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Z(t) = F(t,2(t)), t€(0,1] e
b(z(0),z(1)) =0

Collocation

F(t, z(t)) unbounded for t — 0 and not Lipschitz
continuous on [0, 1]!

Typically, lim;_,q aF(éZz( ) = ool
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Z'(t) = F(t,z(t)), t € (0,1]
b(z(0),z(1)) =0

F(t, z(t)) unbounded for t — 0 and not Lipschitz
continuous on [0, 1]!

Typically, limtﬁow = oo!

Interested in z € C[0, 1], even z € CP[0,1], p > 1
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Introduction: Problem setting: singular BVPs in ODEs ODESs & DAEs

Introduction
Singular Ol
M

Z'(t) = F(t,z(t)), t € (0,1]
b(2(0), z(1)) = 0 '

F(t, z(t)) unbounded for t — 0 and not Lipschitz
continuous on [0, 1]!

Typically, lunt_}OaF(éA = oo!

Interested in z € C[0, 1], even z € CP[0,1], p > 1

Important contributions:

Jamet, Brabston, Keller, Wolfe, Parter, Stein, Shampine, Russell, de
Hoog, Weiss, Markowich, Ringhofer, Ascher, Schmeiser, Troger,
Abramov, Koniuchova, Lima, Méarz, Winkler, Auzinger, Koch, Cash, Muir,
Budd, Stanek, Rachunkova, Amodio, Burkotova, Settanni, Levitina...
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. , . " 0 0 Collocation f
Regular’ BVPs with singular point: available results ODEs & DAES

Existence and uniqueness of z € C[0, 1], smoothness, convergence of Introduction

the polynomial collocation
Linear case:
Z'(t) = Mgt)z(t) +f(t), Z(t) = Mt((f)z(t) + f(1)
Nonlinear case:
Z'(t) = At/’z(t) + f(t, z(t)), Z'(t) = ?gz(t) + f(t, z(1))

Time singularities
of the first kind o« = 1, of the second kind o > 1

4/35



‘Regular’ BVPs with singular point: available results

Existence and uniqueness of z € C[0, 1], smoothness, convergence of
the polynomial collocation

Linear case:

Z(t) = "”gnz(t) + (1), Z(t) = Mt((f)z(t) + (1)
Nonlinear case:
Z(t) = At/’z(t) + (1, 2(1)), Z(t) = ?gz(t) + £(t, 2(1))

Time singularities

of the first kind o« = 1, of the second kind o > 1
Problems posed on semi-infinite intervals

Z'(t) = f(t, z(t)), te[0,00)
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‘Regular’ BVPs with singular point: available results ODESs & DAEs

Existence and uniqueness of z € C[0, 1], smoothness, convergence of Introduction

Sin

the polynomial collocation

Linear case:

Z(t) = "”gnz(t) + (1), Z(t) = Mt((f)z(t) + (1)
Nonlinear case:
Z(t) = At/’z(t) + (1, 2(1)), Z(t) = ?gz(t) + £(t, 2(1))

Time singularities

of the first kind o = 1, of the second kind o > 1
Problems posed on semi-infinite intervals

Z'(t) = f(t, z(t)), te[0,00)

Space singularities

2(t) =12, telab], g(z(k)) =0t < [ab]
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Models in singular ODEs — CGL equation ODEs 2 DAES

Budd, Koch, W. (2006)
Solve for u = u(x, t), x € R3, t > 0:

iift’ +(1 —ie)Au+ (1 +id)|uffu =0, u(x,0) = up(x).
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Models in singular ODEs — CGL equation ODESs & DAEs

Budd, Koch, W. (2006)
Solve for u = u(x, t), x € R3, t > 0:

Singular ODESs: an example

iif; +(1 —ie)Au+ (1 +id)|uffu =0, u(x,0) = up(x).

Interested in self-similar solutions

u(x,t) = L(n)y(r), 7 = 7(x, t), tll;mT L(7(x,t)) = o0

where T is the blow-up time and y = y(7), 7 > 0, satisfies

(1-i2) (') 2 (1)) ¥ iy () + (14Dl ()Y(r) =0,

y'(0) =0, Sy(0)=0, TILmOC Ty'(t) = 0.
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Collocation for

Motivation ODEs & DAEs

Singular ODEs: an example
More general class of

More general class of problems with a singularity of e
the first kind:
f t Z t Collocation
Z(t) = (71‘())’ t € (0,1]
(Vainikko 2013, 2013, Auzinger, Auer, Burkotova, Rachunkova, Stanék, EW, Wurm 2014, 2017,
2017, 2018, 2021) Analysis for the general linear and nonlinear case Jeseysaeages
Collocation for nonlinear
f M f ndex 1 DAEs
Z/(t) = @Z(t) —+ Q, z/(l‘) = #Z(t) + w’ te (07 1] F‘J:\‘z”: ation for higher index

