How to approximate singular BVPs in ODEs and DAEs efficiently?

E. Weinmüller

Vienna University of Technology
ANODE'23, February 23rd

Outline

Introduction

Singular ODEs: an example More general class of problems Differential Algebraic Equations

Relations

Introduction
Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs
Collocation
Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Introduction

Singular ODEs: an example

More general class of problems
Differential Algebraic Equations
Collocation for singular ODEs
Collocation

Well-posedness of BVPs in DAEs

Introduction
Singular ODEs: an example
More general class of problems
Differential Algebraic
Equations
Collocation for
singular ODEs
Collocation
Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear

Collocation for higher index DAEs

Software
development
An application
Summary

Introduction

Singular ODEs: an example
More general class of problems
Differential Algebraic Equations
Collocation for singular ODEs
Collocation
Collocation for DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs

Outline

Introduction

Singular ODEs: an example
More general class of problems
Differential Algebraic Equations
Collocation for singular ODEs
Collocation
Collocation for DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs
Software development

Outline

Introduction
Singular ODEs: an example
More general class of problems
Differential Algebraic Equations
Collocation for singular ODEs
Collocation
Collocation for DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs
Software development
An application

Outline

Introduction
Singular ODEs: an example
More general class of problems
Differential Algebraic Equations
Collocation for singular ODEs
Collocation
Collocation for DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs
Software development
An application
Summary

Introduction: Problem setting: singular BVPs in ODEs

$$
\begin{aligned}
& z^{\prime}(t)=F(t, z(t)), t \in(0,1] \\
& b(z(0), z(1))=0
\end{aligned}
$$

$F(t, z(t))$ unbounded for $t \rightarrow 0$ and not LipschitzInterested in $z \in C[0,1]$, even $z \in C^{p}[0,1], p \geq 1$

Introduction
Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs
Collocation
Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Introduction: Problem setting: singular BVPs in ODEs ODEs \& DAEs

$$
\begin{aligned}
& z^{\prime}(t)=F(t, z(t)), t \in(0,1] \\
& b(z(0), z(1))=0
\end{aligned}
$$

$F(t, z(t))$ unbounded for $t \rightarrow 0$ and not Lipschitz continuous on $[0,1]$!
Typically, $\lim _{t \rightarrow 0} \frac{\partial F(t, z(t))}{\partial z}=\infty!$

Introduction
Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs
collocation
Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Introduction: Problem setting: singular BVPs in ODEs ODEs \& DAEs

$$
\begin{aligned}
& z^{\prime}(t)=F(t, z(t)), t \in(0,1] \\
& b(z(0), z(1))=0
\end{aligned}
$$

$F(t, z(t))$ unbounded for $t \rightarrow 0$ and not Lipschitz continuous on $[0,1]$!

Typically, $\lim _{t \rightarrow 0} \frac{\partial F(t, z(t))}{\partial z}=\infty$!
Interested in $z \in C[0,1]$, even $z \in C^{p}[0,1], p \geq 1$

Introduction
Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs
Collocation
Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary
$z^{\prime}(t)=F(t, z(t)), t \in(0,1]$
$b(z(0), z(1))=0$
$F(t, z(t))$ unbounded for $t \rightarrow 0$ and not Lipschitz continuous on $[0,1]$!
Typically, $\lim _{t \rightarrow 0} \frac{\partial F(t, z(t))}{\partial z}=\infty!$
Interested in $z \in C[0,1]$, even $z \in C^{p}[0,1], p \geq 1$ Important contributions:

Jamet, Brabston, Keller, Wolfe, Parter, Stein, Shampine, Russell, de Hoog, Weiss, Markowich, Ringhofer, Ascher, Schmeiser, Troger, Abramov, Koniuchova, Lima, März, Winkler, Auzinger, Koch, Cash, Muir, Budd, Stanek, Rachunkova, Amodio, Burkotova, Settanni, Levitina...

Introduction
Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs

‘Regular' BVPs with singular point: available results

Existence and uniqueness of $z \in C[0,1]$, smoothness, convergence of the polynomial collocation
Linear case:

$$
z^{\prime}(t)=\frac{M(t)}{t} z(t)+f(t), \quad z^{\prime}(t)=\frac{M(t)}{t^{\alpha}} z(t)+f(t)
$$

Nonlinear case:
$z^{\prime}(t)=\frac{M}{t} z(t)+f(t, z(t)), \quad z^{\prime}(t)=\frac{M}{t^{\alpha}} z(t)+f(t, z(t))$
Time singularities of the first kind $\alpha=1$, of the second kind $\alpha>1$
Problems posed on semi-infinite intervals $z^{\prime}(t)=f(t, z(t))$

Introduction
Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs
collocation
Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs

‘Regular' BVPs with singular point: available results

Existence and uniqueness of $z \in C[0,1]$, smoothness, convergence of the polynomial collocation
Linear case:

$$
z^{\prime}(t)=\frac{M(t)}{t} z(t)+f(t), \quad z^{\prime}(t)=\frac{M(t)}{t^{\alpha}} z(t)+f(t)
$$

Nonlinear case:
$z^{\prime}(t)=\frac{M}{t} z(t)+f(t, z(t)), \quad z^{\prime}(t)=\frac{M}{t^{\alpha}} z(t)+f(t, z(t))$
Time singularities
of the first kind $\alpha=1$, of the second kind $\alpha>1$
Problems posed on semi-infinite intervals
$z^{\prime}(t)=f(t, z(t)), \quad t \in[0, \infty)$

Introduction
Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs
Accurately stated BCs

Existence and uniqueness of $z \in C[0,1]$, smoothness, convergence of the polynomial collocation
Linear case:

$$
z^{\prime}(t)=\frac{M(t)}{t} z(t)+f(t), \quad z^{\prime}(t)=\frac{M(t)}{t^{\alpha}} z(t)+f(t)
$$

Nonlinear case:
$z^{\prime}(t)=\frac{M}{t} z(t)+f(t, z(t)), \quad z^{\prime}(t)=\frac{M}{t^{\alpha}} z(t)+f(t, z(t))$

Time singularities

of the first kind $\alpha=1$, of the second kind $\alpha>1$
Problems posed on semi-infinite intervals
$z^{\prime}(t)=f(t, z(t)), \quad t \in[0, \infty)$
Space singularities
$z^{\prime}(t)=\frac{f(t, z(t))}{g(z(t))}, \quad t \in[a, b], \quad g\left(z\left(t_{0}\right)\right)=0, t_{0} \in[a, b]$

Models in singular ODEs - CGL equation

Budd, Koch, W. (2006)
Solve for $u=u(x, t), x \in \mathbb{R}^{3}, t>0$:

$$
\mathrm{i} \frac{\partial u}{\partial t}+(1-\mathrm{i} \varepsilon) \Delta u+(1+\mathrm{i} \delta)|u|^{2} u=0, \quad u(x, 0)=u_{0}(x)
$$

introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs
collocation

Collocation for

DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Models in singular ODEs - CGL equation

Budd, Koch, W. (2006)
Solve for $u=u(x, t), x \in \mathbb{R}^{3}, t>0$:

$$
\mathrm{i} \frac{\partial u}{\partial t}+(1-\mathrm{i} \varepsilon) \Delta u+(1+\mathrm{i} \delta)|u|^{2} u=0, \quad u(x, 0)=u_{0}(x)
$$

Interested in self-similar solutions

$$
u(x, t)=L(\tau) y(\tau), \tau=\tau(x, t), \lim _{t \rightarrow T} L(\tau(x, t))=\infty
$$

where T is the blow-up time and $y=y(\tau), \tau>0$, satisfies

$$
\begin{gathered}
(1-\mathrm{i} \varepsilon)\left(y^{\prime \prime}(\tau)+\frac{2}{\tau} y^{\prime}(\tau)\right)-y(\tau)+\mathrm{i} a(\tau y(\tau))^{\prime}+(1+\mathrm{i} \delta)|y(\tau)|^{2} y(\tau)=0 \\
y^{\prime}(0)=0, \quad \Im y(0)=0, \quad \lim _{\tau \rightarrow \infty} \tau y^{\prime}(\tau)=0
\end{gathered}
$$

Introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs
collocation

Collocation for

DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs

Relations

Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

More general class of problems with a singularity of the first kind:

$$
z^{\prime}(t)=\frac{f(t, z(t))}{t}, t \in(0,1]
$$

Motivation

More general class of problems with a singularity of the first kind:

$$
z^{\prime}(t)=\frac{f(t, z(t))}{t}, t \in(0,1]
$$

(Vainikko 2013, 2013, Auzinger, Auer, Burkotová, Rachůnková, Staněk, EW, Wurm 2014, 2017, 2017, 2018, 2021) Analysis for the general linear and nonlinear case

$$
z^{\prime}(t)=\frac{M(t)}{t} z(t)+\frac{f(t)}{t}, \quad z^{\prime}(t)=\frac{M(t)}{t} z(t)+\frac{f(t, z(t))}{t}, t \in(0,1]
$$

Available results: Existence and uniqueness of continuous solutions $z \in C[0,1]$, smoothness, and convergence of the polynomial collocation

Introduction

Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for
singular ODEs
Collocation
Collocation for DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Crystallization in thin amorphous layers

(Buchner, Schneider 2010) Calculation of the crystallization front propagating through a thin layer of amorphous material on a substrate
The original problem is posed on a semi-infinite interval, we transform $\tau \in[0, \infty) \rightarrow t \in(0,1]$ by

$$
t=1-\frac{1}{\sqrt{1+\tau}}
$$

The resulting boundary value problem for the temperature distribution $\Theta(t)$ and the degree of crystallization $\xi(t), t \in[0,1)$, reads:

$$
\begin{aligned}
& \Theta^{\prime}(t)=2 \frac{\Theta(t)-\xi(t)}{(1-t)^{3}}, \quad \xi^{\prime}(t)=2 \frac{\lambda^{2} G(\Theta(t)) g(\xi(t))}{(1-t)^{3}}, \\
& \Theta(0)=0,1284, \quad \Theta(1)=1, \quad \xi(0)=10^{-10}
\end{aligned}
$$

Introduction

Singular ODEs: an exa
More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs

- Essential singularity at $t=1$
- λ is unknown and related to the speed of the crystallization front
- Third condition: at the beginning tiny crystals may already exist in the material

Crystallization in thin amorphous layers (2)

Graph of the solution components $\Theta(t)$ (blue) and $\xi(t)$ (green) obtained from bvpsuite1. 1 using collocation with $m=8$ Gaussian points and $\mathrm{Tol}_{a}=$ Tol $_{r}=10^{-12}$. Here, $\lambda=11,03605$.
(Kitzhofer, Koch, Pulverer, Simon, EW 2010)

Crystallization in thin layers - alternative transformation

Now we transform $\tau \in[0, \infty) \rightarrow t \in[1,0)$ by

$$
\tau:=-\ln t
$$

The resulting BVP for the temperature distribution $\Theta(t)$ and the degree of crystallization $\xi(t), t \in[0,1)$, reads:

$$
\begin{aligned}
& \Theta^{\prime}(t)=-\frac{\Theta(t)-\xi(t)}{t}, \quad \xi^{\prime}(t)=-\frac{\lambda^{2} G(\Theta(t)) g(\xi(t))}{t} \\
& \Theta(1)=0,1284, \quad \Theta(0)=1, \quad \xi(1)=10^{-10}
\end{aligned}
$$

- Singularity of the first kind at $t=0$

Introduction

More general class of problems
Differential Algebraic

Index 2 DAE example

Lamour, März, W. (2015)

Consider the DAE

$$
\begin{aligned}
& x_{1}^{\prime}(t)+x_{1}(t)=0 \\
& x_{2}(t) x_{2}^{\prime}(t)-x_{3}(t)=0 \\
& x_{1}(t)^{2}+x_{2}(t)^{2}-1+\frac{1}{2} \cos (\pi t)=0 \\
& x_{1}(0)-x_{1}(2)=\alpha, \quad|\alpha|<\frac{1}{2}\left(1-\mathrm{e}^{-2}\right)
\end{aligned}
$$

The solution has to belong to the set

$$
\mathcal{M}_{0}(t):=\left\{x \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2}-1+\frac{1}{2} \cos (\pi t)=0\right\}
$$

Introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs
Collocation
Collocation for DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Again, consider

$$
\begin{aligned}
& x_{1}^{\prime}(t)+x_{1}(t)=0, \quad x_{2}(t) x_{2}^{\prime}(t)-x_{3}(t)=0 \\
& x_{1}(t)^{2}+x_{2}(t)^{2}-1+\frac{1}{2} \cos (\pi t)=0
\end{aligned}
$$

Let $X_{*}(\cdot)$ be a solution and let us differentiate the last identity. Then,

$$
2 x_{* 1}(t) x_{* 1}^{\prime}(t)+2 x_{* 2}(t) x_{* 2}^{\prime}(t)-\pi \frac{1}{2} \sin (\pi t)=0
$$

and finally, $-2 x_{* 1}(t)^{2}+2 x_{* 3}(t)-\frac{1}{2} \pi \sin (\pi t)=0$.
Therefore, all solution values $x_{*}(t)$ must belong to the set

$$
\mathcal{H}(t):=\left\{x \in \mathbb{R}^{3}:-2 x_{1}^{2}+2 x_{3}-\frac{1}{2} \pi \sin (\pi t)=0\right\}
$$

Introduction
Singular ODEs: an example More general class of

Differential Algebraic

 EquationsCollocation for singular ODEs

Collocation

Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs

Relations

Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Proper restriction set

The proper restriction set is
 $\mathcal{M}_{1}(t):=\mathcal{M}_{0}(t) \cap \mathcal{H}(t) \subset \mathcal{M}_{0}(t)$.

Constraint set \mathcal{M}_{1} at $t=0$ and $t=\frac{1}{2}$

Consider a partition of the interval $[0,1]$,

Introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs
Collocation
Collocation for
DAEs
Well-posedness of BVPs DAEs
Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Consider a partition of the interval $[0,1]$,

In $\left[\tau_{i}, \tau_{i+1}\right]$, introduce m inner collocation points $t_{i j}$

Introduction

Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs
Collocation
Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Consider a partition of the interval $[0,1]$,

In $\left[\tau_{i}, \tau_{i+1}\right]$, introduce m inner collocation points $t_{i j}$
$\mathcal{P}_{m} \ldots$ the class of polynomial functions on $[0,1]$ which reduce to a polynomial of degree smaller or equal to m on each subinterval $\left[\tau_{i}, \tau_{i+1}\right]$

Introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for
singular ODEs
Collocation
Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs

Relations

Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Collocation scheme

Consider the IVP
$z^{\prime}(t)=\frac{M(t)}{t} z(t)+\frac{f(t, z(t))}{t}, \quad M(0) z(0)+f(0, z(0))=0$
Approximate z by a function $p \in \mathcal{P}_{m} \cap C[0,1]$ satisfying the collocation conditions

$$
\begin{aligned}
p^{\prime}\left(t_{i j}\right)= & M\left(t_{i j}\right) \frac{p\left(t_{i j}\right)}{t_{i j}}+\frac{f\left(t_{i j}, p\left(t_{i j}\right)\right)}{t_{i j}}, \\
& i=0, \ldots, N-1, j=1, \ldots, m,
\end{aligned}
$$

subject to
$M(0) p(0)+f(0, p(0))=0$

Introduction

Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for
singular ODEs
Collocation
Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs

Relations

Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Collocation scheme: convergence result

Theorem: Let $z \in C^{m+1}[0,1]$ be the unique solution of the analytical IVP. For sufficiently small h and $\rho>0$, the related nonlinear collocation scheme has a unique solution p in the tube $T_{\rho}(z)$ around z. Moreover, the following estimates hold:

$$
\begin{aligned}
& \|z-p\|_{[0,1]}=O\left(h^{m}\right), \\
& \left\|z^{\prime}-p^{\prime}\right\|_{[0,1]}=O\left(h^{m}\right), \\
& \left|p^{\prime}(t)-\frac{M(t)}{t} p(t)-\frac{f(t, p(t))}{t}\right|=O\left(h^{m}\right), \quad t \in[0,1] .
\end{aligned}
$$

Introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs
Collocation
Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs

Relations

Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Aims: Basic concepts

 ODEs \& DAEs- First aim:

Define basic concepts such as local well-posedness and accurately stated BCs in context of BVP in DAEs.

```
Introduction
```

Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs

Collocation

Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Aims: Basic concepts

- First aim:

Define basic concepts such as local well-posedness and accurately stated BCs in context of BVP in DAEs.

