Publications:
Preprints:
Journal articles:
- M. Brown, T. Dohnal, M. Plum, and I. Wood,
``Spectrum of the Maxwell Equations for a Flat
Interface between Homogeneous Dispersive Media," Comm.
Math. Phys., 406, 3 (2025). (https://rdcu.be/d3jwi,
arXiv:2206.02037)
- T. Dohnal and Runan He, ``Bifurcation and
Asymptotics of Cubically Nonlinear Transverse Magnetic
Surface Plasmon Polaritons,'' J. Math. Anal. Appl.,
538 (2), 128422 (2024). (https://doi.org/10.1016/j.jmaa.2024.128422,
arXiv:2311.17838)
- T. Dohnal, D. Pelinovsky, and G. Schneider,
``Traveling modulating pulse solutions with small
tails for a nonlinear wave equation in periodic
media," Nonlinearity, 37, 055005
(2024). (https://doi.org/10.1088/1361-6544/ad3097,
arXiv:2304.06214)
- T. Dohnal, M. Ionescu-Tira, and M. Waurick,
``Well-Posedness and Exponential Stability of
Nonlinear Maxwell Equations for Dispersive Materials
with Interface," J. Diff. Eq., 383
(25), 24-77 (2023). (https://doi.org/10.1016/j.jde.2023.11.005)(arXiv:2301.10099)
- T. Dohnal, R. Schnaubelt, and D.P. Tietz, ``Rigorous
Envelope Approximation for Interface Wave-Packets in
Maxwell's Equations with 2D Localization,'' SIAM
J. Math. Anal., 55 (6), 6898-6939
(2023). (https://epubs.siam.org/doi/10.1137/22M1501611)
(arXiv:2206.03154)
- T. Dohnal, G. Romani, and D.P. Tietz, ``A
quasilinear transmission problem with application to
Maxwell equations with a divergence-free D-field," J.
Math. Anal. Appl., 511 (1),
126067 (2022). (https://doi.org/10.1016/j.jmaa.2022.126067)
(arXiv:2109.08513)
- T. Dohnal, G. Romani, ``Justification of the
Asymptotic Coupled Mode Approximation of Out-of-Plane
Gap Solitons in Maxwell Equations," Nonlinearity,
34 (8), 5261-5318 (2021). (https://iopscience.iop.org/article/10.1088/1361-6544/ac0485,
arXiv:2010.03473)
- T. Dohnal and L. Wahlers, ``Bifurcation of Gap
Solitons in Coupled Mode Equations in d
Dimensions,'' J Dyn Diff Equat, 34,2105–2122
(2021). (https://doi.org/10.1007/s10884-021-09971-7,
arXiv:1903.02631)
- T. Dohnal and G. Romani, ``Eigenvalue Bifurcation in
Doubly Nonlinear Problems with an Application to
Surface Plasmon Polaritons,'' Nonlinear Differ.
Equ. Appl. 28, 9 (2021).
(https://doi.org/10.1007/s00030-020-00668-2,
arxiv:2002.08674v4)
Note: The arXiv version is a revised and corrected
one. It includes the corrections from the erratum:
- ``Correction to: Eigenvalue bifurcation in
doubly nonlinear problems with an application to
surface plasmon polaritons,'' Nonlinear
Differ. Equ. Appl. 30, 9 (2023).
https://doi.org/10.1007/s00030-022-00815-x.
- T. Dohnal and L. Wahlers, ``Coupled Mode Equations
and Gap Solitons in Higher Dimensions,'' J.
Diff. Eq., 269 (3), 2386–2418 (2020). (https://doi.org/10.1016/j.jde.2020.01.037,
arXiv:1810.04944)
- A. Mannan, S. Sultana, R. Schlickeiser, and T.
Dohnal, ``Three-dimensional self-gravito-acoustic
solitary waves in a degenerate quantum plasma
system'', Plasma Phys. Rep., 46
(2),195–199 (2020). (https://doi.org/10.1134/S1063780X20020075)
- A. Mannan and T. Dohnal, ``(3+1)-dimensional
cylindrical Korteweg-de Vries equation in a
self-gravitating degenerate quantum plasma system,'' Physics
of Plasmas 27, 012102 (2020). (doi.org/10.1063/1.5129799)
- T. Dohnal and D. Pelinovsky, ``Bifurcation of
nonlinear bound states in the periodic
Gross-Pitaevskii equation with PT-symmetry,'' Proc.
