Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

O-llassian

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index

Software development

An application

Summary

How to approximate singular BVPs in ODEs and DAEs efficiently?

E. Weinmüller

Vienna University of Technology

ANODE'23, February 23rd

Introduction

Singular ODEs: an example More general class of problems Differential Algebraic Equations

Collocation for singular ODEs Collocation

Collocation for DAEs Well-posedness of BVPs in DAEs Accurately stated BCs Relations Collocation for nonlinear index 1 DAE Collocation for higher index DAEs

- Software development
- An application
- Summary

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction

Singular ODEs: an example More general class of problems Differential Algebraic Equations

Collocation for singular ODEs Collocation

Collocation for DAEs Well-posedness of BVPs in DAEs Accurately stated BCs Relations Collocation for nonlinear index 1 DA Collocation for higher index DAEs

- Software development
- An application
- Summary

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

▲□▶▲□▶▲□▶▲□▶ = つん⊙

Introduction

Singular ODEs: an example More general class of problems Differential Algebraic Equations

Collocation for singular ODEs Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

◆□▶ ◆□▶ ◆目▶ ◆目▶ = 目 = のへ⊙

Introduction

Singular ODEs: an example More general class of problems Differential Algebraic Equations

Collocation for singular ODEs Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □ ● のへで

Introduction

Singular ODEs: an example More general class of problems Differential Algebraic Equations

Collocation for singular ODEs Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction

Singular ODEs: an example More general class of problems Differential Algebraic Equations

Collocation for singular ODEs Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction: Problem setting: singular BVPs in ODEs

$z'(t) = F(t, z(t)), t \in (0, 1]$ b(z(0), z(1)) = 0

F(t, z(t)) unbounded for $t \rightarrow 0$ and not Lipschitz continuous on [0, 1]!

Typically, $\lim_{t\to 0} \frac{\partial F(t,z(t))}{\partial z} = \infty!$

Interested in $z \in C[0, 1]$, even $z \in C^p[0, 1]$, $p \ge 1$

Important contributions:

Jamet, Brabston, Keller, Wolfe, Parter, Stein, Shampine, Russell, de Hoog, Weiss, Markowich, Ringhofer, Ascher, Schmeiser, Troger, Abramov, Koniuchova, Lima, März, Winkler, Auzinger, Koch, Cash, Mu Budd, Stanek, Rachunkova, Amodio, Burkotova, Settanni, Levitina... Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

$$z'(t) = F(t, z(t)), t \in (0, 1]$$

 $b(z(0), z(1)) = 0$

F(t, z(t)) unbounded for $t \rightarrow 0$ and not Lipschitz continuous on [0, 1]!

Typically, $\lim_{t\to 0} \frac{\partial F(t,z(t))}{\partial z} = \infty!$

Interested in $z \in C[0, 1]$, even $z \in C^p[0, 1]$, $p \ge 1$

Important contributions:

Jamet, Brabston, Keller, Wolfe, Parter, Stein, Shampine, Russell, de Hoog, Weiss, Markowich, Ringhofer, Ascher, Schmeiser, Troger, Abramov, Koniuchova, Lima, März, Winkler, Auzinger, Koch, Cash, Mu Budd, Stanek, Rachunkova, Amodio, Burkotova, Settanni, Levitina... Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

orillar of

Collocation for DAEs

Well-posedness of BVPs in DAEs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

$$z'(t) = F(t, z(t)), t \in (0, 1]$$

 $b(z(0), z(1)) = 0$

F(t, z(t)) unbounded for $t \rightarrow 0$ and not Lipschitz continuous on [0, 1]!

Typically, $\lim_{t\to 0} \frac{\partial F(t,z(t))}{\partial z} = \infty!$

Interested in $z \in C[0, 1]$, even $z \in C^p[0, 1]$, $p \ge 1$

Important contributions:

Jamet, Brabston, Keller, Wolfe, Parter, Stein, Shampine, Russell, de Hoog, Weiss, Markowich, Ringhofer, Ascher, Schmeiser, Troger, Abramov, Koniuchova, Lima, März, Winkler, Auzinger, Koch, Cash, Mu Budd, Stanek, Rachunkova, Amodio, Burkotova, Settanni, Levitina... Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

singular O

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

$$z'(t) = F(t, z(t)), t \in (0, 1]$$

 $b(z(0), z(1)) = 0$

F(t, z(t)) unbounded for $t \rightarrow 0$ and not Lipschitz continuous on [0, 1]!

Typically, $\lim_{t\to 0} \frac{\partial F(t,z(t))}{\partial z} = \infty!$

Interested in $z \in C[0, 1]$, even $z \in C^p[0, 1]$, $p \ge 1$

Important contributions:

Jamet, Brabston, Keller, Wolfe, Parter, Stein, Shampine, Russell, de Hoog, Weiss, Markowich, Ringhofer, Ascher, Schmeiser, Troger, Abramov, Koniuchova, Lima, März, Winkler, Auzinger, Koch, Cash, Muir, Budd, Stanek, Rachunkova, Amodio, Burkotova, Settanni, Levitina... Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

singular O

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Existence and uniqueness of $z \in C[0, 1]$, smoothness, convergence of the polynomial collocation Linear case:

$$z'(t) = \frac{M(t)}{t}z(t) + f(t), \ z'(t) = \frac{M(t)}{t^{\alpha}}z(t) + f(t)$$

Nonlinear case:

$$z'(t) = \frac{M}{t}z(t) + f(t, z(t)), \ z'(t) = \frac{M}{t^{\alpha}}z(t) + f(t, z(t))$$

Time singularities of the first kind $\alpha = 1$, of the second kind $\alpha > 1$ Problems posed on semi-infinite intervals $z'(t) = f(t, z(t)), t \in [0, \infty)$ Space singularities $z'(t) = \frac{f(t, z(t))}{g(z(t))}, t \in [a, b], g(z(t_0)) = 0, t_0 \in [a, b]$

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

singular C

CONOCATION

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Existence and uniqueness of $z \in C[0, 1]$, smoothness, convergence of the polynomial collocation Linear case:

$$z'(t) = \frac{M(t)}{t}z(t) + f(t), \ z'(t) = \frac{M(t)}{t^{\alpha}}z(t) + f(t)$$

Nonlinear case:

$$z'(t) = \frac{M}{t}z(t) + f(t, z(t)), \ z'(t) = \frac{M}{t^{\alpha}}z(t) + f(t, z(t))$$

Time singularities of the first kind $\alpha = 1$, of the second kind $\alpha > 1$ Problems posed on semi-infinite intervals $z'(t) = f(t, z(t)), t \in [0, \infty)$

Space singularities $z'(t) = \frac{f(t,z(t))}{g(z(t))}, t \in [a,b], g(z(t_0)) = 0, t_0 \in [a,b]$

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

angular C

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Existence and uniqueness of $z \in C[0, 1]$, smoothness, convergence of the polynomial collocation Linear case:

$$z'(t) = \frac{M(t)}{t}z(t) + f(t), \ z'(t) = \frac{M(t)}{t^{\alpha}}z(t) + f(t)$$

Nonlinear case:

$$z'(t) = \frac{M}{t}z(t) + f(t, z(t)), \ z'(t) = \frac{M}{t^{\alpha}}z(t) + f(t, z(t))$$

Time singularities

of the first kind $\alpha = 1$, of the second kind $\alpha > 1$

Problems posed on semi-infinite intervals $z'(t) = f(t, z(t)), t \in [0, \infty)$

Space singularities $z'(t) = \frac{f(t,z(t))}{g(z(t))}, t \in [a,b], g(z(t_0)) = 0, t_0 \in [a,b]$

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

singular C

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Budd, Koch, W. (2006) Solve for $u = u(x, t), x \in \mathbb{R}^3, t > 0$:

$$i\frac{\partial u}{\partial t} + (1 - i\varepsilon)\Delta u + (1 + i\delta)|u|^2 u = 0, \quad u(x, 0) = u_0(x).$$

Interested in self-similar solutions

$$u(x,t) = L(\tau)y(\tau), \ \tau = \tau(x,t), \ \lim_{t \to T} L(\tau(x,t)) = \infty$$

where T is the blow-up time and $y = y(\tau), \tau > 0$, satisfies

$$(1 - i\varepsilon) \left(y''(\tau) + \frac{2}{\tau} y'(\tau) \right) - y(\tau) + ia(\tau y(\tau))' + (1 + i\delta)|y(\tau)|^2 y(\tau) = 0$$
$$y'(0) = 0, \quad \Im y(0) = 0, \quad \lim_{\tau \to 0^+} \tau y'(\tau) = 0.$$

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example

More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

< □ > < □ > < 亘 > < 亘 > < 亘 > < □ > < □ > <

Budd, Koch, W. (2006)

