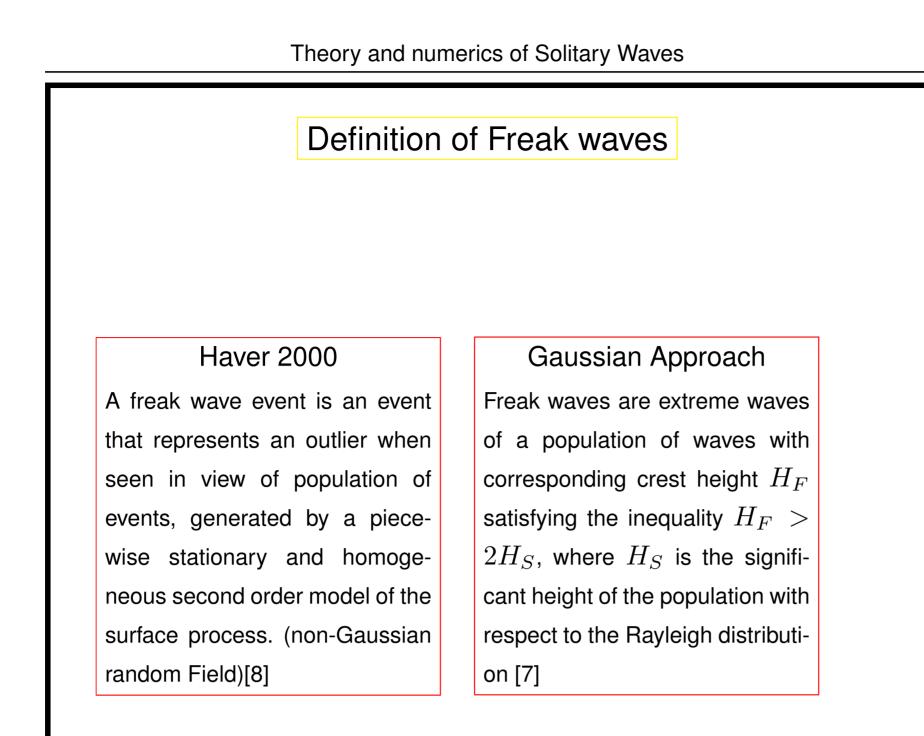
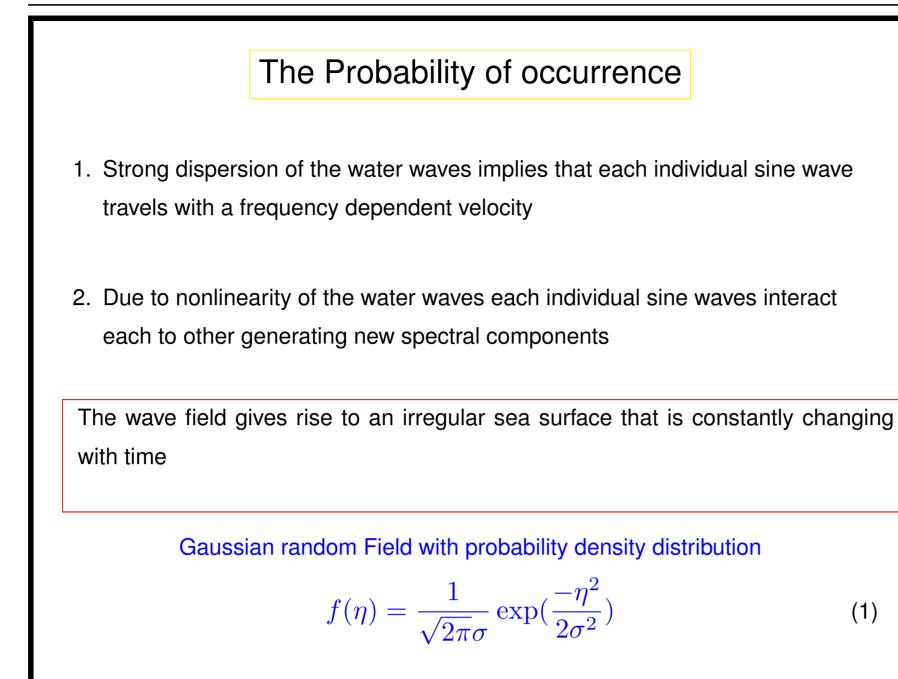


