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General Overview

• What is a freak wave?

• How and why is it generated?

• Prediction and probability of occurrence?

• Simulation?

• What is the connection with Solitary waves and Solitons?

• What is the association between freak waves and modulational instability?
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Definition of Freak waves

Haver 2000

A freak wave event is an event

that represents an outlier when

seen in view of population of

events, generated by a piece-

wise stationary and homoge-

neous second order model of the

surface process. (non-Gaussian

random Field)[8]

Gaussian Approach

Freak waves are extreme waves

of a population of waves with

corresponding crest height HF

satisfying the inequality HF >

2HS , where HS is the signifi-

cant height of the population with

respect to the Rayleigh distributi-

on [7]
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The Probability of occurrence

1. Strong dispersion of the water waves implies that each individual sine wave

travels with a frequency dependent velocity

2. Due to nonlinearity of the water waves each individual sine waves interact

each to other generating new spectral components

The wave field gives rise to an irregular sea surface that is constantly changing

with time

Gaussian random Field with probability density distribution

f(η) =
1√
2πσ

exp(
−η2

2σ2
) (1)
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η the sea level displacement with zero mean level

σ2 is computed from frequency spectrum S(ω)

σ2 =< η2 >=
∫ ∞

0

S(ω)dω (2)

Further Assumptions

1. The wind spectrum is narrow

2. Significant height

Hs = (3
√

2π[errorfunction](
√

ln(3) + 2
√

2 ln(3))σ ∼= 4σ
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Rayleigh Wave Height Distribution

P (H) = exp(
−H2

8σ2
) (3)

Conclusion
Probability of Freak Wave event < 0.000336

Limit Theorem of Linear Approximation

Maximum Freak way event→HF = 3HS

BUT In practice have been scanned Freak waves with

HF = 4HS
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HAVER’s Definition−→ Statistics of large deviations−→ more realistic

Probabilities

True Probability≥ Linear Theory Probability
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Freak Waves’ Properties

• Freak Waves are essentially non linear objects

• Very steep. In the last stage of evolution steepness becomes infinite, thus

forming a wall of water

• They are single events

• Small characteristic life (10 wave periods)

• Almost instant appearance through relatively calm sea
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Theorem 0.0.1 Progressive waves of finite amplitude on deep water (Stokes

Waves) are unstable [1]

NOTES

• Benjamin-Feir instability or Modulational instability

• Deep water corresponds to infinite depth water

• Naturally non linear objects associated with instability
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Assumptions and general idea

(1) Basic Wave train:

amplitude= α

argument= ζ = kx− ωt, harmonics: 2ζ, ...

advance in horizontal x-direction.

phase velocity c = ω/k

(2) Disturbance waves:

Pair of progressive waves with:

side band frequencies, wave numbers adjacent to ω, k and

ζ1 = k(1 + κ)x− ω(1 + δ)t− γ1 (4)

ζ2 = k(1− κ)x− ω(1− δ)t− γ2 (5)

κ, δ, small fractions

Amplitudes: ε1, ε2 << α
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The non-linear interaction of the above−→ components with arguments:

2ζ − ζ1 = ζ2 + (γ1 + γ2) (6)

2ζ − ζ2 = ζ1 + (γ1 + γ2) (7)

with amplitudes proportional to: α2ε1, α
2ε2.

Assumption: If

θ = γ1 + γ2 → constant (8)

then:

Each mode suffers a synchronous forcing action proportional to the

amplitude of the other, so that the two can grow mutually at an exponential

rate
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Crucial Task

Given α, k, ω of the basic wave train, property (5) can hold for some non-zero

κ, δ.

Stability Analysis

Boundary Problem

Equation of free surface:

y = η(x, t) (9)

η is the elevation of the surface above its mean level y = 0
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Conditions

Velocity Potential:

52φ = φxx + φyy = 0 (10)

No motion in infinite depths:

5φ→ 0, y → −∞ (11)

Kinematical boundary condition:

D(η − y)/Dt = ηt + ηx[φx]y=η − [φy]y=η = 0 (12)

Condition of constant pressure(Surface tension assumed absent)

gη + [φt]y=η +
1
2
[φ2
x + φ2

y]y=η = 0 (13)
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Existence of periodic solutions of the form:

η = H(x− ct), φ = Φ(x− ct, y), Levi-Civita (1925)

Approximation up to α2 terms because:

The affect of a nearby train wave to the original one in the phase velocity will be of

second order the amplitude responsible for it

Analytical Form of Solutions

η = H = αcos(ζ) +
1
2
kα2 cos(2ζ) (14)

φ = Φ = ωk−1αeky sin(ζ) (15)

(16)

where

ω2 = gk(1 + k2α2) (17)

Sufficient accuracy if kα is small
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Perturbation Equations

Let:

φ = Φ + εφ̃, η = H + εη̃ (18)

(10) is linear hence:

52φ̃ = ˜φxx + φ̃yy = 0 (19)

5φ̃→ 0, y → −∞ (20)
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Substitution to (12)(13) and linearization in ε gives:

η̃t + η̃x[Φx]y=H + η̃[−Φyy + HxΦxy]y=H + [−φ̃y + Hxφ̃x]y=H = 0 (21)

gη̃ + η̃[ΦxΦxy + ΦyΦyy + Φty]y=H + [φ̃t + Φxφ̃x + Φyφ̃y]y=H = 0 (22)

1) Simplification of (21)(22) up to terms α2.

