrow$ usually divergent !

Lemma 1.2: Fix points for (1.8), (1.9) correspond to bound states $\widehat{\Phi}(k)$ of (1.5) for $\gamma \neq 1 + 2n$, $n \in \mathbb{Z}$.

Peter Kauf

Convergence Theorem, Proof Structure

 $\|A'(\widehat{\Phi})\| < 1$ Spectral Lemmata

a Summary

Spectrum, Assumption 2.1

Define Operator to (1.1): $\mathcal{H} = c + \mathcal{L} - p \Phi^{p-1}(x)$ (1.10)

- selfadj. in $L^2(\mathbb{R}) \longrightarrow$ real eigenval., orth. spectr. decomp.
- Null space contains at least $\Phi'(x)$.
- cont. spectrum positive, bounded away from zero (ass. 1.1)
- negative spectrum not empty

$$\begin{aligned} \mathcal{H} \Phi &= (1-p) \Phi^p \\ \langle \mathcal{H} \Phi, \Phi \rangle &= -(p-1) \langle \Phi^p, \Phi \rangle = -\frac{p-1}{2\pi} \langle \widehat{\Phi}, \widehat{\Phi^p} \rangle \\ &= -\frac{p-1}{2\pi} \langle [c+v(.)] \widehat{\Phi}, \widehat{\Phi} \rangle < 0 \end{aligned}$$

Convergence Theorem, Proof Structure

 $\|A'(\widehat{\Phi})\| < 1$ Spectral Lemmata

a Summary

Spectrum, Assumption 2.1

Define Operator to (1.1): $\mathcal{H} = c + \mathcal{L} - p \Phi^{p-1}(x)$ (1.11)

- selfadj. in $L^2(\mathbb{R}) \longrightarrow$ real eigenval., orth. spectr. decomp.
- Null space contains at least $\Phi'(x)$.
- cont. spectrum positive, bounded away from zero (ass. 1.1)
- negative spectrum not empty

Assumption 2.1 on Spectrum of \mathcal{H} :

- $\sigma_{L^2}^{\text{discr}}(\mathcal{H})$ for eigenvalues < c
- $\sigma_{L^2}^{\text{cont}}(\mathcal{H})$ for eigenvalues $\geq c$
- Nullspace is one-dimensional
- dim. neg. space $n(\mathcal{H}) \geq 1$

Convergence Theorem, Proof Structure

 $\|A'(\widehat{\Phi})\| < 1$

Spectral Lemmata

Summary 00

Outline

Setting, Iteration, Spectrum Equation, Discussion of Iteration Method

Convergence Theorem, Proof Structure Statement, Contraction theorem, necessary auxiliary results

 $\| {\cal A}'(\widehat{\Phi}) \| < 1$ Convergence of linearized Iteration Operator

Spectral Lemmata

Final Ingredients for Proof of Convergence

Summary Overview, References

Peter Kauf Convergence of Petviashvili's Iteration Method

Convergence Theorem, Proof Structure

re $||A'(\widehat{\Phi})|| < 1$

Spectral Lemmata

Summary 00

Convergence Theorem

Theorem 2.8

Let $\widehat{\Phi}(k)$ solution to (1.5), assumptions 1.1 and 2.1. Petviashvili Iteration (1.8), (1.9) converges to $\widehat{\Phi}(k)$ in (small) neighbourhood of $\widehat{\Phi}(k)$ if:

- 1. $1 < \gamma < \frac{p+1}{p-1}$
- 2. n(H) = 1
- 3. Either $\Phi^{p-1}(x) \ge 0$ or $\lambda_{\max}((c+\mathcal{L})^{-1}\mathcal{H}) < 2$ (ass. 2.7)

"If any of the conditions are not met, the Petviashvili iteration diverges from $\widehat{\Phi}(k)$ ".

