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Introduction

The nonlinear cubic-quintic Schrödinger equation (CQNLS) is the
following differential equation:

ıut + uxx + a1u |u|2 − a2u |u|4 = 0,

where a1 and a2 are real constants.

It takes its name from the fact that the small amplitude approximation is
the equation that Schrödinger proposed in the year 1926 for the
propagation of a quantum wave packet in free space.



Physical applications of the CNLS

The CNLS is a generic equation, arising whenever one studies
unidirectional propagation of wave packets in a dispersive energy
conserving medium at the lowest order of nonlinearity.

Applications of the CNLS are

I Description of non-linear pulses on an optical fiber

I Two-dimensional self-focusing of a plane wave

I One-dimensional self-modulation of a monochromatic wave

I Propagation of a heat pulse in a solid

I Langmuir waves in plasmas.



From the Sine-Gordon to the 1D CNLS

Start from the Sine-Gordon equation

utt − c2
0uxx + ω2

0 sinu = 0.

We consider only the first two terms of the Taylor-development of the
sinus function

sin u = u− u3

6
+ . . .

A first idea could be to look for a solution of the form of a plane wave
with a small perturbating term

u(x, t) = εAeı(qx−ωt) + ε2B(x, t),

but in this case we would obtain B(x, t) ∼ ε2t, i.e. B(x, t) diverges.



Introduce multiple scales expansion

Ti = εit, Xi = εix,

so the solution will be of the form

u(x, t) = ε
∞∑
i=0

εiφi (X0, X1, X2, ..., T0, T1, T2, ...) .

We use the notation

Di =
∂

∂Ti
, DXi

=
∂

∂Xi
.



At the order ε we need to solve(
D2

0 − c2
0D

2
X0

+ ω2
0

)
φ0 = 0.

The solution is a plane wave:

φ0 = A(X1, T1, X2, T2, ...)e
ı(qX0−ωT0) + c.c.,

where c.c. is the complex conjugate.
It holds the dispersion relation ω2 = ω2

0 + c2
0q

2.



At the order ε2 we find

D2
0φ1 + 2D0D1φ0 − c2

0D
2
X0

φ1 − 2c2
0DX0DX1φ0 + ω2

0φ1 = 0.

We need the following condition to eliminate the secular terms

∂A

∂T1
+

qc2
0

ω

∂A

∂X1
= 0,

where vg :=
qc2

0

ω is the group velocity.
The solution is therefore

φ1 = 0.



Order ε3:

−D2
1φ0 − 2D0D2φ0 + c2

0D
2
X1

φ0 + 2c2
0DX0DX2φ0 +

ω2
0

6
φ3

0

−2D0D1φ1 + 2c2
0DX0DX1φ1 = 0.

As above we need the condition

−∂2A

∂T 2
1

+ 2ıω
∂A

∂T2
+ c2

0

∂2A

∂X2
1

+ 2ıqc2
0

∂A

∂X2
+

3

6
ω2

0 |A|
2
A = 0.

Introducing the new variables

ξi = Xi − vgTi, τi = Ti

and using the condition of the order ε2, we have

(
c2
0 − v2

g

) ∂2A

∂ξ2
1

+ 2ıω

(
∂A

∂τ2
− vg

∂A

∂ξ2

)
+ 2ıqc2

0

∂A

∂ξ2
+

1

2
ω2

0 |A|
2
A = 0.



Using the expression for the group velocity

vg = qc2
0/ω,

we obtain

ı
∂A

∂τ2
+

(
c2
0 − v2

g

)
2ω

∂2A

∂ξ2
1

+
ω2

0

4ω
|A|2 A = 0,

which is just the CNLS with

a1 =
ω2

0

4ω

2ω(
c2
0 − v2

g

) =
ω2

0

2
(
c2
0 − v2

g

) .



Single soliton solution for 1D CNLS

This is found by looking for solutions of the CNLS, with a1 = ν,
depending on a moving coordinate X = x− Ut:

u = eırx−ıstv(X), X = x− Ut,

where r and s are constants.
On substitution, the ordinary differential equation for v is

v′′ + ı(2r − U)v′ + (s− r2)v + ν |v|2 v = 0.

We now choose

r =
U

2
and s =

U2

4
− α,

the first being the important one to eliminate the term in v′.



Then v may be taken to be real and

v′′ − αv + νv3 = 0.

This gives rise to a cnoidal wave equation for v. It may be integrated
once to

v′2 = A + αv2 − ν

2
v4,

which can be solved in elliptic functions.
The limiting case of the solitary wave is possible when ν > 0; we take
A = 0, α > 0, and the solution is

v =

(
2α

ν

)1/2

sech
(
α1/2 (x− Ut)

)
.



Analytical solutions of the CQNLS

As seen it is possible to find analytic solutions of the CQNLS. One way of
doing this is the following: we consider the differential equation in the
form

ıut + uxx = a1u |u|2 + a2u |u|4

and we use the “Ansatz”

u(x, t) = f(x)e−ıat,

where a is a real constant and f a complex function. The CQNLS
reduces to

fxx + af = a1f |f |2 + a2f |f |4 .



We now set
f(x) = M(x)eıN(x),

where M and N are real functions. Separating the real and the
imaginary part of f(x), we get

Mxx −M (Nx)2 + aM = a1M
3 + a2M

5

and
2MxNx + MNxx = 0.



