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Introduction: Problem setting: singular BVPs in ODEs

z ′(t) = F (t , z(t)), t ∈ (0,1]

b(z(0), z(1)) = 0

F (t , z(t)) unbounded for t → 0 and not Lipschitz
continuous on [0,1]!

Typically, limt→0
∂F (t ,z(t))

∂z = ∞!

Interested in z ∈ C[0,1], even z ∈ Cp[0,1], p ≥ 1

Important contributions:

Jamet, Brabston, Keller, Wolfe, Parter, Stein, Shampine, Russell, de

Hoog, Weiss, Markowich, Ringhofer, Ascher, Schmeiser, Troger,

Abramov, Koniuchova, Lima, März, Winkler, Auzinger, Koch, Cash, Muir,

Budd, Stanek, Rachunkova, Amodio, Burkotova, Settanni, Levitina...
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‘Regular’ BVPs with singular point: available results

Existence and uniqueness of z ∈ C[0, 1], smoothness, convergence of

the polynomial collocation

Linear case:

z ′(t) =
M(t)

t
z(t) + f (t), z ′(t) =

M(t)
tα

z(t) + f (t)

Nonlinear case:

z ′(t) =
M
t

z(t) + f (t , z(t)), z ′(t) =
M
tα

z(t) + f (t , z(t))

Time singularities
of the first kind α = 1, of the second kind α > 1
Problems posed on semi-infinite intervals
z ′(t) = f (t , z(t)), t ∈ [0,∞)

Space singularities
z ′(t) = f (t ,z(t))

g(z(t)) , t ∈ [a,b], g(z(t0)) = 0, t0 ∈ [a,b]
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Models in singular ODEs – CGL equation

Budd, Koch, W. (2006)

Solve for u = u(x , t), x ∈ R3, t > 0:

i
∂u
∂t

+ (1 − iε)∆u + (1 + iδ)|u|2u = 0, u(x ,0) = u0(x).

Interested in self-similar solutions

u(x , t) = L(τ)y(τ), τ = τ(x , t), ĺım
t→T

L(τ(x , t)) = ∞

where T is the blow-up time and y = y(τ), τ > 0, satisfies

(1−iε)
(

y ′′(τ)+
2
τ

y ′(τ)

)
−y(τ)+ia(τy(τ))′+(1+iδ)|y(τ)|2y(τ)=0,

y ′(0) = 0, ℑy(0) = 0, ĺım
τ→∞

τy ′(τ) = 0.

5 / 35
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Motivation

More general class of problems with a singularity of
the first kind:

z ′(t) =
f (t , z(t))

t
, t ∈ (0,1]

(Vainikko 2013, 2013, Auzinger, Auer, Burkotová, Rachůnková, Staněk, EW, Wurm 2014, 2017,

2017, 2018, 2021) Analysis for the general linear and nonlinear case

z′(t) =
M(t)

t
z(t) +

f (t)
t

, z′(t) =
M(t)

t
z(t) +

f (t , z(t))
t

, t ∈ (0, 1]

Available results: Existence and uniqueness of continuous solutions

z ∈ C[0, 1], smoothness, and convergence of the polynomial collocation
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Crystallization in thin amorphous layers

(Buchner, Schneider 2010) Calculation of the crystallization front propagating through
a thin layer of amorphous material on a substrate

The original problem is posed on a semi-infinite interval, we transform

τ ∈ [0,∞) → t ∈ (0, 1] by

t = 1 − 1√
1 + τ

The resulting boundary value problem for the temperature distribution Θ(t) and

the degree of crystallization ξ(t), t ∈ [0, 1), reads:

Θ′(t) = 2
Θ(t)− ξ(t)
(1 − t)3 , ξ′(t) = 2

λ2G(Θ(t))g(ξ(t))
(1 − t)3 ,

Θ(0) = 0,1284, Θ(1) = 1, ξ(0) = 10−10

• Essential singularity at t = 1

• λ is unknown and related to the speed of the crystallization front

• Third condition: at the beginning tiny crystals may already exist in the material

7 / 35
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Crystallization in thin amorphous layers (2)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

solution

t

Graph of the solution components Θ(t) (blue) and ξ(t) (green) obtained from
bvpsuite1.1 using collocation with m = 8 Gaussian points and
Tola = Tolr = 10−12. Here, λ = 11,03605.