Available results: Existence and uniqueness of continuous solutions

z € C[0, 1], smoothness, and convergence of the polynomial collocation
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Crystallization in thin amorphous layers

(Buchner, Schneider 2010) Calculation of the crystallization front propagating through
a thin layer of amorphous material on a substrate

The original problem is posed on a semi-infinite interval, we transform
7 €[0,00) — t € (0,1] by
1

i

The resulting boundary value problem for the temperature distribution ©(¢) and

the degree of crystallization £(t), t € [0, 1), reads:

n o) =&)L S A2G(O(1)g(E(1))

©(0)=0,1284, ©(1)=1, ¢£0)=10""°

e Essential singularity at t = 1
e )\ is unknown and related to the speed of the crystallization front

e Third condition: at the beginning tiny crystals may already exist in the material
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Crystallization in thin amorphous layers (2)

0.8
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0.2

Graph of the solution components ©(t) (blue) and £(t) (green) obtained from
bvpsuitel. 1 using collocation with m = 8 Gaussian points and
Toly = Toly = 10—12. Here, A = 11,03605.

(Kitzhofer, Koch, Pulverer, Simon, EW 2010)

solution
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. q q q . . Coll ion f
Crystallization in thin layers — alternative transformation ODEs & DAES

Singular ODESs: an example

More general class of
Now we transform 7 € [0,00) — ¢ € [1,0) by ?’i‘j‘;’"ﬁw ;
Equations e

7:=—Int

The resulting BVP for the temperature distribution ©(t) and the
degree of crystallization £(t), f € [0, 1), reads:

_ 2
(= A=)y FEOWILED)

©(1)=0,1284, ©(0)=1, £(1)=10"1°

e Singularity of the firstkind at t =0
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Index 2 DAE example

Lamour, Mérz, W. (2015)

Consider the DAE

xi(t) +xi(t) = 0,
xo(t) X3(t) — x3(t) = 0,

X1 ()% 4 x (1) — 1+ % cos(mwt) =0,
x1(0) —x1(2)=a, |a]< %(1 —e7?).

The solution has to belong to the set

Mo() = {xeR®: xZ  x2 — 1+ %cos(ﬂt) = 0}.

Collocation for
ODEs & DAEs
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Collocation for

Hidden constraint ODEs & DAEs

Again, consider

X1+ x1(t) =0, xa(t) x4(t) — x3(t) = 0,
1
x1 (62 + x(t)2 =1+ 5 cos(mt) =0.

Let x.(-) be a solution and let us differentiate the last
identity. Then,

2%, (1) x4 (1) + 2x.2(t)xLo(t) — w% sin(rt) =0

and finally, —2x.1(t)? + 2x.3(t) — Smsin(rt) = 0.

Therefore, all solution values x.(t) must belong to the set
1
H(t) = {x € R®: —2x2 + 2x3 — 57sin(rt) = 0}.
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Proper restriction set

The proper restriction set is
M (t) == Mo(t) NH(t) € Mo(P).

Constraint set My att=0and t = }
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Collocation method ODEs & DAEs

Consider a partition of the interval [0, 1],
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Collocation for

Collocation method ODEs & DAEs

Singular ODEs: an example

Consider a partition of the interval [0, 1],

l',"/'...

In [74, 7i44], introduce m inner collocation points

Pm ... the class of polynomial functions on [0, 1]
which reduce to a polynomial of degree smaller or
equal to m on each subinterval [, 7j1]

13/35
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Collocation scheme ODEs & DAEs

Consider the IVP

zsz%”40+“t?”X M(0)z(0) + (0, z(0)) = 0

Approximate z by a function p € P, N C[0, 1]
satisfying the collocation conditions

L\ P(tj) N f(t;, p(ty))
t; ;-
i=0,... N—1,j=1,....m,

subject to

M(0)p(0) + £(0, p(0)) = 0
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Collocation scheme: convergence result ODEs & DAEs

Theorem: Let z € C™+1[0, 1] be the unique solution of the
analytical IVP. For sufficiently small hand p > 0, the
related nonlinear collocation scheme has a unique
solution p in the tube T,(z) around z. Moreover, the
following estimates hold:

|1z = plljp,1; = O(™),
12" = P'll,1] = O(h™),
| p/(t) = Mp(t) — HEED | = O(h™), t € [0,1].