November 22, 2002

Varsakelis Christos

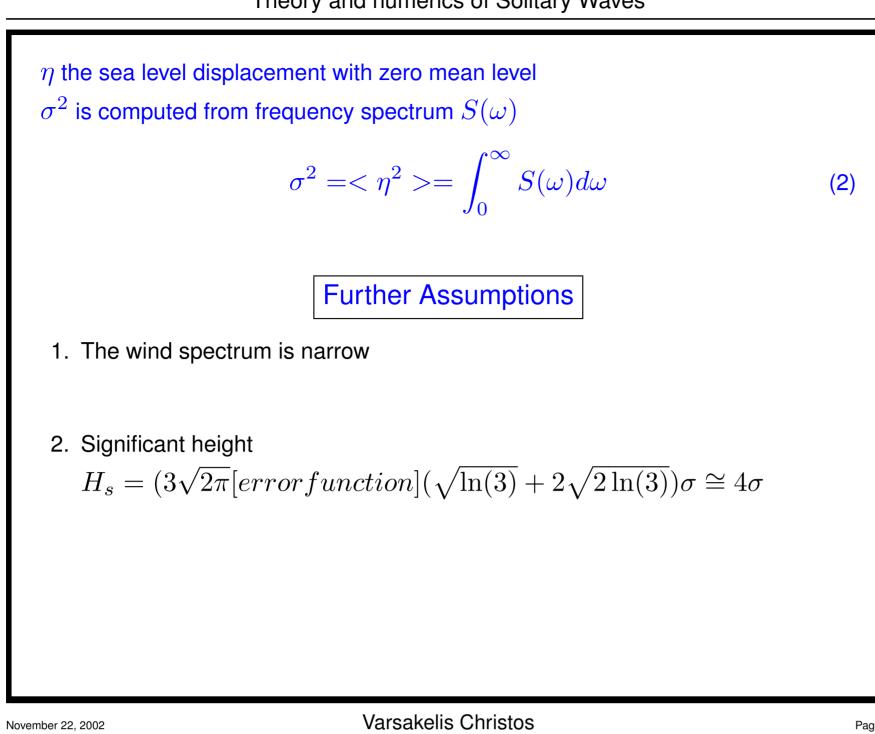


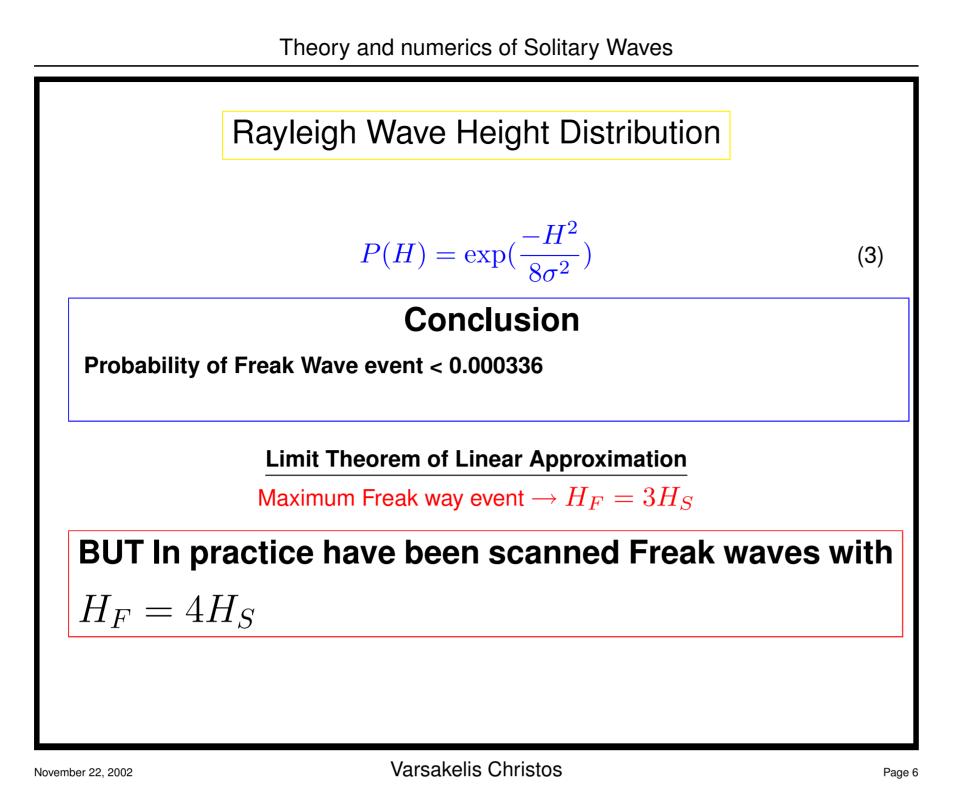
Varsakelis Christos

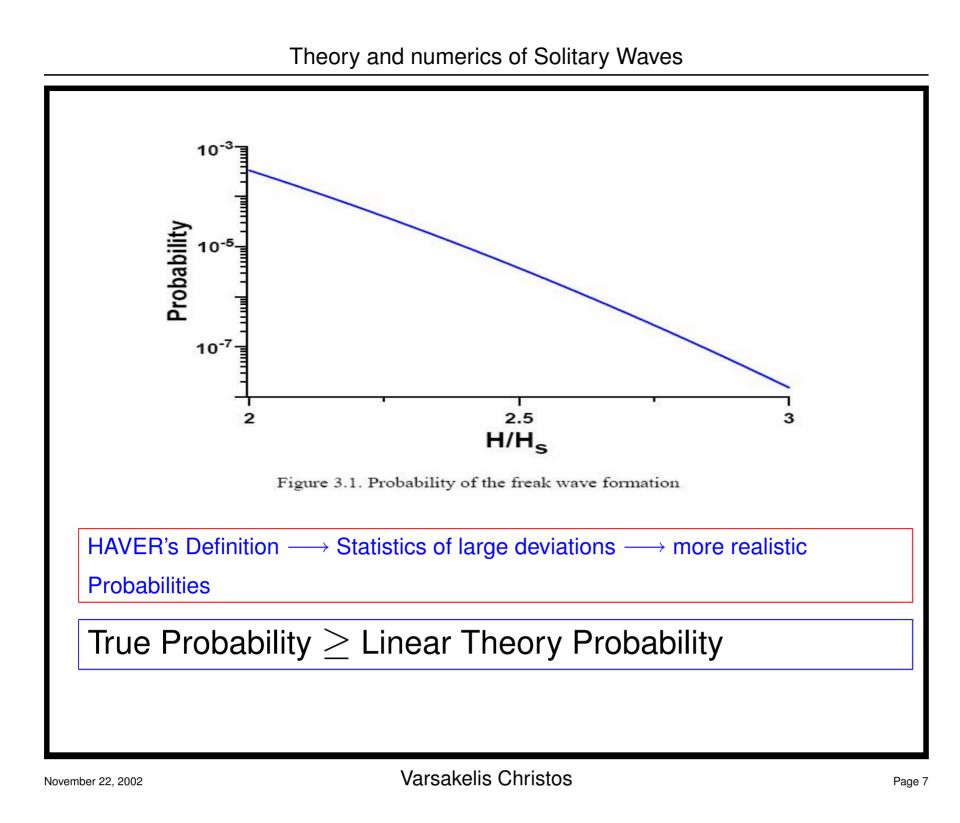


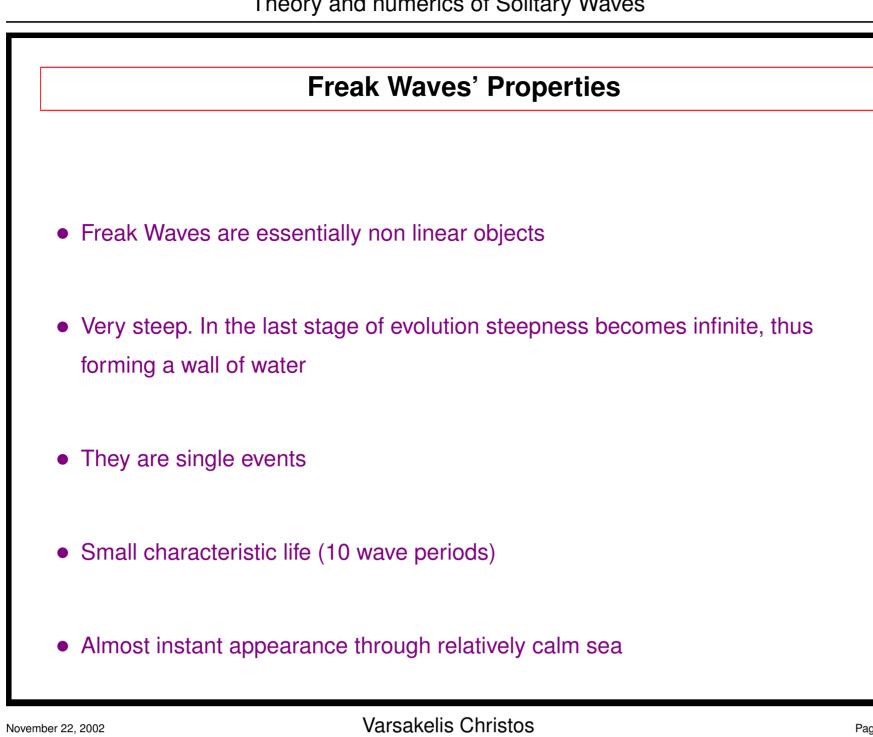
November 22, 2002

Varsakelis Christos





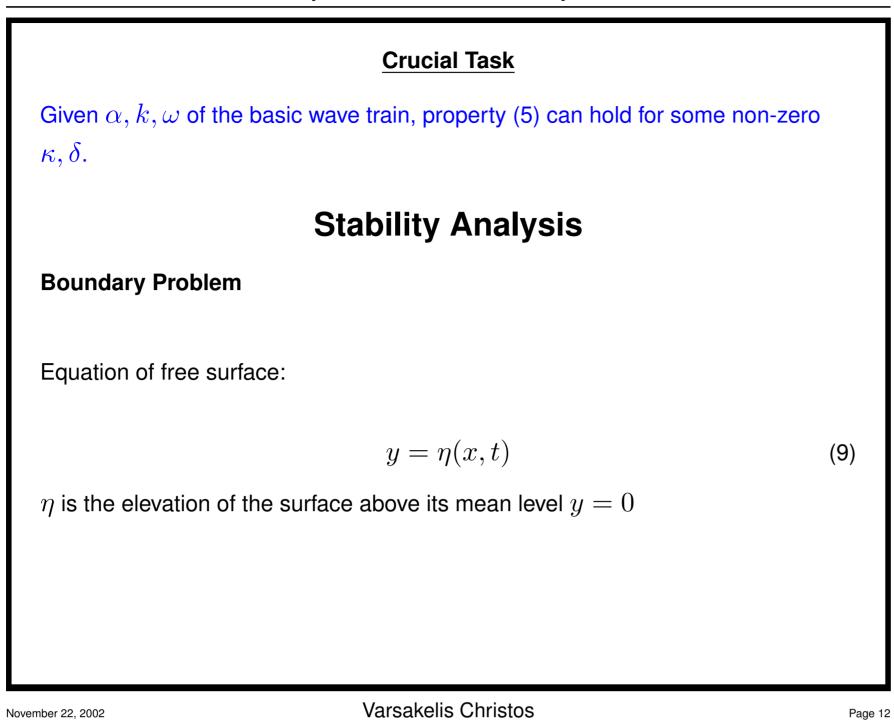




Theorem 0.0.1	Progressive waves of finite amplitude on deep water	[·] (Stoke
Waves) are un	stable [1]	
	NOTES	
 Benjamin-F 	eir instability or Modulational instability	
 Deep water 	corresponds to infinite depth water	
 Naturally no 	on linear objects associated with instability	
er 22, 2002	Varsakelis Christos	

(1) Basic Wave	e train:	
amplitude= α		
$\text{argument} = \zeta$	$=kx-\omega t$, harmonics: $2\zeta,$	
advance in ho	rizontal x-direction.	
phase velocity	$c=\omega/k$	
(2) Disturbanc	e waves:	
Pair of progres	ssive waves with:	
side band freq	uencies, wave numbers adjacent to ω,k and	
	$\zeta_1 = k(1+\kappa)x - \omega(1+\delta)t - \gamma_1$	(
	$\zeta_2 = k(1-\kappa)x - \omega(1-\delta)t - \gamma_2$	(
κ, δ , small fra	ctions	
Amplitudoo: c	$\epsilon_1,\epsilon_2<$	

Theory and numerics of Solitary Waves	
The non-linear interaction of the above \longrightarrow components with argume	ents:
$2\zeta - \zeta_1 = \zeta_2 + (\gamma_1 + \gamma_2)$	
$2\zeta - \zeta_2 = \zeta_1 + (\gamma_1 + \gamma_2)$	
Assumption: If	
Assumption: If	
$\theta = \gamma_1 + \gamma_2 \rightarrow constant$	(8
then:	



Theory and numerics of Solitary Waves

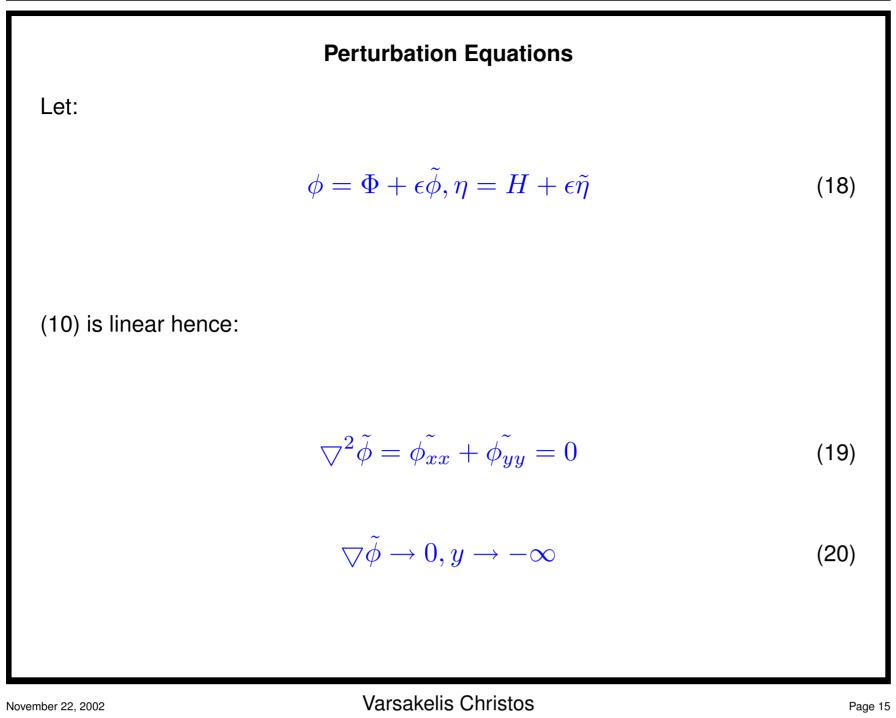
TI	heory and numerics of Solitary Waves	
	Conditions	
Velocity Potential:	$\bigtriangledown^2 \phi = \phi_{xx} + \phi_{yy} = 0$	(10)
No motion in infinite de	epths:	
	$\bigtriangledown \phi ightarrow 0, y ightarrow -\infty$	(11)
Kinematical boundary of	condition:	
$D(\eta - g$	$(y)/Dt = \eta_t + \eta_x [\phi_x]_{y=\eta} - [\phi_y]_{y=\eta} = 0$	(12)
Condition of constant p	pressure(Surface tension assumed absent)	
gr	$\eta + [\phi_t]_{y=\eta} + \frac{1}{2} [\phi_x^2 + \phi_y^2]_{y=\eta} = 0$	(13)
lovember 22, 2002	Varsakelis Christos	Page