(Kitzhofer, Koch, Pulverer, Simon, EW 2010)
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Crystallization in thin layers – alternative transformation

Now we transform τ ∈ [0,∞) → t ∈ [1,0) by

τ := − ln t

The resulting BVP for the temperature distribution Θ(t) and the
degree of crystallization ξ(t), t ∈ [0,1), reads:

Θ′(t) = −Θ(t)− ξ(t)
t

, ξ′(t) = −λ2G(Θ(t))g(ξ(t))
t

,

Θ(1) = 0,1284, Θ(0) = 1, ξ(1) = 10−10

• Singularity of the first kind at t = 0
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Index 2 DAE example

Lamour, März, W. (2015)

Consider the DAE

x ′
1(t) + x1(t) = 0,

x2(t) x ′
2(t)− x3(t) = 0,

x1(t)2 + x2(t)2 − 1 +
1
2
cos(πt) = 0,

x1(0)− x1(2) = α, |α| < 1
2
(1 − e−2).

The solution has to belong to the set

M0(t) := {x ∈ R3 : x2
1 + x2

2 − 1 +
1
2
cos(πt) = 0}.

10 / 35
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Hidden constraint

Again, consider

x ′
1(t) + x1(t) = 0, x2(t) x ′

2(t)− x3(t) = 0,

x1(t)2 + x2(t)2 − 1 +
1
2
cos(πt) = 0.

Let x∗(·) be a solution and let us differentiate the last
identity. Then,

2x∗1(t)x ′
∗1(t) + 2x∗2(t)x ′

∗2(t)− π
1
2
sin(πt) = 0

and finally, −2x∗1(t)2 + 2x∗3(t)− 1
2π sin(πt) = 0.

Therefore, all solution values x∗(t) must belong to the set

H(t) := {x ∈ R3 : −2x2
1 + 2x3 −

1
2
π sin(πt) = 0}.
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Proper restriction set

The proper restriction set is
M1(t) := M0(t) ∩H(t) ⊂ M0(t).

Constraint set M1 at t = 0 and t = 1
2
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Collocation method

Consider a partition of the interval [0,1],

τ0 . . . τi

. . . ti,j . . .

τi+1 . . . τN︸ ︷︷ ︸
hi ≤ h

In [τi , τi+1], introduce m inner collocation points tij

Pm ... the class of polynomial functions on [0,1]
which reduce to a polynomial of degree smaller or
equal to m on each subinterval [τi , τi+1]
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Collocation scheme

Consider the IVP

z ′(t) =
M(t)

t
z(t) +

f (t , z(t))
t

, M(0)z(0) + f (0, z(0)) = 0

Approximate z by a function p ∈ Pm ∩ C[0,1]
satisfying the collocation conditions

p′(tij) = M(tij)
p(tij)

tij
+

f (tij ,p(tij))
tij

,

i = 0, . . . ,N − 1, j = 1, . . . ,m,

subject to

M(0)p(0) + f (0,p(0)) = 0
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Collocation scheme: convergence result

Theorem: Let z ∈ Cm+1[0,1] be the unique solution of the
analytical IVP. For sufficiently small h and ρ > 0, the
related nonlinear collocation scheme has a unique
solution p in the tube Tρ(z) around z. Moreover, the
following estimates hold:

∥z − p∥[0,1] = O(hm),

∥z ′ − p′∥[0,1] = O(hm),∣∣p′(t)− M(t)
t p(t)− f (t ,p(t))

t

∣∣ = O(hm), t ∈ [0,1].
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Aims: Basic concepts

▶ First aim:
Define basic concepts such as local well-posedness
and accurately stated BCs in context of BVP in
DAEs.

▶ DAEs can be written in a standard,
f (x ′(t), x(t), t) = 0, and advanced form

f ((Dx)′(t), x(t), t) = 0, x ∈ Rm, f ∈ Rm.

Matrix function D = D(t) ∈ Rn×m indicates which
derivatives are involved, Dx ∈ Rn,n ≤ m.

▶ Linear version of the DAE

A(t)(Dx)′(t) + B(t)x(t)− f (t) = 0,
A ∈ Rm×n, D ∈ Rn×m, B ∈ Rm×m.
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Basic concepts

(Lamour, März, W. 2015)

▶ Assumptions: t ∈ I = [a,b]

f ((Dx)′(t), x(t), t) = 0, g(x(a), x(b)) = 0.