 \sim

Solve for
$$u = u(x, t)$$
, $x \in \mathbb{R}^3$, $t > 0$:

$$\mathrm{i}\frac{\partial u}{\partial t} + (1-\mathrm{i}\varepsilon)\Delta u + (1+\mathrm{i}\delta)|u|^2u = 0, \ u(x,0) = u_0(x).$$

Interested in self-similar solutions

$$u(x,t) = L(\tau)y(\tau), \ \tau = \tau(x,t), \ \lim_{t \to T} L(\tau(x,t)) = \infty$$

where T is the blow-up time and $y = y(\tau), \tau > 0$, satisfies

$$(1-i\varepsilon)\left(y''(\tau)+\frac{2}{\tau}y'(\tau)\right)-y(\tau)+ia(\tau y(\tau))'+(1+i\delta)|y(\tau)|^2y(\tau)=0,$$
$$y'(0)=0, \quad \Im y(0)=0, \quad \lim_{\tau\to\infty}\tau y'(\tau)=0.$$

Collocation for ODEs & DAEs

Introductior

Singular ODEs: an example

More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

Motivation

More general class of problems with a singularity of the first kind:

$$z'(t) = rac{f(t, z(t))}{t}, \ t \in (0, 1]$$

(Vainikko 2013, 2013, Auzinger, Auer, Burkotová, Rachúnková, Staněk, EW, Wurm 2014, 2017 2017, 2018, 2021) Analysis for the general linear and nonlinear case

$$z'(t) = \frac{M(t)}{t}z(t) + \frac{f(t)}{t}, \quad z'(t) = \frac{M(t)}{t}z(t) + \frac{f(t, z(t))}{t}, \ t \in (0, 1]$$

Available results: Existence and uniqueness of continuous solutions $z \in C[0, 1]$, smoothness, and convergence of the polynomial collocation

Collocation for ODEs & DAEs

ntroduction

Singular ODEs: an example More general class of

problems

Differential Algebraic Equations

Collocation for

O-llassing

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Motivation

More general class of problems with a singularity of the first kind:

$$z'(t) = rac{f(t, z(t))}{t}, \ t \in (0, 1]$$

(Vainikko 2013, 2013, Auzinger, Auer, Burkotová, Rachůnková, Staněk, EW, Wurm 2014, 2017, 2017, 2018, 2021) Analysis for the general linear and nonlinear case

$$z'(t) = \frac{M(t)}{t}z(t) + \frac{f(t)}{t}, \quad z'(t) = \frac{M(t)}{t}z(t) + \frac{f(t,z(t))}{t}, \ t \in (0,1]$$

Available results: Existence and uniqueness of continuous solutions $z \in C[0, 1]$, smoothness, and convergence of the polynomial collocation

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of

problems Differential Algebraic

Collocation for

singular Ol

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Belations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

・ロト ・回 ト ・ヨト ・ヨト ・ ヨー ・ つへの

Crystallization in thin amorphous layers

(Buchner, Schneider 2010) Calculation of the crystallization front propagating through a thin layer of amorphous material on a substrate

The original problem is posed on a semi-infinite interval, we transform $au \in [0,\infty) o t \in (0,1]$ by

$$t=1-\frac{1}{\sqrt{1+\tau}}$$

The resulting boundary value problem for the temperature distribution $\Theta(t)$ and the degree of crystallization $\xi(t)$, $t \in [0, 1)$, reads:

$$\begin{split} \Theta'(t) &= 2 \frac{\Theta(t) - \xi(t)}{(1-t)^3}, \quad \xi'(t) = 2 \frac{\lambda^2 G(\Theta(t)) g(\xi(t))}{(1-t)^3}, \\ \Theta(0) &= 0,1284, \quad \Theta(1) = 1, \quad \xi(0) = 10^{-10} \end{split}$$

- Essential singularity at t = 1
- $\bullet \ \lambda$ is unknown and related to the speed of the crystallization front
- Third condition: at the beginning tiny crystals may already exist in the material

イロト イポト イヨト イヨト

ntroduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

singular O

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Crystallization in thin amorphous layers (2)

Collocation for ODEs & DAEs

Graph of the solution components $\Theta(t)$ (blue) and $\xi(t)$ (green) obtained from bvpsuite1.1 using collocation with m = 8 Gaussian points and $Tol_a = Tol_r = 10^{-12}$. Here, $\lambda = 11,03605$.

(Kitzhofer, Koch, Pulverer, Simon, EW 2010)

Now we transform $au \in [0,\infty) o t \in [1,0)$ by

 $\tau := -\ln t$

The resulting BVP for the temperature distribution $\Theta(t)$ and the degree of crystallization $\xi(t)$, $t \in [0, 1)$, reads:

$$\Theta'(t) = -\frac{\Theta(t) - \xi(t)}{t}, \quad \xi'(t) = -\frac{\lambda^2 G(\Theta(t)) g(\xi(t))}{t}$$

$$\Theta(1) = 0.1284, \quad \Theta(0) = 1, \quad \xi(1) = 10^{-10}$$

• Singularity of the first kind at t = 0

ntroduction

Singular ODEs: an example

More general class of problems

Differential Algebraic Equations

Collocation for

o-lloonloo

ollocation for AEs

Well-posedness of BVPs in DAEs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index

Software development

,

An application

```
◆□▶ ◆□▶ ◆目▶ ◆目▶ = 目 - のへで
```

Lamour, März, W. (2015) Consider the DAE

$$\begin{aligned} x_1'(t) + x_1(t) &= 0, \\ x_2(t) \ x_2'(t) - x_3(t) &= 0, \\ x_1(t)^2 + x_2(t)^2 - 1 + \frac{1}{2}\cos(\pi t) &= 0, \end{aligned}$$

$$x_1(0) - x_1(2) = \alpha, \quad |\alpha| < \frac{1}{2}(1 - e^{-2}).$$

The solution has to belong to the set

$$\mathcal{M}_0(t) := \{ x \in \mathbb{R}^3 : x_1^2 + x_2^2 - 1 + \frac{1}{2}\cos(\pi t) = 0 \}.$$

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

▲□▶▲□▶▲□▶▲□▶ = つへの

Again, consider

$$x'_1(t) + x_1(t) = 0, \quad x_2(t) \ x'_2(t) - x_3(t) = 0,$$

 $x_1(t)^2 + x_2(t)^2 - 1 + \frac{1}{2}\cos(\pi t) = 0.$

Let $x_*(\cdot)$ be a solution and let us differentiate the last identity. Then,

$$2x_{*1}(t)x_{*1}'(t) + 2x_{*2}(t)x_{*2}'(t) - \pi \frac{1}{2}\sin(\pi t) = 0$$

and finally, $-2x_{*1}(t)^2 + 2x_{*3}(t) - \frac{1}{2}\pi \sin(\pi t) = 0$. Therefore, all solution values $x_*(t)$ must belong to the set

$$\mathcal{H}(t) := \{ x \in \mathbb{R}^3 : -2x_1^2 + 2x_3 - \frac{1}{2}\pi\sin(\pi t) = 0 \}.$$

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

lelations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

◆□▶ ◆□▶ ◆目▶ ◆目▶ = 目 - のへで

The proper restriction set is $\mathcal{M}_1(t) := \mathcal{M}_0(t) \cap \mathcal{H}(t) \subset \mathcal{M}_0(t).$

Constraint set \mathcal{M}_1 at t = 0 and $t = \frac{1}{2}$

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations Collocation for nonlinear

index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ■ のへで

Collocation for

ODEs & DAEs

イロト イポト イヨト イヨト

which reduce to a polynomial of degree smaller or equal to *m* on each subinterval $[\tau_i, \tau_{i+1}]$

Collocation for ODEs & DAEs

 \mathcal{P}_m ... the class of polynomial functions on [0, 1] which reduce to a polynomial of degree smaller or equal to *m* on each subinterval $[\tau_i, \tau_{i+1}]$

Collocation for ODEs & DAEs

Consider the IVP

$$z'(t) = \frac{M(t)}{t}z(t) + \frac{f(t,z(t))}{t}, \quad M(0)z(0) + f(0,z(0)) = 0$$

Approximate z by a function $p \in \mathcal{P}_m \cap C[0, 1]$ satisfying the collocation conditions

$$p'(t_{ij}) = M(t_{ij}) \frac{p(t_{ij})}{t_{ij}} + \frac{f(t_{ij}, p(t_{ij}))}{t_{ij}},$$

 $i = 0, \dots, N-1, j = 1, \dots, m,$

subject to

M(0)p(0) + f(0, p(0)) = 0

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for singular ODEs

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Theorem: Let $z \in C^{m+1}[0, 1]$ be the unique solution of the analytical IVP. For sufficiently small *h* and $\rho > 0$, the related nonlinear collocation scheme has a unique solution *p* in the tube $T_{\rho}(z)$ around *z*. Moreover, the following estimates hold:

$$\begin{split} \|z - p\|_{[0,1]} &= O(h^m), \\ \|z' - p'\|_{[0,1]} &= O(h^m), \\ \big| p'(t) - \frac{M(t)}{t} p(t) - \frac{f(t,p(t))}{t} \big| = O(h^m), \ t \in [0,1]. \end{split}$$

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for singular ODEs

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

 First aim: Define basic concepts such as *local well-posedness* and accurately stated BCs in context of BVP in DAEs.