Theory and numerics of Solitary Waves

Existence of periodic solutions of the form: $\eta = H(x-ct), \phi = \Phi(x-ct,y),$ Levi-Civita (1925) Approximation up to α^2 terms because: The affect of a nearby train wave to the original one in the phase velocity will be of second order the amplitude responsible for it **Analytical Form of Solutions** $\eta = H = \alpha \cos(\zeta) + \frac{1}{2}k\alpha^2 \cos(2\zeta)$ (14) $\phi = \Phi = \omega k^{-1} \alpha e^{ky} \sin(\zeta)$ (15) (16) where $\omega^2 = gk(1 + k^2 \alpha^2)$ (17) Sufficient accuracy if $k\alpha$ is small

November 22, 2002

Varsakelis Christos



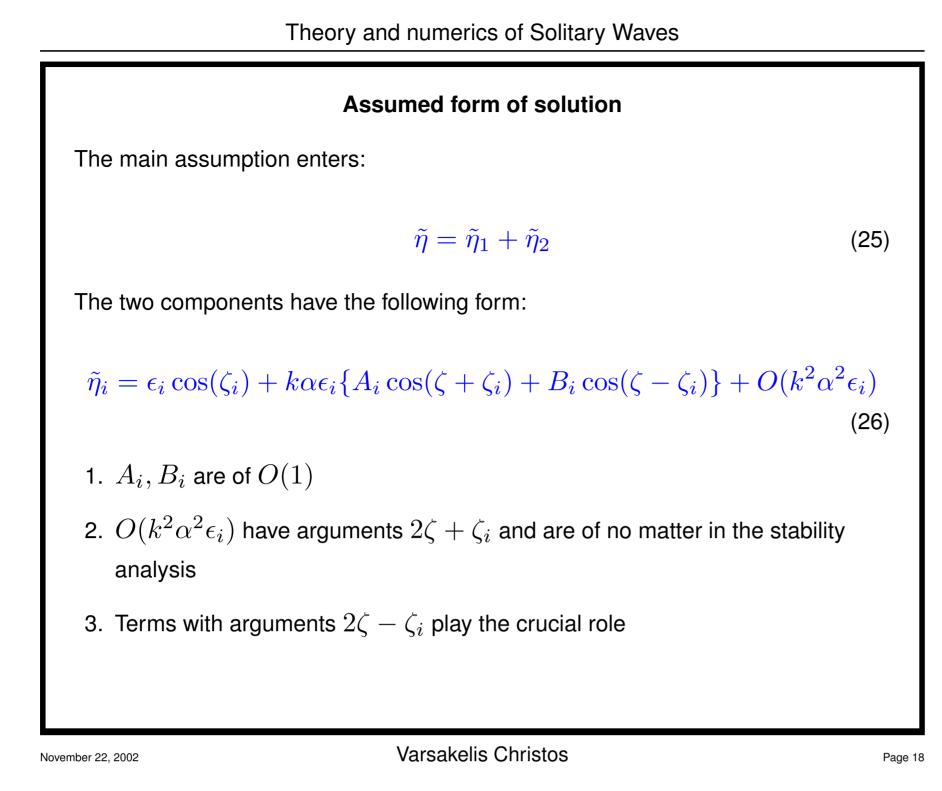
Theory and numerics of Solitary Waves

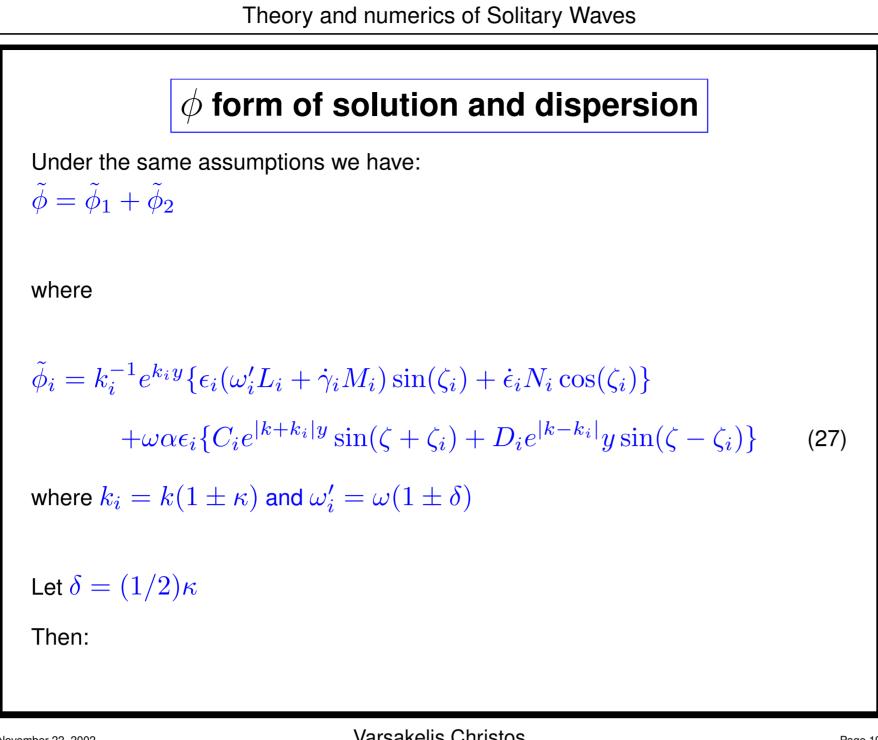
	Theory and numerics of Solitary Waves	
Substitution to	(12)(13) and linearization in ϵ gives:	
$ ilde{\eta}_t + ilde{\eta}_x [\Phi_x$	$]_{y=H} + \tilde{\eta}[-\Phi_{yy} + H_x \Phi_{xy}]_{y=H} + [-\tilde{\phi}_y + H_x \tilde{\phi}_x]_{y=H} = 0$	(21
$g ilde\eta+ ilde\eta[\Phi_x \dot e$	$\Phi_{xy} + \Phi_y \Phi_{yy} + \Phi_{ty}]_{y=H} + [\tilde{\phi}_t + \Phi_x \tilde{\phi}_x + \Phi_y \tilde{\phi}_y]_{y=H} = 0$	(22)
	n of (21)(22) up to terms $lpha^2$. ntinuation of $ ilde{\phi}$ in a neighborhood about y=H.	
ber 22, 2002	Varsakelis Christos	

 $\begin{aligned} &\tilde{\eta}_{t} - [\tilde{\phi}_{y}]_{y=0} = \alpha [k\omega \sin(\zeta)\tilde{\eta} - \omega \cos(\zeta)\tilde{\eta}_{x} + (\cos(\zeta)\tilde{\phi}_{yy} + k\sin(\zeta)\tilde{\phi}_{x})_{y=0}] \\ &+ \frac{1}{2}\alpha^{2} [2k^{2}\omega \sin(2\zeta)\tilde{\eta} - k\omega(1 + \cos(2\zeta))\tilde{\eta}_{x} \\ &+ \{k\sin(2\zeta)(2k\tilde{\phi}_{x} + \tilde{\phi}_{xy}) + k\cos(2\zeta)\tilde{\phi}_{yy} + \frac{1}{2}(1 + \cos(2\zeta))\tilde{\phi}_{yyy}\}_{y=0}] \end{aligned}$ (23) $\begin{aligned} g\tilde{\eta} + (\tilde{\phi}_{t})_{y=0} &= \alpha [\omega^{2}\cos(2\zeta)\tilde{\eta} - (\omega\cos(\zeta)\tilde{\phi}_{x} + \omega\sin(\zeta)\tilde{\phi}_{y} + \cos(\zeta)\tilde{\phi}_{yt})_{y=0}] \\ &- \frac{1}{2}\alpha^{2} [k\omega^{2}(1 - \cos(2\zeta))\tilde{\eta} + \{\omega\sin(2\zeta)(k\tilde{\phi}_{y} + \tilde{\phi}_{yy}) \\ &+ (1 + \cos(2\zeta))(k\omega\tilde{\phi}_{x} + \omega\tilde{\phi}_{xy} + \frac{1}{2}\tilde{\phi}_{yyt}) + k\cos(2\zeta)\tilde{\phi}_{yt}\}_{y=0}] \end{aligned}$ (24)