▶ f (y , x , t) is cont. with cont. partial derivatives fy , fx .
▶ The partial Jacobian fy (y , x , t) is everywhere

singular.
▶ g ∈ Rl is cont. differentiable.

▶ The matrix function D is cont. and D(t) has constant rank
r on the given interval I.
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Natural setting of a DAE

▶ Classical solution x of the DAE is a functions from

C1
D(I,Rm) := {x ∈ C(I,Rm) : Dx ∈ C1(I,Rn)},

satisfying the DAE pointwise on I.

This function space setting is the natural setting of
DAE.

▶ The DAE has a properly involved derivative or properly
stated leading term:

f ((Dx)′(t), x(t), t) = 0 : ker fy (y , x , t)⊕ imD(t) = Rn,

A(t)(Dx)′(t) + B(t)x(t) = f (t) : kerA(t)⊕ imD(t) = Rn.

18 / 35



Collocation for
ODEs & DAEs

Introduction
Singular ODEs: an example

More general class of
problems

Differential Algebraic
Equations

Collocation for
singular ODEs
Collocation

Collocation for
DAEs
Well-posedness of BVPs in
DAEs

Accurately stated BCs

Relations

Collocation for nonlinear
index 1 DAEs

Collocation for higher index
DAEs

Software
development

An application

Summary

Natural setting of a DAE

▶ Classical solution x of the DAE is a functions from

C1
D(I,Rm) := {x ∈ C(I,Rm) : Dx ∈ C1(I,Rn)},

satisfying the DAE pointwise on I.

This function space setting is the natural setting of
DAE.

▶ The DAE has a properly involved derivative or properly
stated leading term:

f ((Dx)′(t), x(t), t) = 0 : ker fy (y , x , t)⊕ imD(t) = Rn,

A(t)(Dx)′(t) + B(t)x(t) = f (t) : kerA(t)⊕ imD(t) = Rn.

18 / 35



Collocation for
ODEs & DAEs

Introduction
Singular ODEs: an example

More general class of
problems

Differential Algebraic
Equations

Collocation for
singular ODEs
Collocation

Collocation for
DAEs
Well-posedness of BVPs in
DAEs

Accurately stated BCs

Relations

Collocation for nonlinear
index 1 DAEs

Collocation for higher index
DAEs

Software
development

An application

Summary

Natural setting of a DAE

▶ Classical solution x of the DAE is a functions from

C1
D(I,Rm) := {x ∈ C(I,Rm) : Dx ∈ C1(I,Rn)},

satisfying the DAE pointwise on I.

This function space setting is the natural setting of
DAE.

▶ The DAE has a properly involved derivative or properly
stated leading term:

f ((Dx)′(t), x(t), t) = 0 : ker fy (y , x , t)⊕ imD(t) = Rn,

A(t)(Dx)′(t) + B(t)x(t) = f (t) : kerA(t)⊕ imD(t) = Rn.

18 / 35



Collocation for
ODEs & DAEs

Introduction
Singular ODEs: an example

More general class of
problems

Differential Algebraic
Equations

Collocation for
singular ODEs
Collocation

Collocation for
DAEs
Well-posedness of BVPs in
DAEs

Accurately stated BCs

Relations

Collocation for nonlinear
index 1 DAEs

Collocation for higher index
DAEs

Software
development

An application

Summary

Well-posedness of BVPs in DAEs: Definition

Well-posedness in the sense of Hadamard constitutes the classical basis of a safe numerical

treatment. We assume that a solution exist and concentrate on a local variant of well-posedness.

Definition: Let x∗ ∈ C1
D(I,Rm) be a solution of the

original BVP,

f ((Dx)′(t), x(t), t) = 0, g(x(a), x(b)) = 0.

The BVP is said to be well-posed locally around x∗ in
its natural setting, if the BVP

f ((Dx)′(t), x(t), t) =q(t), g(x(a), x(b)) = γ

is locally uniquely solvable for arbitrary sufficiently
small perturbations q ∈ C(I,Rm) and γ ∈ Rl , and the
solution x satisfies the inequality

∥x − x∗∥C1
D
≤ κ(|γ|+ ∥q∥∞),

with a constant κ.
Otherwise the BVP is said to be ill-posed in the natural setting.
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Accurately stated BCs: Definition

It is very important to apply exactly the right number of BCs/ICs. This task is more difficult to

realize for DAEs than for explicit ODEs.