Collocation
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» First aim:
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Aims: Basic concepts ODESs & DAEs

» First aim:
Define basic concepts such as local well-posedness
and accurately stated BCs in context of BVP in

DAEs.
» DAEs can be written in a standard,
f(x'(t),x(t),t) = 0, and advanced form Collocation or

DAEs

Well-posedness of BVPs in

f((Dx)'(t),x(t),t)=0, xeR" feR"

Matrix function D = D(t) € R™ ™ indicates which
derivatives are involved, Dx € R, n < m.
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Aims:

Basic concepts

First aim:

Define basic concepts such as local well-posedness
and accurately stated BCs in context of BVP in
DAEs.

DAEs can be written in a standard,
f(x'(t), x(t),t) = 0, and advanced form
f((Dx)'(t),x(t),t)=0, xeR" feR"

Matrix function D = D(t) € R™ ™ indicates which
derivatives are involved, Dx € R, n < m.

Linear version of the DAE
A(t)(Dx)'(t) + B(t)x(t) — f(t) = 0,
AcR™N DeR™M BecRMM
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Basic concepts

(Lamour, Marz, W. 2015)

» Assumptions: t € Z = [a, b]

F((Dx) (1), x(1), 1)

0,

g(x(a),x(b)) = 0.
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Basic concepts
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» Assumptions: t € Z = [a, b]
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» f(y,x,t)is cont. with cont. partial derivatives f,, fy.
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Basic concepts ODESs & DAEs

(Lamour, Marz, W. 2015)

» Assumptions: t € Z = [a, b]

F((Dx) (1), x(1),1) =0, g(x(a),x(b)) = 0. cotocston o

Well-posedness of BVPs in
DAEs

» f(y,x,t)is cont. with cont. partial derivatives f,, fy.

» The partial Jacobian f,(y, x, t) is everywhere
singular.
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Basic concepts

(Lamour, Marz, W. 2015)

» Assumptions: t € Z = [a, b]

F((Dx)' (1), x(), ) = 0, g(x(a), x(b)) = 0.

» f(y,x,t)is cont. with cont. partial derivatives f,, fy.

» The partial Jacobian f,(y, x, t) is everywhere
singular.
» g < Ris cont. differentiable.
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Collocation for

Basic concepts ODESs & DAEs

(Lamour, Marz, W. 2015)

» Assumptions: t € Z = [a, b]

f((Dx)' (1), x(t), t) =0, g(x(a), x(b)) = 0.

DAEs

» f(y,x,t)is cont. with cont. partial derivatives f,, fy.

» The partial Jacobian f,(y, x, t) is everywhere
singular.

» g < Ris cont. differentiable.

» The matrix function D is cont. and D(t) has constant rank
r on the given interval Z.
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Natural setting of a DAE

» Classical solution x of the DAE is a functions from

CNZ,R™) := {x € C(Z,R™) : Dx € C'(Z,R™)},

satisfying the DAE pointwise on 7.
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Natural setting of a DAE

» Classical solution x of the DAE is a functions from
CNZ,R™) := {x € C(Z,R™) : Dx € C'(Z,R™)},
satisfying the DAE pointwise on Z.

This function space setting is the natural setting of
DAE.
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A Coll ion f
Natural setting of a DAE ODEs 8 DAES

» Classical solution x of the DAE is a functions from

CNZ,R™) := {x € C(Z,R™) : Dx € C'(Z,R™)},

Collocation

satisfying the DAE pointwise on 7.

Collocation for
DAEs

This function space setting is the natural setting of
DAE.

» The DAE has a properly involved derivative or properly
stated leading term:

f((Dx)'(t), x(t),t) =0 : ker f,(y, x,t) ®imD(t) = R",
A(t)(Dx)'(t) + B(t)x(t) = f(t) : ker A(t) & imD(t) = R".
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Well-posedness of BVPs in DAEs: Definition

Well-posedness in the sense of Hadamard constitutes the classical basis of a safe numerical

treatment. We assume that a solution exist and concentrate on a local variant of well-posedness.
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Well-posedness of BVPs in DAEs: Definition ODEs & DAES

Well-posedness in the sense of Hadamard constitutes the classical basis of a safe numerical

treatment. We assume that a solution exist and concentrate on a local variant of well-posedness.
Definition: Let x, € CL(Z,R™) be a solution of the
original BVP,

f((Dx)' (1), x(1), ) = 0, g(x(a), x(b)) = 0.