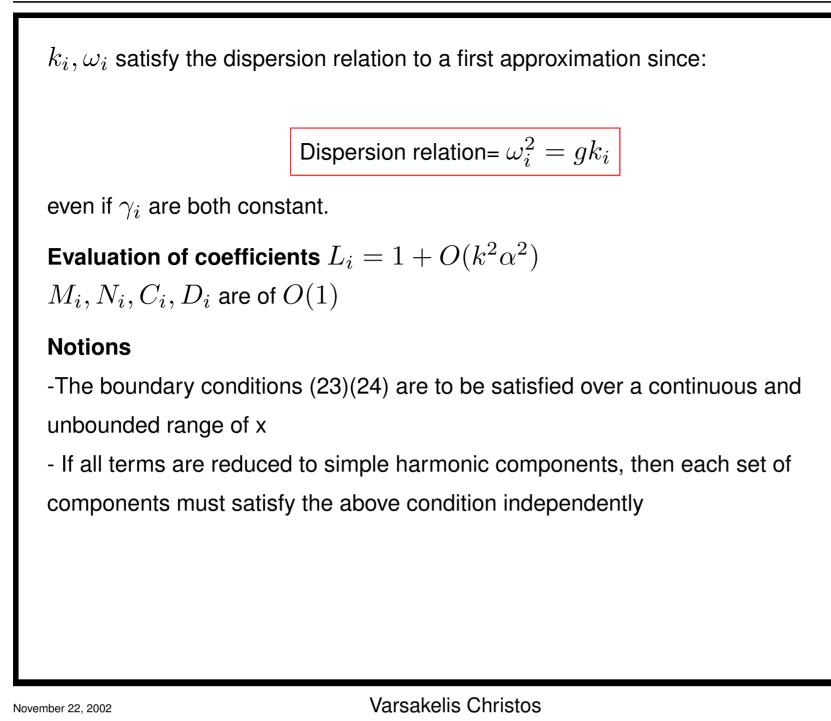
November 22, 2002

Varsakelis Christos



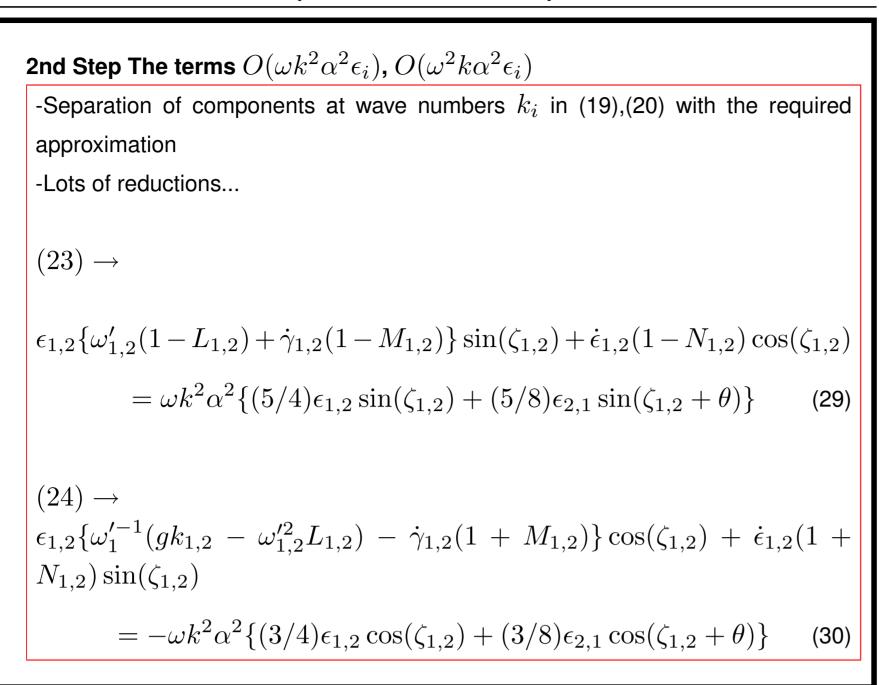


Varsakelis Christos



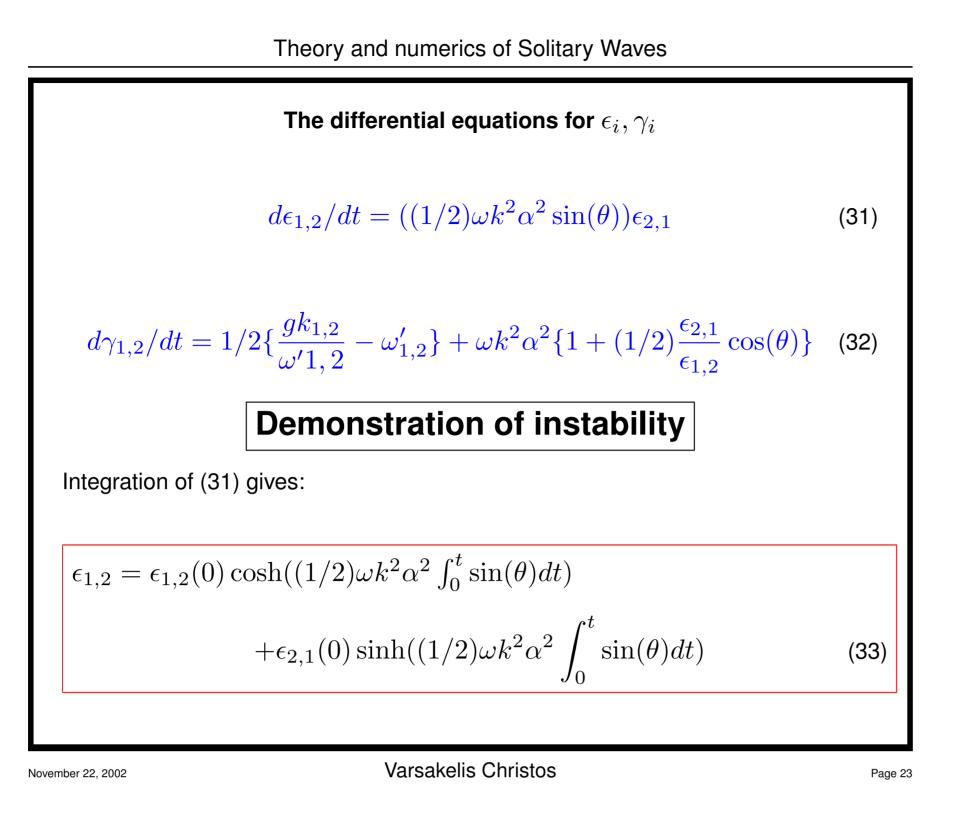
Theory and numerics of Solitary Waves Determination of $\epsilon_i(t)$, $\gamma_i(t)$ 1st Step coefficients of the terms proportional to $\alpha \epsilon_i$ in (25) Separation of components in (19)(20) with arguments $\zeta \pm \zeta_i$, substitution of the zeroth approximation: $\tilde{\eta}_i = \epsilon_i \cos(\zeta_i)$, $\tilde{\phi}_i = k_i^{-1} \omega_i \epsilon_i e^{k_i y} \sin(\zeta_i)$, $L_i = 1$ and trigonometric reductions give: The coefficients in the left side and the terms of required order in the right hand side Separation of components at wave numbers $k \pm k_i$ leads to equations for A_i , C_i and B_i , D_i and finally: $A_i = 1, B_i = 0, C_i = 0, D_i = \pm 1$ (28) if $O(\delta)$ is neglected ***