Definition: Let x∗ ∈ C1
D(I,Rm) be a solution of the

original BVP,

f ((Dx)′(t), x(t), t) = 0, g(x(a), x(b)) = 0.

The BVP has accurately stated boundary conditions
locally around x∗ if the BVP with slightly perturbed
boundary conditions

f ((Dx)′(t), x(t), t) = 0, g(x(a), x(b)) = γ,

is uniquely solvable for arbitrary sufficiently small
perturbation γ ∈ Rl , and the solution x satisfies the
inequality ∥x − x∗∥C1

D
≤ κ|γ|, with a constant κ.

For explicit ODEs, the well-posedness of the BVP is equivalent to the accurately stated BCs, U.

Ascher, R. Mattheij, R. Russell (1988). This is not the case for DAEs: well-posedness implies

accurately stated boundary conditions but the opposite is not true.
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Example: Well-posedness vs. accurately stated BCs

Consider the following DAEs (index 2):

x ′
1(t) + x3(t) = 0, x ′

2(t) + x3(t) = 0, x2(t)− sin(t − a) = 0,

subject to x1(a) + αx2(a) + βx3(a) = 0, α, β ∈ R
The DAE has the following solution:

x∗1(t) = β+sin(t−a), x∗2(t) = sin(t−a), x∗3(t) = − cos(t−a).

The DAE with the perturbed BC has the following solution:

x1(t) = β+γ+sin(t −a), x2(t) = sin(t −a), x3(t) = − cos(t −a).

This means that

x(t)− x∗(t) = (γ, 0, 0)T .

Therefore, the above BVP has accurately stated BCs.
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x ′
1(t) + x3(t) = 0, x ′
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subject to x1(a) + αx2(a) + βx3(a) = 0, α, β ∈ R
The DAE has the following solution:

x∗1(t) = β+sin(t−a), x∗2(t) = sin(t−a), x∗3(t) = − cos(t−a).
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Example: Well-posedness vs. accurately stated BCs

Consider the original and perturbed DAEs,

x′
1(t) + x3(t) = 0, x′

1(t) + x3(t) = q1(t),
x′

2(t) + x3(t) = 0, x′
2(t) + x3(t) = q2(t),

x2(t) − sin(t − a) = 0, x2(t) − sin(t − a) = q3(t),
x1(a) + αx2(a) + βx3(a) = 0, x1(a) + αx2(a) + βx3(a) = γ.

We can solve the perturbed problem and obtain

x(t) − x∗(t) =


γ + q3(t) − q3(a) +

t∫
a
(q1(s) − q2(s))ds

q3(t)
q2(t) − q′

3(t) !!!

 , t ∈ I.

This means that x(t)− x∗(t) cannot be estimated in terms of
∥q∥∞. Therefore, the above BVP is ill-posed in the natural
setting.
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Collocation methods

τ0 . . . τi

. . . ti,j . . .

τi+1 . . . τN︸ ︷︷ ︸
hi ≤ h

Define a mesh
∆ := (τ0 = a, τ1, . . . , τN−1, τN = b), and m distinct
points ti,j in each subinterval [τi , τi+1].
We now discretize the enlarged DAE

f (u′(t), x(t), t) = 0, u(t)− D(t)x(t) = 0, g(x(a), x(b)) = 0.

Approximations: u∆, x∆ ∈ P∆,m ∩ C(I,Rn)
approximate u∗ and x∗, respectively.
The above collocation scheme results in the classical collocation scheme for the inherent ODE

subject to BCs. Therefore, for sufficiently small h, u∆ and consequently x∆ exist and are unique.
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Convergence result

Let the original BVP

f ((Dx)′(t), x(t), t) = 0, g(x(a), x(b)) = 0, imD(t) = Rn,

be well-posed locally around its solution x∗ in the natural setting and let the
data of the DAE be sufficiently smooth.

Then, for the above collocation scheme the following statements hold:

▶ There is a h∗ > 0, such that, for meshes with h ≤ h∗, there exists a

unique collocation solution u∆, x∆ in the sufficiently close neighborhood

of u∗, x∗.