The BVP is said to be well-posed locally around x. in o
its natural setting, if the BVP oies

F((Dx)' (1), x(1), 1) = q(1),  g(x(a), x(b)) =~

is locally uniquely solvable for arbitrary sufficiently
small perturbations q € C(Z,R™) and v € R/, and the
solution x satisfies the inequality

I = Xelley < w17+ l1qlloc):

with a constant «.
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Well-posedness of BVPs in DAEs: Definition

Well-posedness in the sense of Hadamard constitutes the classical basis of a safe numerical

treatment. We assume that a solution exist and concentrate on a local variant of well-posedness.
Definition: Let x, € CL(Z,R™) be a solution of the
original BVP,

f((Dx)' (1), x(1), ) = 0, g(x(a), x(b)) = 0.

The BVP is said to be well-posed locally around x.. in
its natural setting, if the BVP

F((Dx) (1), x(1), 1) =q(1), g(x(a),x(b)) =~
is locally uniquely solvable for arbitrary sufficiently
small perturbations q € C(Z,R™) and v € R/, and the
solution x satisfies the inequality
X = Xulley < w(17] + 19ll0),

with a constant «.

Otherwise the BVP is said to be ill-posed in the natural setting.

Collocation for
ODEs & DAEs

Well-posedness of BVPs in
DAEs

Accurately stated BCs
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Accurately stated BCs: Definition

It is very important to apply exactly the right number of BCs/ICs. This task is more difficult to

realize for DAEs than for explicit ODEs.
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Accurately stated BCs: Definition Chie s DALS
It is very important to apply exactly the right number of BCs/ICs. This task is more difficult to
realize for DAEs than for explicit ODEs.

Definition: Let x. € CL(Z,R™) be a solution of the
original BVP,

F((Dx)'(1), x(1), ) = 0, g(x(a), (b)) = 0.

The BVP has accurately stated boundary conditions
locally around x. if the BVP with slightly perturbed o
boundary conditions

F((Dx)'(1), x(1), 1) = 0, g(x(a), x(b)) =,

is uniquely solvable for arbitrary sufficiently small
perturbation v € R/, and the solution x satisfies the
inequality || x — X*HCE; < k||, with a constant «.
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A —ang Collocation for
Accurately stated BCs: Definition ODESs & DAEs
It is very important to apply exactly the right number of BCs/ICs. This task is more difficult to

realize for DAEs than for explicit ODEs.

Definition: Let x. € CL(Z,R™) be a solution of the

original BVP,
f(Dx)'(8),x(8),8) =0,  g(x(a),x(b)) = 0.
The BVP has accurately stated boundary conditions
locally around x, if the BVP with slightly perturbed
boundary conditions
F((Dx) (). x(6).1) = 0, g(x(a). x(b)) =1

is uniquely solvable for arbitrary sufficiently small
perturbation v € R/, and the solution x satisfies the
inequality || x — X*HCE; < k||, with a constant «.

For explicit ODEs, the well-posedness of the BVP is equivalent to the accurately stated BCs, U.
Ascher, R. Mattheij, R. Russell (1988). This is not the case for DAEs: well-posedness implies

accurately stated boundary conditions but the opposite is not true.
20/35



Example: Well-posedness vs. accurately stated BCs
Consider the following DAEs (index 2):
x1(t) + x3(t) =0, x3(t) + x3(t) =0, xo(t) —sin(t — a)

subject to x1(a) + axe(a) + Bx3(a) =0,a,6 € R

0,

Collocation for
ODEs & DAEs

Collocation

Well-posedness of BVPs in
DA

Accurately stated BCs
Relations

Collocation for nonlinear
ndex 1 DAEs

Collocation for higher index
DAEs
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Collocation for

Example: Well-posedness vs. accurately stated BCs ODEs & DAES

Consider the following DAEs (index 2):

X (1) + xs(t) =0, x5(t) + xs(t) =0, xa(t) —sin(t — a) =0,

subject to x1(a) + axe(a) + Bx3(a) =0,a,6 € R
The DAE has the following solution:

X1 (t) = B+sin(t—a), X.2(t) = sin(t—a), X.3(t) = — cos(t—a).

21/35



Example: Well-posedness vs. accurately stated BCs

Consider the following DAEs (index 2):
x1(t) + x3(t) =0, x3(t) + x3(t) =0, xo(t) —sin(t—a) =0,

subject to x1(a) + axe(a) + Bx3(a) =0,a,6 € R
The DAE has the following solution:

X1 (t) = B+sin(t—a), X.2(t) = sin(t—a), X.3(t) = — cos(t—a).