Varsakelis Christos



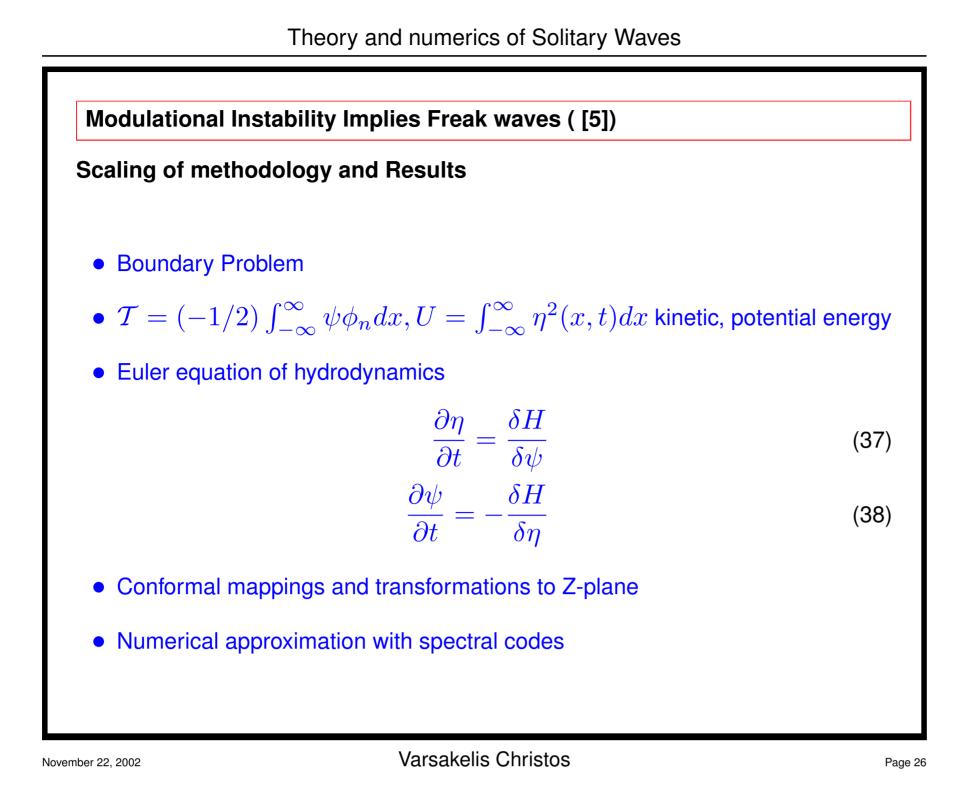
Theory and numerics of Solitary Waves

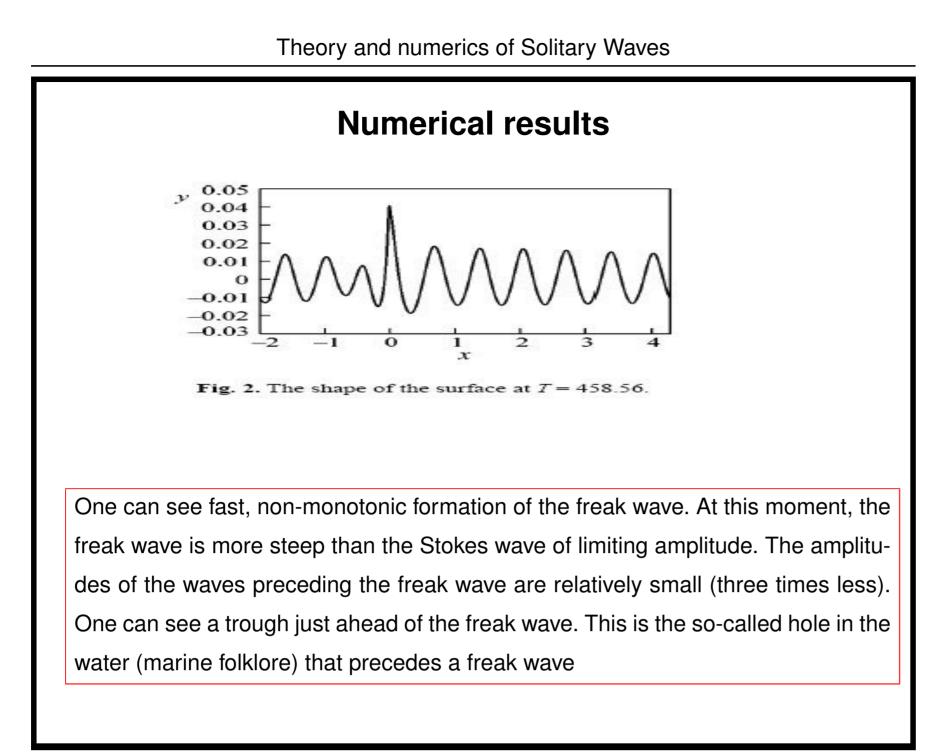
Varsakelis Christos



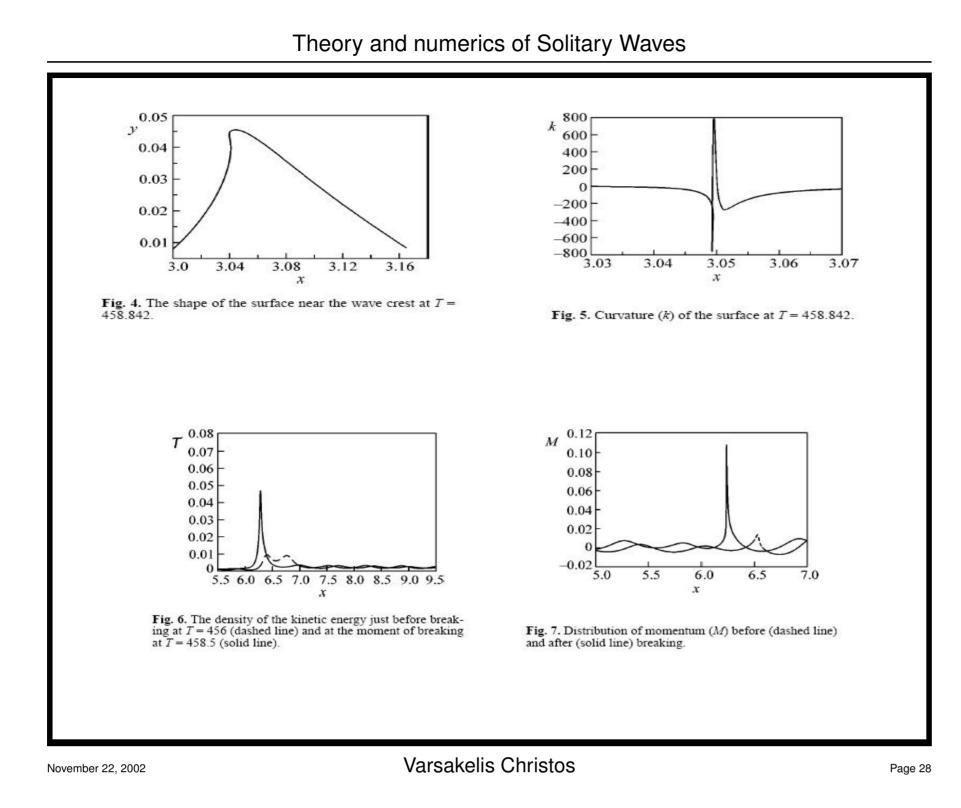
Theory and numerics of Solitary Waves Let $T = k^2 \alpha^2 \omega t$ and $a = \frac{k^2 \alpha^2 - \delta^2}{k^2 \alpha^2}$ and multiply by $\epsilon_1 \epsilon_2 \sin(\theta)$ we obtain: $-\epsilon_1 \epsilon_2 d(\cos(\theta))/dT = \alpha \epsilon_1 \epsilon_2 \sin(\theta) + (1/2)(\epsilon_1^2 + \epsilon_2^2) \sin(\theta) \cos(\theta)$ (34) Now (31) gives $d\epsilon_1^2/dT = d\epsilon_2^2/dT = \epsilon_1 \epsilon_2 \sin(\theta)$ hence (34) is transformed to $d(\epsilon_1 \epsilon_2 \cos(\theta) + \alpha \epsilon_1^2)/dT = 0$ (35) and combination of the above gives finally: $(d\epsilon_1^2/dT)^2 = (1 - a^2)\epsilon_1^4 + 2av\rho\epsilon_1^2 - \rho^2$ (36)

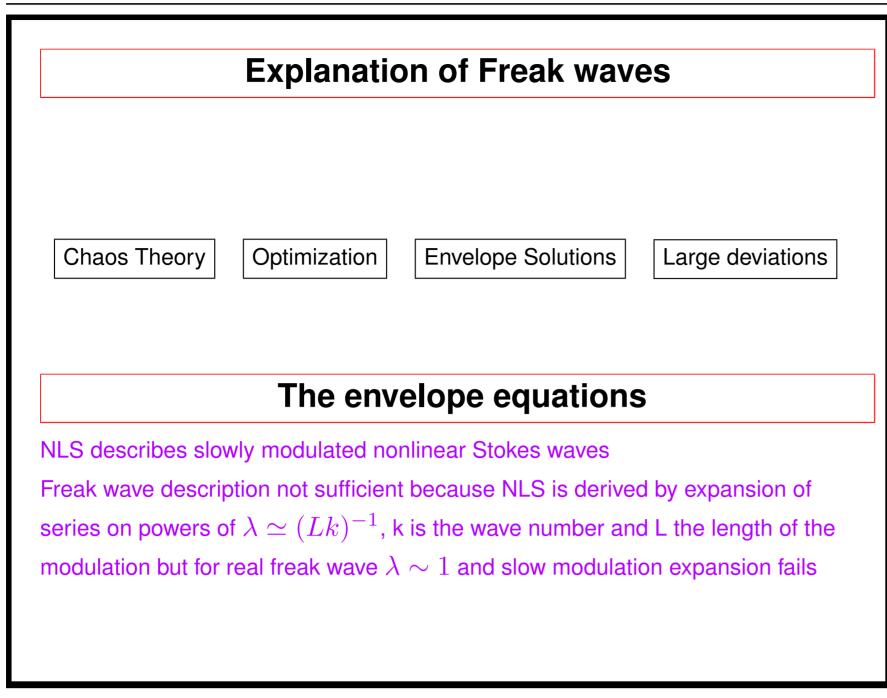
Let $d\epsilon_1^2/dT = Q$. The two roots have the representation $A \pm B$ where: $A = -\frac{av\rho}{1-a^2} \text{ and } B = \frac{\rho(1-a^2+a^2v^2)^{1/2}}{|1-a^2|}$ Conclusion If -1 < a < 1 then one root is positive and any value of ϵ_1^2 greater than this makes Q positive hence, the unbounded growth of ϵ_1^2 with increasing T is possible Varsakelis Christos November 22, 2002



