Overview

$$
\begin{equation*}
u_{t}-(\mathcal{L} u)_{x}+p u^{p-1} u_{x}=0 \tag{1.1}
\end{equation*}
$$

$$
\text { (1.3) }\left\{\begin{array}{l}
c \Phi+\mathcal{L} \Phi=\Phi^{p} \\
\lim _{|x| \rightarrow \infty} \Phi(x)=0
\end{array} \quad \text { or (1.5) }[c+v(k)] \widehat{\Phi}(k)=\widehat{\Phi^{p}}(k)\right.
$$

Assumption 1.1

$p>1, v(k) \geq 0, c>0$. \exists real analytical solution to in $X=L^{2}(\mathbb{R}) \cap L^{p+1}(\mathbb{R}) \cap H^{m / 2}(\mathbb{R})$

$$
\begin{array}{|rr}
\hline \text { Petviashvili Iteration } & \widehat{u}_{n+1}(k)=M_{n}^{\gamma} \frac{\widehat{u_{n}^{p}}(k)}{c+v(k)} \\
M_{n}=\frac{\int_{-\infty}^{\infty}[c+v(k)]\left[\widehat{u}_{n}(k)\right]^{2} d k}{\int_{-\infty}^{\infty} \widehat{u}_{n}(k) \widehat{u_{n}^{p}}(k) d k}
\end{array}
$$

$$
\begin{equation*}
\mathcal{H}=c+\mathcal{L}-p \Phi^{p-1}(x) \tag{2.1}
\end{equation*}
$$

Assumption 2.1 on Spectrum of \mathcal{H} :

- $\sigma_{L^{2}}^{\text {discr }}(\mathcal{H})$ for eigenvalues $<c$
- Nullspace is one-dimensional
- $\sigma_{L^{2}}^{\text {cont }}(\mathcal{H})$ for eigenvalues $\geq c$
- dim. neg. space $n(\mathcal{H}) \geq 1$

Assumption 2.7 :

Either $\Phi^{p-1}(x) \geq 0\left(\longrightarrow \lambda_{\max }\left((c+\mathcal{L})^{-1} \mathcal{H}\right)<1\right)$ or $\lambda_{\max }\left((c+\mathcal{L})^{-1} \mathcal{H}\right)<2$

Theorem 2.8
Let $\widehat{\Phi}(k)$ solution to (1.5), assumptions 1.1 and 2.1. Petviashvili Iteration (1.8), (1.9) converges to $\widehat{\Phi}(k)$ in (small) neighbourhood of $\widehat{\Phi}(k)$ if:

1. $1<\gamma<\frac{p+1}{p-1}$
2. $n(\mathcal{H})=1$
3. assumption 2.7 is met.
"If any of the conditions are not met, the Petviashvili iteration diverges from $\widehat{\Phi}(k)$ ".

Fixed Point Theorem

Let \mathcal{B} a Banach space, $D \subset \mathcal{B}$ open, assume that $A: D \longrightarrow \mathcal{B}$ has fixed point $\bar{f} \in D$, and let A Fréchet diff. in $\bar{f}\left(A^{\prime}(\bar{f})\right)$.
$\forall 0<\varepsilon<1-\left\|A^{\prime}(\bar{f})\right\| \quad \exists S(\bar{f}, \delta)$ open such that if $f_{0} \in S(\bar{f}, \delta)$:

- The iterates $f_{n}:=A f_{n-1} \in S(\bar{f}, \delta)$
- $\lim f_{n}=f$
- $\left\|f_{n}-\bar{f}\right\| \leq\left(\left\|A^{\prime}(f)\right\|+\varepsilon\right)^{n}\left\|f_{0}-f\right\|$

Proposition 3.1

$A^{\prime}(\widehat{\Phi})$ (i.e. Operator (1.8), (1.9) linearized at $\widehat{\Phi}(k)$) has spectral radius smaller than one $\left(\left\|A^{\prime}(\widehat{\Phi})\right\|<1\right)$, if

- $1<\gamma<\frac{p+1}{p-1}$
- $n(\mathcal{H})=1$
- assumptions 2.1 and 2.7 are met.

$$
\begin{gather*}
X_{p}:=\left\{U \in L^{2}:\left\langle\Phi^{p}, U\right\rangle=0\right\} \\
q_{n+1}(x)=q_{n}(x)-(c+\mathcal{L})^{-1} \mathcal{H} q_{n}(x) \tag{3.5}
\end{gather*}
$$

Lemma 2.4
$\sigma\left((c+\mathcal{L})^{-1} \mathcal{H}\right)$ in $X_{p}(\mathbb{R})$ has $n(\mathcal{H})-1$ negative eigenvalues.

Lemma 2.5

Positive spectrum of $(c+\mathcal{L})^{-1} \mathcal{H}$ in $X_{p}(\mathbb{R})$:

1. Infinitely many discrete EV. $0<\lambda<1$ (accumulating to 1^{-}).
2. If $\forall x \in \mathbb{R}: \Phi^{p-1}(x) \geq 0$: no EV. >1.
3. If $\exists x_{0} \in \mathbb{R}: \Phi^{p-1}\left(x_{0}\right)<0$, we also have infinitely many discrete EV. in $1<\lambda<\lambda_{\max }$ (accumulating to 1^{+}), and $\lambda_{\max }<1+\frac{p}{c}\left|\min _{x \in \mathbb{R}} \Phi^{p-1}(x)\right|<\infty$.

$$
\begin{equation*}
\mathcal{H} U=\lambda(c+\mathcal{L}) U \tag{2.4}
\end{equation*}
$$

Lemma 2.3

The negative space of \mathcal{H} in $X_{p}(\mathbb{R})$ has dimension $n(\mathcal{H})-1$.

$$
\begin{gather*}
\left\langle\Phi^{p}, \psi\right\rangle=0 \quad \mathcal{H} \psi=\mu \psi-\nu \Phi^{p}(x) \tag{2.7}\\
\psi(x)=\nu\left[\sum_{\mu_{k}<0} \frac{\left\langle u_{k}, \Phi^{p}\right\rangle}{\mu-\mu_{k}} u_{k}(x)+\sum_{\mu_{k}>0} \frac{\left\langle u_{k}, \Phi^{p}\right\rangle}{\mu-\mu_{k}} u_{k}(x)\right] \tag{2.8}\\
F(\mu)=\frac{1}{\nu}\left\langle\Phi^{p}, \psi\right\rangle=\sum_{\mu_{k}<0} \frac{\left|\left\langle\Phi^{p}, u_{k}\right\rangle\right|^{2}}{\mu-\mu_{k}}+\sum_{\mu_{k}>0} \frac{\left|\left\langle\Phi^{p}, u_{k}\right\rangle\right|^{2}}{\mu-\mu_{k}} \stackrel{!}{=} 0 \tag{2.9}
\end{gather*}
$$