▶ With a sufficiently good initial guess, the collocation solution can be

generated by the Newton method, which converges quadratically.

▶ Moreover, ∥x∗ − x∆∥∞ = O(hm), ∥u∗ − u∆∥∞ = O(hm).

▶ For Gaussian points, the superconvergence order holds for the smooth
component

maxi=0,...,N |u∗(τi )− u∆(τi )| = O(h2m).

24 / 35



Collocation for
ODEs & DAEs

Introduction
Singular ODEs: an example

More general class of
problems

Differential Algebraic
Equations

Collocation for
singular ODEs
Collocation

Collocation for
DAEs
Well-posedness of BVPs in
DAEs

Accurately stated BCs

Relations

Collocation for nonlinear
index 1 DAEs

Collocation for higher index
DAEs

Software
development

An application

Summary

Convergence result

Let the original BVP

f ((Dx)′(t), x(t), t) = 0, g(x(a), x(b)) = 0, imD(t) = Rn,

be well-posed locally around its solution x∗ in the natural setting and let the
data of the DAE be sufficiently smooth.

Then, for the above collocation scheme the following statements hold:

▶ There is a h∗ > 0, such that, for meshes with h ≤ h∗, there exists a

unique collocation solution u∆, x∆ in the sufficiently close neighborhood

of u∗, x∗.

▶ With a sufficiently good initial guess, the collocation solution can be

generated by the Newton method, which converges quadratically.

▶ Moreover, ∥x∗ − x∆∥∞ = O(hm), ∥u∗ − u∆∥∞ = O(hm).

▶ For Gaussian points, the superconvergence order holds for the smooth
component

maxi=0,...,N |u∗(τi )− u∆(τi )| = O(h2m).

24 / 35



Collocation for
ODEs & DAEs

Introduction
Singular ODEs: an example

More general class of
problems

Differential Algebraic
Equations

Collocation for
singular ODEs
Collocation

Collocation for
DAEs
Well-posedness of BVPs in
DAEs

Accurately stated BCs

Relations

Collocation for nonlinear
index 1 DAEs

Collocation for higher index
DAEs

Software
development

An application

Summary

Convergence result

Let the original BVP

f ((Dx)′(t), x(t), t) = 0, g(x(a), x(b)) = 0, imD(t) = Rn,

be well-posed locally around its solution x∗ in the natural setting and let the
data of the DAE be sufficiently smooth.

Then, for the above collocation scheme the following statements hold:

▶ There is a h∗ > 0, such that, for meshes with h ≤ h∗, there exists a

unique collocation solution u∆, x∆ in the sufficiently close neighborhood

of u∗, x∗.

▶ With a sufficiently good initial guess, the collocation solution can be

generated by the Newton method, which converges quadratically.

▶ Moreover, ∥x∗ − x∆∥∞ = O(hm), ∥u∗ − u∆∥∞ = O(hm).

▶ For Gaussian points, the superconvergence order holds for the smooth
component

maxi=0,...,N |u∗(τi )− u∆(τi )| = O(h2m).

24 / 35



Collocation for
ODEs & DAEs

Introduction
Singular ODEs: an example

More general class of
problems

Differential Algebraic
Equations

Collocation for
singular ODEs
Collocation

Collocation for
DAEs
Well-posedness of BVPs in
DAEs

Accurately stated BCs

Relations

Collocation for nonlinear
index 1 DAEs

Collocation for higher index
DAEs

Software
development

An application

Summary

Convergence result

Let the original BVP

f ((Dx)′(t), x(t), t) = 0, g(x(a), x(b)) = 0, imD(t) = Rn,

be well-posed locally around its solution x∗ in the natural setting and let the
data of the DAE be sufficiently smooth.

Then, for the above collocation scheme the following statements hold:

▶ There is a h∗ > 0, such that, for meshes with h ≤ h∗, there exists a

unique collocation solution u∆, x∆ in the sufficiently close neighborhood

of u∗, x∗.

▶ With a sufficiently good initial guess, the collocation solution can be

generated by the Newton method, which converges quadratically.

▶ Moreover, ∥x∗ − x∆∥∞ = O(hm), ∥u∗ − u∆∥∞ = O(hm).

▶ For Gaussian points, the superconvergence order holds for the smooth
component

maxi=0,...,N |u∗(τi )− u∆(τi )| = O(h2m).

