1D Cubic NLS (CNLS) and Cubic-Quintic NLS (CQNLS)

Marcello Sani

December 5, 2006

Contents

Introduction

Physical applications of the CNLS

From the Sine-Gordon to the 1D CNLS

Single soliton solution for 1D CNLS

Analytical solutions of the CQNLS
An example of analytical solution of the CQNLS

Numerical computation of a solution of the CQNLS

Moving waves

Introduction

The nonlinear cubic-quintic Schrödinger equation (CQNLS) is the following differential equation:

$$
\imath u_{t}+u_{x x}+a_{1} u|u|^{2}-a_{2} u|u|^{4}=0,
$$

where a_{1} and a_{2} are real constants.
It takes its name from the fact that the small amplitude approximation is the equation that Schrödinger proposed in the year 1926 for the propagation of a quantum wave packet in free space.

Physical applications of the CNLS

The CNLS is a generic equation, arising whenever one studies unidirectional propagation of wave packets in a dispersive energy conserving medium at the lowest order of nonlinearity.

Applications of the CNLS are

- Description of non-linear pulses on an optical fiber
- Two-dimensional self-focusing of a plane wave
- One-dimensional self-modulation of a monochromatic wave
- Propagation of a heat pulse in a solid
- Langmuir waves in plasmas.

From the Sine-Gordon to the 1D CNLS

Start from the Sine-Gordon equation

$$
u_{t t}-c_{0}^{2} u_{x x}+\omega_{0}^{2} \sin u=0
$$

We consider only the first two terms of the Taylor-development of the sinus function

$$
\sin u=u-\frac{u^{3}}{6}+\ldots
$$

A first idea could be to look for a solution of the form of a plane wave with a small perturbating term

$$
u(x, t)=\varepsilon A e^{\imath(q x-\omega t)}+\varepsilon^{2} B(x, t),
$$

but in this case we would obtain $B(x, t) \sim \varepsilon^{2} t$, i.e. $B(x, t)$ diverges.

Introduce multiple scales expansion

$$
T_{i}=\varepsilon^{i} t, \quad X_{i}=\varepsilon^{i} x
$$

so the solution will be of the form

$$
u(x, t)=\varepsilon \sum_{i=0}^{\infty} \varepsilon^{i} \phi_{i}\left(X_{0}, X_{1}, X_{2}, \ldots, T_{0}, T_{1}, T_{2}, \ldots\right)
$$

We use the notation

$$
D_{i}=\frac{\partial}{\partial T_{i}}, \quad D_{X_{i}}=\frac{\partial}{\partial X_{i}} .
$$

At the order ε we need to solve

$$
\left(D_{0}^{2}-c_{0}^{2} D_{X_{0}}^{2}+\omega_{0}^{2}\right) \phi_{0}=0 .
$$

The solution is a plane wave:

$$
\phi_{0}=A\left(X_{1}, T_{1}, X_{2}, T_{2}, \ldots\right) e^{\imath\left(q X_{0}-\omega T_{0}\right)}+c . c .
$$

where c.c. is the complex conjugate.
It holds the dispersion relation $\omega^{2}=\omega_{0}^{2}+c_{0}^{2} q^{2}$.

At the order ε^{2} we find

$$
D_{0}^{2} \phi_{1}+2 D_{0} D_{1} \phi_{0}-c_{0}^{2} D_{X_{0}}^{2} \phi_{1}-2 c_{0}^{2} D_{X_{0}} D_{X_{1}} \phi_{0}+\omega_{0}^{2} \phi_{1}=0 .
$$

We need the following condition to eliminate the secular terms

$$
\frac{\partial A}{\partial T_{1}}+\frac{q c_{0}^{2}}{\omega} \frac{\partial A}{\partial X_{1}}=0
$$

where $v_{g}:=\frac{q c_{0}^{2}}{\omega}$ is the group velocity.
The solution is therefore

$$
\phi_{1}=0 .
$$

Order ε^{3} :

$$
\begin{gathered}
-D_{1}^{2} \phi_{0}-2 D_{0} D_{2} \phi_{0}+c_{0}^{2} D_{X_{1}}^{2} \phi_{0}+2 c_{0}^{2} D_{X_{0}} D_{X_{2}} \phi_{0}+\frac{\omega_{0}^{2}}{6} \phi_{0}^{3} \\
-2 D_{0} D_{1} \phi_{1}+2 c_{0}^{2} D_{X_{0}} D_{X_{1}} \phi_{1}=0
\end{gathered}
$$