Multiplying the second equation by M

2MMxNx + M2Nxx = 0,

i.e. (
M2
)
x

Nx + M2Nxx = 0,

and integrating twice we obtain N in terms of M

N = S

∫
M−2dx + N0,

where S and N0 are real integration constants. N0 represents a constant
change of phase.
Substituting this last equation into the first, leads to

Mxx − S2M−3 + aM = a1M
3 + a2M

5.



We have now to multiply by Mx and integrate to get

(Mx)2 + S2M−2 + aM2 = a1
M4

2
+ a2

M6

3
+ K0,

where K0 is an integration constant. This equation leads to a standard
elliptic integral by the substitution

M(x) = [pW (y)]1/2
, pW > 0,

where p is a nonvanishing constant and

y =
(pa1

2

)1/2

x, for a2 = 0,

y =

(
4a2

3

)1/2

px, for a2 6= 0.



Then we have for the cubic case

(Wy)2 = 4W 3 − 8a

a1p
W 2 + 4KW − 8S2

a1p3

≡ 4(W −W1)(W −W2)(W −W3)

and for the quintic case

(Wy)2 = W 4 +
3a1

2a2p
W 3 − 3a

a2p2
W 2 + 4KW − 3S2

a2p4

≡ (W −W1)(W −W2)(W −W3)(W −W4),

where K := pK0y
2/x2 is a constant and the Wi’s are the roots of the

right-hand sides.



An example of analytical solution of the CQNLS

The equation
ıut + uxx + u |u|2 − δu |u|4 = 0

has the solution

u(x, t) =
√

2
sech x[

C + 1− C
2 sech2 x

]1/2
eıt,

for

C =
4δW3

3
= −4δ

3

(
3

4δ
− 1

2

√
3

4δ2(3− 16δ)

)

= −1 +
2δ

3

√
3

4δ2(3− 16δ)
.



Where W3 is one of the roots of the polynomial

W 4 +
3

2δ
W 3 +

3

δ
W 2,

i.e.
W1 = 0, W2 = 0

W3 = − 3

4δ
+

1

2

√
D, W4 = − 3

4δ
− 1

2

√
D,

with

D =
3

4

3− 16δ

δ2
.



Note that the constant C is complex for δ > 3/16.
In fact D < 0 for δ > 3

16 = 0.1875, because

D =
3

4

3− 16δ

δ2
< 0

⇒ 3− 16δ

δ2
< 0

⇒ 3− 16δ < 0

⇒ δ >
3

16
.



Numerical computation of a solution of the CQNLS

We look for a solution of the CQNLS

ıut + uxx + u |u|2 − δu |u|4 = 0,

for δ = 1, using a known solution,

z(x, t) =
√

2 sech(x)eıt,

of the CNLS (δ = 0).
We perform numerical homotopy continuation of z(x, t) by slowly
increasing the value of δ up to 1.
Suppose at first the wanted solution has the form

u(x, t) = v(x)eıt,

for a real function v(x) that we need to determine numerically.



This leads to the following differential equation for v

−v + v′′ + v3 − δv5 = 0,

that we discretize with the finite difference method and solve, at each
value of δ, using the Newton iteration.
We are starting from the function

v0(x) := z(x, 0) =
√

2 sech(x)

that sastisfies the differential equation

−v0 + v′′0 + v3
0 − δv5

0 = 0.

As yet seen, analitically the obtained solution would be

u(x, t) =
√

2
sech(x)[

C + 1− C/2 sech2(x)
]1/2

eıt,

for a constant C depeding on δ.



Moving waves

The above numerically calculated wave is a stationary one. We are now
going to see how it is possible to derive a moving one. We assume

u(x, t) = Aeıωtv(x)

solves the CQNLS

ıut + uxx + u |u|2 − δu |u|4 = 0.

It follows that v satisfies

−Aωv + Av′′ + A3v3 − δA5v5 = 0.

Use Galilean boost to obtain a moving wave, with speed w, starting from
a stationary one. Let

x̃ := x− wt

t̃ := t.



We would like to know how frequency and amplitude get transformed

ω̃ = ?

Ã = ?

We define

ũ(x, t) := Ã(w)eı(ω̃(w)t̃+µx)v(x̃) = Ã(w)eı(ω̃(w)t+µx)v(x− wt),

for a constant µ.
Inserting, we get a new differential equation for v

ı
(
ıω̃(w)Ã(w)eı(ω̃(w)t+µx)v − wÃ(w)eı(ω̃(w)t+µx)v′

)
+Ã(w)eı(ω̃(w)t+µx)v′′

+2ıµÃ(w)eı(ω̃(w)t+µx)v′ − µ2Ã(w)eı(ω̃(w)t+µx)v + Ã3(w)v3eı(ω̃(w)t+µx)

−δÃ5(w)v5eı(ω̃(w)t+µx) = 0.



It follows

Ã(w)v′′ − Ã(w)ω̃(w)v − ıÃ(w)wv′ + 2ıÃ(w)µv′ − Ã(w)µ2v

+Ã3(w)v3 − δÃ5(w)v5 = 0.

Taking now w = 2µ, we get

v′′ − ω̃(w)v − µ2v + Ã2(w)v3 − δÃ4(w)v5 = 0.

So ũ is still a solution of the CQNLS if

ω̃ = ω − µ2 = ω − w2

4

Ã = A.

Then

ũ (x, t) = Ae
ı
�
(ω−w2

4 )+ w
2 x

�

v(x− wt).

also solves the CQNLS.
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