► DAEs can be written in a standard, f(x'(t), x(t), t) = 0, and advanced form

 $f((Dx)'(t), x(t), t) = 0, \quad x \in \mathbb{R}^m, \quad f \in \mathbb{R}^m.$

Matrix function $D = D(t) \in \mathbb{R}^{n \times m}$ indicates which derivatives are involved, $Dx \in \mathbb{R}^n$, $n \le m$.

Linear version of the DAE

A(t)(Dx)'(t) + B(t)x(t) - f(t) = 0, $A \in \mathbb{R}^{m \times n}, D \in \mathbb{R}^{n \times m}, B \in \mathbb{R}^{m \times m}.$

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations Collocation for nonlinear

Collocation for honlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

 First aim: Define basic concepts such as *local well-posedness* and accurately stated BCs in context of BVP in DAEs.

► DAEs can be written in a standard, f(x'(t), x(t), t) = 0, and advanced form

 $f((Dx)'(t), x(t), t) = 0, \quad x \in \mathbb{R}^m, \quad f \in \mathbb{R}^m.$

Matrix function $D = D(t) \in \mathbb{R}^{n \times m}$ indicates which derivatives are involved, $Dx \in \mathbb{R}^n$, $n \le m$.

Linear version of the DAE

A(t)(Dx)'(t) + B(t)x(t) - f(t) = 0, $A \in \mathbb{R}^{m \times n}, D \in \mathbb{R}^{n \times m}, B \in \mathbb{R}^{m \times m}.$

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Ortherestion

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations Collocation for nonlinear index 1 DAEs

Collocation for higher index DAEs

Software development

An application

 First aim: Define basic concepts such as *local well-posedness* and accurately stated BCs in context of BVP in DAEs.

► DAEs can be written in a standard, f(x'(t), x(t), t) = 0, and advanced form

 $f((Dx)'(t), x(t), t) = 0, \quad x \in \mathbb{R}^m, \quad f \in \mathbb{R}^m.$

Matrix function $D = D(t) \in \mathbb{R}^{n \times m}$ indicates which derivatives are involved, $Dx \in \mathbb{R}^n$, $n \le m$.

Linear version of the DAE

A(t)(Dx)'(t) + B(t)x(t) - f(t) = 0, $A \in \mathbb{R}^{m \times n}, D \in \mathbb{R}^{n \times m}, B \in \mathbb{R}^{m \times m}.$

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

singular O

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

► Assumptions:
$$t \in \mathcal{I} = [a, b]$$

 $f((Dx)'(t), x(t), t) = 0, \quad g(x(a), x(b)) = 0.$

- ▶ f(y, x, t) is cont. with cont. partial derivatives f_y , f_x .
- ► The partial Jacobian $f_y(y, x, t)$ is everywhere singular.
- ▶ $g \in \mathbb{R}^l$ is cont. differentiable.
- The matrix function D is cont. and D(t) has constant rank r on the given interval I.

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

► Assumptions: t ∈ I = [a, b]
$$f((Dx)'(t), x(t), t) = 0, \quad g(x(a), x(b)) = 0.$$

• f(y, x, t) is cont. with cont. partial derivatives f_y , f_x .

- ► The partial Jacobian $f_y(y, x, t)$ is everywhere singular.
- ▶ $g \in \mathbb{R}^l$ is cont. differentiable.
- The matrix function D is cont. and D(t) has constant rank r on the given interval I.

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

elations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

► Assumptions: t ∈ I = [a, b]
$$f((Dx)'(t), x(t), t) = 0, \quad g(x(a), x(b)) = 0.$$

- f(y, x, t) is cont. with cont. partial derivatives f_y , f_x .
- The partial Jacobian $f_y(y, x, t)$ is everywhere singular.
- ▶ $g \in \mathbb{R}^{l}$ is cont. differentiable.
- ► The matrix function *D* is cont. and *D(t)* has constant rank *r* on the given interval *I*.

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

• Assumptions:
$$t \in \mathcal{I} = [a, b]$$

$$f((Dx)'(t), x(t), t) = 0, \quad g(x(a), x(b)) = 0.$$

- f(y, x, t) is cont. with cont. partial derivatives f_y , f_x .
- The partial Jacobian $f_y(y, x, t)$ is everywhere singular.
- ▶ $g \in \mathbb{R}^{l}$ is cont. differentiable.
- ► The matrix function *D* is cont. and *D(t)* has constant rank *r* on the given interval *I*.

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application
(Lamour, März, W. 2015)

• Assumptions:
$$t \in \mathcal{I} = [a, b]$$

$$f((Dx)'(t), x(t), t) = 0, \quad g(x(a), x(b)) = 0.$$

- f(y, x, t) is cont. with cont. partial derivatives f_y , f_x .
- The partial Jacobian $f_y(y, x, t)$ is everywhere singular.
- ▶ $g \in \mathbb{R}^{l}$ is cont. differentiable.
- ► The matrix function *D* is cont. and *D(t)* has constant rank *r* on the given interval *I*.

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

elations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Classical solution x of the DAE is a functions from

 $\mathcal{C}^{1}_{D}(\mathcal{I},\mathbb{R}^{m}):=\{x\in\mathcal{C}(\mathcal{I},\mathbb{R}^{m}):Dx\in\mathcal{C}^{1}(\mathcal{I},\mathbb{R}^{n})\},\$

satisfying the DAE pointwise on \mathcal{I} .

This function space setting is the *natural setting* of DAE.

The DAE has a properly involved derivative or properly stated leading term:

 $f((Dx)'(t), x(t), t) = 0 : \ker f_y(y, x, t) \oplus \operatorname{im} D(t) = \mathbb{R}^n,$ $A(t)(Dx)'(t) + B(t)x(t) = f(t) : \ker A(t) \oplus \operatorname{im} D(t) = \mathbb{R}^n.$

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations Collocation for nonlinear index 1 DAEs

Collocation for higher index DAEs

Software development

An application

Classical solution x of the DAE is a functions from

 $\mathcal{C}^{1}_{D}(\mathcal{I},\mathbb{R}^{m}):=\{x\in\mathcal{C}(\mathcal{I},\mathbb{R}^{m}):Dx\in\mathcal{C}^{1}(\mathcal{I},\mathbb{R}^{n})\},\$

satisfying the DAE pointwise on \mathcal{I} .

This function space setting is the *natural setting* of DAE.

The DAE has a properly involved derivative or properly stated leading term:

 $f((Dx)'(t), x(t), t) = 0 : \ker f_y(y, x, t) \oplus \operatorname{im} D(t) = \mathbb{R}^n,$ $A(t)(Dx)'(t) + B(t)x(t) = f(t) : \ker A(t) \oplus \operatorname{im} D(t) = \mathbb{R}^n.$

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations Collocation for nonlinear index 1 DAEs

Collocation for higher index DAEs

Software development

An application

Classical solution x of the DAE is a functions from

 $\mathcal{C}^{1}_{D}(\mathcal{I},\mathbb{R}^{m}):=\{x\in\mathcal{C}(\mathcal{I},\mathbb{R}^{m}):Dx\in\mathcal{C}^{1}(\mathcal{I},\mathbb{R}^{n})\},\$

satisfying the DAE pointwise on \mathcal{I} .

This function space setting is the *natural setting* of DAE.

The DAE has a properly involved derivative or properly stated leading term:

 $f((Dx)'(t), x(t), t) = 0 : \ker f_y(y, x, t) \oplus \operatorname{im} D(t) = \mathbb{R}^n,$ $A(t)(Dx)'(t) + B(t)x(t) = f(t) : \ker A(t) \oplus \operatorname{im} D(t) = \mathbb{R}^n.$

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations Collocation for nonlinear

Collocation for higher index DAEs

Software development

An application

Well-posedness in the sense of Hadamard constitutes the classical basis of a safe numerical

treatment. We assume that a solution exist and concentrate on a local variant of well-posedness.

Definition: Let $x_* \in C^1_D(\mathcal{I}, \mathbb{R}^m)$ be a solution of the original BVP,

 $f((Dx)'(t), x(t), t) = 0, \quad g(x(a), x(b)) = 0.$

The BVP is said to be *well-posed locally around* x_* *in its natural setting*, if the BVP

 $f((Dx)'(t), x(t), t) = q(t), \quad g(x(a), x(b)) = \gamma$

is locally uniquely solvable for arbitrary sufficiently small perturbations $q \in C(\mathcal{I}, \mathbb{R}^m)$ and $\gamma \in \mathbb{R}^l$, and the solution x satisfies the inequality

 $\|\boldsymbol{x} - \boldsymbol{x}_*\|_{\mathcal{C}^1_D} \leq \kappa(|\boldsymbol{\gamma}| + \|\boldsymbol{q}\|_{\infty}),$

with a constant κ .