- DAEs can be written in a standard, $f\left(x^{\prime}(t), x(t), t\right)=0$, and advanced form

$$
f\left((D x)^{\prime}(t), x(t), t\right)=0, \quad x \in \mathbb{R}^{m}, \quad f \in \mathbb{R}^{m}
$$

Matrix function $D=D(t) \in \mathbb{R}^{n \times m}$ indicates which derivatives are involved, $D x \in \mathbb{R}^{n}, n \leq m$.

Introduction
Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for
singular ODEs

collocation

Collocation for
DAEs
Well-posedness of BVPs in
DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Aims: Basic concepts

- First aim:

Define basic concepts such as local well-posedness and accurately stated BCs in context of BVP in DAEs.

- DAEs can be written in a standard, $f\left(x^{\prime}(t), x(t), t\right)=0$, and advanced form

$$
f\left((D x)^{\prime}(t), x(t), t\right)=0, \quad x \in \mathbb{R}^{m}, \quad f \in \mathbb{R}^{m}
$$

Matrix function $D=D(t) \in \mathbb{R}^{n \times m}$ indicates which derivatives are involved, $D x \in \mathbb{R}^{n}, n \leq m$.

- Linear version of the DAE

$$
\begin{aligned}
& A(t)(D x)^{\prime}(t)+B(t) x(t)-f(t)=0 \\
& A \in \mathbb{R}^{m \times n}, D \in \mathbb{R}^{n \times m}, B \in \mathbb{R}^{m \times m}
\end{aligned}
$$

Introduction
Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for
singular ODEs

collocation

Collocation for
DAEs
Well-posedness of BVPs in
DAEs
Accurately stated BCs

Relations

Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Basic concepts

(Lamour, März, W. 2015)

- Assumptions: $t \in \mathcal{I}=[a, b]$

$$
f\left((D x)^{\prime}(t), x(t), t\right)=0, \quad g(x(a), x(b))=0 .
$$

Introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs
Collocation
Collocation for DAEs

Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Basic concepts

(Lamour, März, W. 2015)

- Assumptions: $t \in \mathcal{I}=[a, b]$

$$
f\left((D x)^{\prime}(t), x(t), t\right)=0, \quad g(x(a), x(b))=0 .
$$

- $f(y, x, t)$ is cont. with cont. partial derivatives f_{y}, f_{x}.

Introduction

Singular ODEs: an example
More general class of problems
Differential Algebraic
Equations
Collocation for singular ODEs

collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Basic concepts

(Lamour, März, W. 2015)

- Assumptions: $t \in \mathcal{I}=[a, b]$

$$
f\left((D x)^{\prime}(t), x(t), t\right)=0, \quad g(x(a), x(b))=0 .
$$

- $f(y, x, t)$ is cont. with cont. partial derivatives f_{y}, f_{x}.
- The partial Jacobian $f_{y}(y, x, t)$ is everywhere singular.

Introduction

Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs

Collocation

Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Basic concepts

- Assumptions: $t \in \mathcal{I}=[a, b]$

$$
f\left((D x)^{\prime}(t), x(t), t\right)=0, \quad g(x(a), x(b))=0 .
$$

- $f(y, x, t)$ is cont. with cont. partial derivatives f_{y}, f_{x}.
- The partial Jacobian $f_{y}(y, x, t)$ is everywhere singular.
- $g \in \mathbb{R}^{\prime}$ is cont. differentiable.

Introduction

Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs

Collocation

Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Basic concepts

- Assumptions: $t \in \mathcal{I}=[a, b]$

$$
f\left((D x)^{\prime}(t), x(t), t\right)=0, \quad g(x(a), x(b))=0 .
$$

- $f(y, x, t)$ is cont. with cont. partial derivatives f_{y}, f_{x}.
- The partial Jacobian $f_{y}(y, x, t)$ is everywhere singular.
- $g \in \mathbb{R}^{\prime}$ is cont. differentiable.
- The matrix function D is cont. and $D(t)$ has constant rank r on the given interval \mathcal{I}.

Introduction

Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for
singular ODEs

Collocation

Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs

Relations

Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Natural setting of a DAE

- Classical solution x of the DAE is a functions from

$$
\mathcal{C}_{D}^{1}\left(\mathcal{I}, \mathbb{R}^{m}\right):=\left\{x \in \mathcal{C}\left(\mathcal{I}, \mathbb{R}^{m}\right): D x \in \mathcal{C}^{1}\left(\mathcal{I}, \mathbb{R}^{n}\right)\right\}
$$

satisfying the DAE pointwise on \mathcal{I}.

Introduction

Singular ODEs: an example
More general class of problems
Differential Algebraic
Equations
Collocation for singular ODEs
Collocation
Collocation for DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear

Collocation for higher index DAEs

Natural setting of a DAE

- Classical solution x of the DAE is a functions from

$$
\mathcal{C}_{D}^{1}\left(\mathcal{I}, \mathbb{R}^{m}\right):=\left\{x \in \mathcal{C}\left(\mathcal{I}, \mathbb{R}^{m}\right): D x \in \mathcal{C}^{1}\left(\mathcal{I}, \mathbb{R}^{n}\right)\right\}
$$

satisfying the DAE pointwise on \mathcal{I}.
This function space setting is the natural setting of DAE.

Introduction

Singular ODEs: an example
More general class of problems
Differential Algebraic
Equations
Collocation for
singular ODEs
Collocation
Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Natural setting of a DAE

- Classical solution x of the DAE is a functions from

$$
\mathcal{C}_{D}^{1}\left(\mathcal{I}, \mathbb{R}^{m}\right):=\left\{x \in \mathcal{C}\left(\mathcal{I}, \mathbb{R}^{m}\right): D x \in \mathcal{C}^{1}\left(\mathcal{I}, \mathbb{R}^{n}\right)\right\}
$$

satisfying the DAE pointwise on \mathcal{I}.
This function space setting is the natural setting of DAE.

- The DAE has a properly involved derivative or properly stated leading term:

$$
\begin{aligned}
& f\left((D x)^{\prime}(t), x(t), t\right)=0: \operatorname{ker} f_{y}(y, x, t) \oplus \operatorname{imD}(t)=\mathbb{R}^{n} \\
& A(t)(D x)^{\prime}(t)+B(t) x(t)=f(t): \operatorname{ker} A(t) \oplus \operatorname{imD} D(t)=\mathbb{R}^{n}
\end{aligned}
$$

Introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for
singular ODEs
collocation
Collocation for
DAEs
Well-posedness of BVPs in
DAEs
Accurately stated BCs

Relations

Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Well-posedness of BVPs in DAEs: Definition

Well-posedness in the sense of Hadamard constitutes the classical basis of a safe numerical treatment. We assume that a solution exist and concentrate on a local variant of well-posedness.

Introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs
Collocation
Collocation for DAEs

Well-posedness of BVPs in DAEs
Accurately stated BCs Relations
Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Well-posedness of BVPs in DAEs: Definition

Well-posedness in the sense of Hadamard constitutes the classical basis of a safe numerical
treatment. We assume that a solution exist and concentrate on a local variant of well-posedness.
Definition: Let $x_{*} \in \mathcal{C}_{D}^{1}\left(\mathcal{I}, \mathbb{R}^{m}\right)$ be a solution of the original BVP,

$$
f\left((D x)^{\prime}(t), x(t), t\right)=0, \quad g(x(a), x(b))=0
$$

The BVP is said to be well-posed locally around x_{*} in its natural setting, if the BVP

$$
f\left((D x)^{\prime}(t), x(t), t\right)=q(t), \quad g(x(a), x(b))=\gamma
$$

is locally uniquely solvable for arbitrary sufficiently small perturbations $q \in \mathcal{C}\left(\mathcal{I}, \mathbb{R}^{m}\right)$ and $\gamma \in \mathbb{R}^{\prime}$, and the solution x satisfies the inequality

$$
\left\|x-x_{*}\right\|_{\mathcal{C}_{D}^{1}} \leq \kappa\left(|\gamma|+\|q\|_{\infty}\right),
$$

with a constant κ.