24 / 35



Collocation for
ODEs & DAEs

Introduction
Singular ODEs: an example

More general class of
problems

Differential Algebraic
Equations

Collocation for
singular ODEs
Collocation

Collocation for
DAEs
Well-posedness of BVPs in
DAEs

Accurately stated BCs

Relations

Collocation for nonlinear
index 1 DAEs

Collocation for higher index
DAEs

Software
development

An application

Summary

Numerical results
Nonlinear example

x = (x1, x2)
T = (x11, x12, x21, x22)

T , b(t, x(t)) = Bx(t) + tC(x(t))x(t) + f (t) ,

tx′
1(t) + b1(t, x(t)) = 0,

b2(t, x(t)) = 0, B ∈ R4×4
, C(x) =


sin x12 0 e−x11 0

0 cos x22 0 sin(x11 + x21)

x3
12 0 x11 0
0 x11x12 0 x2

12

 ,

coupled BCs at t = 0, t = 1, m = 4, solution: x11 = t2 sin t, x12 = tet , x21 = t cos t, x22 = sin t.

Uniform Mesh Error for x1x1x1 at Mesh tau, eqtau, eqtau, eq Error for xxx at Grid tcol, eqtcol, eqtcol, eq
N h error order const. error order const.

10 1.00e−01 2.043e−07 1.127e−06
20 5.00e−02 1.268e−08 4.0 2.087e−03 7.074e−08 4.0 1.110e−02
40 2.50e−02 7.916e−10 4.0 2.043e−03 4.430e−09 4.0 1.122e−02
80 1.25e−02 4.946e−11 4.0 2.030e−03 2.770e−10 4.0 1.131e−02

160 6.25e−03 3.088e−12 4.0 2.040e−03 1.728e−11 4.0 1.149e−02
320 3.13e−03 1.895e−13 4.0 2.308e−03 1.464e−12 3.6 1.220e−03

Uniform Mesh Error for x1x1x1 at Mesh tau, gausstau, gausstau, gauss Error for xxx at Grid tcol, gausstcol, gausstcol, gauss
N h error order const. error order const.

10 1.00e−01 7.254e−09 4.215e−07
20 5.00e−02 2.264e−10 5.0 7.280e−04 2.646e−08 4.0 4.155e−03
40 2.50e−02 7.066e−12 5.0 7.289e−04 1.655e−09 4.0 4.214e−03
80 1.25e−02 2.210e−13 5.0 7.206e−04 1.035e−10 4.0 4.232e−03

160 6.25e−03 7.976e−15 4.8 2.914e−04 6.520e−12 4.0 4.029e−03

25 / 35



Collocation for
ODEs & DAEs

Introduction
Singular ODEs: an example

More general class of
problems

Differential Algebraic
Equations

Collocation for
singular ODEs
Collocation

Collocation for
DAEs
Well-posedness of BVPs in
DAEs

Accurately stated BCs

Relations

Collocation for nonlinear
index 1 DAEs

Collocation for higher index
DAEs

Software
development

An application

Summary

An index-3 problem

Petzold (1982), März (1992)

Consider

x ′
2(t) + x1(t) = q1(t),
−1/2tx ′

2(t) + x ′
3(t) + 1/2x2(t) = q2(t),

−1/2tx2(t) + x3(t) = q3(t),

with a smooth q(t). This system has no inherent ODE (no
BCs necessary) and the solution reads:

x1(t) = q1(t)− q′
2(t) + q′′

3(t), x2(t) = q2(t)− q′
3(t),

x3(t) = q3(t) +
1
2

tx2(t),

or equivalently,

x1(t) = e−t sin(t), x2(t) = e−2t sin(t),
x3(t) = e−t cos(t).
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Overdetermined variant of collocation

a = τ0 τ1 τ2 τi τi+1 τN−1 τN = b

τi τi+1
ti,1 ti,m

0 ρj+1 1ρj

σj+1

ρ1 ρm

σ1 σm+1

si,1 si,m+1

ti,j+1

si,j+1

ti,j

Without increasing the degree of the collocation
polynomial, additional conditions are required to hold
The overdetermined system is then solved in the
least squares sense.
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Table of errors for m = 2

uniform mesh error for x1 (classic coll.) error for x1 (overdet coll.)
N h error order error order