The DAE with the perturbed BC has the following solution:

x1(t) = B+~ +sin(t—a), x(t) = sin(t— a), x3(t) = — cos(t — a).
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Example: Well-posedness vs. accurately stated BCs ODEs & DAES

Consider the following DAEs (index 2):

X (1) + xs(t) =0, x5(t) + xs(t) =0, xa(t) —sin(t — a) =0,

subject to x1(a) + axe(a) + Bx3(a) =0,a,6 € R
The DAE has the following solution:

X1 (t) = B+sin(t—a), X.2(t) = sin(t—a), X.3(t) = —cos(t—a). v

The DAE with the perturbed BC has the following solution:

xi(t) = B+~ +sin(t—a), xo(t) = sin(t— a), x3(t) = — cos(t — a). S e T
This means that
X(t) = x.(t) = (4,0,0).

Therefore, the above BVP has accurately stated BCs.
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Singular ODESs: an example

More general class of

Consider the original and perturbed DAEs, problems
Differential Algebraic
Equations
xi(t)+x3(t) =0, X1:(f)+X3(f) =qi(1),
% (1) + x3(t) =0, % (1) + x3() = ax(1),
Xo(t) — sin(t — a) = 0, xa(t) — sin(t — a) = g3(1), \
xi(a) + axp(a) + Bxz(a) =0, xi(a) + axp(a) + Bxz(a) = . collocaten

Well-posedness of BVPs in
DAES

Accurately stated BCs
Relations

Collocation for nonlinear
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Collocation for higher index
DAEs
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Xo(t) — sin(t — a) = 0, xa(t) — sin(t — a) = g3(1), \
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Well-posedness of BVPs in
DAEs

t Accurately stated BCs
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X(t) — x«(t) = a , tET. Collocation for nonlinear
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Example: Well-posedness vs. accurately stated BCs ODEs & DAES

Singular ODESs: an example
More g S

Consider the original and perturbed DAEs, proble
Differential Algebraic
Equations
X1:()+X3():0, X1:()+X3():CI1(T),
% (1) + x3(t) =0, % (1) + x3() = ax(1),
xg(t) — sin(t — a) = 0, xp(t) — sin(t — &) = as(1),
xq(a) + axp(a) + Bxg(a) =0,  xy(a) + axp(a) + Bxz(a) = 7. o
We can solve the perturbed problem and obtain
Well-posedness of BVPs in
DA
t Accurately stated BCs
v+ a3(t) — a3(a f — go(s))ds Relations
X(t) — x«(t) = , tET. Collocation for nonlinear
‘73(’) index 1 DAEs
—_q Collocation for higher index
Ga(t) — gg(t) M polocation fo !

This means that x(t) — x.(t) cannot be estimated in terms of
9]l Therefore, the above BVP is ill-posed in the natural
setting.
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Collocation methods Sollocation for
% % % ..%. tl%’j% % % ‘
7o e Ti | Tit cee TN
hi<n
Define a mesh
A:=(rp=a7,...,7N_1,7n = b), and m distinct
points £ ; in each subinterval [r;, 7j;4].
We now discretize the enlarged DAE c
e

Collocation for higher index

f(uU' (1), x(1),t) = 0, u(t) — D(t)x(t) =0, g(x(a),x(b))=0.
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Collocation methods
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| —
h,‘Sh

Define a mesh

A:=(ro=aT1,...,7N—1,7n = b), and m distinct

points £ ; in each subinterval [r;, 7j;4].
We now discretize the enlarged DAE

(U (), x(1), 1) = 0, u(t) — D(E)x(t) = 0, g(x(a),x(b)) = 0.

Approximations: ua, Xa € Pa,m N C(Z,R")

approximate u, and x,, respectively.
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Collocation methods ODEs & DAEs
1 | | | {,j | |
I I T T T T I
T0 e Ti Ti4+1
~———
h/f;h

Define a mesh
A:=(rp=a7,...,7N_1,7n = b), and m distinct
points £ ; in each subinterval [r;, 7j;4].

We now discretize the enlarged DAE

Collocation for nonlinear
index 1 DAEs

llocation for higher index

f(U'(1), x(1), 1) =0, u(t)— D(t)x(t) =0, g(x(a),x(b)) =0.

Approximations: ua, Xa € Pa,m N C(Z,R")
approximate u, and x,, respectively.