Introduction
Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs collocation

Collocation for DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs

Relations

Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Well-posedness of BVPs in DAEs: Definition

Well-posedness in the sense of Hadamard constitutes the classical basis of a safe numerical
treatment. We assume that a solution exist and concentrate on a local variant of well-posedness.
Definition: Let $x_{*} \in \mathcal{C}_{D}^{1}\left(\mathcal{I}, \mathbb{R}^{m}\right)$ be a solution of the original BVP,

$$
f\left((D x)^{\prime}(t), x(t), t\right)=0, \quad g(x(a), x(b))=0
$$

The BVP is said to be well-posed locally around x_{*} in its natural setting, if the BVP

$$
f\left((D x)^{\prime}(t), x(t), t\right)=q(t), \quad g(x(a), x(b))=\gamma
$$

is locally uniquely solvable for arbitrary sufficiently small perturbations $q \in \mathcal{C}\left(\mathcal{I}, \mathbb{R}^{m}\right)$ and $\gamma \in \mathbb{R}^{\prime}$, and the solution x satisfies the inequality

$$
\left\|x-x_{*}\right\|_{\mathcal{C}_{D}^{1}} \leq \kappa\left(|\gamma|+\|q\|_{\infty}\right),
$$

with a constant κ.
Otherwise the BVP is said to be ill-posed in the natural setting.

Accurately stated BCs: Definition

It is very important to apply exactly the right number of BCs/ICs. This task is more difficult to realize for DAEs than for explicit ODEs.

Introduction
Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs
collocation
Collocation for
DAEs
Well-posedness of BVPs in DAEs

Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Accurately stated BCs: Definition

It is very important to apply exactly the right number of BCs/ICs. This task is more difficult to realize for DAEs than for explicit ODEs.
Definition: Let $x_{*} \in \mathcal{C}_{D}^{1}\left(\mathcal{I}, \mathbb{R}^{m}\right)$ be a solution of the original BVP,

$$
f\left((D x)^{\prime}(t), x(t), t\right)=0, \quad g(x(a), x(b))=0
$$

The BVP has accurately stated boundary conditions locally around x_{*} if the BVP with slightly perturbed boundary conditions

$$
f\left((D x)^{\prime}(t), x(t), t\right)=0, \quad g(x(a), x(b))=\gamma
$$

is uniquely solvable for arbitrary sufficiently small perturbation $\gamma \in \mathbb{R}^{\prime}$, and the solution \boldsymbol{x} satisfies the inequality $\left\|x-X_{*}\right\|_{C_{D}^{1}} \leq \kappa|\gamma|$, with a constant κ.

Introduction
Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs collocation

Collocation for DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

It is very important to apply exactly the right number of BCs/ICs. This task is more difficult to realize for DAEs than for explicit ODEs.
Definition: Let $X_{*} \in \mathcal{C}_{D}^{1}\left(\mathcal{I}, \mathbb{R}^{m}\right)$ be a solution of the original BVP,

$$
f\left((D x)^{\prime}(t), x(t), t\right)=0, \quad g(x(a), x(b))=0 .
$$

The BVP has accurately stated boundary conditions locally around x_{*} if the BVP with slightly perturbed boundary conditions

$$
f\left((D x)^{\prime}(t), x(t), t\right)=0, \quad g(x(a), x(b))=\gamma,
$$

is uniquely solvable for arbitrary sufficiently small perturbation $\gamma \in \mathbb{R}^{\prime}$, and the solution x satisfies the inequality $\left\|x-x_{*}\right\|_{C_{D}^{1}} \leq \kappa|\gamma|$, with a constant κ.

Introduction
Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs collocation

Collocation for DAEs
Well-posedness of BVPs in

DAEs

Accurately stated BCs Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

For explicit ODEs, the well-posedness of the BVP is equivalent to the accurately stated BCs, U .
Ascher, R. Mattheij, R. Russell (1988). This is not the case for DAEs: well-posedness implies
accurately stated boundary conditions but the opposite is not true.

Example: Well-posedness vs. accurately stated BCs

Consider the following DAEs (index 2):

$$
x_{1}^{\prime}(t)+x_{3}(t)=0, \quad x_{2}^{\prime}(t)+x_{3}(t)=0, \quad x_{2}(t)-\sin (t-a)=0,
$$

$$
\text { subject to } x_{1}(a)+\alpha x_{2}(a)+\beta x_{3}(a)=0, \alpha, \beta \in \mathbb{R}
$$

Introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs

Collocation

Collocation for

DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Example: Well-posedness vs. accurately stated BCs

Consider the following DAEs (index 2):
$x_{1}^{\prime}(t)+x_{3}(t)=0, \quad x_{2}^{\prime}(t)+x_{3}(t)=0, \quad x_{2}(t)-\sin (t-a)=0$,
subject to $x_{1}(a)+\alpha x_{2}(a)+\beta x_{3}(a)=0, \alpha, \beta \in \mathbb{R}$
The DAE has the following solution:
$x_{* 1}(t)=\beta+\sin (t-a), x_{* 2}(t)=\sin (t-a), x_{* 3}(t)=-\cos (t-a)$.

Introduction
Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs

Collocation

Collocation for DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Example: Well-posedness vs. accurately stated BCs

Consider the following DAEs (index 2):
$x_{1}^{\prime}(t)+x_{3}(t)=0, \quad x_{2}^{\prime}(t)+x_{3}(t)=0, \quad x_{2}(t)-\sin (t-a)=0$,
subject to $x_{1}(a)+\alpha x_{2}(a)+\beta x_{3}(a)=0, \alpha, \beta \in \mathbb{R}$
The DAE has the following solution:
$x_{* 1}(t)=\beta+\sin (t-a), x_{* 2}(t)=\sin (t-a), x_{* 3}(t)=-\cos (t-a)$.
The DAE with the perturbed BC has the following solution:

$$
x_{1}(t)=\beta+\gamma+\sin (t-a), x_{2}(t)=\sin (t-a), x_{3}(t)=-\cos (t-a) .
$$

Introduction
Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs

collocation

Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Example: Well-posedness vs. accurately stated BCs

Consider the following DAEs (index 2):
$x_{1}^{\prime}(t)+x_{3}(t)=0, \quad x_{2}^{\prime}(t)+x_{3}(t)=0, \quad x_{2}(t)-\sin (t-a)=0$,
subject to $x_{1}(a)+\alpha x_{2}(a)+\beta x_{3}(a)=0, \alpha, \beta \in \mathbb{R}$
The DAE has the following solution:
$x_{* 1}(t)=\beta+\sin (t-a), x_{* 2}(t)=\sin (t-a), x_{* 3}(t)=-\cos (t-a)$.
The DAE with the perturbed BC has the following solution:
$x_{1}(t)=\beta+\gamma+\sin (t-a), x_{2}(t)=\sin (t-a), x_{3}(t)=-\cos (t-a)$.
This means that

$$
x(t)-x_{*}(t)=(\gamma, 0,0)^{T} .
$$

Therefore, the above BVP has accurately stated BCs.