As above we need the condition

$$
-\frac{\partial^{2} A}{\partial T_{1}^{2}}+2 \imath \omega \frac{\partial A}{\partial T_{2}}+c_{0}^{2} \frac{\partial^{2} A}{\partial X_{1}^{2}}+2 \imath q c_{0}^{2} \frac{\partial A}{\partial X_{2}}+\frac{3}{6} \omega_{0}^{2}|A|^{2} A=0 .
$$

Introducing the new variables

$$
\xi_{i}=X_{i}-v_{g} T_{i}, \quad \tau_{i}=T_{i}
$$

and using the condition of the order ε^{2}, we have

$$
\left(c_{0}^{2}-v_{g}^{2}\right) \frac{\partial^{2} A}{\partial \xi_{1}^{2}}+2 \imath \omega\left(\frac{\partial A}{\partial \tau_{2}}-v_{g} \frac{\partial A}{\partial \xi_{2}}\right)+2 \imath q c_{0}^{2} \frac{\partial A}{\partial \xi_{2}}+\frac{1}{2} \omega_{0}^{2}|A|^{2} A=0 .
$$

Using the expression for the group velocity

$$
v_{g}=q c_{0}^{2} / \omega,
$$

we obtain

$$
\imath \frac{\partial A}{\partial \tau_{2}}+\frac{\left(c_{0}^{2}-v_{g}^{2}\right)}{2 \omega} \frac{\partial^{2} A}{\partial \xi_{1}^{2}}+\frac{\omega_{0}^{2}}{4 \omega}|A|^{2} A=0,
$$

which is just the CNLS with

$$
a_{1}=\frac{\omega_{0}^{2}}{4 \omega} \frac{2 \omega}{\left(c_{0}^{2}-v_{g}^{2}\right)}=\frac{\omega_{0}^{2}}{2\left(c_{0}^{2}-v_{g}^{2}\right)} .
$$

Single soliton solution for 1D CNLS

This is found by looking for solutions of the CNLS, with $a_{1}=\nu$, depending on a moving coordinate $X=x-U t$:

$$
u=e^{\imath r x-\imath s t} v(X), \quad X=x-U t
$$

where r and s are constants.
On substitution, the ordinary differential equation for v is

$$
v^{\prime \prime}+\imath(2 r-U) v^{\prime}+\left(s-r^{2}\right) v+\nu|v|^{2} v=0 .
$$

We now choose

$$
r=\frac{U}{2} \text { and } s=\frac{U^{2}}{4}-\alpha
$$

the first being the important one to eliminate the term in v^{\prime}.

Then v may be taken to be real and

$$
v^{\prime \prime}-\alpha v+\nu v^{3}=0
$$

This gives rise to a cnoidal wave equation for v. It may be integrated once to

$$
v^{\prime 2}=A+\alpha v^{2}-\frac{\nu}{2} v^{4},
$$

which can be solved in elliptic functions.
The limiting case of the solitary wave is possible when $\nu>0$; we take $A=0, \alpha>0$, and the solution is

$$
v=\left(\frac{2 \alpha}{\nu}\right)^{1 / 2} \operatorname{sech}\left(\alpha^{1 / 2}(x-U t)\right)
$$

Analytical solutions of the CQNLS

As seen it is possible to find analytic solutions of the CQNLS. One way of doing this is the following: we consider the differential equation in the form

$$
\imath u_{t}+u_{x x}=a_{1} u|u|^{2}+a_{2} u|u|^{4}
$$

and we use the "Ansatz"

$$
u(x, t)=f(x) e^{-\imath a t}
$$

where a is a real constant and f a complex function. The CQNLS reduces to

$$
f_{x x}+a f=a_{1} f|f|^{2}+a_{2} f|f|^{4} .
$$

We now set

$$
f(x)=M(x) e^{\imath N(x)}
$$

where M and N are real functions. Separating the real and the imaginary part of $f(x)$, we get

$$
M_{x x}-M\left(N_{x}\right)^{2}+a M=a_{1} M^{3}+a_{2} M^{5}
$$

and

$$
2 M_{x} N_{x}+M N_{x x}=0
$$

Multiplying the second equation by M

$$
2 M M_{x} N_{x}+M^{2} N_{x x}=0,
$$

i.e.