The above collocation scheme results in the classical collocation scheme for the inherent ODE

subject to BCs. Therefore, for sufficiently small h, up and consequently x5 exist and are unique.
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Convergence result

Let the original BVP

/ . n
F((Dx) (1), x(1), 1) = 0, g(x(a), x(b)) = 0, imD(t) = R,
be well-posed locally around its solution x. in the natural setting and let the
data of the DAE be sufficiently smooth.
Then, for the above collocation scheme the following statements hold:
» Thereis a h. > 0, such that, for meshes with h < h,, there exists a
unique collocation solution ua, xa in the sufficiently close neighborhood
of Uy, Xx.

Collocation for
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Collocation for nonlinear
index 1 DAEs

Collocation for higher index
DAEs
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Convergence result ODEs & DAES
Let the original BVP

F((Dx)' (1), x(1), 1) = 0, g(x(a), x(b)) = 0, imD(t) = R”,

be well-posed locally around its solution x. in the natural setting and let the
data of the DAE be sufficiently smooth.

Then, for the above collocation scheme the following statements hold:

» Thereis a h. > 0, such that, for meshes with h < h,, there exists a

unique collocation solution ua, xa in the sufficiently close neighborhood

of Uy, Xx.

Collocation for nonlinear
index 1 DAEs

» With a sufficiently good initial guess, the collocation solution can be Collocation for higher index

DAEs

generated by the Newton method, which converges quadratically.
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Convergence result
Let the original BVP

F((Dx)' (1), x(1). £) = 0, g(x(a), x(b)) = O, imD(t) = R",
be well-posed locally around its solution x in the natural setting and let the
data of the DAE be sufficiently smooth.

Then, for the above collocation scheme the following statements hold:
» Thereis a h. > 0, such that, for meshes with h < h,, there exists a
unique collocation solution ua, xa in the sufficiently close neighborhood
of Uy, X«.
» With a sufficiently good initial guess, the collocation solution can be
generated by the Newton method, which converges quadratically.

» Moreover, |[X« — Xallooc = O(h™), ||usx — Upllco = O(A™).
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Convergence result

Let the original BVP

/ . n
F((Dx) (1), x(1), 1) = 0, g(x(a), x(b)) = 0, imD(t) = R,
be well-posed locally around its solution x. in the natural setting and let the
data of the DAE be sulfficiently smooth.
Then, for the above collocation scheme the following statements hold:
» Thereis a h. > 0, such that, for meshes with h < h,, there exists a
unique collocation solution ua, xa in the sufficiently close neighborhood
of Uy, Xx.
» With a sufficiently good initial guess, the collocation solution can be
generated by the Newton method, which converges quadratically.
» Moreover, ||x: — Xallco = O(K™), ||ux — Ua|loc = O(A™).
» For Gaussian points, the superconvergence order holds for the smooth

component

maxi—o,....n|Us(17) — Ua(mj)| = O(H?™).

Collocation for
ODEs & DAEs

Collocation for nonlinear
index 1 DAEs

Collocation for higher index
DAEs

24/35



Collocation for

Numerical results ODEs & DAEs
Nonlinear example

x = (x1, %) = (1, %12, %1, xe2) T, b(t, x(1)) = Bx(t) + tC(x(£))x(t) + (1) ,

sin X1z 0 e X 0
tx{(t) + by(t, x(t)) =0 4x4 0 cos Xpp 0 sin(x11 + x21)
> BeER ,C(x) = s
by(t, x(1) = 0, Il A 0 o
0 X11X12 0 szz

ollocation

coupled BCs att = 0,t = 1, m = 4, solution: x;; = 2 sint, x;p = tel, Xy = tcost, Xpp = sint.

[ Uniform Mesh ] Error for x; at Mesh tau, eq I Error for x at Grid tcol, eq |
[N ] h ] error [ order [ const. || error [ order [ const. |
10 1.00e—01 2.043e—07 1.127e—06

20 | 5.00e—02 || 1.268e—08 | 4.0 | 2.087e—03 || 7.074e—08 | 4.0 | 1.110e—02 , v
40 | 250e—02 || 7.916e—10 | 4.0 | 2.043e—03 || 4.430e—09 | 4.0 | 1.122e—02 | poeciniormoninear
80 | 1.25e—02 || 4.946e—11 | 4.0 | 2.030e—03 || 2770e—10 | 4.0 | 1.131€=02 | oo o ngner e
160 | 6.25e—03 || 3.088e—12 | 4.0 | 2.040e—03 || 1.728e—11 | 4.0 | 1.149e—02 | oas :

320 | 313e—03 || 1.895e—13 | 40 | 2308e—03 || 1464e—12 | 36 | 1.220e—03

Uniform Mesh | Error for x4 at Mesh tau, gauss | Error for x at Grid tcol, gauss
N ] h | error [ order [ const. | error [ order ] const.