Convergence Theorem, Proof Structure

 $\|A'(\widehat{\Phi})\| < 1$

Spectral Lemmata

Summary

Fréchet Derivative, Contraction Principle

Fréchet Derivative

 \mathcal{B}, \mathcal{C} Banach spaces, $D \subset \mathcal{B}$ open, mapping $A : \mathcal{B} \longrightarrow \mathcal{C}$. A is Fréchet differentiable in $g \in D$ if \exists linear operator $L : \mathcal{B} \longrightarrow \mathcal{C}$, such that

$$\lim_{\|h\| \to 0} \frac{\|A(g+h) - Ag - Lh\|}{\|h\|} = 0$$

Fixed Point Theorem ([HP], Lemma 4.4.8)

Let \mathcal{B} a Banach space, $D \subset \mathcal{B}$ open, assume that $A : D \longrightarrow \mathcal{B}$ has fixed point $\overline{f} \in D$, and let A Fréchet diff. in $\overline{f} (A'(\overline{f}))$. $\forall \quad 0 < \varepsilon < 1 - ||A'(\overline{f})|| \quad \exists S(\overline{f}, \delta)$ open such that if $f_0 \in S(\overline{f}, \delta)$:

- The iterates $f_n := Af_{n-1} \in S(\bar{f}, \delta)$
- $\lim f_n = f$
- $||f_n \bar{f}|| \le (||A'(f)|| + \varepsilon)^n ||f_0 f||$

Convergence Theorem, Proof Structure

 $\|A'(\widehat{\Phi})\| < 1$

Spectral Lemmata

Summary

Proof of Convergence

Let A the iteration operator (1.8), (1.9): $\hat{u}_{n+1} = A(\hat{u}_n)$ in $X(\mathbb{R})$.

1. $A'(\hat{u}_n)$ continuous in $S(\widehat{\Phi}, \delta_c)$ (proof: [PS], Proposition 3.4 and additional calculation)

2. $\|A'(\widehat{\Phi})\| < 1$, i.e. spectral radius of $A'(\widehat{\Phi})$ is < 1.

By Continuity of
$$A'(\widehat{\Phi})$$
, we have $\forall \quad 0 < \varepsilon < 1 - \|A'(\widehat{\Phi})\|$
 $\exists S(\widehat{\Phi}, \delta(\varepsilon)) \subset X(\mathbb{R})$ such that $q = \sup_{\widehat{u}_n \in S} \|A'(\widehat{u}_n)\| < 1$.

By [HP], Lemma 4.4.7: $\forall \quad \hat{f}, \hat{g} \in S$: $||A(\hat{f}) - A(\hat{g})|| \leq q ||\hat{f} - \hat{g}||$. The contraction mapping theorem ([HP] theorem 4.3.4) assures that $A(\hat{u}_n)$ has **unique**, asymptotically stable fixed point in $S(\widehat{\Phi}, \delta)$. By the fixed Point theorem we get that

$$\|\hat{u}_n - \widehat{\Phi}\| \leq \left(\|A'(\widehat{\Phi})\| + \varepsilon\right)^n \|\hat{u}_0 - \widehat{\Phi}\|.$$

q.e.d. theorem 2.8

Peter Kauf

Convergence Theorem, Proof Structure

Spectral Lemmata

Summary 00

Outline

Setting, Iteration, Spectrum Equation, Discussion of Iteration Meth

Convergence Theorem, Proof Structure Statement, Contraction theorem, necessary auxiliary results

$\|\mathcal{A}'(\widehat{\Phi})\| < 1$ Convergence of linearized Iteration Operator

Spectral Lemmata

Final Ingredients for Proof of Convergence

Summary Overview, References

Peter Kauf Convergence of Petviashvili's Iteration Method

Proposition 3.1

Proposition 3.1 $A'(\widehat{\Phi})$ (i.e. Operator (1.8), (1.9) linearized at $\widehat{\Phi}(k)$) has spectral radius smaller than one $(||A'(\widehat{\Phi})|| < 1)$, if

- $1 < \gamma < \frac{p+1}{p-1}$
- $n(\mathcal{H}) = 1$
- assumptions 2.1 and 2.7 are met.