$$
\left(M^{2}\right)_{x} N_{x}+M^{2} N_{x x}=0,
$$

and integrating twice we obtain N in terms of M

$$
N=S \int M^{-2} d x+N_{0}
$$

where S and N_{0} are real integration constants. N_{0} represents a constant change of phase.
Substituting this last equation into the first, leads to

$$
M_{x x}-S^{2} M^{-3}+a M=a_{1} M^{3}+a_{2} M^{5}
$$

We have now to multiply by M_{x} and integrate to get

$$
\left(M_{x}\right)^{2}+S^{2} M^{-2}+a M^{2}=a_{1} \frac{M^{4}}{2}+a_{2} \frac{M^{6}}{3}+K_{0}
$$

where K_{0} is an integration constant. This equation leads to a standard elliptic integral by the substitution

$$
M(x)=[p W(y)]^{1 / 2}, \quad p W>0
$$

where p is a nonvanishing constant and

$$
\begin{aligned}
& y=\left(\frac{p a_{1}}{2}\right)^{1 / 2} x, \quad \text { for } a_{2}=0 \\
& y=\left(\frac{4 a_{2}}{3}\right)^{1 / 2} p x, \quad \text { for } a_{2} \neq 0
\end{aligned}
$$

Then we have for the cubic case

$$
\begin{aligned}
\left(W_{y}\right)^{2} & =4 W^{3}-\frac{8 a}{a_{1} p} W^{2}+4 K W-\frac{8 S^{2}}{a_{1} p^{3}} \\
& \equiv 4\left(W-W_{1}\right)\left(W-W_{2}\right)\left(W-W_{3}\right)
\end{aligned}
$$

and for the quintic case

$$
\begin{aligned}
\left(W_{y}\right)^{2} & =W^{4}+\frac{3 a_{1}}{2 a_{2} p} W^{3}-\frac{3 a}{a_{2} p^{2}} W^{2}+4 K W-\frac{3 S^{2}}{a_{2} p^{4}} \\
& \equiv\left(W-W_{1}\right)\left(W-W_{2}\right)\left(W-W_{3}\right)\left(W-W_{4}\right),
\end{aligned}
$$

where $K:=p K_{0} y^{2} / x^{2}$ is a constant and the W_{i} 's are the roots of the right-hand sides.

An example of analytical solution of the CQNLS

The equation

$$
\imath u_{t}+u_{x x}+u|u|^{2}-\delta u|u|^{4}=0
$$

has the solution

$$
u(x, t)=\sqrt{2} \frac{\operatorname{sech} x}{\left[C+1-\frac{C}{2} \operatorname{sech}^{2} x\right]^{1 / 2}} e^{\imath t}
$$

for

$$
\begin{aligned}
C=\frac{4 \delta W_{3}}{3} & =-\frac{4 \delta}{3}\left(\frac{3}{4 \delta}-\frac{1}{2} \sqrt{\frac{3}{4 \delta^{2}(3-16 \delta)}}\right) \\
= & -1+\frac{2 \delta}{3} \sqrt{\frac{3}{4 \delta^{2}(3-16 \delta)}} .
\end{aligned}
$$

Where W_{3} is one of the roots of the polynomial

$$
W^{4}+\frac{3}{2 \delta} W^{3}+\frac{3}{\delta} W^{2},
$$

i.e.

$$
\begin{aligned}
W_{1}=0, & W_{2}=0 \\
W_{3}=-\frac{3}{4 \delta}+\frac{1}{2} \sqrt{D}, & W_{4}=-\frac{3}{4 \delta}-\frac{1}{2} \sqrt{D},
\end{aligned}
$$

with

$$
D=\frac{3}{4} \frac{3-16 \delta}{\delta^{2}} .
$$

Note that the constant C is complex for $\delta>3 / 16$. In fact $D<0$ for $\delta>\frac{3}{16}=0.1875$, because

$$
\begin{aligned}
D & =\frac{3}{4} \frac{3-16 \delta}{\delta^{2}}<0 \\
& \Rightarrow \frac{3-16 \delta}{\delta^{2}}<0 \\
& \Rightarrow 3-16 \delta<0 \\
& \Rightarrow \delta>\frac{3}{16} .
\end{aligned}
$$

Numerical computation of a solution of the CQNLS

We look for a solution of the CQNLS

$$
\imath u_{t}+u_{x x}+u|u|^{2}-\delta u|u|^{4}=0
$$

for $\delta=1$, using a known solution,

$$
z(x, t)=\sqrt{2} \operatorname{sech}(x) e^{\imath t},
$$

of the CNLS $(\delta=0)$.
We perform numerical homotopy continuation of $z(x, t)$ by slowly increasing the value of δ up to 1 .
Suppose at first the wanted solution has the form

$$
u(x, t)=v(x) e^{\imath t},
$$

for a real function $v(x)$ that we need to determine numerically.