10 1.00e—01 7.254e—09 4.215e—07
20 5.00e—02 2.264e—10 5.0 7.280e—04 2.646e—08 4.0 4.155e—03
40 2.50e—02 7.066e—12 5.0 7.289e—04 1.655e—09 4.0 4.214e—03
80 1.25e—02 2.210e—13 5.0 7.206e—04 1.035e—10 4.0 4.232e—03
160 6.25e—03 7.976e—15 4.8 2.914e—04 6.520e—12 4.0 4.029e—03
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An index-3 problem

Petzold (1982), Méarz (1992)
Consider

X (1) +x1(t) = a1 (1),
—1/2b6 () + x3(t) + 1/2x2(t) = ga(1),
—1/2t(t) + x3(t) = gs(1),

with a smooth q(t). This system has no inherent ODE (no
BCs necessary) and the solution reads:

x (1) = aqi(t) — ga(t) + g3(1),  Xe() = qu(t) — G3(1),
x5(1) = Go(t) + g0 (t).
or equivalently,

xi(t) = e Isin(t), xo(t) = e sin(t),
x3(t) = e~ cos(t).

Collocation for
ODEs & DAEs

ndex 1 DAEs
Gollocation for higher index
DAEs
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Overdetermined variant of collocation
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Without increasing the degree of the collocation

polynomial, are required to hold
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Collocation for higher index
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. . . Coll ion f
Overdetermined variant of collocation ODEs & DAES
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Collocation for nonlinear
ndex 1 DAEs

Without increasing the degree of the collocation
polynomial, are required to hold

The overdetermined system is then solved in the

least squares sense.
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Table of errors for m = 2 ODEs & DAEs

uniform mesh error for x4 (classic coll.) error for x4 (overdet coll.)
N h error order error order
160 | 6.25e-03 Inf -Inf 3.58e-03 0.97
320 | 3.13e-03 || 3.65e+171 Inf 1.81e-03 0.98
640 | 1.56e-03 || 2.09e+307 -450.98 9.11e-04 0.99
uniform mesh error for x, (classic coll.) || error for x, (overdet coll.) e
N h error order error order
160 | 6.25e-03 || 5.11e+274 -716.36 2.04e-05 1.97 Well-posedness of BVPs
320 | 3.13e-03 || 6.05e+153 401.71 5.14e-06 1.99 i
640 | 1.56e-03 || 5.76e+289 -451.71 1.29e-06 1.99
uniform mesh error for x5 (classic coll.) error for x5 (overdet coll.)
N h error order error order Gl 75
160 | 6.25e-03 || 2.80e+273 -717.97 2.51e-06 2.00
320 | 3.13e-03 || 9.03e+151 403.59 6.28e-07 2.00
640 | 1.56e-03 || 8.35e+287 -451.67 1.57e-07 2.00
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Software: MATLAB codes bvpsuite 1.1 &2.0 — scope

History:
sbvp (2003), bvpsuite 1.1 (2009), bvpsuite 2.0

(2018-2020)

http://www.asc.tuwien.ac.at/"ewa/

Implicit mixed order (singular) ODEs including
unknown parameters
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Software: MATLAB codes bvpsuite 1.1 &2.0 — SCope oo Esation for
History:
sbvp (2003), bvpsuite 1.1 (2009), bvpsuite 2.0
(2018-2020)

http://www.asc.tuwien.ac.at/"ewa/

Implicit mixed order (singular) ODEs including
unknown parameters

BVPs in ODEs on finite and semi-infinite intervals
EVPs in ODEs on finite and semi-infinite intervals

Software

Index-1 DAEs on finite and semi-infinite intervals Pt

Pathfollowing for BVPs and EVPs in ODEs on finite
and semi-infinite intervals for parameter dependent
BVPs in ODEs

Error estimate and mesh adaptation strategy
29/35
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» Numerical method: Robust with respect to singularity
|global error|| = O(h™), m reasonably large
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Implementation basis

Main assumption: Analytical problem is

well-posed with a locally unique smooth solution

» Numerical method: Robust with respect to singularity
|global error|| = O(h™), m reasonably large

Our choice is polynomial collocation

» Error estimation: Robust and asymptotically correct
lglobal error - error estimate|| = O(h™*7), v > 0

Our choice is h — h/2 strategy

» Adaptive mesh selection:
Meshes unaffected by the nonsmooth (!) direction
field
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Computational experiment — grid adaptation

exact solution
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-0.5]

Gaussian collocation, order 4, TOLg = 10—6
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An application: Shell buckling problem 1

