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NLS with an attracting nonlinearity

The NLS models pulse propagation in an optical fiber at the
lowest order of nonlinearity.

i∂tΨ + ∆Ψ + |Ψ|2σΨ = 0

Ψ(x, 0) = φ(x)

Under special conditions, the pulse can self focus, which
corresponds to a blowup of the solution.

critical case: σd = 2

supercritical case: σd > 2

( d : dimension of the problem)
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Bound states and Ground states

A special class of solutions is derived by making the Ansatz:

Ψ(x, t) = e iλ2tΦ(x)

They are referred to as: Standing waves, solitary waves, wave
guides or bound states. Φ satisfies

∆Φ + λ2Φ + |Φ|2σΦ = 0

Solutions:

d = 1: unique solution

d > 1: existence of a unique radially symmetric and
positive solution (ground state)

The Towns profile is the ground state standing wave with
d = 2 and σ = 1
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Existence of the Townes profile 1

Task: Find solutions g ∈ H1(Rd) of

∆g − λ2g + g2σ+1 = 0 (1)

Necessary conditions for the existence are the following
(Pohozaev) identities:∫

|∇g |2 dx =
σd

2(σ + 1)

∫
|g |2σ+2 dx

λ2

d

∫
|g |2 dx = (

1

d
− σ

2(σ + 1)
)

∫
|g |2σ+2 dx

⇒ No solutions ( ∈ H1(Rd) ), if σ > 2
d−2
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Existence of the Townes profile 2

Theorem

Suppose d ≥ 2 and σ < 2
d−2 . ( no extra condition on σ, if

d = 2 ). Then (1) has a positive, spherically symmetric solution
g ∈ C 2(Rd). In addition, g and its derivatives up to second
order have an exponential decay at infinity. This solution
minimizes the Action, among all H1(Rd)- solutions of (1).

Theorem

For 0 < σ < 2
d−2 the positive solution is unique.
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Existence of the Townes profile 3

Idea of the proof:

The Action is defined by S(u) := 1
2 ( H(u) + λ2N(u) )

H(u) :=

∫
(|∇u|2 − 1

σ + 1
|u|2σ+2) dx N(u) :=

∫
|u|2 dx

S is a C 1-functional on H1(Rd)

For solutions g of (1) S(g) > 0

Find g := min{S(u) : u ∈ H1(Rd), u is solution of (1) }
Show that g is positive

Apply some theorem to get: g is spherically symmetric
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Computation of the Towns Profile 1

We know that the solution of interest is radial symmetric, thus
equation (1) transforms to

∂2

∂r2
g +

1

r2

∂2

∂θ2
g︸ ︷︷ ︸

=0

+
1

r

∂

∂r
g + λ2g + g2σ+1 =

∂2

∂r2
g +

1

r

∂

∂r
g + λ2g + g2σ+1 = 0

This second order ODE has to be solved with respect to the
following boundary conditions:

∂
∂r g |r=0 = 0

limr→∞ g(r) = 0
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Computation of the Towns Profile with shooting
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Towns soliton, current initial condition:2.9
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Computation of the Towns Profile with shooting
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Computation of the Towns Profile with shooting
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Computation of the Towns Profile with shooting
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Computation of the Towns Profile with shooting
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Computation of the Towns Profile with shooting
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Computation of the Towns Profile with shooting
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Computation of the Towns Profile with shooting
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Computation of the Towns Profile with shooting
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Computation of the Towns Profile with shooting
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Computation of the Towns Profile with shooting
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Computation of the Towns Profile with shooting
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Finite Time Blowup

Theorem

Suppose that σd ≥ 2. Consider an initial condition φ ∈ H1

with V (0) < ∞, that satisfies one of the conditions below:

H(φ) < 0

H(φ) = 0 and V ′(0) < 0

H(φ) > 0 and V ′(0) ≤ −4
√

H(φ)|xφ|L2

Then, there exists a time t∗ < ∞ such that

lim
t→t∗

|∇Ψ|L2 = ∞ and lim
t→t∗

|Ψ|L∞ = ∞
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Useful stuff

Variance

V (t) :=

∫
|x|2|Ψ|2 dx

Variance Identity

1

8

d2

dt2
V (t) = H − dσ − 2

2σ + 2

∫
|Ψ|2σ+2 dx

Some L2−estimation∫
|f |2 dx =

1

d

∫
(∇ · x)|f |2 dx =

= − 1

d

∫
x · ∇|f |2 dx = − 1

d

∫
x · 2|f |∇|f | dx

⇒ |f |2L2 ≤ 2

d
|∇f |l2 |xf |L2
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Proof 1

Suppose dσ = 2, then there holds

d2

dt2
V (t) = 8H(φ) (2)

thus by integrating in time

V (t) = 4H(φ)t2 + V ′(0)t + V (0)

Assume there exists a t0, for which limt→t0 V (t) = 0. Due to
conservation of |f |2L2 , there holds

|Ψ|2L2︸ ︷︷ ︸
const

≤ 2

d
|∇Ψ|L2 |xΨ|L2︸ ︷︷ ︸

= V (t) → 0

⇒ lim
t→t0

|∇Ψ|L2 = ∞
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Proof 2

V (0) > 0, thus the parabola has a root on the positive time
axis in any of the three following cases:

The parabola has a global maximum: H(φ) < 0

Line with negative inclination: H(φ) = 0 and V ′(0) < 0

Angular point on the pos. time axis, with a neg. value

V (t) = 4H(t + V ′

8H )2 +V − V ′ 2

16H ⇒ SP = (− V ′

8H ,V − V ′ 2

16H )

⇒ V ′ ≤ 0 and V ′ 2 ≥ 16VH

The three cases correspond to the three conditions in the
theorem. Remark: For dσ > 2, there is a ≤ in equation (2).
Other than that the proof is the same.
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Pseudospectral method to solve the NLS

The NLS is given by

iΨt = (−∆︸︷︷︸
=: L

+ |Ψ|2σ︸ ︷︷ ︸
=: NL

)Ψ

Thus the formal solution to the initial value problem
Ψ(x, 0) = φ(x) is given by

Ψ(x, t) = e−i(L+NL)δt φ(x),

where δt := t − t0. This exponential can be approximated to
the second order:

e−i(L+NL)δt = e−iNL δt
2 e−iL δt

2 e−iNL δt
2 + O(δt2)
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Skatch of the algorithm

1 Solve half the NL step in the x space

2 Fouriertransform into k-space

3 Solve all of the L-step in the k-space

4 Inversfouriertransform back to the x space

5 Solve the other half of NL in the x space

Solution for the nonlinear operator:

Ψ(x, t0 + δt) = Ψ(x, t0)e
−i |Ψ(x,t0)|2 δt

Solution for the linear operator:

Ψ̂(k, t0) = F [Ψ(x, t0)]

Ψ̂(k, t0 + δt) = Ψ̂(k, t0)e
−i (k2

x +k2
y ) δt

Ψ(x, t0 + δt) = F−1[Ψ(k, t0 + δt)]
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Some examples

Instability of the Towns profile

Instability of a Gaussian profile

Nonsymmetric initial conditions
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