R. Soc. Edinb. A, 150 (1), 171-204
(2020). (doi.org/10.1017/prm.2018.83,
arXiv:1702.0346)
- T. Dohnal and D. Rudolf, ``NLS approximation for
wavepackets in periodic cubically nonlinear wave
problems in Rd,''
Applicable Analysis, 99 (10), 1685-1723
(2020). (doi.org/10.1080/00036811.2018.1544620,
arXiv:1710.07077)
- T. Dohnal and B.
Schweizer, ``A Bloch wave numerical scheme for
scattering problems in periodic wave-guides,'' SIAM
J. Num. Anal., 56
(3), 1848–1870
(2018). (https://doi.org/10.1137/17M1141643, arXiv:1708.06427)
- T. Dohnal and L. Helfmeier, ``Justification of the
Coupled Mode Asymptotics for Localized Wavepackets in
the Periodic Nonlinear Schrödinger Equation,'' J.
Math. Anal. Appl. 450, 691-726 (2017). (https://doi.org/10.1016/j.jmaa.2017.01.039, arxiv:1602.04121)
- T. Dohnal and P. Siegl, ``Bifurcation of eigenvalues
in nonlinear problems with antilinear
symmetry,'' J. Math. Phys 57,
093502 (2016). (https://doi.org/10.1063/1.4962417,
arXiv:1504.00054)
- T. Bartsch, T. Dohnal, M. Plum, and W. Reichel,
``Ground States of a Nonlinear Curl-Curl Problem in
Cylindrically Symmetric Media,'' Nonlinear Differ.
Equ. Appl. (2016) 23: 52. (https://doi.org/10.1007/s00030-016-0403-0,
arXiv:1411.7153)
- T. Dohnal and H. Uecker, ``Bifurcation of Nonlinear
Bloch Waves from the Spectrum in the Gross-Pitaevskii
Equation,'' J. Nonlin. Sci. 26(3):581-618
(2016). (https://doi.org/10.1007/s00332-015-9281-6,
arXiv:
1409.4199)
- T. Dohnal, A. Lamacz, and B. Schweizer, ``Dispersive
homogenized models and coefficient formulas for waves
in general periodic media,'' Asymptotic Analysis
93, 21-49 (2015). (https://doi.org/10.3233/ASY-141280,
arXiv:1401.7839)
- T. Dohnal, A. Lamacz, and B. Schweizer,
``Bloch-wave homogenization on large time scales and
dispersive effective wave equations,'' Multiscale
Model. Simul. 12, 488-513 (2014). (https://doi.org/10.1137/130935033,
arXiv:1302.4865)
- T. Dohnal, ``Traveling Solitary Waves in the
Periodic Nonlinear Schrödinger Equation with Finite
Band Potentials,'' SIAM Appl. Math. 74,
306-321 (2014). (arXiv:1305.3504)
- T. Dohnal, K. Nagatou, M. Plum and W. Reichel,
``Interfaces Supporting Surface Gap Soliton Ground
States in the 1D Nonlinear Schrödinger Equation,'' J.
Math. Anal. Appl. 407 , 425-435
(2013). (arXiv:1202.3588)
- T. Dohnal and W. Dörfler, ``Coupled Mode Equation
Modeling for Out-of-Plane Gap Solitons in 2D Photonic
Crystals,'' Multiscale Model. Simul. 11,
162-191 (2013). (arXiv:1202.3583)
- T. Dohnal and D. Pelinovsky, ``Vortex families near
a spectral edge in the Gross-Pitaevskii equation with
a two-dimensional periodic potential,'' Phys. Rev.
E 85:026605 (2012). (arXiv:1110.3780)
- T. Dohnal, M. Plum and W. Reichel, ``Surface gap
soliton ground states for the nonlinear Schrödinger
equation,'' Comm. Math. Phys. 308,
511-542 (2011). (https://doi.org/10.1007/s00220-011-1320-z,
arXiv:1011.2886)
- E. Blank and T. Dohnal, "Families of Surface Gap
Solitons and their Stability via the Numerical Evans
Function Method," SIAM J. Appl. Dyn. Syst. 10,
667-706 (2011). (https://doi.org/10.1137/090775324,
arXiv:0910.4858)
- T. Dohnal and H. Uecker, ``Erratum to `Coupled Mode
Equations and Gap Solitons for the 2D Gross-Pitaevskii
equation with a non-separable periodic potential' by
T. Dohnal and H. Uecker [Physica D 238 (2009),
860-879],'' Physica D 240, 357-362
(2011).