Otherwise the BVP is said to be ill-posed in the natural setting.

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Equations

Collocation for

O-lloonding

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

singular OD

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

Well-posedness in the sense of Hadamard constitutes the classical basis of a safe numerical

treatment. We assume that a solution exist and concentrate on a local variant of well-posedness.

Definition: Let $x_* \in \mathcal{C}^1_D(\mathcal{I}, \mathbb{R}^m)$ be a solution of the original BVP,

 $f((Dx)'(t), x(t), t) = 0, \quad g(x(a), x(b)) = 0.$

The BVP is said to be *well-posed locally around* x_* *in its natural setting*, if the BVP

 $f((Dx)'(t), x(t), t) = q(t), \quad g(x(a), x(b)) = \gamma$

is locally uniquely solvable for arbitrary sufficiently small perturbations $q \in C(\mathcal{I}, \mathbb{R}^m)$ and $\gamma \in \mathbb{R}^l$, and the solution *x* satisfies the inequality

 $\|\mathbf{X} - \mathbf{X}_*\|_{\mathcal{C}^1_D} \leq \kappa(|\boldsymbol{\gamma}| + \|\boldsymbol{q}\|_{\infty}),$

with a constant κ .

Otherwise the BVP is said to be ill-posed in the natural setting. A P + A E + A E + B - O Q O

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

singular OD

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

Well-posedness in the sense of Hadamard constitutes the classical basis of a safe numerical

treatment. We assume that a solution exist and concentrate on a local variant of well-posedness.

Definition: Let $x_* \in \mathcal{C}^1_D(\mathcal{I}, \mathbb{R}^m)$ be a solution of the original BVP,

 $f((Dx)'(t), x(t), t) = 0, \quad g(x(a), x(b)) = 0.$

The BVP is said to be *well-posed locally around* x_* *in its natural setting*, if the BVP

 $f((Dx)'(t), x(t), t) = q(t), \quad g(x(a), x(b)) = \gamma$

is locally uniquely solvable for arbitrary sufficiently small perturbations $q \in C(\mathcal{I}, \mathbb{R}^m)$ and $\gamma \in \mathbb{R}^l$, and the solution *x* satisfies the inequality

 $\|\mathbf{x} - \mathbf{x}_*\|_{\mathcal{C}^1_D} \leq \kappa(|\boldsymbol{\gamma}| + \|\boldsymbol{q}\|_{\infty}),$

with a constant κ .

Otherwise the BVP is said to be ill-posed in the natural setting.

It is very important to apply exactly the right number of BCs/ICs. This task is more difficult to

realize for DAEs than for explicit ODEs.

Definition: Let $x_* \in C^1_D(\mathcal{I}, \mathbb{R}^m)$ be a solution of the original BVP,

 $f((Dx)'(t), x(t), t) = 0, \quad g(x(a), x(b)) = 0.$

The BVP has accurately stated boundary conditions locally around x_* if the BVP with slightly perturbed boundary conditions

 $f((Dx)'(t), x(t), t) = 0, \quad g(x(a), x(b)) = \gamma,$

is uniquely solvable for arbitrary sufficiently small perturbation $\gamma \in \mathbb{R}^{I}$, and the solution x satisfies the inequality $||x - x_{*}||_{C_{h}^{1}} \leq \kappa |\gamma|$, with a constant κ .

For explicit ODEs, the well-posedness of the BVP is equivalent to the accurately stated BCs, U. Ascher, R. Mattheij, R. Russell (1988). This is not the case for DAEs: well-posedness implies accurately stated boundary conditions but the opposite is not true, a set of the set

Collocation for ODEs & DAEs

ntroduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

o-lloontion

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

It is very important to apply exactly the right number of BCs/ICs. This task is more difficult to

realize for DAEs than for explicit ODEs.

Definition: Let $x_* \in C^1_D(\mathcal{I}, \mathbb{R}^m)$ be a solution of the original BVP,

 $f((Dx)'(t), x(t), t) = 0, \quad g(x(a), x(b)) = 0.$

The BVP has *accurately stated boundary conditions* locally around x_* if the BVP with slightly perturbed boundary conditions

 $f((Dx)'(t), x(t), t) = 0, \quad g(x(a), x(b)) = \gamma,$

is uniquely solvable for arbitrary sufficiently small perturbation $\gamma \in \mathbb{R}^{l}$, and the solution x satisfies the inequality $||x - x_{*}||_{C_{D}^{1}} \leq \kappa |\gamma|$, with a constant κ .

For explicit ODEs, the well-posedness of the BVP is equivalent to the accurately stated BCs, U. Ascher, R. Mattheij, R. Russell (1988). This is not the case for DAEs: well-posedness implies accurately stated boundary conditions but the opposite is not trying , a provide the stated boundary conditions but the opposite is not trying , a provide the stated boundary conditions but the opposite is not trying , a provide the stated boundary conditions but the opposite is not trying , a provide the stated boundary conditions but the opposite is not trying , a provide the stated boundary conditions but the opposite is not trying , a provide the stated boundary conditions but the opposite is not trying a stated boundary conditions but the opposite is not trying a stated boundary conditions but the opposite is not trying a state of the state of the

Collocation for ODEs & DAEs

ntroduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

singular O

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

It is very important to apply exactly the right number of BCs/ICs. This task is more difficult to

realize for DAEs than for explicit ODEs.

Definition: Let $x_* \in C^1_D(\mathcal{I}, \mathbb{R}^m)$ be a solution of the original BVP,

 $f((Dx)'(t), x(t), t) = 0, \quad g(x(a), x(b)) = 0.$

The BVP has *accurately stated boundary conditions* locally around x_* if the BVP with slightly perturbed boundary conditions

 $f((Dx)'(t), x(t), t) = 0, \quad g(x(a), x(b)) = \gamma,$

is uniquely solvable for arbitrary sufficiently small perturbation $\gamma \in \mathbb{R}^{I}$, and the solution x satisfies the inequality $||x - x_{*}||_{C_{D}^{1}} \leq \kappa |\gamma|$, with a constant κ .

For explicit ODEs, the well-posedness of the BVP is equivalent to the accurately stated BCs, U. Ascher, R. Mattheij, R. Russell (1988). This is not the case for DAEs: well-posedness implies accurately stated boundary conditions but the opposite is not true.

Collocation for ODEs & DAEs

ntroduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

angular O

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Consider the following DAEs (index 2): $x'_1(t) + x_3(t) = 0, \quad x'_2(t) + x_3(t) = 0, \quad x_2(t) - \sin(t - a) = 0,$ subject to $x_1(a) + \alpha x_2(a) + \beta x_3(a) = 0, \alpha, \beta \in \mathbb{R}$

$$\mathbf{x}(t) - \mathbf{x}_*(t) = (\gamma, \mathbf{0}, \mathbf{0})^T$$

Therefore, the above BVP has accurately stated BCs.

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

Consider the following DAEs (index 2):

$$x'_1(t) + x_3(t) = 0, \quad x'_2(t) + x_3(t) = 0, \quad x_2(t) - \sin(t - a) = 0,$$

subject to $x_1(a) + \alpha x_2(a) + \beta x_3(a) = 0, \alpha, \beta \in \mathbb{R}$ The DAE has the following solution:

$$x_{*1}(t) = \beta + \sin(t-a), \ x_{*2}(t) = \sin(t-a), \ x_{*3}(t) = -\cos(t-a).$$

The DAE with the perturbed BC has the following solution:

$$x_1(t) = \beta + \gamma + sin(t-a), x_2(t) = sin(t-a), x_3(t) = -cos(t-a).$$

This means that

$$x(t) - x_*(t) = (\gamma, 0, 0)^T$$

Therefore, the above BVP has accurately stated BCs.

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Orlleration

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

Consider the following DAEs (index 2):

$$x'_1(t) + x_3(t) = 0, \quad x'_2(t) + x_3(t) = 0, \quad x_2(t) - \sin(t - a) = 0,$$

subject to $x_1(a) + \alpha x_2(a) + \beta x_3(a) = 0, \alpha, \beta \in \mathbb{R}$ The DAE has the following solution:

$$x_{*1}(t) = \beta + \sin(t-a), \ x_{*2}(t) = \sin(t-a), \ x_{*3}(t) = -\cos(t-a).$$

The DAE with the perturbed BC has the following solution:

$$x_1(t) = \beta + \gamma + \sin(t-a), \ x_2(t) = \sin(t-a), \ x_3(t) = -\cos(t-a).$$

This means that

$$x(t) - x_*(t) = (\gamma, 0, 0)^T$$

Therefore, the above BVP has accurately stated BCs.