2)Analytical continuation of φ̃ in a neighborhood about y=H.
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Taylor expansion gives

η̃t − [φ̃y]y=0 = α[kω sin(ζ)η̃ − ω cos(ζ)η̃x + (cos(ζ)φ̃yy + k sin(ζ)φ̃x)y=0]

+ 1
2
α2[2k2ω sin(2ζ)η̃ − kω(1 + cos(2ζ))η̃x

+{k sin(2ζ)(2kφ̃x + φ̃xy) + k cos(2ζ)φ̃yy +
1

2
(1 + cos(2ζ))φ̃yyy}y=0] (23)

gη̃ + (φ̃t)y=0 = α[ω2 cos(2ζ)η̃ − (ω cos(ζ)φ̃x + ω sin(ζ)φ̃y + cos(ζ)φ̃yt)y=0]

− 1
2
α2[kω2(1− cos(2ζ))η̃ + {ω sin(2ζ)(kφ̃y + φ̃yy)

+(1 + cos(2ζ))(kωφ̃x + ωφ̃xy +
1

2
φ̃yyt) + k cos(2ζ)φ̃yt}y=0] (24)
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Assumed form of solution

The main assumption enters:

η̃ = η̃1 + η̃2 (25)

The two components have the following form:

η̃i = εi cos(ζi) + kαεi{Ai cos(ζ + ζi) +Bi cos(ζ − ζi)}+O(k2α2εi)
(26)

1. Ai, Bi are of O(1)

2. O(k2α2εi) have arguments 2ζ + ζi and are of no matter in the stability

analysis

3. Terms with arguments 2ζ − ζi play the crucial role
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φ form of solution and dispersion

Under the same assumptions we have:

φ̃ = φ̃1 + φ̃2

where

φ̃i = k−1
i ekiy{εi(ω′iLi + γ̇iMi) sin(ζi) + ε̇iNi cos(ζi)}

+ωαεi{Cie|k+ki|y sin(ζ + ζi) +Die
|k−ki|y sin(ζ − ζi)} (27)

where ki = k(1± κ) and ω′i = ω(1± δ)

Let δ = (1/2)κ

Then:
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ki, ωi satisfy the dispersion relation to a first approximation since:

Dispersion relation= ω2
i = gki

even if γi are both constant.

Evaluation of coefficients Li = 1 +O(k2α2)
Mi, Ni, Ci, Di are of O(1)

Notions

-The boundary conditions (23)(24) are to be satisfied over a continuous and

unbounded range of x

- If all terms are reduced to simple harmonic components, then each set of

components must satisfy the above condition independently
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Determination of εi(t), γi(t)

1st Step coefficients of the terms proportional to αεi in (25)

Separation of components in (19)(20) with arguments ζ ± ζi, substitution of the

zeroth approximation:

η̃i = εi cos(ζi), φ̃i = k−1
i ωiεie

kiy sin(ζi), Li = 1
and trigonometric reductions give:

The coefficients in the left side and the terms of required order in the right hand

side

Separation of components at wave numbers k ± ki leads to equations for Ai, Ci
and Bi, Di and finally:

Ai = 1, Bi = 0, Ci = 0, Di = ±1 (28)

if O(δ) is neglected ***
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2nd Step The terms O(ωk2α2εi), O(ω2kα2εi)
-Separation of components at wave numbers ki in (19),(20) with the required

approximation

-Lots of reductions...