Introduction
Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs

Collocation

Collocation for DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Example: Well-posedness vs. accurately stated BCs

Consider the original and perturbed DAEs,

$$
\begin{array}{ll}
x_{1}^{\prime}(t)+x_{3}(t)=0, & x_{1}^{\prime}(t)+x_{3}(t)=q_{1}(t), \\
x_{2}^{\prime}(t)+x_{3}(t)=0, & x_{2}^{\prime}(t)+x_{3}(t)=q_{2}(t), \\
x_{2}(t)-\sin (t-a)=0, & x_{2}(t)-\sin (t-a)=q_{3}(t), \\
x_{1}(a)+\alpha x_{2}(a)+\beta x_{3}(a)=0, & x_{1}(a)+\alpha x_{2}(a)+\beta x_{3}(a)=\gamma .
\end{array}
$$

Introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for

 singular ODEsCollocation

Collocation for

 DAEs

 DAEs}Well-posedness of BVPs in DAEs

Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs

Collocation for higher index DAEs

Software
development
An application
Summary

Example: Well-posedness vs. accurately stated BCs

Consider the original and perturbed DAEs,

$$
\begin{array}{ll}
x_{1}^{\prime}(t)+x_{3}(t)=0, & x_{1}^{\prime}(t)+x_{3}(t)=q_{1}(t) \\
x_{2}^{\prime}(t)+x_{3}(t)=0, & x_{2}^{\prime}(t)+x_{3}(t)=q_{2}(t) \\
x_{2}(t)-\sin (t-a)=0, & x_{2}(t)-\sin (t-a)=q_{3}(t), \\
x_{1}(a)+\alpha x_{2}(a)+\beta x_{3}(a)=0, & x_{1}(a)+\alpha x_{2}(a)+\beta x_{3}(a)=\gamma
\end{array}
$$

We can solve the perturbed problem and obtain

$$
x(t)-x_{*}(t)=\left[\begin{array}{c}
\gamma+q_{3}(t)-q_{3}(a)+\int_{a}^{t}\left(q_{1}(s)-q_{2}(s)\right) d s \\
q_{3}(t) \\
q_{2}(t)-q_{3}^{\prime}(t)
\end{array}\right], t!!\quad t \in \mathcal{I} .
$$

This means that $x(t)-x_{*}(t)$ cannot be estimated in terms of

Introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for

 singular ODEscollocation

Collocation for
 DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs

Collocation for higher index DAEs

Software
development
An application
Summary

Example: Well-posedness vs. accurately stated BCs

Consider the original and perturbed DAEs,

$$
\begin{array}{ll}
x_{1}^{\prime}(t)+x_{3}(t)=0, & x_{1}^{\prime}(t)+x_{3}(t)=q_{1}(t) \\
x_{2}^{\prime}(t)+x_{3}(t)=0, & x_{2}^{\prime}(t)+x_{3}(t)=q_{2}(t) \\
x_{2}(t)-\sin (t-a)=0, & x_{2}(t)-\sin (t-a)=q_{3}(t) \\
x_{1}(a)+\alpha x_{2}(a)+\beta x_{3}(a)=0, & x_{1}(a)+\alpha x_{2}(a)+\beta x_{3}(a)=\gamma
\end{array}
$$

We can solve the perturbed problem and obtain

$$
x(t)-x_{*}(t)=\left[\begin{array}{c}
\gamma+q_{3}(t)-q_{3}(a)+\int_{a}^{t}\left(q_{1}(s)-q_{2}(s)\right) d s \\
q_{3}(t) \\
q_{2}(t)-q_{3}^{\prime}(t)!!!
\end{array}\right], t \in \mathcal{I} .
$$

This means that $x(t)-x_{*}(t)$ cannot be estimated in terms of $\|q\|_{\infty}$. Therefore, the above BVP is ill-posed in the natural setting.

Introduction

Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs
Collocation
Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Collocation methods

Define a mesh
$\Delta:=\left(\tau_{0}=a, \tau_{1}, \ldots, \tau_{N-1}, \tau_{N}=b\right)$, and m distinct points $t_{i, j}$ in each subinterval $\left[\tau_{i}, \tau_{i+1}\right]$.

Collocation methods

 ODEs \& DAEs

Define a mesh
$\Delta:=\left(\tau_{0}=a, \tau_{1}, \ldots, \tau_{N-1}, \tau_{N}=b\right)$, and m distinct points $t_{i, j}$ in each subinterval $\left[\tau_{i}, \tau_{i+1}\right]$.
We now discretize the enlarged DAE

$$
f\left(u^{\prime}(t), x(t), t\right)=0, \quad u(t)-D(t) x(t)=0, \quad g(x(a), x(b))=0 .
$$

Collocation methods

Define a mesh
$\Delta:=\left(\tau_{0}=a, \tau_{1}, \ldots, \tau_{N-1}, \tau_{N}=b\right)$, and m distinct points $t_{i, j}$ in each subinterval $\left[\tau_{i}, \tau_{i+1}\right]$.
We now discretize the enlarged DAE

$$
f\left(u^{\prime}(t), x(t), t\right)=0, \quad u(t)-D(t) x(t)=0, \quad g(x(a), x(b))=0
$$

Approximations: $u_{\Delta}, x_{\Delta} \in \mathcal{P}_{\Delta, m} \cap \mathcal{C}\left(\mathcal{I}, \mathbb{R}^{n}\right)$ approximate u_{*} and x_{*}, respectively.

Introduction
Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs

Collocation

Collocation for DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs

Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs

Software
development

Collocation methods

Define a mesh
$\Delta:=\left(\tau_{0}=a, \tau_{1}, \ldots, \tau_{N-1}, \tau_{N}=b\right)$, and m distinct points $t_{i, j}$ in each subinterval $\left[\tau_{i}, \tau_{i+1}\right]$.
We now discretize the enlarged DAE
$f\left(u^{\prime}(t), x(t), t\right)=0, u(t)-D(t) x(t)=0, \quad g(x(a), x(b))=0$.
Approximations: $u_{\Delta}, x_{\Delta} \in \mathcal{P}_{\Delta, m} \cap \mathcal{C}\left(\mathcal{I}, \mathbb{R}^{n}\right)$ approximate u_{*} and x_{*}, respectively.

The above collocation scheme results in the classical collocation scheme for the inherent ODE
subject to $B C s$. Therefore, for sufficiently small h, u_{Δ} and consequently x_{Δ} exist and are unique.

Convergence result

Let the original BVP

$$
f\left((D x)^{\prime}(t), x(t), t\right)=0, g(x(a), x(b))=0, \operatorname{im} D(t)=\mathbb{R}^{n}
$$

be well-posed locally around its solution x_{*} in the natural setting and let the data of the DAE be sufficiently smooth.

Then, for the above collocation scheme the following statements hold:

- There is a $h_{*}>0$, such that, for meshes with $h \leq h_{*}$, there exists a unique collocation solution u_{Δ}, x_{Δ} in the sufficiently close neighborhood of u_{*}, x_{*}.

Introduction
Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for
singular ODEs
collocation
Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs

Collocation for higher index DAEs

Software
development
An application
Summary

Convergence result

Let the original BVP

$$
f\left((D x)^{\prime}(t), x(t), t\right)=0, g(x(a), x(b))=0, \operatorname{im} D(t)=\mathbb{R}^{n}
$$

be well-posed locally around its solution x_{*} in the natural setting and let the data of the DAE be sufficiently smooth.

Then, for the above collocation scheme the following statements hold:

- There is a $h_{*}>0$, such that, for meshes with $h \leq h_{*}$, there exists a unique collocation solution u_{Δ}, x_{Δ} in the sufficiently close neighborhood of u_{*}, x_{*}.
- With a sufficiently good initial guess, the collocation solution can be generated by the Newton method, which converges quadratically.

Introduction

Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for
singular ODEs

collocation

Collocation for DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs

Collocation for nonlinear index 1 DAEs

Collocation for higher index DAEs

Software
development
An application
Summary

Convergence result

Let the original BVP

$$
f\left((D x)^{\prime}(t), x(t), t\right)=0, g(x(a), x(b))=0, \operatorname{im} D(t)=\mathbb{R}^{n}
$$

be well-posed locally around its solution x_{*} in the natural setting and let the data of the DAE be sufficiently smooth.

Then, for the above collocation scheme the following statements hold:

- There is a $h_{*}>0$, such that, for meshes with $h \leq h_{*}$, there exists a unique collocation solution u_{Δ}, x_{Δ} in the sufficiently close neighborhood of u_{*}, x_{*}.
- With a sufficiently good initial guess, the collocation solution can be generated by the Newton method, which converges quadratically.
- Moreover, $\left\|x_{*}-x_{\Delta}\right\|_{\infty}=O\left(h^{m}\right), \quad\left\|u_{*}-u_{\Delta}\right\|_{\infty}=O\left(h^{m}\right)$.

Introduction

Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for
singular ODEs

collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs
Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Convergence result

Let the original BVP

$$
f\left((D x)^{\prime}(t), x(t), t\right)=0, g(x(a), x(b))=0, \operatorname{im} D(t)=\mathbb{R}^{n}
$$

be well-posed locally around its solution x_{*} in the natural setting and let the data of the DAE be sufficiently smooth.