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Consider the following DAEs (index 2):

$$x'_1(t) + x_3(t) = 0, \quad x'_2(t) + x_3(t) = 0, \quad x_2(t) - \sin(t - a) = 0,$$

subject to $x_1(a) + \alpha x_2(a) + \beta x_3(a) = 0, \alpha, \beta \in \mathbb{R}$ The DAE has the following solution:

$$x_{*1}(t) = \beta + \sin(t-a), \ x_{*2}(t) = \sin(t-a), \ x_{*3}(t) = -\cos(t-a).$$

The DAE with the perturbed BC has the following solution:

$$x_1(t) = \beta + \gamma + \sin(t-a), \ x_2(t) = \sin(t-a), \ x_3(t) = -\cos(t-a).$$

This means that

$$x(t) - x_*(t) = (\gamma, 0, 0)^T$$

Therefore, the above BVP has accurately stated BCs.

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Example: Well-posedness vs. accurately stated BCs

Consider the original and perturbed DAEs,

$$\begin{array}{ll} x_1'(t) + x_3(t) = 0, & x_1'(t) + x_3(t) = q_1(t), \\ x_2'(t) + x_3(t) = 0, & x_2'(t) + x_3(t) = q_2(t), \\ x_2(t) - \sin(t-a) = 0, & x_2(t) - \sin(t-a) = q_3(t), \\ x_1(a) + \alpha x_2(a) + \beta x_3(a) = 0, & x_1(a) + \alpha x_2(a) + \beta x_3(a) = \gamma. \end{array}$$

We can solve the perturbed problem and obtair

$$x(t) - x_*(t) = \begin{bmatrix} \gamma + q_3(t) - q_3(a) + \int_a^t (q_1(s) - q_2(s)) ds \\ q_3(t) \\ q_2(t) - q_3'(t) & \text{i!!} \end{bmatrix}, \ t \in \mathcal{I}.$$

This means that $x(t) - x_*(t)$ cannot be estimated in terms of $||q||_{\infty}$. Therefore, the above BVP is ill-posed in the natural setting.

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

singular Ol

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Example: Well-posedness vs. accurately stated BCs

Consider the original and perturbed DAEs,

$$\begin{array}{ll} x_1'(t) + x_3(t) = 0, & x_1'(t) + x_3(t) = q_1(t), \\ x_2'(t) + x_3(t) = 0, & x_2'(t) + x_3(t) = q_2(t), \\ x_2(t) - \sin(t-a) = 0, & x_2(t) - \sin(t-a) = q_3(t), \\ x_1(a) + \alpha x_2(a) + \beta x_3(a) = 0, & x_1(a) + \alpha x_2(a) + \beta x_3(a) = \gamma. \end{array}$$

We can solve the perturbed problem and obtain

$$\mathbf{x}(t) - \mathbf{x}_{*}(t) = \begin{bmatrix} \gamma + q_{3}(t) - q_{3}(a) + \int_{a}^{t} (q_{1}(s) - q_{2}(s)) ds \\ q_{3}(t) \\ q_{2}(t) - q_{3}'(t) & \text{!!!} \end{bmatrix}, \ t \in \mathcal{I}.$$

This means that $x(t) - x_*(t)$ cannot be estimated in terms of $||q||_{\infty}$. Therefore, the above BVP is ill-posed in the natural setting.

Collocation for ODEs & DAEs

Introductior

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

singular Ol

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Consider the original and perturbed DAEs,

 $\begin{array}{ll} x_1'(t)+x_3(t)=0, & x_1'(t)+x_3(t)=q_1(t), \\ x_2'(t)+x_3(t)=0, & x_2'(t)+x_3(t)=q_2(t), \\ x_2(t)-\sin(t-a)=0, & x_2(t)-\sin(t-a)=q_3(t), \\ x_1(a)+\alpha x_2(a)+\beta x_3(a)=0, & x_1(a)+\alpha x_2(a)+\beta x_3(a)=\gamma. \end{array}$

We can solve the perturbed problem and obtain

$$\mathbf{x}(t) - \mathbf{x}_{*}(t) = \begin{bmatrix} \gamma + q_{3}(t) - q_{3}(a) + \int_{a}^{t} (q_{1}(s) - q_{2}(s)) ds \\ q_{3}(t) \\ q_{2}(t) - q_{3}'(t) & \parallel \parallel \end{bmatrix}, \ t \in \mathcal{I}.$$

This means that $x(t) - x_*(t)$ cannot be estimated in terms of $||q||_{\infty}$. Therefore, the above BVP is ill-posed in the natural setting.

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

singular O

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software developmen

An application

Define a mesh

 $\Delta := (\tau_0 = a, \tau_1, \dots, \tau_{N-1}, \tau_N = b)$, and *m* distinct points $t_{i,i}$ in each subinterval $[\tau_i, \tau_{i+1}]$.

Collocation for ODEs & DAEs

Well-posedness of BVPs in DAEs

Collocation for nonlinear index 1 DAEs

イロト イポト イヨト イヨト

Define a mesh

 $\Delta := (\tau_0 = a, \tau_1, \dots, \tau_{N-1}, \tau_N = b)$, and *m* distinct points $t_{i,i}$ in each subinterval $[\tau_i, \tau_{i+1}]$. We now discretize the enlarged DAE

f(u'(t), x(t), t) = 0, u(t) - D(t)x(t) = 0, g(x(a), x(b)) = 0.

Collocation for

ODEs & DAEs

Well-posedness of BVPs in DAEs

Collocation for nonlinear index 1 DAEs

Define a mesh

 $\Delta := (\tau_0 = a, \tau_1, \dots, \tau_{N-1}, \tau_N = b)$, and *m* distinct points $t_{i,i}$ in each subinterval $[\tau_i, \tau_{i+1}]$. We now discretize the enlarged DAE

f(u'(t), x(t), t) = 0, u(t) - D(t)x(t) = 0, g(x(a), x(b)) = 0.

Approximations: $u_{\Delta}, x_{\Delta} \in \mathcal{P}_{\Delta,m} \cap \mathcal{C}(\mathcal{I}, \mathbb{R}^n)$ approximate u_* and x_* , respectively.

Collocation for ODEs & DAEs

Well-posedness of BVPs in DAEs

Collocation for nonlinear index 1 DAEs

Define a mesh

 $\Delta := (\tau_0 = a, \tau_1, \dots, \tau_{N-1}, \tau_N = b)$, and *m* distinct points $t_{i,i}$ in each subinterval $[\tau_i, \tau_{i+1}]$. We now discretize the enlarged DAE

f(u'(t), x(t), t) = 0, u(t) - D(t)x(t) = 0, g(x(a), x(b)) = 0.

Approximations: $u_{\Delta}, x_{\Delta} \in \mathcal{P}_{\Delta,m} \cap \mathcal{C}(\mathcal{I}, \mathbb{R}^n)$ approximate u_* and x_* , respectively.

Collocation for ODEs & DAEs

Well-posedness of BVPs in

Collocation for nonlinear index 1 DAEs

The above collocation scheme results in the classical collocation scheme for the inherent ODE subject to BCs. Therefore, for sufficiently small h, u_{Δ} and consequently x_{Δ} exist and are unique.

イロト イポト イヨト イヨト

$$f((Dx)'(t), x(t), t) = 0, \ g(x(a), x(b)) = 0, \ \operatorname{im} D(t) = \mathbb{R}^n,$$

be well-posed locally around its solution x_* in the natural setting and let the data of the DAE be sufficiently smooth.

Then, for the above collocation scheme the following statements hold:

- There is a *h*_{*} > 0, such that, for meshes with *h* ≤ *h*_{*}, there exists a unique collocation solution *u*_△, *x*_△ in the sufficiently close neighborhood of *u*_{*}, *x*_{*}.
- With a sufficiently good initial guess, the collocation solution can be generated by the Newton method, which converges quadratically.
- Moreover, $||x_* x_{\Delta}||_{\infty} = O(h^m)$, $||u_* u_{\Delta}||_{\infty} = O(h^m)$.
- For Gaussian points, the superconvergence order holds for the smooth component

$$\max_{i=0,\ldots,N}|u_*(\tau_i)-u_{\Delta}(\tau_i)|=O(h^{2m})$$

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs

Collocation for higher index DAEs

Software development

An application

Summary

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

 $f((Dx)'(t), x(t), t) = 0, \ g(x(a), x(b)) = 0, \ \operatorname{im} D(t) = \mathbb{R}^n,$

be well-posed locally around its solution x_* in the natural setting and let the data of the DAE be sufficiently smooth.