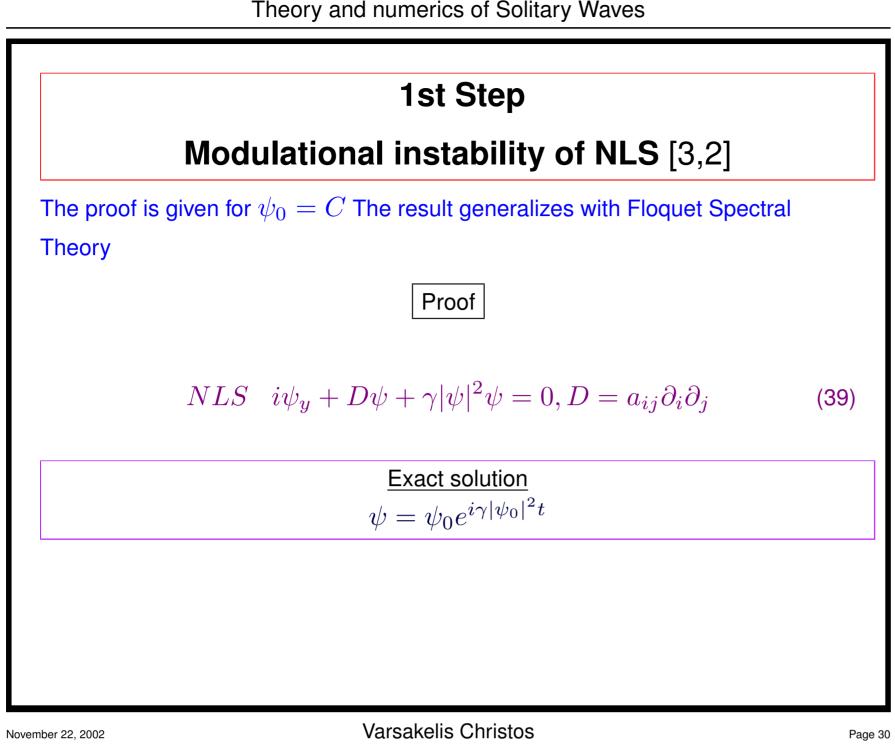


Varsakelis Christos

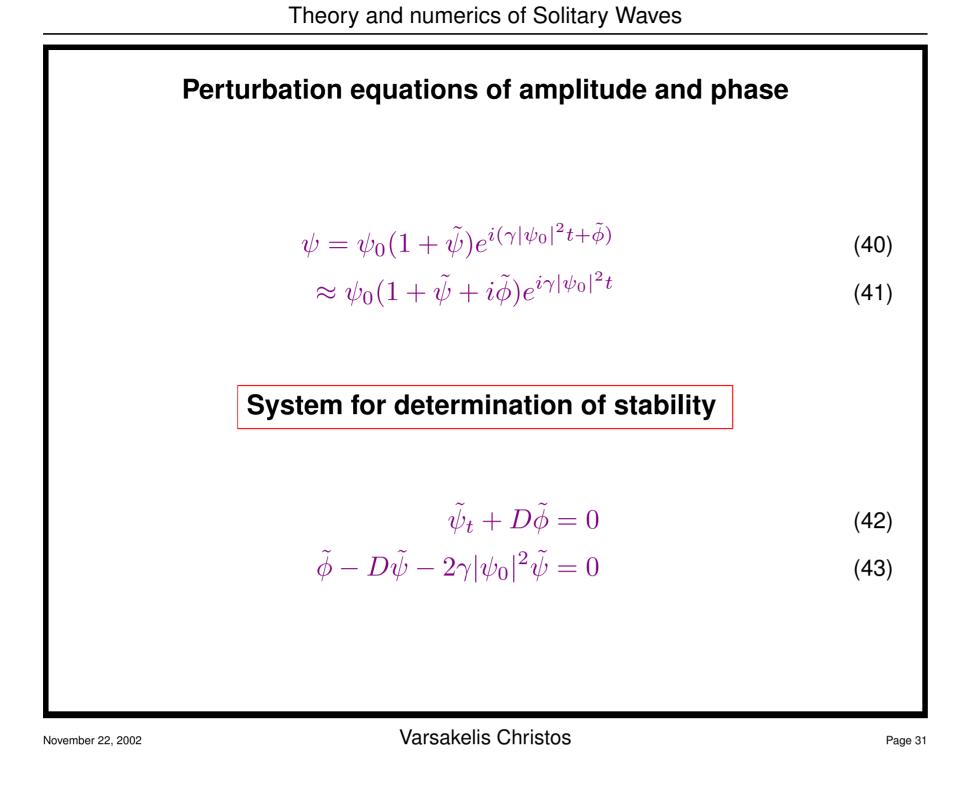




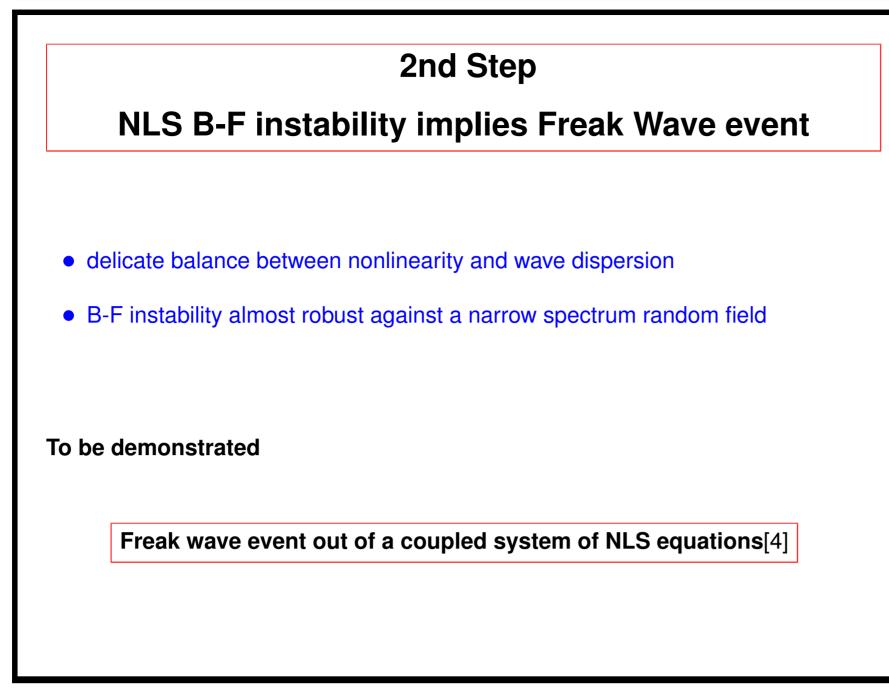
Varsakelis Christos



Theory and numerics of Solitary Waves



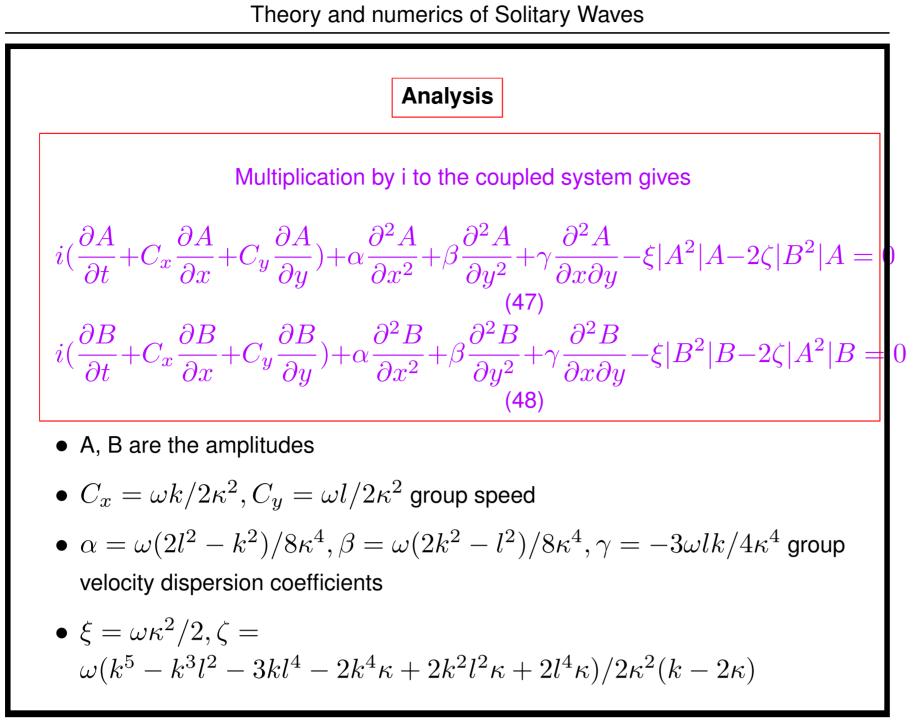
	Theory and numerics of Solitary Waves	
Crucial step: Loo	k for Harmonic perturbations proportional to $e^{ik\cdot x}e^{ik\cdot x}$	$e^{\sigma t}$. Then:
	$\sigma^{2} = 2\gamma \psi_{0} ^{2} a_{ij} k_{i} k_{j} - (a_{ij} k_{i} k_{j})^{2}$	(44)
	ositive and $2 \psi_0 ^2 > \gamma^{-1}a_{ij}k_ik_j$ the perturbation	on amplitude
is exponentially a		