- T. Dohnal, M. Plum and W. Reichel, ``Localized Modes
of the Linear Periodic Schrödinger Operator with a
Nonlocal Perturbation,'' SIAM J. Math. Anal. 41,
1967-1993 (2009). (arXiv:0811.4514)
- T. Dohnal, ``Perfectly Matched Layers for Coupled
Nonlinear Schrödinger Equations with Mixed
Derivatives,'' J. Comput. Phys. 228,
87528765 (2009). (arXiv:0905.2321)
- A. Peleg, Y. Chung, T. Dohnal, and Q. M. Nguyen,
``Diverging probability density functions for flat-top
solitary waves,'' Phys. Rev. E 80:026602
(2009). (arXiv:0906.3001)
- T. Dohnal and H. Uecker, ``Coupled Mode Equations
and Gap Solitons for the 2D Gross-Pitaevskii equation
with a non-separable periodic potential,'' Physica
D 238, 860-879 (2009). (arXiv:0810.4499)
Note: The arXiv version is a largely revised and
corrected one.
- T. Dohnal, D. Pelinovsky and G. Schneider,
``Coupled-mode equations and gap solitons in a
two-dimensional nonlinear elliptic problem with a
separable periodic potential,'' J. Nonlin. Sci.
19, 95-131 (2009). (arXiv:0707.3731)
- T. Dohnal and D. Pelinovsky, ``Surface Gap Solitons
at a Nonlinearity Interface," SIAM J. Appl. Dyn.
Syst. 7, 249-264 (2008). (arXiv:0704.1742)
- T. Dohnal and T. Hagstrom, ``Perfectly matched layers in photonics
computations: 1D and 2D Nonlinear Coupled Mode
Equations," J. Comput. Phys. 223,
690-710 (2007).
- A.B. Aceves and T. Dohnal, ``Finite
dimensional model for defect-trapped light in planar
periodic nonlinear stuctures," Opt. Lett.
31, 3013-3015 (2006).
- A. Peleg, T. Dohnal, and Y. Chung, ``Effects of dissipative
disorder on front formation in pattern forming
systems,'' Phys. Rev. E 72:027203
(2005).
- T. Dohnal and A.B. Aceves, ``Optical soliton
bullets in (2+1)D nonlinear Bragg resonant periodic
geometries,'' J. Yang, editor, Nonlinear
Wave Phenomena in Periodic Photonic Structures,
Studies in Applied Math. 115:209-232 (2005).
Conference proceedings:
- T. Dohnal, J. Rademacher, H. Uecker, D. Wetzel, pde2path
2.0: multi-parameter continuation and periodic
domains, in H. Ecker, A. Steindl, S.
Jakubek, eds, ENOC 2014 - Proceedings of 8th European
Nonlinear Dynamics Conference, ISBN:
978-3-200-03433-4.
- A.B. Aceves and T.
Dohnal, ``Stopping
and bending light in 2D photonic structures,''
Proceedings of OSA topical meeting on Nonlinear
Guided Waves and their Applications, Toronto, March
2004.
- A.B. Aceves and T.
Dohnal, ``Stopping
and bending light in 2D photonic structures,''
in `` Nonlinear Waves: Classical and Quantum
Effects,'' p. 293 - 302, F. Kh. Abdullaev and V.V.
Konotop (eds.), Kluwer, 2004.
Dissertation: Optical bullets in (2+1)D
photonic structures and their interaction with localized
defects, PhD dissertation, Univ. of New Mexico, 2005.
Habilitation: Localized Waves in
Periodic Structures, Karslruhe Institute of Technology,
May 2012.
Software Package:
- PDE2PATH,
a Matlab package for continuation and bifurcation in
2D elliptic systems, with J. Rademacher, H. Uecker,
and D. Wetzel. (manual also on arXiv)
|