Then, for the above collocation scheme the following statements hold:

- There is a $h_{*}>0$, such that, for meshes with $h \leq h_{*}$, there exists a unique collocation solution u_{Δ}, x_{Δ} in the sufficiently close neighborhood of u_{*}, x_{*}.
- With a sufficiently good initial guess, the collocation solution can be generated by the Newton method, which converges quadratically.
- Moreover, $\left\|x_{*}-x_{\Delta}\right\|_{\infty}=O\left(h^{m}\right), \quad\left\|u_{*}-u_{\Delta}\right\|_{\infty}=O\left(h^{m}\right)$.
- For Gaussian points, the superconvergence order holds for the smooth component

$$
\max _{i=0, \ldots, N}\left|u_{*}\left(\tau_{i}\right)-u_{\Delta}\left(\tau_{i}\right)\right|=O\left(h^{2 m}\right)
$$

Numerical results

Nonlinear example

$$
\begin{aligned}
& x=\left(x_{1}, x_{2}\right)^{T}=\left(x_{11}, x_{12}, x_{21}, x_{22}\right)^{T}, \quad b(t, x(t))=B x(t)+t C(x(t)) x(t)+f(t) \\
& t x_{1}^{\prime}(t)+\begin{array}{l}
b_{1}(t, x(t))=0, \\
b_{2}(t, x(t))=0,
\end{array} \quad B \in \mathbb{R}^{4 \times 4}, C(x)=\left(\begin{array}{cccc}
\sin x_{12} & 0 & e^{-x_{11}} & 0 \\
0 & \cos x_{22} & 0 & \sin \left(x_{11}+x_{21}\right) \\
x_{12}^{3} & 0 & x_{11} & 0 \\
0 & x_{11} x_{12} & 0 & x_{12}^{2}
\end{array}\right)
\end{aligned}
$$

coupled BCs at $t=0, t=1, m=4$, solution: $x_{11}=t^{2} \sin t, x_{12}=t \mathrm{e}^{t}, x_{21}=t \cos t, x_{22}=\sin t$.

Uniform Mesh		Error for $\boldsymbol{x}_{\mathbf{1}}$ at Mesh tau, eq		Error for \boldsymbol{x} at Grid tcol, eq			
\mathbf{N}	\mathbf{h}	error	order	const.	error	order	const.
10	$1.00 \mathrm{e}-01$	$2.043 \mathrm{e}-07$				$1.127 \mathrm{e}-06$	
20	$5.00 \mathrm{e}-02$	$1.268 \mathrm{e}-08$	4.0	$2.087 \mathrm{e}-03$	$7.074 \mathrm{e}-08$	4.0	$1.110 \mathrm{e}-02$
40	$2.50 \mathrm{e}-02$	$7.916 \mathrm{e}-10$	4.0	$2.043 \mathrm{e}-03$	$4.430 \mathrm{e}-09$	4.0	$1.122 \mathrm{e}-02$
80	$1.25 \mathrm{e}-02$	$4.946 \mathrm{e}-11$	4.0	$2.030 \mathrm{e}-03$	$2.770 \mathrm{e}-10$	4.0	$1.131 \mathrm{e}-02$
160	$6.25 \mathrm{e}-03$	$3.088 \mathrm{e}-12$	4.0	$2.040 \mathrm{e}-03$	$1.728 \mathrm{e}-11$	4.0	$1.149 \mathrm{e}-02$
320	$3.13 \mathrm{e}-03$	$1.895 \mathrm{e}-13$	4.0	$2.308 \mathrm{e}-03$	$1.464 \mathrm{e}-12$	3.6	$1.220 \mathrm{e}-03$

Uniform Mesh		Error for $\boldsymbol{x}_{\mathbf{1}}$ at Mesh tau, gauss		Error for \boldsymbol{x} at Grid tcol, gauss			
\mathbf{N}	h	error	order	const.	error	order	const.
10	$1.00 \mathrm{e}-01$	$7.254 \mathrm{e}-09$				$4.215 \mathrm{e}-07$	
20	$5.00 \mathrm{e}-02$	$2.264 \mathrm{e}-10$	5.0	$7.280 \mathrm{e}-04$	$2.646 \mathrm{e}-08$	4.0	$4.155 \mathrm{e}-03$
40	$2.50 \mathrm{e}-02$	$7.066 \mathrm{e}-12$	5.0	$7.289 \mathrm{e}-04$	$1.655 \mathrm{e}-09$	4.0	$4.214 \mathrm{e}-03$
80	$1.25 \mathrm{e}-02$	$2.210 \mathrm{e}-13$	5.0	$7.206 \mathrm{e}-04$	$1.035 \mathrm{e}-10$	4.0	$4.232 \mathrm{e}-03$
160	$6.25 \mathrm{e}-03$	$7.976 \mathrm{e}-15$	4.8	$2.914 \mathrm{e}-04$	$6.520 \mathrm{e}-12$	4.0	$4.029 \mathrm{e}-03$

Introduction
Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs
Collocation
Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs

Collocation for higher index DAEs

Software
development
An application
Summary

An index-3 problem

Petzold (1982), März (1992)
Consider

$$
\begin{aligned}
& x_{2}^{\prime}(t)+x_{1}(t)=q_{1}(t) \\
& -1 / 2 t x_{2}^{\prime}(t)+x_{3}^{\prime}(t)+1 / 2 x_{2}(t)=q_{2}(t) \\
& -1 / 2 t x_{2}(t)+x_{3}(t)=q_{3}(t)
\end{aligned}
$$

with a smooth $q(t)$. This system has no inherent ODE (no BCs necessary) and the solution reads:

$$
\begin{aligned}
& x_{1}(t)=q_{1}(t)-q_{2}^{\prime}(t)+q_{3}^{\prime \prime}(t), \quad x_{2}(t)=q_{2}(t)-q_{3}^{\prime}(t) \\
& x_{3}(t)=q_{3}(t)+\frac{1}{2} t x_{2}(t)
\end{aligned}
$$

or equivalently,

Introduction
Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs

collocation

Collocation for

DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs

Relations

Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{-t} \sin (t), \quad x_{2}(t)=\mathrm{e}^{-2 t} \sin (t), \\
& x_{3}(t)=\mathrm{e}^{-t} \cos (t) .
\end{aligned}
$$

Overdetermined variant of collocation

Without increasing the degree of the collocation polynomial, additional conditions are required to hold

Introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs

collocation

Collocation for DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Overdetermined variant of collocation

Without increasing the degree of the collocation polynomial, additional conditions are required to hold The overdetermined system is then solved in the least squares sense.

Introduction
Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs

Collocation

Collocation for DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

uniform mesh			error for x_{1} (classic coll.)		error for x_{1} (overdet coll.)	
N	h	error	order	error	order	
160	$6.25 \mathrm{e}-03$	Inf	- Inf	$3.58 \mathrm{e}-03$	0.97	
320	$3.13 \mathrm{e}-03$	$3.65 \mathrm{e}+171$	Inf	$1.81 \mathrm{e}-03$	0.98	
640	$1.56 \mathrm{e}-03$	$2.09 \mathrm{e}+307$	-450.98	$9.11 \mathrm{e}-04$	0.99	
uniform mesh		error for x_{2} (classic coll.)	error for x_{2} (overdet coll.)			
N	h	error	order	error	order	
160	$6.25 \mathrm{e}-03$	$5.11 \mathrm{e}+274$	-716.36	$2.04 \mathrm{e}-05$	1.97	
320	$3.13 \mathrm{e}-03$	$6.05 \mathrm{e}+153$	401.71	$5.14 \mathrm{e}-06$	1.99	
640	$1.56 \mathrm{e}-03$	$5.76 \mathrm{e}+289$	-451.71	$1.29 \mathrm{e}-06$	1.99	
uniform mesh		error for x_{3} (classic coll.)		error for x_{3} (overdet coll.)		
N	h	error	order	error	order	
160	$6.25 \mathrm{e}-03$	$2.80 \mathrm{e}+273$	-717.97	$2.51 \mathrm{e}-06$	2.00	
320	$3.13 \mathrm{e}-03$	$9.03 \mathrm{e}+151$	403.59	$6.28 \mathrm{e}-07$	2.00	
640	$1.56 \mathrm{e}-03$	$8.35 \mathrm{e}+287$	-451.67	$1.57 \mathrm{e}-07$	2.00	