(23) →

ε1,2{ω′1,2(1−L1,2)+ γ̇1,2(1−M1,2)} sin(ζ1,2)+ ε̇1,2(1−N1,2) cos(ζ1,2)

= ωk2α2{(5/4)ε1,2 sin(ζ1,2) + (5/8)ε2,1 sin(ζ1,2 + θ)} (29)

(24) →
ε1,2{ω′−1

1 (gk1,2 − ω′21,2L1,2) − γ̇1,2(1 + M1,2)} cos(ζ1,2) + ε̇1,2(1 +
N1,2) sin(ζ1,2)

= −ωk2α2{(3/4)ε1,2 cos(ζ1,2) + (3/8)ε2,1 cos(ζ1,2 + θ)} (30)
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The differential equations for εi, γi

dε1,2/dt = ((1/2)ωk2α2 sin(θ))ε2,1 (31)

dγ1,2/dt = 1/2{ gk1,2

ω′1, 2
− ω′1,2}+ ωk2α2{1 + (1/2)

ε2,1
ε1,2

cos(θ)} (32)

Demonstration of instability

Integration of (31) gives:

ε1,2 = ε1,2(0) cosh((1/2)ωk2α2
∫ t
0

sin(θ)dt)

+ε2,1(0) sinh((1/2)ωk2α2

∫ t

0

sin(θ)dt) (33)
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Let T = k2α2ωt and a = k2α2−δ2
k2α2 and multiply by ε1ε2 sin(θ) we obtain:

−ε1ε2d(cos(θ))/dT = αε1ε2 sin(θ) + (1/2)(ε21 + ε22) sin(θ) cos(θ) (34)

Now (31) gives dε21/dT = dε22/dT = ε1ε2 sin(θ) hence (34) is transformed to

d(ε1ε2 cos(θ) + αε21)/dT = 0 (35)

and combination of the above gives finally:

(dε21/dT )2 = (1− a2)ε41 + 2avρε21 − ρ2 (36)
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Let dε21/dT = Q. The two roots have the representation A±B where:

A = − avρ
1−a2 and B = ρ(1−a2+a2v2)1/2

|1−a2|

Conclusion If −1 < a < 1 then one root is positive and any value of ε21 greater

than this makes Q positive hence, the unbounded growth of ε21 with increasing T is

possible

November 22, 2002 Varsakelis Christos Page 25



Theory and numerics of Solitary Waves

Modulational Instability Implies Freak waves ( [5])

Scaling of methodology and Results

• Boundary Problem

• T = (−1/2)
∫ ∞
−∞ ψφndx, U =

∫ ∞
−∞ η2(x, t)dx kinetic, potential energy

• Euler equation of hydrodynamics

∂η

∂t
=
δH

δψ
(37)

∂ψ

∂t
= −δH

δη
(38)

• Conformal mappings and transformations to Z-plane

• Numerical approximation with spectral codes

November 22, 2002 Varsakelis Christos Page 26



Theory and numerics of Solitary Waves

Numerical results

One can see fast, non-monotonic formation of the freak wave. At this moment, the

freak wave is more steep than the Stokes wave of limiting amplitude. The amplitu-

des of the waves preceding the freak wave are relatively small (three times less).

One can see a trough just ahead of the freak wave. This is the so-called hole in the

water (marine folklore) that precedes a freak wave
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Explanation of Freak waves

Chaos Theory Optimization Envelope Solutions Large deviations

The envelope equations
NLS describes slowly modulated nonlinear Stokes waves

Freak wave description not sufficient because NLS is derived by expansion of

series on powers of λ ' (Lk)−1, k is the wave number and L the length of the

modulation but for real freak wave λ ∼ 1 and slow modulation expansion fails

November 22, 2002 Varsakelis Christos Page 29



Theory and numerics of Solitary Waves

1st Step

Modulational instability of NLS [3,2]

The proof is given for ψ0 = C The result generalizes with Floquet Spectral

Theory

Proof

NLS iψy +Dψ + γ|ψ|2ψ = 0, D = aij∂i∂j (39)

Exact solution

ψ = ψ0e
iγ|ψ0|2t
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Perturbation equations of amplitude and phase

ψ = ψ0(1 + ψ̃)ei(γ|ψ0|2t+φ̃) (40)

≈ ψ0(1 + ψ̃ + iφ̃)eiγ|ψ0|2t (41)

System for determination of stability

ψ̃t +Dφ̃ = 0 (42)

φ̃−Dψ̃ − 2γ|ψ0|2ψ̃ = 0 (43)
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Crucial step: Look for Harmonic perturbations proportional to eik·xeσt. Then:

σ2 = 2γ|ψ0|2aijkikj − (aijkikj)2 (44)

If γaijkikj is positive and 2|ψ0|2 > γ−1aijkikj the perturbation amplitude

is exponentially amplified
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2nd Step

NLS B-F instability implies Freak Wave event

• delicate balance between nonlinearity and wave dispersion

• B-F instability almost robust against a narrow spectrum random field

To be demonstrated

Freak wave event out of a coupled system of NLS equations[4]
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Coupled NLS system from Zakharov equation

∂A

∂t
+Cx

∂A

∂x
+Cy

∂A

∂y
−iα∂

2A

∂x2
−iβ ∂

2A

∂y2
−iγ ∂

2A

∂x∂y
+i(ξ|A2|A+2ζ|B2|A) = 0

(45)
∂B

∂t
+Cx

∂B

∂x
+Cy

∂B

∂y
−iα∂

2B

∂x2
−iβ ∂

2B

∂y2
−iγ ∂

2B

∂x∂y
+i(ξ|B2|B+2ζ|A2|B) = 0

(46)