Then, for the above collocation scheme the following statements hold:

- There is a *h*_{*} > 0, such that, for meshes with *h* ≤ *h*_{*}, there exists a unique collocation solution *u*_∆, *x*_∆ in the sufficiently close neighborhood of *u*_{*}, *x*_{*}.
- With a sufficiently good initial guess, the collocation solution can be generated by the Newton method, which converges quadratically.

 $\blacktriangleright \quad \text{Moreover, } \|x_* - x_\Delta\|_{\infty} = O(h^m), \quad \|u_* - u_\Delta\|_{\infty} = O(h^m).$

 For Gaussian points, the superconvergence order holds for the smooth component

 $\max_{i=0,\ldots,N}|u_*(\tau_i)-u_{\Delta}(\tau_i)|=O(h^{2m})$

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs

Collocation for higher index DAEs

Software development

An application

Summary

 $f((Dx)'(t), x(t), t) = 0, \ g(x(a), x(b)) = 0, \ \operatorname{im} D(t) = \mathbb{R}^n,$

be well-posed locally around its solution x_* in the natural setting and let the data of the DAE be sufficiently smooth.

Then, for the above collocation scheme the following statements hold:

- There is a *h*_{*} > 0, such that, for meshes with *h* ≤ *h*_{*}, there exists a unique collocation solution *u*_∆, *x*_∆ in the sufficiently close neighborhood of *u*_{*}, *x*_{*}.
- With a sufficiently good initial guess, the collocation solution can be generated by the Newton method, which converges quadratically.

• Moreover, $||x_* - x_{\Delta}||_{\infty} = O(h^m)$, $||u_* - u_{\Delta}||_{\infty} = O(h^m)$.

 For Gaussian points, the superconvergence order holds for the smooth component

 $\max_{i=0,\ldots,N}|u_*(\tau_i)-u_{\Delta}(\tau_i)|=O(h^{2m})$

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs

Collocation for higher index DAEs

Software development

An application

 $f((Dx)'(t), x(t), t) = 0, \ g(x(a), x(b)) = 0, \ \operatorname{im} D(t) = \mathbb{R}^n,$

be well-posed locally around its solution x_* in the natural setting and let the data of the DAE be sufficiently smooth.

Then, for the above collocation scheme the following statements hold:

- There is a *h*_{*} > 0, such that, for meshes with *h* ≤ *h*_{*}, there exists a unique collocation solution *u*_∆, *x*_∆ in the sufficiently close neighborhood of *u*_{*}, *x*_{*}.
- With a sufficiently good initial guess, the collocation solution can be generated by the Newton method, which converges quadratically.
- Moreover, $||x_* x_{\Delta}||_{\infty} = O(h^m)$, $||u_* u_{\Delta}||_{\infty} = O(h^m)$.
- For Gaussian points, the superconvergence order holds for the smooth component

 $\max_{i=0,\ldots,N}|u_*(\tau_i)-u_{\Delta}(\tau_i)|=O(h^{2m}).$

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs

Collocation for higher index DAEs

Software development

An application

Numerical results Nonlinear example

6

$x = (x_1, x_2)^T = (x_{11}, x_{12}, x_{21}, x_{22})^T$, b(t, x(t)) = Bx(t) + tC(x(t))x(t) + f(t),

$$\begin{aligned} tx_1'(t) \ + \ b_1(t,x(t)) &= 0, \\ b_2(t,x(t)) &= 0, \end{aligned} B \in \mathbb{R}^{4 \times 4}, \ C(x) &= \begin{pmatrix} \sin x_{12} & 0 & e^{-x_{11}} & 0 \\ 0 & \cos x_{22} & 0 & \sin(x_{11} + x_{21}) \\ x_{12}^3 & 0 & x_{11} & 0 \\ 0 & x_{11}x_{12} & 0 & x_{12}^2 \end{pmatrix}, \end{aligned}$$

coupled BCs at
$$t = 0, t = 1, m = 4$$
, solution: $x_{11} = t^2 \sin t, x_{12} = te^t, x_{21} = t \cos t, x_{22} = \sin t$.

Uniform Mesh		Error for x ₁ at Mesh tau, eq			Error for x at Grid tcol, eq		
N	h	error	order	const.	error	order	const.
10	1.00e-01	2.043e-07			1.127e-06		
20	5.00e-02	1.268e-08	4.0	2.087e-03	7.074e-08	4.0	1.110e-02
40	2.50e-02	7.916e-10	4.0	2.043e-03	4.430e-09	4.0	1.122e-02
80	1.25e-02	4.946e-11	4.0	2.030e-03	2.770e-10	4.0	1.131e-02
160	6.25e-03	3.088e-12	4.0	2.040e-03	1.728e-11	4.0	1.149e-02
320	3.13e-03	1.895e-13	4.0	2.308e-03	1.464e-12	3.6	1.220e-03

Uniform Mesh		Error for x ₁ at Mesh tau, gauss			Error for x at Grid tcol, gauss		
N	h	error	order	const.	error	order	const.
10	1.00e-01	7.254e-09			4.215e-07		
20	5.00e-02	2.264e-10	5.0	7.280e-04	2.646e-08	4.0	4.155e-03
40	2.50e-02	7.066e-12	5.0	7.289e-04	1.655e-09	4.0	4.214e-03
80	1.25e-02	2.210e-13	5.0	7.206e-04	1.035e-10	4.0	4.232e-03
160	6.25e-03	7.976e-15	4.8	2.914e-04	6.520e-12	4.0	4.029e-03

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAFs

Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index

DAEs

Software development

An application

Summary

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへの

Petzold (1982), März (1992) Consider

$$\begin{aligned} x_2'(t) + x_1(t) &= q_1(t), \\ -1/2tx_2'(t) + x_3'(t) + 1/2x_2(t) &= q_2(t), \\ -1/2tx_2(t) + x_3(t) &= q_3(t), \end{aligned}$$

with a smooth q(t). This system has no inherent ODE (no BCs necessary) and the solution reads:

$$egin{aligned} x_1(t) &= q_1(t) - q_2'(t) + q_3''(t), & x_2(t) = q_2(t) - q_3'(t), \ x_3(t) &= q_3(t) + rac{1}{2}tx_2(t), \end{aligned}$$

or equivalently,

$$x_1(t) = e^{-t} \sin(t), \quad x_2(t) = e^{-2t} \sin(t),$$

 $x_3(t) = e^{-t} \cos(t).$

イロト イポト イヨト イヨト

3

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

O-lloonting

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs

Collocation for higher index DAEs

Software development

An application

Overdetermined variant of collocation

Without increasing the degree of the collocation polynomial, additional conditions are required to hold The overdetermined system is then solved in the least squares sense.

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs

Collocation for nonlinear index 1 DAEs

Collocation for higher index DAEs

Software development

An application

Summary

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Overdetermined variant of collocation

Without increasing the degree of the collocation polynomial, additional conditions are required to hold The overdetermined system is then solved in the least squares sense.

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Singular Ol

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs

Collocation for nonlinear index 1 DAEs

Collocation for higher index DAEs

Software development

An application

uniform mesh		error for x_1 (classic coll.)	error for x_1 (overdet coll.)		
N	h	error	order	error	order	
160	6.25e-03	Inf	-Inf	3.58e-03	0.97	
320	3.13e-03	3.65e+171	Inf	1.81e-03	0.98	
640	1.56e-03	2.09e+307	-450.98	9.11e-04	0.99	
uniform mesh		error for x ₂ (classic coll.)	error for x_2 (overdet coll.)		
N	h	error	order	error	order	
160	6.25e-03	5.11e+274	-716.36	2.04e-05	1.97	
320	3.13e-03	6.05e+153	401.71	5.14e-06	1.99	
640	1.56e-03	5.76e+289	-451.71	1.29e-06	1.99	
uniform mesh		error for x_3 (classic coll.)	error for x_3 (overdet coll.)		
N	h	error	order	error	order	
160	6.25e-03	2.80e+273	-717.97	2.51e-06	2.00	
320	3.13e-03	9.03e+151	403.59	6.28e-07	2.00	
640	1.56e-03	8.35e+287	-451.67	1.57e-07	2.00	

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

singular O

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs

Collocation for nonlinear index 1 DAEs

Collocation for higher index DAEs

Software development

An application

sbvp (2003), bvpsuite1.1 (2009), bvpsuite2.0 (2018-2020)

http://www.asc.tuwien.ac.at/~ewa/

Implicit mixed order (singular) ODEs including unknown parameters

- BVPs in ODEs on finite and semi-infinite intervals
- EVPs in ODEs on finite and semi-infinite intervals
- Index-1 DAEs on finite and semi-infinite intervals
- Pathfollowing for BVPs and EVPs in ODEs on finite and semi-infinite intervals for parameter dependent BVPs in ODEs