Introduction
Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Software: MATLAB codes bvpsuite $1.1 \& 2.0$ - scope
History:
sbvp (2003), bvpsuite 1.1 (2009), bvpsuite 2.0
(2018-2020)

http://www.asc.tuwien.ac.at//ewa/

Implicit mixed order (singular) ODEs including unknown parameters

Introduction

Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs

Collocation

Collocation for DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software development

An application
Summary

Software: MATLAB codes bvpsuite $1.1 \& 2.0$ - scope

History:

sbvp (2003), bvpsuite 1.1 (2009), bvpsuite 2.0
(2018-2020)

http://www.asc.tuwien.ac.at//ewa/

Implicit mixed order (singular) ODEs including unknown parameters

- BVPs in ODEs on finite and semi-infinite intervals

Software: MATLAB codes bvpsuite $1.1 \& 2.0$ - scope

History:

sbvp (2003), bvpsuite 1.1 (2009), bvpsuite 2 . 0 (2018-2020)

http://www.asc.tuwien.ac.at//ewa/

Implicit mixed order (singular) ODEs including unknown parameters

- BVPs in ODEs on finite and semi-infinite intervals
- EVPs in ODEs on finite and semi-infinite intervals

Introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for
singular ODEs
collocation
Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs

Relations

Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software development

An application
Summary

Software: MATLAB codes bvpsuite $1.1 \& 2.0$ - scope

History:

sbvp (2003), bvpsuite 1.1 (2009), bvpsuite 2.0 (2018-2020)

http://www.asc.tuwien.ac.at//ewa/

Implicit mixed order (singular) ODEs including unknown parameters

- BVPs in ODEs on finite and semi-infinite intervals
- EVPs in ODEs on finite and semi-infinite intervals
- Index-1 DAEs on finite and semi-infinite intervals

Introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for
singular ODEs

Collocation

Collocation for

Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

```
History:
sbvp (2003), bvpsuite 1.1 (2009), bvpsuite 2.0 (2018-2020)
```


http://www.asc.tuwien.ac.at//ewa/

Implicit mixed order (singular) ODEs including unknown parameters

- BVPs in ODEs on finite and semi-infinite intervals
- EVPs in ODEs on finite and semi-infinite intervals
- Index-1 DAEs on finite and semi-infinite intervals
- Pathfollowing for BVPs and EVPs in ODEs on finite and semi-infinite intervals for parameter dependent BVPs in ODEs

Introduction
Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs

```
History:
sbvp (2003), bvpsuite 1.1 (2009), bvpsuite 2.0 (2018-2020)
```


http://www.asc.tuwien.ac.at//ewa/

Implicit mixed order (singular) ODEs including unknown parameters

- BVPs in ODEs on finite and semi-infinite intervals
- EVPs in ODEs on finite and semi-infinite intervals
- Index-1 DAEs on finite and semi-infinite intervals
- Pathfollowing for BVPs and EVPs in ODEs on finite and semi-infinite intervals for parameter dependent BVPs in ODEs

Error estimate and mesh adaptation strategy

Implementation basis

 ODEs \& DAEs
Main assumption: Analytical problem is

well-posed with a locally unique smooth solution

Introduction
Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs
collocation
Collocation for
DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs

Collocation for higher index DAEs

Software
development
An application
Summary

Implementation basis

 ODEs \& DAEsMain assumption: Analytical problem is
well-posed with a locally unique smooth solution

- Numerical method: Robust with respect to singularity $\|$ global error $\|=O\left(h^{m}\right), m$ reasonably large

Our choice is polynomial collocation
Error estimation: Robust and asymptotically correct

Introduction
Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for
singular ODEs
collocation
Collocation for DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software development

An application
Summary

Main assumption: Analytical problem is
well-posed with a locally unique smooth solution

- Numerical method: Robust with respect to singularity $\|$ global error $\|=O\left(h^{m}\right), m$ reasonably large

Our choice is polynomial collocation

- Error estimation: Robust and asymptotically correct $\|$ global error - error estimate $\|=O\left(h^{m+\gamma}\right), \gamma>0$

Our choice is $h-h / 2$ strategy

Main assumption: Analytical problem is
well-posed with a locally unique smooth solution

- Numerical method: Robust with respect to singularity
$\|$ global error $\|=O\left(h^{m}\right), m$ reasonably large
Our choice is polynomial collocation
- Error estimation: Robust and asymptotically correct $\|$ global error - error estimate $\|=O\left(h^{m+\gamma}\right), \gamma>0$

Our choice is $h-h / 2$ strategy

- Adaptive mesh selection: Meshes unaffected by the nonsmooth (!) direction field

Computational experiment - grid adaptation

Introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs

collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear
index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary
Gaussian collocation, order 4, $T O L_{a}=10^{-6}$

An application: Shell buckling problem 1

Kitzhofer, Koch, EW 2009, MT Fallahpour 2020, private kommunikation with A. Steindl, TU Wien 2020, Auzinger, Burdeos, Fallahpour, Koch, Mendoza, EW submitted

$$
\begin{aligned}
& z_{1}^{\prime \prime}(t)+\cot (t) z_{1}^{\prime}(t)+\cot ^{2}(t) f_{1}\left(t, z_{1}(t)\right)=f_{2}\left(t, z_{1}(t), z_{2}(t), z_{3}(t), \lambda^{*}\right) \\
& z_{2}^{\prime \prime}(t)+\cot (t) z_{2}^{\prime}(t)-\cot ^{2}(t) g_{1}\left(s, z_{1}(t)\right)=g_{2}\left(s, z_{1}(t), z_{2}(t), z_{3}(t), \lambda^{*}\right) \\
& z_{3}(t)=\int_{0}^{t} \cos \left(s-z_{1}(s)\right) \sin (s) \mathrm{d} s, \quad \lambda *=\frac{p}{p_{c r}} \in[0,1] \\
& z_{3}^{\prime}(t)=\cos \left(t-z_{1}(t)\right) \sin (t), \quad t \in(0, \pi), \\
& z_{1}(0)=z_{1}(\pi)=0, \quad z_{2}(0)=z_{2}(\pi)=0, \quad z_{3}(0)=0 .
\end{aligned}
$$

Introduction
Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs

collocation

Collocation for DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Shell buckling problem 2

Introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs

collocation

Collocation for DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs

Software

development
An application
Summary

Summary

Collocation for ODEs \& DAEs

- Existence, uniqueness and smoothness results of solutions $z \in C[0,1]$ of

$$
z^{\prime}(t)=\frac{M(t)}{t} z(t)+\frac{f(t, z(t))}{t}
$$

subject to correctly posed BCs are available. For IVPs with all eigenvalues of $M(0)$ being negative, the correctly posed ICs are

$$
M(0) z(0)+f(0, z(0))=0
$$

Eigenvalues λ of $M(0)$ determine the structure of ICs, TCs, and BCs
Analysis (global) for the nonlinear case ($f(t, z)$) and spectrum of $M(0)$ with negative or/and positive eigenvalues is available

Introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations
Collocation for singular ODEs
collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Summary

Collocation for ODEs \& DAEs

- Existence, uniqueness and smoothness results of solutions $z \in C[0,1]$ of

$$
z^{\prime}(t)=\frac{M(t)}{t} z(t)+\frac{f(t, z(t))}{t}
$$

subject to correctly posed BCs are available. For IVPs with all eigenvalues of $M(0)$ being negative, the correctly posed ICs are

$$
M(0) z(0)+f(0, z(0))=0
$$

- Eigenvalues λ of $M(0)$ determine the structure of ICs, TCs, and BCs
positive eigenvalues is available
Nonlinear case ($f(t, z)$): convergenc of collocation for spectrum of $M(0)$ with negative orfand positive eigenvalues is available

Introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations
Collocation for singular ODEs
Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Summary