Proof: Define $\hat{u}_0(k) := \widehat{\Phi}(k) + \widehat{w}_0(k)$, $\widehat{w}_0(k)$ small and $\langle \Phi', w_0 \rangle = 0$. Generate $\widehat{w}_n(k) = \hat{u}_n(k) - \widehat{\Phi}(k)$ by linearized operators:

$$\widehat{w}_{n+1}(k) = \gamma m_n \widehat{\Phi}(k) + p \frac{\widehat{\Phi^{p-1}} \star \widehat{w}_n(k)}{c + v(k)}$$

$$m_n = (1-p) \frac{\int_{-\infty}^{\infty} \widehat{\Phi^p}(k) \widehat{w}_n(k) dk}{\int_{-\infty}^{\infty} \widehat{\Phi^p}(k) \widehat{\Phi}(k) dk} = M_n - 1 \quad (3.2)$$

proof: calculation, done in handout.

Peter Kauf

Convergence Theorem, Proof Structure

$\ A'(\widehat{\Phi})\ < 1$	Spectral Lemmata	Summar
00000	000000	00

I Proof of Proposition 3.1

Define space $X_p := \{U \in L^2 : \langle \Phi^p, U \rangle = 0\}.$ We decompose $\widehat{w}_n(k) = \widehat{u}_n(k) - \widehat{\Phi}(k)$ into

$$w_n = a_n \Phi(x) + q_n(x) \quad , \quad q_n(x) \in X_p \tag{3.3}$$

Immediately (3.2, 3.3): $m_n = (1 - p)a_n$ and by short calculations (see handout):

$$m_{n+1} = [p - \gamma(p-1)]m_n$$
 (3.4)

$$q_{n+1}(x) = q_n(x) - (c + \mathcal{L})^{-1} \mathcal{H} q_n(x)$$
 (3.5)

Want to prove that $w_n \xrightarrow{n \to \infty} 0$ to conclude that spectral radius of (3.1), (3.2) less than 1.

(1)
$$m_n \longrightarrow 0$$
 if $1 < \gamma < \frac{p+1}{p-1}$. Superlinear: $\gamma = \frac{p}{p-1}$.

Peter Kauf

Convergence Theorem, Proof Structure

$\ A'(\widehat{\Phi})\ < 1$	Spectral Lemmata	Summar
00000	000000	00

II Proof of Proposition 3.1

(2) $q_n \longrightarrow 0$: Decompose q_n into EF of $(c + \mathcal{L})^{-1} \mathcal{H}$ (see later) in X_p . We need two Lemmata (proven later):

Lemma 2.4 $\sigma\left((c+\mathcal{L})^{-1}\mathcal{H}\right)$ in $X_p(\mathbb{R})$ has $n(\mathcal{H})-1$ negative EV.

Lemma 2.5

Positive spectrum of $(c + \mathcal{L})^{-1} \mathcal{H}$ in $X_p(\mathbb{R})$:

- 1. Infinitely many discrete EV. $0 < \lambda < 1$ (accumulating to 1^{-}).
- 2. If $\forall x \in \mathbb{R}$: $\Phi^{p-1}(x) \ge 0$: no EV. > 1.
- 3. If $\exists x_0 \in \mathbb{R} : \Phi^{p-1}(x_0) < 0$, we also have infinitely many discrete EV. in $1 < \lambda < \lambda_{\max}$ (accumulating to 1^+), and $\lambda_{\max} < 1 + \frac{p}{c} \mid \min_{x \in \mathbb{R}} \Phi^{p-1}(x) \mid < \infty$.

Convergence Theorem, Proof Structure

$\ A'(\widehat{\Phi})\ < 1$	Spectral Lemmata	Summar
00000	000000	00

III Proof of Proposition 3.1

We had
$$q_{n+1}(x) = q_n(x) - (c + \mathcal{L})^{-1} \mathcal{H} q_n(x)$$
 (3.5)

 Φ' is EF of $(c + \mathcal{L})^{-1} \mathcal{H}$ to EV 0, but $\langle \Phi', q_0 \rangle = 0$ ($\langle w_0, \Phi' \rangle = 0$, use $\langle \Phi, \Phi' \rangle = 0$) implies $\langle \Phi', q_n \rangle = 0$ by induction (use 3.5).