Error estimate and mesh adaptation strategy

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

sbvp (2003), bvpsuite1.1 (2009), bvpsuite2.0 (2018-2020)

http://www.asc.tuwien.ac.at/~ewa/

Implicit mixed order (singular) ODEs including unknown parameters

BVPs in ODEs on finite and semi-infinite intervals

- EVPs in ODEs on finite and semi-infinite intervals
- Index-1 DAEs on finite and semi-infinite intervals
- Pathfollowing for BVPs and EVPs in ODEs on finite and semi-infinite intervals for parameter dependent BVPs in ODEs

Error estimate and mesh adaptation strategy

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

O-llocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

sbvp (2003), bvpsuite 1.1 (2009), bvpsuite 2.0 (2018-2020)

http://www.asc.tuwien.ac.at/~ewa/

Implicit mixed order (singular) ODEs including unknown parameters

- BVPs in ODEs on finite and semi-infinite intervals
- EVPs in ODEs on finite and semi-infinite intervals
- Index-1 DAEs on finite and semi-infinite intervals
- Pathfollowing for BVPs and EVPs in ODEs on finite and semi-infinite intervals for parameter dependent BVPs in ODEs

Error estimate and mesh adaptation strategy

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

sbvp (2003), bvpsuite1.1 (2009), bvpsuite2.0 (2018-2020)

http://www.asc.tuwien.ac.at/~ewa/

Implicit mixed order (singular) ODEs including unknown parameters

- BVPs in ODEs on finite and semi-infinite intervals
- · EVPs in ODEs on finite and semi-infinite intervals
- Index-1 DAEs on finite and semi-infinite intervals
- Pathfollowing for BVPs and EVPs in ODEs on finite and semi-infinite intervals for parameter dependent BVPs in ODEs

Error estimate and mesh adaptation strategy

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

singular O

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

sbvp (2003), bvpsuite 1.1 (2009), bvpsuite 2.0 (2018-2020)

http://www.asc.tuwien.ac.at/~ewa/

Implicit mixed order (singular) ODEs including unknown parameters

- BVPs in ODEs on finite and semi-infinite intervals
- · EVPs in ODEs on finite and semi-infinite intervals
- Index-1 DAEs on finite and semi-infinite intervals
- Pathfollowing for BVPs and EVPs in ODEs on finite and semi-infinite intervals for parameter dependent BVPs in ODEs

Error estimate and mesh adaptation strategy

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

singular O

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

sbvp (2003), bvpsuite1.1 (2009), bvpsuite2.0 (2018-2020)

http://www.asc.tuwien.ac.at/~ewa/

Implicit mixed order (singular) ODEs including unknown parameters

- BVPs in ODEs on finite and semi-infinite intervals
- · EVPs in ODEs on finite and semi-infinite intervals
- Index-1 DAEs on finite and semi-infinite intervals
- Pathfollowing for BVPs and EVPs in ODEs on finite and semi-infinite intervals for parameter dependent BVPs in ODEs

Error estimate and mesh adaptation strategy

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application
Numerical method: Robust with respect to singularity ||global error|| = O(h^m), m reasonably large

Our choice is polynomial collocation

► Error estimation: Robust and asymptotically correct ||global error - error estimate|| = O(h^{m+γ}), γ > 0

Our choice is *h* – *h*/2 *strategy*

 Adaptive mesh selection: Meshes unaffected by the nonsmooth (!) direction field

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 = のへ(

► Numerical method: Robust with respect to singularity $\|g\|$ lobal error $\| = O(h^m), m$ reasonably large

Our choice is *polynomial collocation*

Error estimation: Robust and asymptotically correct ||global error - error estimate|| = O(h^{m+γ}), γ > 0

Our choice is *h* – *h*/2 *strategy*

 Adaptive mesh selection: Meshes unaffected by the nonsmooth (!) direction field

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 = のへ(

► Numerical method: Robust with respect to singularity $\|g\|$ lobal error $\| = O(h^m), m$ reasonably large

Our choice is *polynomial collocation*

► Error estimation: Robust and asymptotically correct ||global error - error estimate|| = O(h^{m+γ}), γ > 0

Our choice is h - h/2 strategy

 Adaptive mesh selection: Meshes unaffected by the nonsmooth (!) direction field

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

collocation for

Collocation

ollocation for AEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Relations Collocation for nonlinear index 1 DAEs

Collocation for higher index DAEs

Software development

An application

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへ(

► Numerical method: Robust with respect to singularity $\|g\|$ lobal error $\| = O(h^m), m$ reasonably large

Our choice is *polynomial collocation*

► Error estimation: Robust and asymptotically correct ||global error - error estimate|| = O(h^{m+γ}), γ > 0

Our choice is h - h/2 strategy

 Adaptive mesh selection: Meshes unaffected by the nonsmooth (!) direction field

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

collocation for

Collocation

ollocation for AEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Computational experiment - grid adaptation

exact solution 0.5 Ν -0.5-1 0 0.2 0.4 0.6 0.8 1 t N_=20 N=20 N=20 N=20 . . N=96

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations Collocation for nonlinear

Collocation for honlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

▲□▶▲□▶▲目▶▲目▶ 目 のへで

An application: Shell buckling problem 1

Kitzhofer, Koch, EW 2009, MT Fallahpour 2020, private kommunikation with A. Steindl, TU Wien 2020, Auzinger, Burdeos, Fallahpour, Koch, Mendoza, EW submitted

$$\begin{aligned} z_1''(t) + \cot(t)z_1'(t) + \cot^2(t)f_1(t, z_1(t)) &= f_2(t, z_1(t), z_2(t), z_3(t), \lambda^*) \\ z_2''(t) + \cot(t)z_2'(t) - \cot^2(t)g_1(s, z_1(t)) &= g_2(s, z_1(t), z_2(t), z_3(t), \lambda^*) \\ z_3(t) &= \int_0^t \cos(s - z_1(s))\sin(s)ds, \quad \lambda^* = \frac{p}{p_{cr}} \in [0, 1] \\ z_3'(t) &= \cos(t - z_1(t))\sin(t), \quad t \in (0, \pi), \\ z_1(0) &= z_1(\pi) = 0, \quad z_2(0) = z_2(\pi) = 0, \quad z_3(0) = 0. \end{aligned}$$

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

singular O

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Shell buckling problem 2

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs

Accurately stated BCs Relations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 のへの

► Existence, uniqueness and smoothness results of solutions z ∈ C[0, 1] of

$$z'(t) = \frac{M(t)}{t}z(t) + \frac{f(t, z(t))}{t}$$

subject to correctly posed BCs are available. For IVPs with all eigenvalues of M(0) being negative, the correctly posed ICs are

M(0)z(0) + f(0, z(0)) = 0

- Eigenvalues λ of M(0) determine the structure of ICs, TCs, and BCs
- Analysis (global) for the nonlinear case (f(t, z)) and spectrum of M(0) with negative or/and positive eigenvalues is available
- Nonlinear case (f(t, z)): convergence of collocation for spectrum of M(0) with negative or/and positive eigenvalues is available
- Order of convergence: stage order for arbitrary collocation points, small superconvergence for Gaussian collocation points
- Collocation applied to linear/nonlinear index 1 well-posed DAEs shows full stage order under reasonable smoothness assumptions.
- Higher index problems are ill-posed in natural setting and the standard collocation does not work in general.
- Possible remedy: Least Squares Collocation. Convergence analysis for a some model classes already available.
- Convergence for general model classes is still work in progress (März, Hanke).

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Relations Collocation for nonlinear

index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

► Existence, uniqueness and smoothness results of solutions z ∈ C[0, 1] of

$$z'(t) = \frac{M(t)}{t}z(t) + \frac{f(t, z(t))}{t}$$

subject to correctly posed BCs are available. For IVPs with all eigenvalues of M(0) being negative, the correctly posed ICs are

M(0)z(0) + f(0, z(0)) = 0

- Eigenvalues λ of M(0) determine the structure of ICs, TCs, and BCs
- Analysis (global) for the nonlinear case (f(t, z)) and spectrum of M(0) with negative or/and positive eigenvalues is available
- Nonlinear case (f(t, z)): convergence of collocation for spectrum of M(0) with negative or/and positive eigenvalues is available
- Order of convergence: stage order for arbitrary collocation points, small superconvergence for Gaussian collocation points
- Collocation applied to linear/nonlinear index 1 well-posed DAEs shows full stage order under reasonable smoothness assumptions.
- Higher index problems are ill-posed in natural setting and the standard collocation does not work in general.
- Possible remedy: Least Squares Collocation. Convergence analysis for a some model classes already available.
- Convergence for general model classes is still work in progress (März, Hanke).