This leads to the following differential equation for v

$$
-v+v^{\prime \prime}+v^{3}-\delta v^{5}=0,
$$

that we discretize with the finite difference method and solve, at each value of δ, using the Newton iteration.
We are starting from the function

$$
v_{0}(x):=z(x, 0)=\sqrt{2} \operatorname{sech}(x)
$$

that sastisfies the differential equation

$$
-v_{0}+v_{0}^{\prime \prime}+v_{0}^{3}-\delta v_{0}^{5}=0 .
$$

As yet seen, analitically the obtained solution would be

$$
u(x, t)=\sqrt{2} \frac{\operatorname{sech}(x)}{\left[C+1-C / 2 \operatorname{sech}^{2}(x)\right]^{1 / 2}} e^{\imath t}
$$

for a constant C depeding on δ.

Moving waves

The above numerically calculated wave is a stationary one. We are now going to see how it is possible to derive a moving one. We assume

$$
u(x, t)=A e^{\imath \omega t} v(x)
$$

solves the CQNLS

$$
\imath u_{t}+u_{x x}+u|u|^{2}-\delta u|u|^{4}=0 .
$$

It follows that v satisfies

$$
-A \omega v+A v^{\prime \prime}+A^{3} v^{3}-\delta A^{5} v^{5}=0
$$

Use Galilean boost to obtain a moving wave, with speed w, starting from a stationary one. Let

$$
\begin{gathered}
\tilde{x}:=x-w t \\
\tilde{t}:=t .
\end{gathered}
$$

We would like to know how frequency and amplitude get transformed

$$
\begin{aligned}
& \tilde{\omega}=? \\
& \tilde{A}=?
\end{aligned}
$$

We define

$$
\tilde{u}(x, t):=\tilde{A}(w) e^{\imath(\tilde{\omega}(w) \tilde{t}+\mu x)} v(\tilde{x})=\tilde{A}(w) e^{\imath(\tilde{\omega}(w) t+\mu x)} v(x-w t),
$$

for a constant μ.
Inserting, we get a new differential equation for v

$$
\begin{gathered}
\imath\left(\imath \tilde{\omega}(w) \tilde{A}(w) e^{\imath(\tilde{\omega}(w) t+\mu x)} v-w \tilde{A}(w) e^{\imath(\tilde{\omega}(w) t+\mu x)} v^{\prime}\right)+\tilde{A}(w) e^{\imath(\tilde{\omega}(w) t+\mu x)} v^{\prime \prime} \\
+2 \imath \mu \tilde{A}(w) e^{\imath(\tilde{\omega}(w) t+\mu x)} v^{\prime}-\mu^{2} \tilde{A}(w) e^{\imath(\tilde{\omega}(w) t+\mu x)} v+\tilde{A}^{3}(w) v^{3} e^{\imath \tilde{\omega}(w) t+\mu x)} \\
-\delta \tilde{A}^{5}(w) v^{5} e^{\imath \tilde{\omega}(w) t+\mu x)}=0 .
\end{gathered}
$$

It follows

$$
\begin{gathered}
\tilde{A}(w) v^{\prime \prime}-\tilde{A}(w) \tilde{\omega}(w) v-\imath \tilde{A}(w) w v^{\prime}+2 \imath \tilde{A}(w) \mu v^{\prime}-\tilde{A}(w) \mu^{2} v \\
+\tilde{A}^{3}(w) v^{3}-\delta \tilde{A}^{5}(w) v^{5}=0 .
\end{gathered}
$$

Taking now $w=2 \mu$, we get

$$
v^{\prime \prime}-\tilde{\omega}(w) v-\mu^{2} v+\tilde{A}^{2}(w) v^{3}-\delta \tilde{A}^{4}(w) v^{5}=0 .
$$

So \tilde{u} is still a solution of the CQNLS if

$$
\begin{gathered}
\tilde{\omega}=\omega-\mu^{2}=\omega-\frac{w^{2}}{4} \\
\tilde{A}=A .
\end{gathered}
$$

Then

$$
\tilde{u}(x, t)=A e^{2\left(\omega-\frac{w^{2}}{4}\right)+\frac{w}{2} x} v(x-w t) .
$$

also solves the CQNLS.

References

- Cagnon, L.: Exact travelling-wave solutions for optical models based on the nonlinear cubic-quintic Schrödinger equation. JOSA A. 6, 1477-1483 (1989)
- Peyard, M., Dauxois, T.: Physique des solitons. Les Ullis: EDP Eciences, 72-76 (2004)
- Scott, A.: Nonlinear science. Oxford Univ. Press, Oxford, 56 (2003)
- Whitham G. B.: Linear and Nonlinear waves. WileyInterscience, Sec. 17.8, (1974)