160 6.25e-03 Inf -Inf 3.58e-03 0.97
320 3.13e-03 3.65e+171 Inf 1.81e-03 0.98
640 1.56e-03 2.09e+307 -450.98 9.11e-04 0.99

uniform mesh error for x2 (classic coll.) error for x2 (overdet coll.)
N h error order error order

160 6.25e-03 5.11e+274 -716.36 2.04e-05 1.97
320 3.13e-03 6.05e+153 401.71 5.14e-06 1.99
640 1.56e-03 5.76e+289 -451.71 1.29e-06 1.99

uniform mesh error for x3 (classic coll.) error for x3 (overdet coll.)
N h error order error order

160 6.25e-03 2.80e+273 -717.97 2.51e-06 2.00
320 3.13e-03 9.03e+151 403.59 6.28e-07 2.00
640 1.56e-03 8.35e+287 -451.67 1.57e-07 2.00
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Software: MATLAB codes bvpsuite1.1&2.0 – scope

History:
sbvp (2003), bvpsuite1.1 (2009), bvpsuite2.0
(2018-2020)

http://www.asc.tuwien.ac.at/˜ewa/

Implicit mixed order (singular) ODEs including
unknown parameters

• BVPs in ODEs on finite and semi-infinite intervals
• EVPs in ODEs on finite and semi-infinite intervals
• Index-1 DAEs on finite and semi-infinite intervals
• Pathfollowing for BVPs and EVPs in ODEs on finite

and semi-infinite intervals for parameter dependent
BVPs in ODEs

Error estimate and mesh adaptation strategy
29 / 35
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Implementation basis

Main assumption: Analytical problem is

well-posed with a locally unique smooth solution

▶ Numerical method: Robust with respect to singularity
∥global error∥ = O(hm), m reasonably large

Our choice is polynomial collocation

▶ Error estimation: Robust and asymptotically correct
∥global error - error estimate∥ = O(hm+γ), γ > 0

Our choice is h − h/2 strategy

▶ Adaptive mesh selection:
Meshes unaffected by the nonsmooth (!) direction
field
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Computational experiment – grid adaptation
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An application: Shell buckling problem 1

Kitzhofer, Koch, EW 2009, MT Fallahpour 2020, private kommunikation with A. Steindl, TU Wien 2020,
Auzinger, Burdeos, Fallahpour, Koch, Mendoza, EW submitted

z′′
1 (t) + cot(t)z′

1(t) + cot2(t)f1(t , z1(t)) = f2(t , z1(t), z2(t), z3(t), λ∗)

z′′
2 (t) + cot(t)z′

2(t)− cot2(t)g1(s, z1(t)) = g2(s, z1(t), z2(t), z3(t), λ∗)

z3(t) =
∫ t

0
cos(s − z1(s)) sin(s)ds, λ∗ =

p
pcr

∈ [0, 1]

z′
3(t) = cos(t − z1(t)) sin(t), t ∈ (0, π),

z1(0) = z1(π) = 0, z2(0) = z2(π) = 0, z3(0) = 0.
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Shell buckling problem 2
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Summary

▶ Existence, uniqueness and smoothness results of solutions z ∈ C[0, 1] of

z′(t) =
M(t)

t
z(t) +

f (t, z(t))

t

subject to correctly posed BCs are available. For IVPs with all eigenvalues of M(0) being
negative, the correctly posed ICs are

M(0)z(0) + f (0, z(0)) = 0

▶ Eigenvalues λ of M(0) determine the structure of ICs, TCs, and BCs

▶ Analysis (global) for the nonlinear case (f (t, z)) and spectrum of M(0) with negative or/and
positive eigenvalues is available

▶ Nonlinear case (f (t, z)): convergence of collocation for spectrum of M(0) with negative or/and
positive eigenvalues is available

▶ Order of convergence: stage order for arbitrary collocation points, small superconvergence for
Gaussian collocation points

▶ Collocation applied to linear/nonlinear index 1 well-posed DAEs shows full stage order under
reasonable smoothness assumptions.

▶ Higher index problems are ill-posed in natural setting and the standard collocation does not work
in general.

▶ Possible remedy: Least Squares Collocation. Convergence analysis for a some model classes
already available.

▶ Convergence for general model classes is still work in progress (März, Hanke).
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Happy birthday, John!
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