Kitzhofer, Koch, EW 2009, MT Fallahpour 2020, private kommunikation with A. Steindl, TU Wien 2020,

Auzinger, Burdeos, Fallahpour, Koch, Mendoza, EW submitted

2/ (1) + cot(t)z{ (t) + cot® ()i (t, z1 (1)) = fa(t, z1 (1), Zo(1), z3(t), \¥)
28 (1) + cot(t)z5(t) — cot®(1)gi(s, z1(t)) = ga(s, z1 (1), Za(1), z3(t), \*)

z3(t) = /Ot cos(s — z1(8))sin(s)ds, Ax = % € [0, 1]

z3(t) = cos(t — z(t))sin(t), te€ (0,7),

4l (0) = Z (7T) = 0, 22(0) = Zz(Tl') = 07 23(0) =0.
35] | 3.5 35

af | 3 3

25] "A
24| 01
7‘5 “; 005 . .

4

‘\\ W s s
05] \\» “
S ) e % w  a: os m
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Shell buckling problem 2

Path Ball deformation

Path Ball deformation

z
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Summary

»  Existence, uniqueness and smoothness results of solutions z € C[0, 1] of

MO ), 1020)

z(h= t t

subject to correctly posed BCs are available. For IVPs with all eigenvalues of M(0) being
negative, the correctly posed ICs are

M(0)z(0) + #(0, z(0)) = 0
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Existence, uniqueness and smoothness results of solutions z € CJ[0, 1] of

Z/(t) = @z(t) + Lf(m

subject to correctly posed BCs are available. For IVPs with all eigenvalues of M(0) being
negative, the correctly posed ICs are
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Eigenvalues X of M(0) determine the structure of ICs, TCs, and BCs
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Summary ODEs & DAEs

»  Existence, uniqueness and smoothness results of solutions z € C[0, 1] of
Singular ODEs: an example

M(t f(t, z(t lore general class o
(1) = %z(z‘) + w CEREneT

al Algebraic
s

subject to correctly posed BCs are available. For IVPs with all eigenvalues of M(0) being
negative, the correctly posed ICs are

Collocation

M(0)2(0) + (0, 2(0)) = 0

»  Eigenvalues X of M(0) determine the structure of ICs, TCs, and BCs Well-posedness of BVPs in
DA

»  Analysis (global) for the nonlinear case (f(t, z)) and spectrum of M(0) with negative or/and
positive eigenvalues is available

y stated BCs
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Higher index problems are ill-posed in natural setting and the standard collocation does not work
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Collocation for

Summary ODEs & DAEs

»  Existence, uniqueness and smoothness results of solutions z € C[0, 1] of

Z/(t) = @z(t) + Ltz(t))

subject to correctly posed BCs are available. For IVPs with all eigenvalues of M(0) being
negative, the correctly posed ICs are

Collocation

M(0)2(0) + (0, 2(0)) = 0

»  Eigenvalues X of M(0) determine the structure of ICs, TCs, and BCs Well-posedness of BVPs in
DA

»  Analysis (global) for the nonlinear case (f(t, z)) and spectrum of M(0) with negative or/and
positive eigenvalues is available
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» Nonlinear case (f(t, z)): convergence of collocation for spectrum of M(0) with negative or/and Collocationfor nonlinear
positive eigenvalues is available QdeqlIDAES]
Collocation for higher index
»  Order of convergence: stage order for arbitrary collocation points, small superconvergence for DAEs
Gaussian collocation points
» Collocation applied to linear/nonlinear index 1 well-posed DAEs shows full stage order under
reasonable smoothness assumptions.
» Higher index problems are ill-posed in natural setting and the standard collocation does not work
in general. Summary

» Possible remedy: Least Squares Collocation. Convergence analysis for a some model classes
already available.
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M(t) f(t, z(1))
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negative, the correctly posed ICs are
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Analysis (global) for the nonlinear case (f(t, z)) and spectrum of M(0) with negative or/and
positive eigenvalues is available

Nonlinear case (f(t, z)): convergence of collocation for spectrum of M(0) with negative or/and
positive eigenvalues is available

Order of convergence: stage order for arbitrary collocation points, small superconvergence for
Gaussian collocation points

Collocation applied to linear/nonlinear index 1 well-posed DAEs shows full stage order under
reasonable smoothness assumptions.

Higher index problems are ill-posed in natural setting and the standard collocation does not work
in general.

Possible remedy: Least Squares Collocation. Convergence analysis for a some model classes
already available.

Convergence for general model classes is still work in progress (Marz, Hanke).
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Happy birthday, John!
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