- Existence, uniqueness and smoothness results of solutions $z \in C[0,1]$ of

$$
z^{\prime}(t)=\frac{M(t)}{t} z(t)+\frac{f(t, z(t))}{t}
$$

subject to correctly posed BCs are available. For IVPs with all eigenvalues of $M(0)$ being negative, the correctly posed ICs are

$$
M(0) z(0)+f(0, z(0))=0
$$

- Eigenvalues λ of $M(0)$ determine the structure of ICs, TCs, and BCs
- Analysis (global) for the nonlinear case ($f(t, z)$) and spectrum of $M(0)$ with negative or/and positive eigenvalues is available
Nonlinear case $(f(t, z)$): convergence of collocation for spectrum of $M(0)$ with negative or/and
positive eigenvalues is available
Order of convergence: stage order for arbitrary collocation points, small superconvergence for
Gaussian collocation points

Introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for singular ODEs
Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Summary

- Existence, uniqueness and smoothness results of solutions $z \in C[0,1]$ of

$$
z^{\prime}(t)=\frac{M(t)}{t} z(t)+\frac{f(t, z(t))}{t}
$$

subject to correctly posed BCs are available. For IVPs with all eigenvalues of $M(0)$ being negative, the correctly posed ICs are

$$
M(0) z(0)+f(0, z(0))=0
$$

- Eigenvalues λ of $M(0)$ determine the structure of ICs, TCs, and BCs
- Analysis (global) for the nonlinear case $(f(t, z))$ and spectrum of $M(0)$ with negative or/and positive eigenvalues is available
- Nonlinear case $(f(t, z)$): convergence of collocation for spectrum of $M(0)$ with negative or/and positive eigenvalues is available
Order of convergence: stage order for arbitrary collocation points, small superconvergence for Gaussian collocation points

Introduction
Singular ODEs: an example More general class of problems
Differential Algebraic Equations
Collocation for singular ODEs
Collocation

Collocation for
 DAEs

Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Summary

- Existence, uniqueness and smoothness results of solutions $z \in C[0,1]$ of

$$
z^{\prime}(t)=\frac{M(t)}{t} z(t)+\frac{f(t, z(t))}{t}
$$

subject to correctly posed BCs are available. For IVPs with all eigenvalues of $M(0)$ being negative, the correctly posed ICs are

$$
M(0) z(0)+f(0, z(0))=0
$$

- Eigenvalues λ of $M(0)$ determine the structure of ICs, TCs, and BCs
- Analysis (global) for the nonlinear case ($f(t, z)$) and spectrum of $M(0)$ with negative or/and positive eigenvalues is available
- Nonlinear case $(f(t, z)$): convergence of collocation for spectrum of $M(0)$ with negative or/and positive eigenvalues is available
- Order of convergence: stage order for arbitrary collocation points, small superconvergence for Gaussian collocation points

Introduction

Singular ODEs: an example
More general class of problems
Differential Algebraic Equations
Collocation for singular ODEs
collocation

Collocation for
 DAEs

Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs
Collocation for higher index DAEs

Software
development
An application
Summary

Summary

- Existence, uniqueness and smoothness results of solutions $z \in C[0,1]$ of

$$
z^{\prime}(t)=\frac{M(t)}{t} z(t)+\frac{f(t, z(t))}{t}
$$

subject to correctly posed BCs are available. For IVPs with all eigenvalues of $M(0)$ being negative, the correctly posed ICs are

$$
M(0) z(0)+f(0, z(0))=0
$$

- Eigenvalues λ of $M(0)$ determine the structure of ICs, TCs, and BCs
- Analysis (global) for the nonlinear case ($f(t, z)$) and spectrum of $M(0)$ with negative or/and positive eigenvalues is available
- Nonlinear case $(f(t, z))$: convergence of collocation for spectrum of $M(0)$ with negative or/and positive eigenvalues is available
- Order of convergence: stage order for arbitrary collocation points, small superconvergence for Gaussian collocation points
- Collocation applied to linear/nonlinear index 1 well-posed DAEs shows full stage order under reasonable smoothness assumptions.

Introduction

Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for
singular ODEs
Collocation

Collocation for
 DAEs

Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear

index 1 DAEs

Collocation for higher index DAEs

Software
development
An application
Summary

Summary

- Existence, uniqueness and smoothness results of solutions $z \in C[0,1]$ of

$$
z^{\prime}(t)=\frac{M(t)}{t} z(t)+\frac{f(t, z(t))}{t}
$$

subject to correctly posed BCs are available. For IVPs with all eigenvalues of $M(0)$ being negative, the correctly posed ICs are

$$
M(0) z(0)+f(0, z(0))=0
$$

- Eigenvalues λ of $M(0)$ determine the structure of ICs, TCs, and BCs
- Analysis (global) for the nonlinear case ($f(t, z)$) and spectrum of $M(0)$ with negative or/and positive eigenvalues is available
- Nonlinear case $(f(t, z))$: convergence of collocation for spectrum of $M(0)$ with negative or/and positive eigenvalues is available
- Order of convergence: stage order for arbitrary collocation points, small superconvergence for Gaussian collocation points
- Collocation applied to linear/nonlinear index 1 well-posed DAEs shows full stage order under reasonable smoothness assumptions.
- Higher index problems are ill-posed in natural setting and the standard collocation does not work in general.

Summary

- Existence, uniqueness and smoothness results of solutions $z \in C[0,1]$ of

$$
z^{\prime}(t)=\frac{M(t)}{t} z(t)+\frac{f(t, z(t))}{t}
$$

subject to correctly posed BCs are available. For IVPs with all eigenvalues of $M(0)$ being negative, the correctly posed ICs are

$$
M(0) z(0)+f(0, z(0))=0
$$

- Eigenvalues λ of $M(0)$ determine the structure of ICs, TCs, and BCs
- Analysis (global) for the nonlinear case ($f(t, z)$) and spectrum of $M(0)$ with negative or/and positive eigenvalues is available
- Nonlinear case $(f(t, z))$: convergence of collocation for spectrum of $M(0)$ with negative or/and positive eigenvalues is available
- Order of convergence: stage order for arbitrary collocation points, small superconvergence for Gaussian collocation points
- Collocation applied to linear/nonlinear index 1 well-posed DAEs shows full stage order under reasonable smoothness assumptions.
- Higher index problems are ill-posed in natural setting and the standard collocation does not work in general.
- Possible remedy: Least Squares Collocation. Convergence analysis for a some model classes already available.

Introduction

Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for
singular ODEs
Collocation

Collocation for

DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs

Relations

Collocation for nonlinear

index 1 DAEs

Collocation for higher index DAEs

Software
development
An application
Summary

Summary

- Existence, uniqueness and smoothness results of solutions $z \in C[0,1]$ of

$$
z^{\prime}(t)=\frac{M(t)}{t} z(t)+\frac{f(t, z(t))}{t}
$$

subject to correctly posed BCs are available. For IVPs with all eigenvalues of $M(0)$ being negative, the correctly posed ICs are

$$
M(0) z(0)+f(0, z(0))=0
$$

- Eigenvalues λ of $M(0)$ determine the structure of ICs, TCs, and BCs
- Analysis (global) for the nonlinear case $(f(t, z))$ and spectrum of $M(0)$ with negative or/and positive eigenvalues is available
- Nonlinear case $(f(t, z))$: convergence of collocation for spectrum of $M(0)$ with negative or/and positive eigenvalues is available
- Order of convergence: stage order for arbitrary collocation points, small superconvergence for Gaussian collocation points
- Collocation applied to linear/nonlinear index 1 well-posed DAEs shows full stage order under reasonable smoothness assumptions.
- Higher index problems are ill-posed in natural setting and the standard collocation does not work in general.
- Possible remedy: Least Squares Collocation. Convergence analysis for a some model classes already available.
- Convergence for general model classes is still work in progress (März, Hanke).

Introduction

Singular ODEs: an example
More general class of problems
Differential Algebraic Equations

Collocation for
singular ODEs
collocation

Collocation for

DAEs
Well-posedness of BVPs in DAEs
Accurately stated BCs

Relations

Collocation for nonlinear

index 1 DAEs

Collocation for higher index DAEs

Software
development
An application
Summary

Happy birthday, John!

Collocation for ODEs \& DAEs

Introduction

Singular ODEs: an example More general class of problems
Differential Algebraic Equations

Collocation for
singular ODEs

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs
Accurately stated BCs
Relations
Collocation for nonlinear index 1 DAEs

Collocation for higher index DAEs

Software
development
An application
Summary