$$q_n(x) = \sum_{k=1}^{n(\mathcal{H})-1} \alpha_k^{(n)} U_k(x) + \sum_{0 < \lambda_k < 1} \beta_k^{(n)} U_k(x) + \sum_{1 < \lambda_k \le \lambda_{\max}} \gamma_k^{(n)} U_k(x)$$
(3.6)

$$\alpha_k^{(n+1)} = (1+|\lambda_k|)\alpha_k^{(n)} \qquad \lambda_k < 0$$
 (3.7)

$$\beta_k^{(n+1)} = (1-\lambda_k)\beta_k^{(n)} \qquad 0 < \lambda_k < 1$$
 (3.8)

$$\gamma_k^{(n+1)} = (1-\lambda_k)\gamma_k^{(n)} \qquad 1 < \lambda_k \le \lambda_{\max}$$
(3.9)

For (max. linear !) convergence to 0 we need $n(\mathcal{H}) = 1$ and assumption 2.7.

Peter Kauf

Convergence Theorem, Proof Structure

mata Summary

IV Proof of Proposition 3.1

Remark: Add $\sum_{\lambda_j=0} \delta_j^{(n)} U_0^j(x)$ to q_n :

- If w_0 not orthogonal to $\Phi' \longrightarrow$ Iteration of w_n converges to $c_0\Phi'$. translation in x of $\Phi(x)$ to $\Phi(x + c_0)$, since we have linearized operator (first order correction !).
- Ker(H) > 1, non-orthogonal w₀: Not necessarily convergence to Φ', bifurcation. We need assumption 2.1.

q.e.d Proposition 3.1

Convergence Theorem, Proof Structure

Spectral Lemmata

Summary 00

Outline

Setting, Iteration, Spectrum Equation, Discussion of Iteration Metho

Convergence Theorem, Proof Structure

Statement, Contraction theorem, necessary auxiliary results

 $\|A'(\widehat{\Phi})\| < 1$ Convergence of linearized Iteration Operator

Spectral Lemmata Final Ingredients for Proof of Convergence

Summary Overview, References

Peter Kauf Convergence of Petviashvili's Iteration Method

Setting,	Iteration,	Spectrum	
0000			

$$||A'(\widehat{\Phi})|| < 1$$

Spectral Lemmata •00000

Summary 00

Preliminaries

Orthogonal Basis

 $(c + \mathcal{L})^{-1} \mathcal{H}$ in L^2 : \mathcal{H} selfadjoint, $(c + \mathcal{L})$ positive \longrightarrow EF of generalized EVP (2.4) $\mathcal{H} U = \lambda(c + \mathcal{L})U$ form an orthogonal basis of L^2 .

Lagrange Multipliers

Analysis II: Extremum of function f(x, y) under constraint $\phi(x, y) = 0$ computed through 3 equations:

$$\phi(x, y) = 0 \quad \nabla \left[f(x, y) + \lambda \phi(x, y) \right] = 0$$

Generalize to infinite dimensions: looking for extremum of $F[\psi]$ under constraint $C[\psi] = 0$:

$$C[\psi] = 0 \quad \frac{\delta}{\delta\psi} \left(F[\psi] + \nu C[\psi] \right) = 0$$

Peter Kauf

Ire
$$||A'(\Phi)|| < 00000$$

Spectral Lemmata

Summary

Lemma 2.3

Lemma 2.3

The negative space of \mathcal{H} in $X_p(\mathbb{R})$ has dimension $n(\mathcal{H}) - 1$.

Proof:

Need to find solutions (μ, ψ) to $(\mathcal{H} - \mu)\psi = 0$ under constraint that $\langle \Phi^{p}, \psi \rangle = 0$. Use Lagrange Multiplier ν to get

$$\langle \Phi^{p}, \psi \rangle = 0 \quad \frac{\delta}{\delta \psi} \left(\frac{1}{2} \langle (\mathcal{H} - \mu) \psi, \psi \rangle + \nu \langle \Phi^{p}, \psi \rangle \right) = 0$$

in other words: $\langle \Phi^{p}, \psi \rangle = 0$ $\mathcal{H}\psi = \mu\psi - \nu\Phi^{p}(x)$ (2.7) Decompose ψ with L^{2} EV-EF pairs $(\mu_{k}, u_{k}), \ \mu \notin \sigma_{X_{p}}(\mathcal{H})$:

$$\psi(x) = \nu \left[\sum_{\mu_k < 0} \frac{\langle u_k, \Phi^p \rangle}{\mu - \mu_k} u_k(x) + \sum_{\mu_k > 0} \frac{\langle u_k, \Phi^p \rangle}{\mu - \mu_k} u_k(x) \right]$$
(2.8)