• x-axis is the middle between the two directions of propagation

kA = (kA,x, kA,y) ≡ (k, l), kB = (kB,x, kB,y) ≡ (k,−l), assume

both k, l > 0

• Dispersion relation ωj =
√
g|kj |

• Propagation implies ωA = ωB =
√
g
√
k2 + l2

November 22, 2002 Varsakelis Christos Page 34



Theory and numerics of Solitary Waves

Analysis

Multiplication by i to the coupled system gives

i(
∂A

∂t
+Cx

∂A

∂x
+Cy

∂A

∂y
)+α

∂2A

∂x2
+β

∂2A

∂y2
+γ

∂2A

∂x∂y
−ξ|A2|A−2ζ|B2|A = 0

(47)

i(
∂B

∂t
+Cx

∂B

∂x
+Cy

∂B

∂y
)+α

∂2B

∂x2
+β

∂2B

∂y2
+γ

∂2B

∂x∂y
−ξ|B2|B−2ζ|A2|B = 0

(48)

• A, B are the amplitudes

• Cx = ωk/2κ2, Cy = ωl/2κ2 group speed

• α = ω(2l2 − k2)/8κ4, β = ω(2k2 − l2)/8κ4, γ = −3ωlk/4κ4 group

velocity dispersion coefficients

• ξ = ωκ2/2, ζ =
ω(k5 − k3l2 − 3kl4 − 2k4κ+ 2k2l2κ+ 2l4κ)/2κ2(k − 2κ)
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Numerical simulation of system (45),(46)

Notation

1. A′ = A/κ,B′ = B/κ, t′ = ωt, x′ = κx, y′ = κy, κ =
√
k2 + l2

2. A = B = 0.1/κ+ ε, ε = O(10−3/κ) to give seed for any instability

Typical Data from Ocean Waves:

Typical wave frequency 0.09 Hz, ω = 0.56s−1, κ ≈ 0.033m−1. In next figures

we view the results where |A| = |B| ≈ 3 = 0.1/κ Note in figure 4 at t=670sec

A has localized wave packets with max amplitude approximately 10 meters.
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Quasi-Solitonic Turbulence [6]

Quasi Solitonic Turbulence corresponds to the time range from the begin-

ning of instability till the formation of a freak wave event

MMT-model for gravity waves

i
∂Ψ
∂t

= | ∂
∂x
|1/2Ψ + | ∂

∂x
|3/4(|| ∂

∂x
|3/4Ψ|2| ∂

∂x
|3/4Ψ) (49)

Fourier transformed model

i
∂ψ̂k
∂t

= ωkψ̂k +
∫
T123kψ̂1ψ̂2ψ̂

∗
3δ(k1 + k2 − k3 − k)dk1dk2dk3 (50)

where:
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ωk = |k|α Linear frequency parameter

T123k = λ|k1k2k3|β/4 interaction parameter.

λ = ±1 balance between dispersive and non linear effects

Exact solution:

Ψ = Ae−kx−ωt (51)

ω = k1/2(1 + k5/2A2) (52)

• This solution can be constructed as a model of the Stokes wave.

• unstable with respect to modulational instability.
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Numerical analysis of B-F instability development

1. the unstable monochromatic wave decomposes to a system of almost equal

quasisolitons.

2. quasisolitonic turbulence is formed: quasisolitons move chaotically, interact

with each other, and merge.

3. quasisolitons create one large quasisoliton, which exceeds threshold of

instability and collapses, creating a freak wave
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Quasi solitons and weak turbulence

Seek for solitons of the form:

ψ̂k(t) = ei(Ω−kV )tφ̂k (53)

Then Ω, V constant imply:

φ̂k = − 1
Ω− kV + ωk

∫
T123kφ̂1φ̂2φ̂

∗
3δ(k1 + k2 − k3 − k)dk1dk2dk3

(54)
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Quasi solitons are approximate solutions of (53) which look like

envelope solitons

In the limit of a narrow spectrum centered at k = km, such as Ω−
kmV + kα

m 6= 0 they are given by the formula:

ψ(x, t) ' φ(x− V t)eiΩt+ikm(x−V t) (55)

where

• φ(ξ) =
√

α(1−a)κ

kβ−α+2
m cosh(κξ)

for κ = |k − km| << km

• Ω = −(1− α)kα
m − (1/2)α(1− α)kα−2

m κ2

• V = αkα−1
m
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1. If κ/km is small quasi solitons look almost like true solitons and can persist

for a long time

2. If κ/km is large they can become unstable and develop into wave collapse.
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