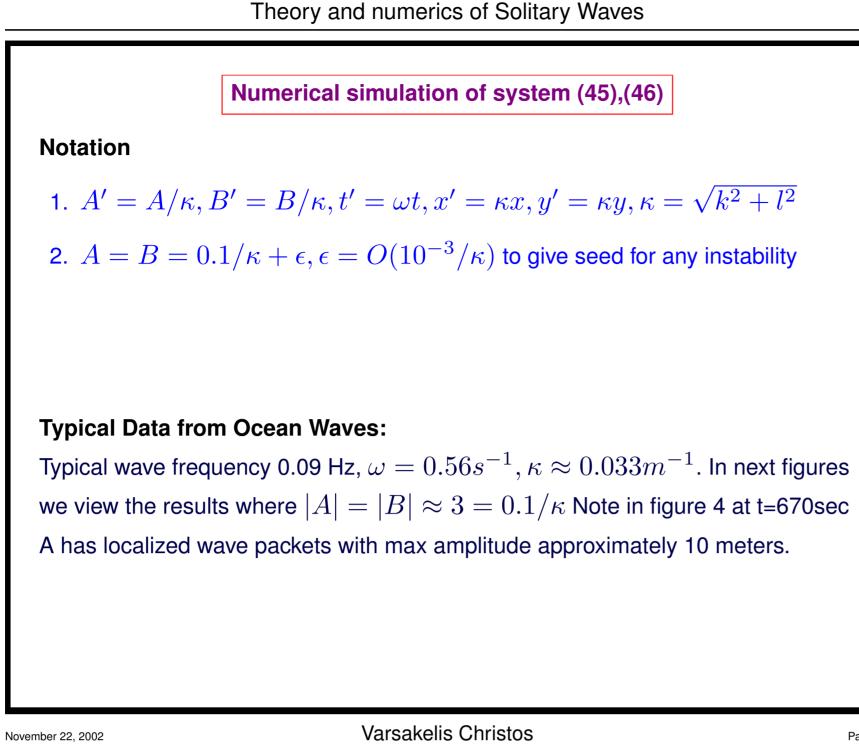
Varsakelis Christos

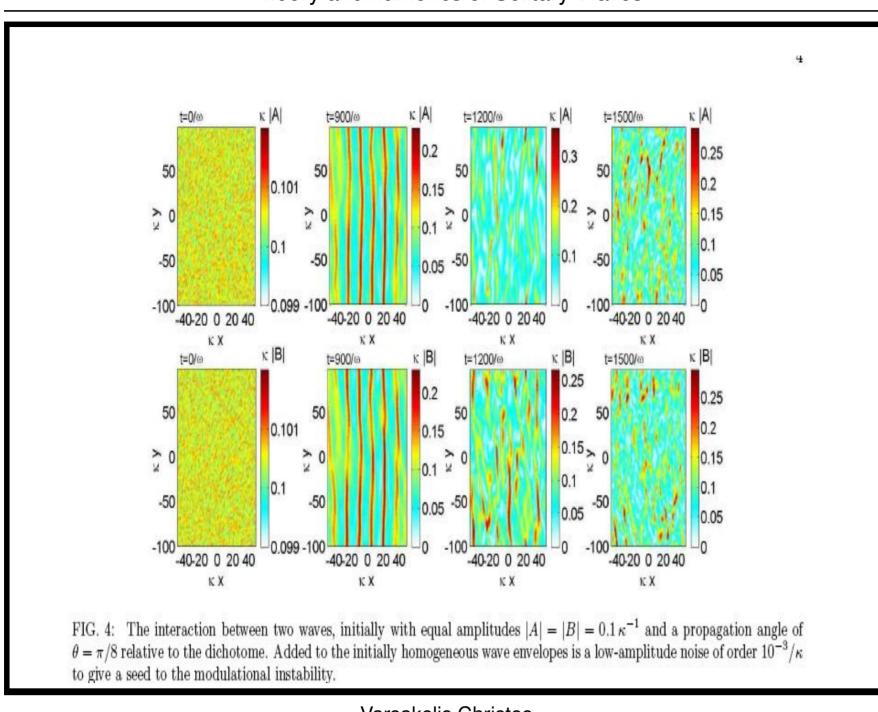
$$\begin{array}{c} \hline \label{eq:constraint} \hline \mbox{Coupled NLS system from Zakharov equation} \\ \hline \hline \mbox{$\frac{\partial A}{\partial t} + C_x \frac{\partial A}{\partial x} + C_y \frac{\partial A}{\partial y} - i\alpha \frac{\partial^2 A}{\partial x^2} - i\beta \frac{\partial^2 A}{\partial y^2} - i\gamma \frac{\partial^2 A}{\partial x \partial y} + i(\xi |A^2|A + 2\zeta |B^2|A) \\ \hline \mbox{$\frac{\partial B}{\partial t} + C_x \frac{\partial B}{\partial x} + C_y \frac{\partial B}{\partial y} - i\alpha \frac{\partial^2 B}{\partial x^2} - i\beta \frac{\partial^2 B}{\partial y^2} - i\gamma \frac{\partial^2 B}{\partial x \partial y} + i(\xi |B^2|B + 2\zeta |A^2|B) \\ \hline \mbox{$\frac{\partial B}{\partial t} + C_x \frac{\partial B}{\partial x} + C_y \frac{\partial B}{\partial y} - i\alpha \frac{\partial^2 B}{\partial x^2} - i\beta \frac{\partial^2 B}{\partial y^2} - i\gamma \frac{\partial^2 B}{\partial x \partial y} + i(\xi |B^2|B + 2\zeta |A^2|B) \\ \hline \mbox{$\frac{\partial B}{\partial t} + C_x \frac{\partial B}{\partial x} + C_y \frac{\partial B}{\partial y} - i\alpha \frac{\partial^2 B}{\partial x^2} - i\beta \frac{\partial^2 B}{\partial y^2} - i\gamma \frac{\partial^2 B}{\partial x \partial y} + i(\xi |B^2|B + 2\zeta |A^2|B) \\ \hline \mbox{$\frac{\partial B}{\partial t} + C_x \frac{\partial B}{\partial x} + C_y \frac{\partial B}{\partial y} - i\alpha \frac{\partial^2 B}{\partial x^2} - i\beta \frac{\partial^2 B}{\partial y^2} - i\gamma \frac{\partial^2 B}{\partial x \partial y} + i(\xi |B^2|B + 2\zeta |A^2|B) \\ \hline \mbox{$\frac{\partial B}{\partial t} + C_x \frac{\partial B}{\partial x} + C_y \frac{\partial B}{\partial y} - i\alpha \frac{\partial^2 B}{\partial x^2} - i\beta \frac{\partial^2 B}{\partial y^2} - i\gamma \frac{\partial^2 B}{\partial x \partial y} + i(\xi |B^2|B + 2\zeta |A^2|B) \\ \hline \mbox{$\frac{\partial B}{\partial t} + C_x \frac{\partial B}{\partial x} + C_y \frac{\partial B}{\partial y} - i\alpha \frac{\partial^2 B}{\partial x^2} - i\beta \frac{\partial^2 B}{\partial y^2} - i\gamma \frac{\partial^2 B}{\partial x \partial y} + i(\xi |B^2|B + 2\zeta |A^2|B) \\ \hline \mbox{$\frac{\partial B}{\partial t} + C_x \frac{\partial B}{\partial x} + C_y \frac{\partial B}{\partial y} - i\alpha \frac{\partial^2 B}{\partial x^2} - i\beta \frac{\partial^2 B}{\partial y^2} - i\gamma \frac{\partial^2 B}{\partial x \partial y} + i(\xi |B^2|B + 2\zeta |A^2|B) \\ \hline \mbox{$\frac{\partial B}{\partial t} + C_x \frac{\partial B}{\partial x} + C_y \frac{\partial B}{\partial y} - i\alpha \frac{\partial^2 B}{\partial x^2} - i\beta \frac{\partial^2 B}{\partial x^2} - i\gamma \frac{\partial^2 B}{\partial x \partial y} + i(\xi |B^2|B + 2\zeta |A^2|B) \\ \hline \mbox{$\frac{\partial B}{\partial t} + C_x \frac{\partial B}{\partial x} + C_y \frac{\partial B}{\partial y} - i\alpha \frac{\partial B}{\partial x^2} - i\beta \frac{\partial B}{\partial x^2} - i\gamma \frac{\partial B}{\partial x \partial y} + i(\xi |B^2|B + 2\zeta |A^2|B) \\ \hline \mbox{$\frac{\partial B}{\partial t} + C_x \frac{\partial B}{\partial x} + C_y \frac{\partial B}{\partial y} - i\alpha \frac{\partial B}{\partial x^2} - i\beta \frac{\partial B}{\partial x^2} - i\beta \frac{\partial B}{\partial x \partial y} + i(\xi |B^2|B + 2\zeta |A^2|B) \\ \hline \mbox{$\frac{\partial B}{\partial t} + C_x \frac{\partial B}{\partial x} + i(\xi |B^2|B + 2\zeta |A^2|B) \\ \hline \mbox{$\frac{\partial B}{\partial x} + C_y \frac{\partial B}{\partial x} - i\beta \frac{\partial B}{\partial x} \\ \hline \ \nterv{$\frac{\partial B}{\partial x} + i\beta \frac{\partial B}{\partial x} - i$$