Peter Kauf

Setting, Iteration, Spectrum Convergence Theorem, Proof Structure
$$\|A'(\widehat{\Phi})\| < 1$$
 Spectral Lemmata Summary $\psi(x) = \nu \left[\sum_{\mu_k < 0} \frac{\langle u_k, \Phi^p \rangle}{\mu - \mu_k} u_k(x) + \sum_{\mu_k > 0} \frac{\langle u_k, \Phi^p \rangle}{\mu - \mu_k} u_k(x) \right]$

1. $u_k \in X_p$: μ_k is eigenvalue of \mathcal{H} over X_p .

2. $u_k \notin X_p$: Still need to fullfill constraint equation:

$$F(\mu) = \frac{1}{\nu} \langle \Phi^{p}, \psi \rangle = \sum_{\mu_{k} < 0} \frac{|\langle \Phi^{p}, u_{k} \rangle|^{2}}{\mu - \mu_{k}} + \sum_{\mu_{k} > 0} \frac{|\langle \Phi^{p}, u_{k} \rangle|^{2}}{\mu - \mu_{k}} \stackrel{!}{=} 0 \qquad (2.9)$$
$$n_{\chi_{p}}(\mathcal{H}) = \#(1) + \#(2).$$

Discussion of (2.9):

- Mon. decr. for $\mu \leq 0$ and $\mu \neq \mu_k$, cont. in (μ_{k-1}, μ_k) .
- Eigenvalues μ_k of (1): F continuous at μ = μ_k.

•
$$F \stackrel{\mu \to -\infty}{\longrightarrow} 0^-$$

•
$$F(0) = -\langle \Phi^{p}, \mathcal{H}^{-1} \Phi^{p} \rangle = \frac{1}{p-1} \langle \Phi^{p}, \Phi \rangle > 0$$

• $\pm \infty$ at $\mu = \mu_k$ for $u_k \notin X_p$. Have #(2) = #poles -1. Get $n(\mathcal{H}) - 1$ negative EV over X_p .

q.e.d. Lemma 2.3

ure $||A'(\widehat{\Phi})|| < 1$

Spectral Lemmata Summary

l emma 24

Lemma 2.4

The spectrum of $(c + \mathcal{L})^{-1} \mathcal{H}$ in $X_p(\mathbb{R})$ has $n(\mathcal{H}) - 1$ negative eigenvalues λ .

Proof:

$$\begin{split} n(\mathcal{H}) &= \text{dimension of negative space of quadratic form } \langle U, \mathcal{H} U \rangle \\ &\equiv n(\langle U, \mathcal{H} U \rangle), \ U \in X_p(\mathbb{R}). \end{split}$$

By generalized inertial theorem $n(\langle U, \mathcal{H} U \rangle)$ is the same in any orth. basis of X_p diagonalizing $\langle U, \mathcal{H} U \rangle$ wrt. positively weighted inner product:

- Orth. (wrt. $\langle ., . \rangle$) basis through $\psi(x)$ as defined in (2.8).
- Orth. (wrt. $\langle (c + \mathcal{L}), ., \rangle$) basis out of generalized EVP (2.4).

q.e.d. Lemma 2.4

Summary

Lemma 2.5

Lemma 2.5

Positive spectrum of $(c + \mathcal{L})^{-1} \mathcal{H}$ in $X_{\rho}(\mathbb{R})$:

- 1. Infinitely many discrete EV. $0 < \lambda < 1$ (accumulating to 1^{-}).
- 2. If $\forall x \in \mathbb{R}$: $\Phi^{p-1}(x) \ge 0$: no EV. > 1.
- 3. If $\exists x_0 \in \mathbb{R} : \Phi^{p-1}(x_0) < 0$, we also have infinitely many discrete EV. in $1 < \lambda < \lambda_{\max}$ (accumulating to 1^+), and $\lambda_{\max} < 1 + \frac{p}{c} | \min_{x \in \mathbb{R}} \Phi^{p-1}(x) | < \infty$.