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Relations Collocation for nonlinear

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへ()

► Existence, uniqueness and smoothness results of solutions z ∈ C[0, 1] of

$$z'(t) = \frac{M(t)}{t}z(t) + \frac{f(t, z(t))}{t}$$

subject to correctly posed BCs are available. For IVPs with all eigenvalues of M(0) being negative, the correctly posed ICs are

M(0)z(0) + f(0, z(0)) = 0

- Eigenvalues λ of M(0) determine the structure of ICs, TCs, and BCs
- Analysis (global) for the nonlinear case (f(t, z)) and spectrum of M(0) with negative or/and positive eigenvalues is available
- Nonlinear case (f(t, z)): convergence of collocation for spectrum of M(0) with negative or/and positive eigenvalues is available
- Order of convergence: stage order for arbitrary collocation points, small superconvergence for Gaussian collocation points
- Collocation applied to linear/nonlinear index 1 well-posed DAEs shows full stage order under reasonable smoothness assumptions.
- Higher index problems are ill-posed in natural setting and the standard collocation does not work in general.
- Possible remedy: Least Squares Collocation. Convergence analysis for a some model classes already available.
- Convergence for general model classes is still work in progress (März, Hanke).

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

o-lloontion

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Collocation for nonlinear index 1 DAEs

Collocation for higher index DAEs

Software development

An application

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへ()

► Existence, uniqueness and smoothness results of solutions z ∈ C[0, 1] of

$$z'(t) = \frac{M(t)}{t}z(t) + \frac{f(t, z(t))}{t}$$

subject to correctly posed BCs are available. For IVPs with all eigenvalues of M(0) being negative, the correctly posed ICs are

M(0)z(0) + f(0, z(0)) = 0

- Eigenvalues λ of M(0) determine the structure of ICs, TCs, and BCs
- Analysis (global) for the nonlinear case (f(t, z)) and spectrum of M(0) with negative or/and positive eigenvalues is available
- Nonlinear case (f(t, z)): convergence of collocation for spectrum of M(0) with negative or/and positive eigenvalues is available
- Order of convergence: stage order for arbitrary collocation points, small superconvergence for Gaussian collocation points
- Collocation applied to linear/nonlinear index 1 well-posed DAEs shows full stage order under reasonable smoothness assumptions.
- Higher index problems are ill-posed in natural setting and the standard collocation does not work in general.
- Possible remedy: Least Squares Collocation. Convergence analysis for a some model classes already available.
- Convergence for general model classes is still work in progress (März, Hanke).

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

a " "

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Belations

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�()

► Existence, uniqueness and smoothness results of solutions z ∈ C[0, 1] of

$$z'(t) = \frac{M(t)}{t}z(t) + \frac{f(t, z(t))}{t}$$

subject to correctly posed BCs are available. For IVPs with all eigenvalues of M(0) being negative, the correctly posed ICs are

M(0)z(0) + f(0, z(0)) = 0

- Eigenvalues λ of M(0) determine the structure of ICs, TCs, and BCs
- Analysis (global) for the nonlinear case (f(t, z)) and spectrum of M(0) with negative or/and positive eigenvalues is available
- Nonlinear case (f(t, z)): convergence of collocation for spectrum of M(0) with negative or/and positive eigenvalues is available
- Order of convergence: stage order for arbitrary collocation points, small superconvergence for Gaussian collocation points
- Collocation applied to linear/nonlinear index 1 well-posed DAEs shows full stage order under reasonable smoothness assumptions.
- Higher index problems are ill-posed in natural setting and the standard collocation does not work in general.
- Possible remedy: Least Squares Collocation. Convergence analysis for a some model classes already available.
- Convergence for general model classes is still work in progress (März, Hanke).

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

a " "

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�()

► Existence, uniqueness and smoothness results of solutions z ∈ C[0, 1] of

$$z'(t) = \frac{M(t)}{t}z(t) + \frac{f(t, z(t))}{t}$$

subject to correctly posed BCs are available. For IVPs with all eigenvalues of M(0) being negative, the correctly posed ICs are

M(0)z(0) + f(0, z(0)) = 0

- Eigenvalues λ of M(0) determine the structure of ICs, TCs, and BCs
- Analysis (global) for the nonlinear case (f(t, z)) and spectrum of M(0) with negative or/and positive eigenvalues is available
- Nonlinear case (f(t, z)): convergence of collocation for spectrum of M(0) with negative or/and positive eigenvalues is available
- Order of convergence: stage order for arbitrary collocation points, small superconvergence for Gaussian collocation points
- Collocation applied to linear/nonlinear index 1 well-posed DAEs shows full stage order under reasonable smoothness assumptions.
- Higher index problems are ill-posed in natural setting and the standard collocation does not work in general.
- Possible remedy: Least Squares Collocation. Convergence analysis for a some model classes already available.
- Convergence for general model classes is still work in progress (März, Hanke).

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

singular C

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Relations Collocation for nonlinear index 1 DAEs Collocation for higher index

Software development

DAEs

An application

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへ()

► Existence, uniqueness and smoothness results of solutions z ∈ C[0, 1] of

$$z'(t) = \frac{M(t)}{t}z(t) + \frac{f(t, z(t))}{t}$$

subject to correctly posed BCs are available. For IVPs with all eigenvalues of M(0) being negative, the correctly posed ICs are

M(0)z(0) + f(0, z(0)) = 0

- Eigenvalues λ of M(0) determine the structure of ICs, TCs, and BCs
- Analysis (global) for the nonlinear case (f(t, z)) and spectrum of M(0) with negative or/and positive eigenvalues is available
- Nonlinear case (f(t, z)): convergence of collocation for spectrum of M(0) with negative or/and positive eigenvalues is available
- Order of convergence: stage order for arbitrary collocation points, small superconvergence for Gaussian collocation points
- Collocation applied to linear/nonlinear index 1 well-posed DAEs shows full stage order under reasonable smoothness assumptions.
- Higher index problems are ill-posed in natural setting and the standard collocation does not work in general.
- Possible remedy: Least Squares Collocation. Convergence analysis for a some model classes already available.
- Convergence for general model classes is still work in progress (März, Hanke).

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

singular C

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Collocation for nonlinear index 1 DAEs Collocation for higher index

Software development

An application

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 のへの

► Existence, uniqueness and smoothness results of solutions z ∈ C[0, 1] of

$$z'(t) = \frac{M(t)}{t}z(t) + \frac{f(t, z(t))}{t}$$

subject to correctly posed BCs are available. For IVPs with all eigenvalues of M(0) being negative, the correctly posed ICs are

M(0)z(0) + f(0, z(0)) = 0

- Eigenvalues λ of M(0) determine the structure of ICs, TCs, and BCs
- Analysis (global) for the nonlinear case (f(t, z)) and spectrum of M(0) with negative or/and positive eigenvalues is available
- Nonlinear case (f(t, z)): convergence of collocation for spectrum of M(0) with negative or/and positive eigenvalues is available
- Order of convergence: stage order for arbitrary collocation points, small superconvergence for Gaussian collocation points
- Collocation applied to linear/nonlinear index 1 well-posed DAEs shows full stage order under reasonable smoothness assumptions.
- Higher index problems are ill-posed in natural setting and the standard collocation does not work in general.
- Possible remedy: Least Squares Collocation. Convergence analysis for a some model classes already available.

Convergence for general model classes is still work in progress (März, Hanke).

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

a " "

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Relations

index 1 DAEs Collocation for higher index DAEs

Software development

An application

► Existence, uniqueness and smoothness results of solutions z ∈ C[0, 1] of

$$z'(t) = \frac{M(t)}{t}z(t) + \frac{f(t, z(t))}{t}$$

subject to correctly posed BCs are available. For IVPs with all eigenvalues of M(0) being negative, the correctly posed ICs are

M(0)z(0) + f(0, z(0)) = 0

- Eigenvalues λ of M(0) determine the structure of ICs, TCs, and BCs
- Analysis (global) for the nonlinear case (f(t, z)) and spectrum of M(0) with negative or/and positive eigenvalues is available
- Nonlinear case (f(t, z)): convergence of collocation for spectrum of M(0) with negative or/and positive eigenvalues is available
- Order of convergence: stage order for arbitrary collocation points, small superconvergence for Gaussian collocation points
- Collocation applied to linear/nonlinear index 1 well-posed DAEs shows full stage order under reasonable smoothness assumptions.
- Higher index problems are ill-posed in natural setting and the standard collocation does not work in general.
- Possible remedy: Least Squares Collocation. Convergence analysis for a some model classes already available.
- Convergence for general model classes is still work in progress (März, Hanke).

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems

Differential Algebraic Equations

Collocation for

a " "

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs

Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application

Happy birthday, John!

Collocation for ODEs & DAEs

Introduction

Singular ODEs: an example More general class of problems Differential Algebraic

Differential Algebraic Equations

Collocation for

Collocation

Collocation for DAEs

Well-posedness of BVPs in DAEs Accurately stated BCs Relations Collocation for nonlinear index 1 DAEs Collocation for higher index DAEs

Software development

An application