Varsakelis Christos

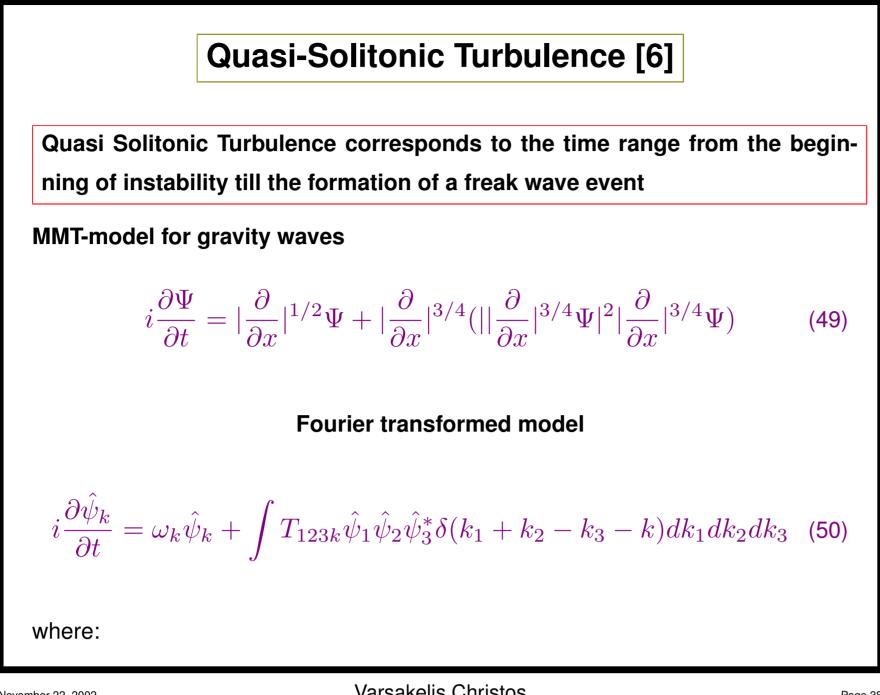


Varsakelis Christos



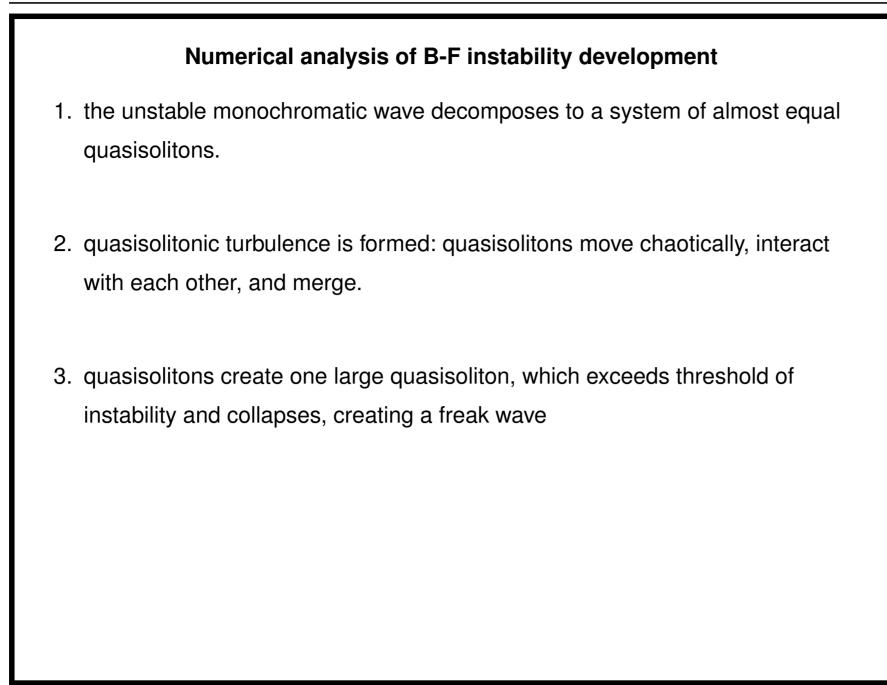


Varsakelis Christos

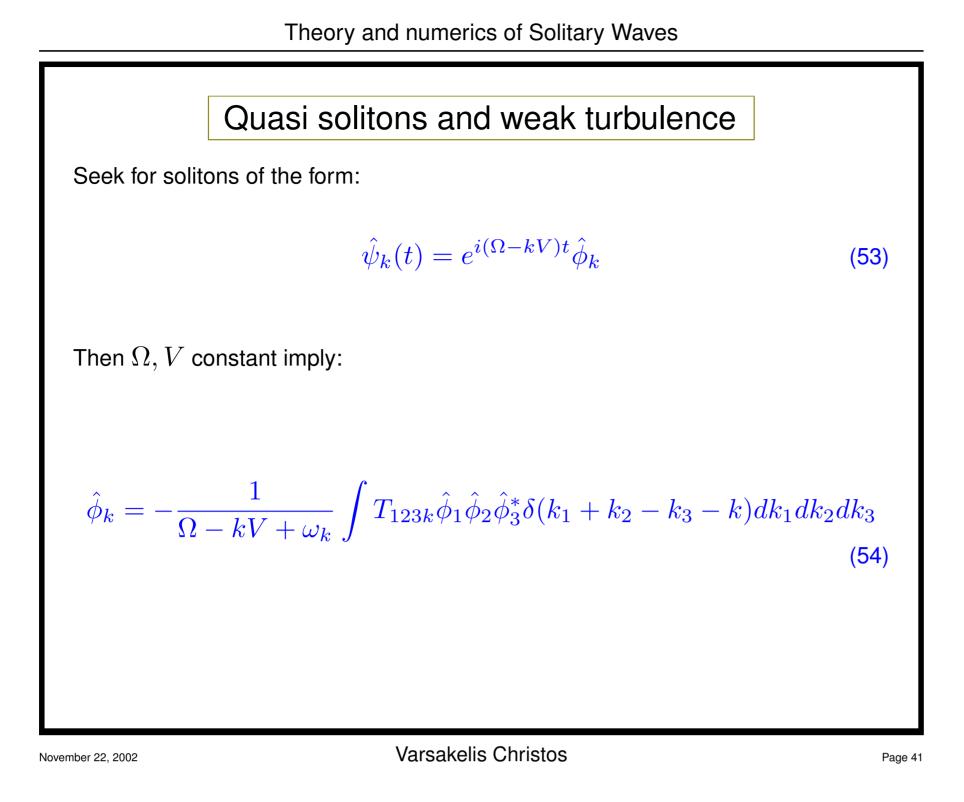


Varsakelis Christos

$$\begin{split} \omega_k &= |k|^{\alpha} \text{ Linear frequency parameter} \\ T_{123k} &= \lambda |k_1 k_2 k_3|^{\beta/4} \text{ interaction parameter.} \\ \lambda &= \pm 1 \text{ balance between dispersive and non linear effects} \\ \hline \textbf{Exact solution:} \\ \Psi &= A e^{-kx - \omega t} \quad (51) \\ \omega &= k^{1/2} (1 + k^{5/2} A^2) \quad (52) \end{split}$$
 $\text{ In this solution can be constructed as a model of the Stokes wave.} \\ \text{ unstable with respect to modulational instability.} \end{split}$



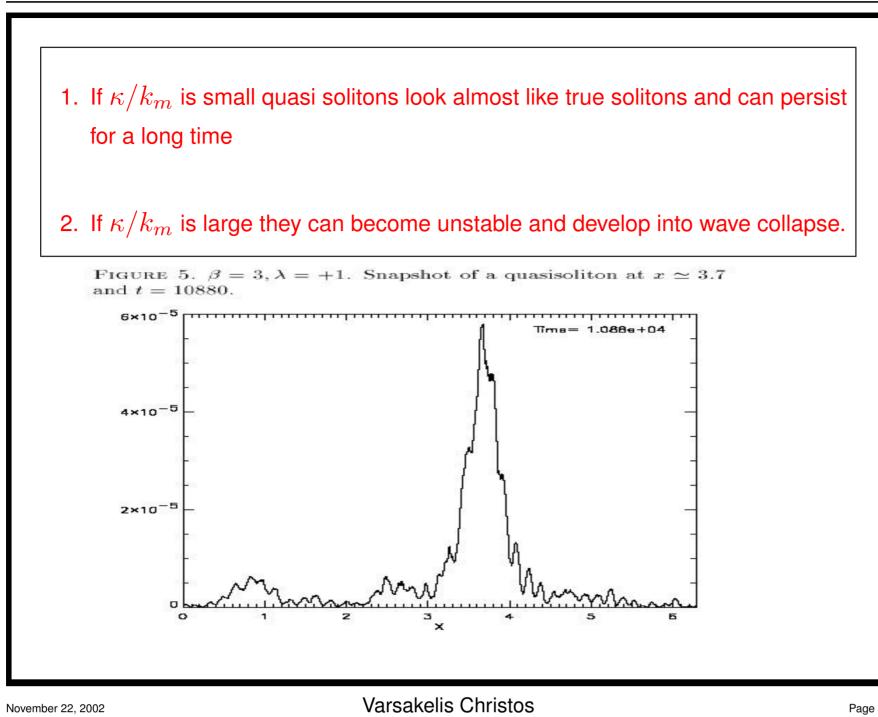
Varsakelis Christos



Quasi solitons are approximate solutions of (53) which look like envelope solitons In the limit of a narrow spectrum centered at $k = k_m$, such as Ω – $k_m V + k_m^{lpha}
eq 0$ they are given by the formula: $\psi(x,t) \simeq \phi(x-Vt)e^{i\Omega t + ik_m(x-Vt)}$ (55) where • $\phi(\xi) = \sqrt{\frac{\alpha(1-a)\kappa}{k_m^{\beta-\alpha+2}\cosh(\kappa\xi)}}$ for $\kappa = |k - k_m| << k_m$ • $\Omega = -(1 - \alpha)k_m^{\alpha} - (1/2)\alpha(1 - \alpha)k_m^{\alpha-2}\kappa^2$ • $V = \alpha k_m^{\alpha-1}$

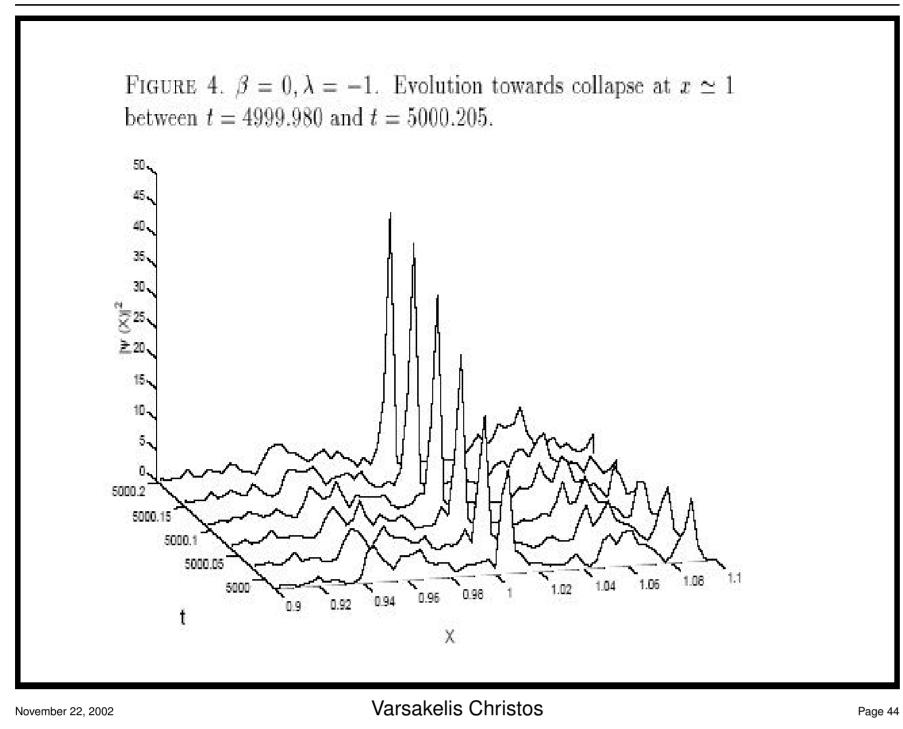
November 22, 2002

Varsakelis Christos



Theory and numerics of Solitary Waves

Theory and numerics of Solitary Waves



Literatur

- T.B. Benjamin and J.E. Feir, *The disintegration of wave trains on deep water*. *Part 1. Theory*," (27, 1967), p. 417 - 430.
- [2] D. Cai and D. W. McLaughlin, *Chaotic and turbulent behavior of unstable one-dimensional nonlinear dispersive waves*", (Jour. Math. Phys., 41 4125(4153 (2000), mainly Sec. II.B.)
- [3] C. Sulem and P. Sulem, *The nonlinear Schrodinger equation: self-focusing and wave collapse*", (Springer-Verlag, 1999, Sec. 1.3.1.)
- [4] P.K. Shukla, I. Kourakis, B. Eliasson, M. Marklund and L. Sten o, *Instability and Evolution of Nonlinearly Interacting Water Waves*", (Phys. Rev. Lett. 97 094501 2006).
- [5] A. I. Dyachenko and V. E. Zakharov, Modulation Instability of Stokes Wave implies a Freak Wave", (JETP Letters, Vol. 81, No. 6, 2005), p. 255-259
- [6] V. E. Zakharov, F. Dias, and A. N. Pushkarev, (Phys. Rep. 398, 1 2004)

November 22, 2002

Varsakelis Christos

[7] Christian Kharif1 and Efim Pelinovsky, <i>Physical Mechanisms of the Rogue Wave Phenomenon</i> ,(European Journal of Mechanics B: Fluids, (2003)
[8] Sverre Haver, Freak Waves: A Suggested Definition and Possible Consequences for Marine Structures, Actes de colloques- IFREMER, (2004

November 22, 2002

Varsakelis Christos