Proof (bounds only):

Continuity / Discreteness of spectrum out of spectral theory. Rewrite (2.4) as

$$(c+\mathcal{L})U - \frac{p}{1-\lambda}\Phi^{p-1}(x)U = 0$$
 (2.12)

Convergence Theorem, Proof Structure

 $\|A'(\widehat{\Phi})\| < 1$

Spectral Lemmata Summary

$$(c + \mathcal{L})U - \frac{p}{1-\lambda}\Phi^{p-1}(x)U = 0$$
 (2.12)

Multiply (2.12) by U and integrate:

$$\lambda = 1 - p \frac{\langle U, \Phi^{p-1}U \rangle}{\langle U, (c+\mathcal{L})U \rangle}$$
(2.13)

1.
$$\forall x \Phi^{p-1}(x) \ge 0 \longrightarrow \lambda < 1.$$

2. $\exists x_0 : \Phi^{p-1}(x_0) < 0:$

$$\begin{split} \lambda &= 1 - p \frac{\langle U, \Phi^{p-1}U \rangle}{\langle U, (c+\mathcal{L})U \rangle} < 1 + p \frac{\left| \min_{x \in \mathbb{R}} \Phi^{p-1}(x) \right| \langle U, U \rangle}{\langle U, (c+\mathcal{L})U \rangle} \\ &< 1 + p \frac{\left| \min_{x \in \mathbb{R}} \Phi^{p-1}(x) \right| \langle U, U \rangle}{c \langle U, U \rangle} = 1 + \frac{p}{c} \left| \min_{x \in \mathbb{R}} \Phi^{p-1}(x) \right| \end{split}$$

q.e.d. Lemma 2.5

Peter Kauf

Convergence Theorem, Proof Structure

 $\|A'(\widehat{\Phi})\| < 1$

Spectral Lemmata

Summary

Outline

Setting, Iteration, Spectrum

Equation, Discussion of Iteration Method

Convergence Theorem, Proof Structure

Statement, Contraction theorem, necessary auxiliary results

 $\| {\cal A}'(\widehat{\Phi}) \| < 1$ Convergence of linearized Iteration Operator

Spectral Lemmata Final Ingredients for Proof of Convergence

Summary Overview, References

Setting,	Iteration,	Spectrum
0000		

Spectral Lemmata

Summary •O

Overview

Main Theorem 2.8

Let $\widehat{\Phi}(k)$ solution to (1.5), assumptions 1.1 (solution space) and 2.1 (Nullspace, bifurcation). Petviashvili Iteration (1.8), (1.9) converges to $\widehat{\Phi}(k)$ in (small) neighbourhood (Continuity of linearized operator, Fixed Point Theorem) of $\widehat{\Phi}(k)$ if:

- 1. $1 < \gamma < \frac{p+1}{p-1}$ (Proposition 3.1, convergence of m_n)
- 2. $n(\mathcal{H}) = 1$ (Proposition 3.1, convergence of q_n)
- 3. assumption 2.7 is met. (Proposition 3.1, convergence of q_n)

"If any of the conditions are not met, the Petviashvili iteration diverges from $\widehat{\Phi}(k)$ ". (Bifurcation)

Remark: Generalization to more dimensions possible !

Peter Kauf

Setting,	Iteration,	Spectrum
0000		

Convergence Theorem, Proof Structure

re $||A'(\widehat{\Phi})|| < 1$

Spectral Lemmata

Summary

References

[PS] Dmitry E. Pelinovsky, Yury A. Stepanyants, *Convergence of Petviashvili's Iteration Method for Numerical Approximation of Stationary Solutions of Nonlinear Wave Equations*, SIAM J. NUMER. ANAL., Vol. 42, No. 3, pp. 1110-1127.

[HP] V. Huson, J.S. Pym, *Applications of Functional Analysis and Operator Theory*, Mathematics in Science and Engineering, Volume 146, Academic Press, 1980.